JP2013084664A - Solar battery manufacturing method, and solar battery - Google Patents

Solar battery manufacturing method, and solar battery Download PDF

Info

Publication number
JP2013084664A
JP2013084664A JP2011221909A JP2011221909A JP2013084664A JP 2013084664 A JP2013084664 A JP 2013084664A JP 2011221909 A JP2011221909 A JP 2011221909A JP 2011221909 A JP2011221909 A JP 2011221909A JP 2013084664 A JP2013084664 A JP 2013084664A
Authority
JP
Japan
Prior art keywords
layer
substrate temperature
solar cell
temperature
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011221909A
Other languages
Japanese (ja)
Other versions
JP5812487B2 (en
Inventor
Yasushi Kawamoto
泰 川本
Hidefumi Odaka
秀文 小高
Sakae Niki
栄 仁木
Shogo Ishizuka
尚吾 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
AGC Inc
Original Assignee
Asahi Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Glass Co Ltd
Priority to JP2011221909A priority Critical patent/JP5812487B2/en
Priority to KR1020120110796A priority patent/KR20130037654A/en
Priority to TW101137023A priority patent/TW201320375A/en
Publication of JP2013084664A publication Critical patent/JP2013084664A/en
Application granted granted Critical
Publication of JP5812487B2 publication Critical patent/JP5812487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which allows the manufacture of a solar battery having an excellent power generation efficiency.SOLUTION: The method is for manufacturing a solar battery which has a lower electrode, a light absorption layer containing Cu, In, Ga and Se, a buffer layer, a transparent conductive layer, and an upper electrode, which are formed on a glass substrate at least in this order. The light absorption layer is formed by executing, on the lower electrode: a first step where Se and Ga are deposited at a substrate temperature of 300-500°C; a second step where Se and In are deposited at a substrate temperature of 300-500°C; a third step where the substrate temperature is raised from the temperature in the second step to a temperature of 550-630°C, and then Se and Cu are deposited; a fourth step where Se and In are deposited at a substrate temperature of 550-630°C; and a fifth step where Se and Ga are deposited at a substrate temperature of 550-630°C, at least in this order.

Description

本発明は、太陽電池の製造方法および太陽電池に関する。   The present invention relates to a solar cell manufacturing method and a solar cell.

カルコパイライト結晶構造を持つIb−IIIb−VIb族化合物半導体や立方晶系あるいは六方晶系のIIb−VIb族化合物半導体は可視から近赤外の波長範囲の光に対して大きな吸収係数を有するために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se系(以下、CIGS系と記述する)やCdTe系が例示される。 The Ib-IIIb-VIb group compound semiconductor having a chalcopyrite crystal structure and the cubic or hexagonal type IIb-VIb group compound semiconductor have a large absorption coefficient for light in the visible to near-infrared wavelength range. It is expected as a material for high-efficiency thin-film solar cells. Typical examples include Cu (In, Ga) Se 2 system (hereinafter referred to as CIGS system) and CdTe system.

CIGS系太陽電池は、例えば、ソーダライムガラス基板上にMo電極を形成した後、該Mo電極上にCIGS層を形成している。CIGS層の形成方法としては、多元蒸着装置により、Cu、In、Ga、およびSeを同時に蒸着してCIGS層を形成する多元蒸着法(例えば、特許文献1、2参照)、またCu−Ga合金ターゲットおよびInターゲットを用いたスパッタリングによりCu−Ga合金層および純In層からなる積層プリカーサー膜を形成し、これをセレン雰囲気中で熱処理するセレン化法が知られている(例えば、特許文献3参照)。   In the CIGS solar cell, for example, a MoGS is formed on a soda lime glass substrate, and then a CIGS layer is formed on the Mo electrode. As a CIGS layer forming method, a multi-source deposition method in which a CIGS layer is formed by simultaneously evaporating Cu, In, Ga, and Se by a multi-source deposition apparatus (see, for example, Patent Documents 1 and 2), and a Cu-Ga alloy. A selenization method is known in which a laminated precursor film composed of a Cu—Ga alloy layer and a pure In layer is formed by sputtering using a target and an In target, and this is heat-treated in a selenium atmosphere (see, for example, Patent Document 3). ).

特開平11−135819号公報JP-A-11-135819 国際公開第2011/049146号パンフレットInternational Publication No. 2011/049146 Pamphlet 特開平10−135498号公報JP-A-10-135498

図14は、従来のCIGS層の形成工程を示すものであり、多元蒸着法の1種である3段階法の形成工程を示したものである。3段階法では、まず、1段階目として、基板温度を400℃程度として、Ga、In、およびSeを同時に蒸着させる。また、第2段階目として、基板温度を500〜550℃程度として、CuおよびSeを蒸着させる。さらに、3段階目として、基板温度を500〜550℃程度として、再度、Ga、In、およびSeを同時に蒸着させる。   FIG. 14 shows a conventional CIGS layer forming process, and shows a forming process of a three-stage method which is a kind of multi-source deposition method. In the three-stage method, first, as the first stage, Ga, In, and Se are vapor-deposited simultaneously at a substrate temperature of about 400 ° C. Further, as the second stage, Cu and Se are vapor-deposited at a substrate temperature of about 500 to 550 ° C. Further, as the third stage, the substrate temperature is set to about 500 to 550 ° C., and Ga, In, and Se are again vapor-deposited again.

このようなCIGS層の形成においては、より発電効率に優れる太陽電池を製造するために、CIGS層の蒸着を高温で行うことが検討されている。CIGS層の蒸着を高温で行うことで、CIGS層における欠陥が低減され、発電効率の向上が期待される。   In formation of such a CIGS layer, in order to manufacture the solar cell which is more excellent in power generation efficiency, performing vapor deposition of a CIGS layer at high temperature is examined. By performing the deposition of the CIGS layer at a high temperature, defects in the CIGS layer are reduced, and an improvement in power generation efficiency is expected.

しかしながら、従来の3段階法を単に高温で行った場合、Gaが拡散しやすくなり、CIGS層におけるGaの濃度分布、特に厚さ方向における濃度分布が均一化しやすい。Gaの濃度分布が均一化した場合、光の吸収波長域が狭まり、CIGS層における欠陥が低減されとしても、発電効率の向上を期待できない。   However, when the conventional three-step method is simply performed at a high temperature, Ga is likely to diffuse, and the Ga concentration distribution in the CIGS layer, particularly the concentration distribution in the thickness direction, is likely to be uniform. When the Ga concentration distribution is uniform, even if the light absorption wavelength region is narrowed and defects in the CIGS layer are reduced, improvement in power generation efficiency cannot be expected.

本発明は、上記課題を解決するためになされたものであって、高温で蒸着を行う場合についても、CIGS層に適切なGaの濃度分布を形成でき、発電効率に優れる太陽電池を製造する製造方法の提供を目的としている。また、本発明は、CIGS層に適切なGaの濃度分布が形成され、発電効率に優れる太陽電池の提供を目的としている。   The present invention has been made to solve the above-described problems, and can manufacture a solar cell that can form an appropriate Ga concentration distribution in the CIGS layer and has excellent power generation efficiency even when vapor deposition is performed at a high temperature. The purpose is to provide a method. Another object of the present invention is to provide a solar cell in which an appropriate Ga concentration distribution is formed in the CIGS layer and the power generation efficiency is excellent.

本発明の太陽電池の製造方法は、ガラス基板上に、下部電極、Cu、In、Ga、およびSeを含有する光吸収層、バッファー層、透明導電層、および上部電極が少なくともこの順に形成された太陽電池の製造方法に関する。本発明の太陽電池の製造方法は、特に、前記下部電極上に、基板温度を300〜500℃としてSeおよびGaを蒸着させる第1の工程と、基板温度を300〜500℃としてSeおよびInを蒸着させる第2の工程と、基板温度を前記第2の工程における温度から昇温して550〜630℃としてSeおよびCuを蒸着させる第3の工程と、基板温度を550〜630℃としてSeおよびInを蒸着させる第4の工程と、基板温度を550〜630℃としてSeおよびGaを蒸着させる第5の工程とを少なくともこの順に行って前記光吸収層を形成することを特徴とする。   In the method for manufacturing a solar cell of the present invention, a lower electrode, a light absorption layer containing Cu, In, Ga, and Se, a buffer layer, a transparent conductive layer, and an upper electrode are formed at least in this order on a glass substrate. The present invention relates to a method for manufacturing a solar cell. The method for manufacturing a solar cell according to the present invention particularly includes a first step of depositing Se and Ga on the lower electrode at a substrate temperature of 300 to 500 ° C., and Se and In at a substrate temperature of 300 to 500 ° C. A second step of vapor deposition; a third step of raising the substrate temperature from the temperature in the second step to 550 to 630 ° C. and depositing Se and Cu; and a substrate temperature of 550 to 630 ° C. and Se and The light absorbing layer is formed by performing at least a fourth step of depositing In and a fifth step of depositing Se and Ga at a substrate temperature of 550 to 630 ° C. in this order.

本発明の太陽電池は、ガラス基板上に、下部電極、Cu、In、Ga、およびSeを含有する光吸収層、バッファー層、透明導電層、および上部電極が少なくともこの順に形成された太陽電池に関する。本発明の太陽電池は、特に、前記光吸収層が、Cu(In1−yGa)Se(0.7≦x≦1.0、0.1≦y≦0.6、1.9≦z≦2.0)で示される組成を有するカルコパイライト型結晶構造を有する化合物からなり、かつ二次イオン質量分析法による上部側主面から厚さ方向に700nmまでの範囲におけるGaのカウント数の最大値に対する前記上部側主面から下部側主面までの厚さ方向の範囲全体におけるGaのカウント数の最小値の百分率割合が4〜40%であることを特徴とする。 The solar cell of the present invention relates to a solar cell in which a lower electrode, a light absorption layer containing Cu, In, Ga, and Se, a buffer layer, a transparent conductive layer, and an upper electrode are formed at least in this order on a glass substrate. . In the solar cell of the present invention, in particular, the light absorption layer is Cu x (In 1-y Ga y ) Se z (0.7 ≦ x ≦ 1.0, 0.1 ≦ y ≦ 0.6, 9 ≦ z ≦ 2.0), and a count of Ga in the range from the upper principal surface to 700 nm in the thickness direction by secondary ion mass spectrometry, having a chalcopyrite type crystal structure. The percentage ratio of the minimum value of the Ga count number in the entire range in the thickness direction from the upper main surface to the lower main surface with respect to the maximum value is 4 to 40%.

本発明の太陽電池の製造方法によれば、Gaを蒸着させる工程とInを蒸着させる工程とを基本的に別々の工程に分けて行うとともに、1度目のGaを蒸着させる工程は1度目のInを蒸着させる工程よりも先に行い、かつ2度目のGaを蒸着させる工程は2度目のInを蒸着させる工程よりも後に行い、2度のGaを蒸着させる工程を互いに離すように行うことで、光吸収層に適切なGaの濃度分布を形成でき、発電効率に優れる太陽電池を製造することができる。   According to the method for manufacturing a solar cell of the present invention, the step of depositing Ga and the step of depositing In are basically performed in separate steps, and the first step of depositing Ga is the first In. The step of depositing Ga for the second time and the step of depositing Ga for the second time are performed after the step of depositing In for the second time, and the steps of depositing Ga for the second time are performed separately from each other. An appropriate Ga concentration distribution can be formed in the light absorption layer, and a solar cell excellent in power generation efficiency can be manufactured.

また、本発明の太陽電池によれば、特に、上部側主面から厚さ方向に700nmまでの範囲におけるGaのカウント数の最大値に対する前記上部側主面から下部側主面までの厚さ方向の範囲全体におけるGaのカウント数の最小値の百分率割合を4〜40%とすることで、光吸収層におけるGaの濃度分布を適切とし、高い発電効率を得ることができる。   In addition, according to the solar cell of the present invention, in particular, the thickness direction from the upper main surface to the lower main surface with respect to the maximum value of the Ga count in the range from the upper main surface to 700 nm in the thickness direction. By setting the percentage ratio of the minimum value of the count number of Ga in the entire range of 4 to 40%, the Ga concentration distribution in the light absorption layer can be made appropriate and high power generation efficiency can be obtained.

本発明の製造方法により製造される太陽電池の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the solar cell manufactured by the manufacturing method of this invention. 本発明の製造方法における光吸収層の形成工程の一実施形態を示す図。The figure which shows one Embodiment of the formation process of the light absorption layer in the manufacturing method of this invention. 実施例1〜5および比較例1の太陽電池における光吸収層のSIMSによるエッチング時間とGaのカウント数との関係をまとめて示す図。The figure which shows collectively the relationship between the etching time by SIMS of the light absorption layer in Examples 1-5 and the solar cell of the comparative example 1, and the count number of Ga. 比較例1〜4の太陽電池における光吸収層のSIMSによるエッチング時間とGaのカウント数との関係をまとめて示す図。The figure which shows collectively the relationship between the etching time by SIMS of the light absorption layer in the solar cell of Comparative Examples 1-4, and the count number of Ga. 図3における実施例1の結果を単独で示す図。The figure which shows the result of Example 1 in FIG. 3 independently. 図3における実施例2の結果を単独で示す図。The figure which shows the result of Example 2 in FIG. 3 independently. 図3における実施例3の結果を単独で示す図。The figure which shows the result of Example 3 in FIG. 3 independently. 図3における実施例4の結果を単独で示す図。The figure which shows the result of Example 4 in FIG. 3 independently. 図3における実施例5の結果を単独で示す図。The figure which shows the result of Example 5 in FIG. 3 independently. 図4における比較例1の結果を単独で示す図。The figure which shows the result of the comparative example 1 in FIG. 4 independently. 図4における比較例2の結果を単独で示す図。The figure which shows the result of the comparative example 2 in FIG. 4 independently. 図4における比較例3の結果を単独で示す図。The figure which shows the result of the comparative example 3 in FIG. 4 independently. 図4における比較例4の結果を単独で示す図。The figure which shows the result of the comparative example 4 in FIG. 4 independently. 従来の3段階法による光吸収層の形成工程の一例を示す図。The figure which shows an example of the formation process of the light absorption layer by the conventional three-step method.

以下、本発明の実施形態について説明する。
図1は、本発明の製造方法によって製造される太陽電池の一実施形態を示す断面図である。太陽電池1は、例えば、ガラス基板2上に、下部電極3、Cu、In、Ga、およびSeを含有する光吸収層4、バッファー層5、透明導電層6、および上部電極7が少なくともこの順に形成されたものである。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view showing one embodiment of a solar cell manufactured by the manufacturing method of the present invention. In the solar cell 1, for example, a lower electrode 3, a light absorption layer 4 containing Cu, In, Ga, and Se, a buffer layer 5, a transparent conductive layer 6, and an upper electrode 7 are at least in this order on a glass substrate 2. It is formed.

図2は、光吸収層4の形成工程の一実施形態を示す工程図である。光吸収層4は、下部電極3上に、基板温度を300〜500℃としてSeおよびGaを蒸着する第1の工程と、基板温度を300〜500℃としてSeおよびInを蒸着する第2の工程と、基板温度を前記第2の工程における温度から昇温して550〜630℃としてSeおよびCuを蒸着する第3の工程と、基板温度を550〜630℃としてSeおよびInを蒸着する第4の工程と、基板温度を550〜630℃としてSeおよびGaを蒸着する第5の工程とを少なくともこの順に行って形成する。   FIG. 2 is a process diagram showing an embodiment of a process for forming the light absorption layer 4. The light absorption layer 4 has a first step of depositing Se and Ga on the lower electrode 3 with a substrate temperature of 300 to 500 ° C., and a second step of depositing Se and In with a substrate temperature of 300 to 500 ° C. A third step of evaporating Se and Cu by raising the substrate temperature from the temperature in the second step to 550 to 630 ° C., and a fourth step of evaporating Se and In at a substrate temperature of 550 to 630 ° C. And the fifth step of depositing Se and Ga at a substrate temperature of 550 to 630 ° C. is performed at least in this order.

なお、図2には成膜時間を示したが、本発明における成膜時間は必ずしもこのようなものに限られない。また、各工程間の基板温度、例えば、第1の工程〜第2の工程における工程間の基板温度、第3の工程〜第5の工程における工程間の基板温度は、必ずしも同一である必要はなく、上記範囲内で工程毎に異なるものとできる。さらに、各工程内での基板温度についても、必ずしも同一である必要はなく、上記した範囲内で変動させることができる。   Although the film formation time is shown in FIG. 2, the film formation time in the present invention is not necessarily limited to this. In addition, the substrate temperature between steps, for example, the substrate temperature between steps in the first step to the second step, and the substrate temperature between steps in the third step to the fifth step are not necessarily the same. It can be different for each process within the above range. Further, the substrate temperature in each process is not necessarily the same, and can be varied within the above-described range.

上記製造方法によれば、Gaを蒸着させる工程とInを蒸着させる工程とを基本的に別々の工程に分けて行うとともに、1度目のGaを蒸着させる工程は1度目のInを蒸着させる工程よりも先に行い、2度目のGaを蒸着させる工程は2度目のInを蒸着させる工程よりも後に行い、2度のGaを蒸着させる工程を互いに離すように行うことで、結果として光吸収層4の両主面付近にGaの濃度が高い部分を形成しやすくなるとともに、それらの間にGaの濃度が低い部分を形成しやすくなる。   According to the above manufacturing method, the step of vapor-depositing Ga and the step of vapor-depositing In are basically divided into separate steps, and the step of vapor-depositing Ga for the first time is a step of vapor-depositing In the first time. The step of evaporating Ga for the second time is performed after the step of evaporating In for the second time, and the step of evaporating Ga for the second time is performed so as to be separated from each other. It is easy to form a portion with a high Ga concentration near both of the main surfaces, and to form a portion with a low Ga concentration between them.

従って、蒸着を高温で行うことによりGaが拡散したとしても十分なGaの濃度分布を形成でき、本来の目的である蒸着を高温で行うことによる欠陥を低減する効果を十分に得ることができ、発電効率に優れる太陽電池を製造することができる。なお、従来の3段階法を単に高温で行った場合、Gaの拡散によるGaの濃度分布の均一化により、蒸着を高温で行うことによる欠陥を低減する効果が打ち消されてしまい、発電効率に優れる太陽電池を製造することができない。   Therefore, even if Ga is diffused by performing vapor deposition at a high temperature, a sufficient Ga concentration distribution can be formed, and the effect of reducing defects caused by performing vapor deposition, which is the original purpose, at a high temperature can be sufficiently obtained. A solar cell having excellent power generation efficiency can be manufactured. In addition, when the conventional three-stage method is simply performed at high temperature, the effect of reducing defects caused by vapor deposition at high temperature is canceled out by uniformizing the Ga concentration distribution by diffusion of Ga, resulting in excellent power generation efficiency. A solar cell cannot be manufactured.

光吸収層4の形成は、上記したようにGaを蒸着させる工程とInを蒸着させる工程とを基本的に別々の工程に分けて行うとともに、所定の順序でGaを蒸着させる工程とInを蒸着させる工程とを行い、また従来に比べて基板温度を高くすることを除き、従来の3段階法と基本的に同様の装置等により行うことができる。   The light absorption layer 4 is formed by dividing the Ga vapor deposition step and the In vapor deposition step into separate steps, as described above, and the Ga vapor deposition step and the In vapor deposition step in a predetermined order. Except that the temperature of the substrate is higher than that of the prior art, and can be carried out by an apparatus basically similar to the conventional three-stage method.

すなわち、光吸収層4の形成は、通常、全体組成がCu(In1−yGa)Se(0.7≦x≦1.0、0.1≦y≦0.6、1.9≦z≦2.0)となるように、公知の多元蒸着装置、例えば、真空槽と、この真空槽内に配置された基板加熱ヒータ、Cu、In、Ga、およびSeの各蒸着源とを備える多元蒸着装置を用いて行うことができる。 That is, the formation of the light absorption layer 4 is usually performed by using Cu x (In 1-y Ga y ) Se z (0.7 ≦ x ≦ 1.0, 0.1 ≦ y ≦ 0.6, 1. 9 ≦ z ≦ 2.0), a known multi-source vapor deposition apparatus, for example, a vacuum chamber, a substrate heater disposed in the vacuum chamber, Cu, In, Ga, and Se deposition sources, It can carry out using a multi-source vapor deposition apparatus provided with.

各蒸着源は、るつぼ内に配置してもよいし、るつぼの代わりにボートなどを用いてもよい。また、光吸収層4が形成される下部電極3が形成されたガラス基板2は、例えば、基板加熱ヒータを内蔵する基板ステージ上に配置される。   Each vapor deposition source may be disposed in a crucible, or a boat or the like may be used instead of the crucible. Moreover, the glass substrate 2 on which the lower electrode 3 on which the light absorption layer 4 is formed is disposed on, for example, a substrate stage that incorporates a substrate heater.

なお、光吸収層4は、Cu、In、Ga、Seのみを含有することが好ましいが、必要に応じて、かつ本発明の趣旨に反しない限度において、追加的にSi、Al、Mg、Ca、Sr、Ba、Li、Na、K、B、ZrおよびLaから選ばれる1種以上の元素を最大1×1030at/cc程度含有してもよい。 The light absorption layer 4 preferably contains only Cu, In, Ga, and Se. However, if necessary and within the limits of the gist of the present invention, Si, Al, Mg, and Ca are additionally added. , Sr, Ba, Li, Na, K, B, Zr and La may contain at least about 1 × 10 30 at / cc.

各工程は、例えば、電離真空計で圧力を制御しながら、所定の基板温度に調整して行う。蒸着時の各元素の圧力は、例えば、第1の工程おけるSeの圧力が1×10−4Pa〜1×10−2Pa、Gaの圧力が1×10−5Pa〜1×10−4Pa、第2の工程おけるSeの圧力が1×10−4Pa〜1×10−2Pa、Inの圧力が1×10−5Pa〜1×10−4Pa、第3の工程おけるSeの圧力が1×10−4Pa〜1×10−2Pa、Cuの圧力が1×10−6Pa〜1×10−4Pa、第4の工程おけるSeの圧力が1×10−4Pa〜1×10−2Pa、Inの圧力が1×10−5Pa〜1×10−4Pa、第5の工程おけるSeの圧力が1×10−4Pa〜1×10−2Pa、Gaの圧力が1×10−5Pa〜1×10−4Paであることが好ましい。 Each process is performed by adjusting to a predetermined substrate temperature while controlling the pressure with an ionization vacuum gauge, for example. The pressure of each element at the time of vapor deposition is, for example, the Se pressure in the first step is 1 × 10 −4 Pa to 1 × 10 −2 Pa, and the Ga pressure is 1 × 10 −5 Pa to 1 × 10 −4. Pa, Se pressure in the second step is 1 × 10 −4 Pa to 1 × 10 −2 Pa, In pressure is 1 × 10 −5 Pa to 1 × 10 −4 Pa, Se in the third step The pressure is 1 × 10 −4 Pa to 1 × 10 −2 Pa, the pressure of Cu is 1 × 10 −6 Pa to 1 × 10 −4 Pa, and the pressure of Se in the fourth step is 1 × 10 −4 Pa to 1 × 10 −2 Pa, In pressure is 1 × 10 −5 Pa to 1 × 10 −4 Pa, Se pressure in the fifth step is 1 × 10 −4 Pa to 1 × 10 −2 Pa, Ga The pressure is preferably 1 × 10 −5 Pa to 1 × 10 −4 Pa.

また、各工程の成膜時間は、光吸収層4の全体の厚さが1〜3μm程度となるように、また最適バンドキャップが得られるように適宜選択することができるが、例えば、第1の工程は600〜3600秒、第2の工程は600〜3600秒、第3の工程は600〜3600秒、第4の工程は300〜1800秒、第5の工程は300〜1800秒である。   The film formation time in each step can be appropriately selected so that the total thickness of the light absorption layer 4 is about 1 to 3 μm and an optimum band cap can be obtained. The process is 600 to 3600 seconds, the second process is 600 to 3600 seconds, the third process is 600 to 3600 seconds, the fourth process is 300 to 1800 seconds, and the fifth process is 300 to 1800 seconds.

また、各工程の基板温度は、上記範囲内であれば必ずしも限定されないが、第1の工程の基板温度は350〜450℃が好ましく、第2の工程の基板温度は350〜450℃が好ましく、第3の工程の基板温度は580〜610℃が好ましく、第4の工程の基板温度は580〜610℃が好ましく、第5の工程の基板温度は580〜610℃が好ましい。このような基板温度、特に第3の工程〜第5の工程の基板温度を高くすることで、光吸収層4内の欠陥を低減する効果を十分に得ることができ、発電効率に優れる太陽電池を製造することができる。   The substrate temperature in each step is not necessarily limited as long as it is within the above range, but the substrate temperature in the first step is preferably 350 to 450 ° C, and the substrate temperature in the second step is preferably 350 to 450 ° C. The substrate temperature in the third step is preferably 580 to 610 ° C, the substrate temperature in the fourth step is preferably 580 to 610 ° C, and the substrate temperature in the fifth step is preferably 580 to 610 ° C. By increasing such a substrate temperature, in particular, the substrate temperature in the third to fifth steps, the effect of reducing defects in the light absorption layer 4 can be sufficiently obtained, and the solar cell excellent in power generation efficiency Can be manufactured.

なお、第1の工程ではSeおよびGaのみ、第2の工程ではSeおよびInのみ、第3の工程ではSeおよびCuのみ、第4の工程ではSeおよびInのみ、第5の工程ではSeおよびGaのみを、それぞれ蒸着させることが好ましいが、必要に応じて、かつ本発明の趣旨に反しない限度において、例えば、第1の工程では追加的にInを1×10−5Pa〜1×10−4Paの圧力にて1〜500秒程度蒸着させてもよく、第2の工程では追加的にGaを1×10−5Pa〜1×10−4Paの圧力にて1〜500秒程度蒸着させてもよく、第4の工程では追加的にGaを1×10−5Pa〜1×10−4Paの圧力にて1〜250秒程度蒸着させてもよく、第5の工程では追加的にInを1×10−5Pa〜1×10−4Paの圧力にて1〜250秒程度蒸着させてもよい。 In the first process, only Se and Ga, in the second process, only Se and In, in the third process, only Se and Cu, in the fourth process, only Se and In, and in the fifth process, Se and Ga. However, as long as it is necessary and does not violate the spirit of the present invention, for example, in the first step, In is additionally added at 1 × 10 −5 Pa to 1 × 10 −. It may be deposited at a pressure of 4 Pa for about 1 to 500 seconds. In the second step, Ga is additionally deposited at a pressure of 1 × 10 −5 Pa to 1 × 10 −4 Pa for about 1 to 500 seconds. In the fourth step, Ga may be additionally deposited at a pressure of 1 × 10 −5 Pa to 1 × 10 −4 Pa for about 1 to 250 seconds. In the fifth step, additional Ga may be added. pressure of 1 × 10 -5 Pa~1 × 10 -4 Pa to in the In may be deposited about 1 to 250 seconds.

光吸収層4は、上記した第1の工程〜第5の工程のみを行って形成してもよいが、第5の工程後、基板温度を550〜630℃としてSeおよびInを蒸着する第6の工程を行うことが好ましい。このような第6の工程を追加することで、光吸収層4とバッファー層5とのバンドギャップの繋がりを改善することにより開放電圧(Voc)を大きくでき、結果として発電効率に優れる太陽電池を製造することができる。   The light absorption layer 4 may be formed by performing only the first to fifth steps described above. However, after the fifth step, the sixth is to deposit Se and In at a substrate temperature of 550 to 630 ° C. It is preferable to perform this process. By adding such a sixth step, the open-circuit voltage (Voc) can be increased by improving the band gap connection between the light absorption layer 4 and the buffer layer 5, and as a result, a solar cell having excellent power generation efficiency can be obtained. Can be manufactured.

第6の工程おけるSeの圧力は1×10−4Pa〜1×10−2Pa、Inの圧力は1×10−5Pa〜1×10−4Paが好ましい。また、第6の工程における処理時間は1〜120秒が好ましい。第6の工程における処理時間を1秒以上とすることで、上記効果を有効に得ることができる。また、第6の工程における処理時間は120秒もあれば十分であり、これ以下とすることで生産性を良好にできる。第6の工程における処理時間は、1〜90秒がより好ましく、1〜60秒がさらに好ましい。 The pressure of the sixth step definitive Se is 1 × 10 -4 Pa~1 × 10 -2 Pa, the pressure of In 1 × 10 -5 Pa~1 × 10 -4 Pa is preferred. The treatment time in the sixth step is preferably 1 to 120 seconds. The effect can be effectively obtained by setting the processing time in the sixth step to 1 second or more. Further, it is sufficient that the processing time in the sixth step is 120 seconds, and productivity can be improved by setting it to be less than this. The treatment time in the sixth step is more preferably 1 to 90 seconds, and further preferably 1 to 60 seconds.

また、第5の工程後、または第6の工程を行う場合には第6の工程後、Se雰囲気中で550〜630℃の熱処理を行う第7の工程を行うことが好ましい。上記した第1の工程〜第5の工程、または第1の工程〜第6の工程では、Seの再蒸発によって光吸収層4にSe欠陥が生じる場合がある。第5の工程後、または第6の工程を行う場合には第6の工程後、Se雰囲気中で550〜630℃の熱処理を行うことで、光吸収層4におけるSe欠陥を減少させることができる。   In addition, after the fifth step or when performing the sixth step, it is preferable to perform a seventh step of performing heat treatment at 550 to 630 ° C. in an Se atmosphere after the sixth step. In the first to fifth steps or the first to sixth steps described above, Se defects may occur in the light absorption layer 4 due to re-evaporation of Se. In the case where the fifth step or the sixth step is performed, Se defects in the light absorption layer 4 can be reduced by performing a heat treatment at 550 to 630 ° C. in an Se atmosphere after the sixth step. .

第7の工程おけるSe雰囲気の圧力は1×10−4Pa〜1×10−2Paが好ましい。また、第7の工程における処理時間は1〜10分が好ましい。第7の工程における処理時間を1分以上とすることで、Se欠陥を効果的に減少させることができる。また、第7の工程における処理時間は10分もあればSe欠陥を十分に減少させることができ、これ以下とすることで生産性を良好にできる。第7の工程における処理時間は、2〜8分がより好ましく、3〜7分がさらに好ましい。 The pressure of the Se atmosphere in the seventh step is preferably 1 × 10 −4 Pa to 1 × 10 −2 Pa. The treatment time in the seventh step is preferably 1 to 10 minutes. By setting the processing time in the seventh step to 1 minute or longer, Se defects can be effectively reduced. Further, if the treatment time in the seventh step is 10 minutes, Se defects can be sufficiently reduced, and productivity can be improved by setting it to be less than this. The treatment time in the seventh step is more preferably 2 to 8 minutes, and further preferably 3 to 7 minutes.

上記製造方法によれば、少なくとも第1の工程〜第5の工程、特にGaを蒸着させる工程とInを蒸着させる工程とを基本的に別々の工程に分けて行うことで、高温で蒸着を行った場合であっても、光吸収層4に適切なGaの濃度分布を形成できる。   According to the above manufacturing method, at least the first step to the fifth step, in particular, the step of depositing Ga and the step of depositing In are performed by dividing them into separate steps, thereby performing deposition at a high temperature. Even in this case, an appropriate Ga concentration distribution can be formed in the light absorption layer 4.

具体的には、二次イオン質量分析法(SIMS)による上部側主面から厚さ方向に700nmまでの範囲におけるGaのカウント数の最大値に対する上部側主面から下部側主面までの厚さ方向の範囲全体におけるGaのカウント数の最小値の百分率割合((Gaのカウント数の最小値)/(Gaのカウント数の最大値)×100[%])を4〜40%の範囲内にすることができる。なお、上部側とはバッファー層5側、下部側とは下部電極3側を意味する。   Specifically, the thickness from the upper main surface to the lower main surface with respect to the maximum value of the Ga count in the range from the upper main surface to 700 nm in the thickness direction by secondary ion mass spectrometry (SIMS). Percentage ratio of the minimum value of Ga count number in the entire range in the direction ((minimum value of Ga count number) / (maximum value of Ga count number) × 100 [%]) within a range of 4 to 40% can do. The upper side means the buffer layer 5 side, and the lower side means the lower electrode 3 side.

このようなGaの濃度分布とすることで、光の吸収波長域を十分に広くでき、発電効率の低下を抑制できる。上記割合は、5〜30%の範囲内がより好ましく、5〜20%の範囲内がさらに好ましい。   By setting it as such Ga concentration distribution, the absorption wavelength range of light can fully be widened, and the fall of power generation efficiency can be suppressed. The ratio is more preferably in the range of 5 to 30%, and still more preferably in the range of 5 to 20%.

次に、太陽電池1の他の部材、構成層について説明する。   Next, other members and constituent layers of the solar cell 1 will be described.

ガラス基板2としては、厚さが0.5〜6mmの範囲のものが好適に用いられ、その組成は特に限定されず、ソーダライムガラス板、またソーダライムガラスよりもガラス転移温度が高く、かつアルカリ溶出量が多いために発電効率を向上できるガラス板等を用いることができる。   As the glass substrate 2, one having a thickness in the range of 0.5 to 6 mm is suitably used, the composition thereof is not particularly limited, and the glass transition temperature is higher than soda lime glass plate and soda lime glass, and Since there is much alkali elution amount, the glass plate etc. which can improve electric power generation efficiency can be used.

ソーダライムガラスよりもガラス転移温度が高く、かつアルカリ溶出量が多いガラス板として、例えば、酸化物基準のモル百分率表示で、SiO:60〜75%、Al:3〜10%、B:0〜3%、MgO:5〜18%、CaO:0〜5%、NaO:4〜18.5%、KO:0〜17%、SrO+BaO+ZrO:0〜10%含有し、KO/(NaO+KO)が0〜0.5であり、ガラス転移点温度(Tg)が550℃を超えるものが挙げられる。 As a glass plate having a glass transition temperature higher than that of soda lime glass and having a large amount of alkali elution, for example, in terms of oxide-based molar percentage, SiO 2 : 60 to 75%, Al 2 O 3 : 3 to 10%, B 2 O 3: 0~3%, MgO: 5~18%, CaO: 0~5%, Na 2 O: 4~18.5%, K 2 O: 0~17%, SrO + BaO + ZrO 2: 0~10 %, K 2 O / (Na 2 O + K 2 O) is 0 to 0.5, and the glass transition temperature (Tg) exceeds 550 ° C.

SiOは、ガラスの骨格を形成する成分で、60%未満ではガラスの耐熱性および化学的耐久性が低下し、熱膨張係数が増大するおそれがある。しかし、75%超ではガラスの高温粘度が上昇し、溶融性が悪化する問題が生じるおそれがある。63〜72%が好ましく、63〜70%であることがより好ましく、63〜69%がさらに好ましい。 SiO 2 is a component that forms a glass skeleton. If it is less than 60%, the heat resistance and chemical durability of the glass are lowered, and the thermal expansion coefficient may be increased. However, if it exceeds 75%, the high-temperature viscosity of the glass increases, which may cause a problem that the meltability deteriorates. It is preferably 63 to 72%, more preferably 63 to 70%, and still more preferably 63 to 69%.

Alは、ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を上げる。その含有量が3%未満だと、ガラス転移点温度が低下するおそれがあるとともに、熱膨張係数が増大するおそれがある。しかし、10%超では、ガラスの高温粘度が上昇し、溶融性が悪くなるおそれがあるとともに、失透温度が上昇し、成形性が悪くなるおそれがある。また、発電効率が低下、すなわち後述するアルカリ溶出量が低下するおそれがある。含有量は、4〜9%が好ましく、5〜8%がより好ましい。 Al 2 O 3 increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. If the content is less than 3%, the glass transition temperature may be lowered and the thermal expansion coefficient may be increased. However, if it exceeds 10%, the high-temperature viscosity of the glass increases, the meltability may deteriorate, the devitrification temperature increases, and the moldability may deteriorate. In addition, the power generation efficiency may be reduced, that is, the amount of alkali elution described later may be reduced. The content is preferably 4 to 9%, more preferably 5 to 8%.

は、溶融性を向上させる等のために3%まで含有してもよい。含有量が3%を超えるとガラス転移点温度が下がる、または熱膨張係数が小さくなり、太陽電池1の製造プロセス、特に光吸収層4を形成するプロセスにとって好ましくない。より好ましくは含有量が2%以下である。含有量が1.5%以下であると特に好ましい。 B 2 O 3 may be contained up to 3% in order to improve the meltability. When the content exceeds 3%, the glass transition temperature decreases or the thermal expansion coefficient decreases, which is not preferable for the manufacturing process of the solar cell 1, particularly for the process of forming the light absorption layer 4. More preferably, the content is 2% or less. The content is particularly preferably 1.5% or less.

SiO、Al、およびBの合量が多いとアルカリの溶出を阻害するため少ない方が好ましい。SiO、Al、およびBの合量は、80%以下が好ましく、78%以下がより好ましく、75%以下がさらに好ましく、73%以下が特に好ましい。 If the total amount of SiO 2 , Al 2 O 3 , and B 2 O 3 is large, the alkali elution is inhibited, so that the smaller amount is preferable. The total amount of SiO 2 , Al 2 O 3 , and B 2 O 3 is preferably 80% or less, more preferably 78% or less, further preferably 75% or less, and particularly preferably 73% or less.

MgOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させるが、5%未満だと、ガラスの高温粘度が上昇し溶融性が悪化するおそれがあるとともに、発電効率が低下、すなわち後述するアルカリ溶出量が低下するおそれがある。しかし、18%超では、熱膨張係数が増大するおそれがあるとともに、失透温度が上昇するおそれがある。6〜16%が好ましく、7〜14%であることがより好ましく、8〜12%であるのがさらに好ましい。   MgO is contained because it has the effect of lowering the viscosity at the time of melting the glass and accelerating the melting, but if it is less than 5%, the high temperature viscosity of the glass may increase and the meltability may deteriorate, and the power generation efficiency may be reduced. There is a risk that the decrease, that is, the amount of alkali elution described later will decrease. However, if it exceeds 18%, the thermal expansion coefficient may increase and the devitrification temperature may increase. It is preferably 6 to 16%, more preferably 7 to 14%, and still more preferably 8 to 12%.

CaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、5%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス板の熱膨張係数が増大するおそれがある。3%以下が好ましく、2%以下であることがより好ましく、1%以下がさらに好ましい。   CaO can be contained because it has an effect of reducing the viscosity at the time of melting the glass and promoting the melting. However, if the content exceeds 5%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the thermal expansion coefficient of the glass plate may increase. It is preferably 3% or less, more preferably 2% or less, and further preferably 1% or less.

SrOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、5%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス板の熱膨張係数が増大するおそれがある。4%以下が好ましく、3%以下であることがより好ましい。   SrO can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if the content exceeds 5%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the thermal expansion coefficient of the glass plate may increase. It is preferably 4% or less, and more preferably 3% or less.

BaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、4%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス板の熱膨張係数が大きくなるおそれがある。3%以下が好ましく、2%以下であることがより好ましい。   BaO can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 4%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the thermal expansion coefficient of the glass plate may increase. It is preferably 3% or less, and more preferably 2% or less.

ZrOは、ガラスの溶解時の粘性を下げ、発電効率を上昇させ、溶解を促進する効果があるので含有させることができる。しかし、4%超含有すると発電効率が低下、すなわち後述するアルカリ溶出量が低下し、またガラス板の熱膨張係数が増大するおそれがある。3%以下が好ましい。 ZrO 2 can be contained because it has the effects of lowering the viscosity at the time of melting the glass, increasing the power generation efficiency, and promoting the melting. However, if the content exceeds 4%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the thermal expansion coefficient of the glass plate may increase. 3% or less is preferable.

SrO、BaOおよびZrOは、ガラスの溶解温度での粘性を下げ、溶解しやすくするため、合量で0〜10%含有する。しかし、合量で10%超では発電効率が低下、すなわち後述するアルカリ溶出量が低下し、また、ガラス転移点温度が低下しガラスの熱膨張係数が増大するおそれがある。SrO、BaO、およびZrOの合量は1%以上であるのが好ましく、より好ましくは2%以上である。10%未満が好ましく、9%以下であることがより好ましく、8%以下であることがさらに好ましい。 SrO, BaO and ZrO 2 are contained in a total amount of 0 to 10% in order to lower the viscosity at the melting temperature of the glass and facilitate melting. However, if the total amount exceeds 10%, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the glass transition point temperature decreases and the glass thermal expansion coefficient may increase. The total amount of SrO, BaO, and ZrO 2 is preferably 1% or more, more preferably 2% or more. It is preferably less than 10%, more preferably 9% or less, and further preferably 8% or less.

NaOは、CIGS系の太陽電池の変換効率向上に寄与する成分であり、必須成分である。また、ガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので4〜18.5%含有させる。Naは光吸収層4中に拡散して変換効率を高めるが、含有量が4%未満では光吸収層4へのNa拡散が不十分となり、変換効率も不十分となるおそれがある。含有量が5%以上であると好ましく、含有量が6%以上であるとより好ましく、含有量が7%以上であるとさらに好ましく、含有量が10%以上であると特に好ましい。NaO含有量が18.5%を超えると熱膨張係数が大きくなり、または化学的耐久性が劣化する。含有量が17.5%以下であると好ましく、含有量が16.5%以下であるとより好ましく、含有量が15.5%以下であるとさらに好ましく、含有量が14%以下であると特に好ましい。 Na 2 O is a component that contributes to improving the conversion efficiency of a CIGS solar cell, and is an essential component. Moreover, since there exists an effect which lowers | hangs the viscosity in glass melting temperature and makes it easy to melt | dissolve, 4 to 18.5% is contained. Na diffuses into the light absorption layer 4 to increase the conversion efficiency. However, if the content is less than 4%, the Na diffusion into the light absorption layer 4 is insufficient, and the conversion efficiency may be insufficient. The content is preferably 5% or more, more preferably 6% or more, even more preferably 7% or more, and particularly preferably 10% or more. When the Na 2 O content exceeds 18.5%, the coefficient of thermal expansion increases, or the chemical durability deteriorates. The content is preferably 17.5% or less, the content is more preferably 16.5% or less, the content is more preferably 15.5% or less, and the content is 14% or less. Particularly preferred.

Oは、NaOと同様の効果があるため、0〜17%含有させる。しかし、17%超では発電効率が低下、すなわち後述するアルカリ溶出量が低下し、また、ガラス転移点温度が低下し熱膨張係数が大きくなるおそれがある。含有する場合は1%以上であるのが好ましい。12%以下が好ましく、9%以下であることがより好ましく、7%以下であるのがさらに好ましい。 Since K 2 O has the same effect as Na 2 O, 0 to 17% is contained. However, if it exceeds 17%, the power generation efficiency is lowered, that is, the amount of alkali elution described later is lowered, the glass transition temperature is lowered, and the thermal expansion coefficient may be increased. When it contains, it is preferable that it is 1% or more. It is preferably 12% or less, more preferably 9% or less, and even more preferably 7% or less.

NaOおよびKOは、ガラス溶解温度での粘性を十分に下げるために、NaOおよびKOの合量に対するKOの含有率の比の値[KO/(NaO+KO)]を0〜0.5とする。0.5超では、発電効率が低下、すなわち後述するアルカリ溶出量が低下し、また熱膨張係数の増大や溶解性の低下のおそれがある。KO/(NaO+KO)は0.1以上であるのが好ましい。0.45以下が好ましく、0.4以下であることがより好ましく、0.35以下であるのがさらに好ましい。NaOおよびKOは、合量で13〜20%含有することが好ましい。19.5%以下であるのがより好ましく、19%以下であるのがさらに好ましく、18.5%以下であるのが特に好ましい。NaOおよびKOの合量は、14%以上であるのがより好ましく、15%以上であるのがさらに好ましい。 Na 2 O and K 2 O, to lower the viscosity at the glass melting temperature sufficiently, the ratio of the value of K 2 O content of for the total amount of Na 2 O and K 2 O [K 2 O / (Na 2 O + K 2 O)] to 0 to 0.5. If it exceeds 0.5, the power generation efficiency decreases, that is, the amount of alkali elution described later decreases, and the thermal expansion coefficient may increase or the solubility may decrease. K 2 O / (Na 2 O + K 2 O) is preferably 0.1 or more. 0.45 or less is preferable, 0.4 or less is more preferable, and 0.35 or less is more preferable. Na 2 O and K 2 O are preferably contained in a total amount of 13 to 20%. It is more preferably 19.5% or less, further preferably 19% or less, and particularly preferably 18.5% or less. The total amount of Na 2 O and K 2 O is more preferably 14% or more, and further preferably 15% or more.

SiO、AlおよびBの合量に対するNaOおよびKOの合量の比の値[(NaO+KO)/(SiO+Al+B)]が大きいほうがアルカリの溶出を促進するため好ましい。(NaO+KO)/(SiO+Al+B)は、0.15以上であることが好ましく、より好ましくは0.18以上であり、さらに好ましくは0.20以上であり、特に好ましくは0.22以上である。 The value of the ratio of the total amount of Na 2 O and K 2 O to the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 [(Na 2 O + K 2 O) / (SiO 2 + Al 2 O 3 + B 2 O 3 )] Is preferred because it promotes alkali elution. (Na 2 O + K 2 O) / (SiO 2 + Al 2 O 3 + B 2 O 3 ) is preferably 0.15 or more, more preferably 0.18 or more, and further preferably 0.20 or more. Yes, particularly preferably 0.22 or more.

上記ガラス板は、本質的に上記母組成からなることが好ましいが、その他の成分を、典型的には合計で5%以下含有してもよい。たとえば、耐候性、溶融性、失透性、紫外線遮蔽などの改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、Pなどを含有してもよい場合がある。 The glass plate preferably consists essentially of the mother composition, but may contain other components typically 5% or less in total. For example, ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 , P 2 for the purpose of improving weather resistance, meltability, devitrification, and ultraviolet shielding. O 5 may be contained in some cases.

また、ガラスの溶解性、清澄性を改善するため、ガラス中にSO、F、Cl、SnOを合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。また、ガラスの化学的耐久性向上のため、ガラス中にZrO、Y、La、TiO、SnOを合量で5%以下含有させてもよい。これらのうち、Y、La、およびTiOは、ガラスのヤング率向上にも寄与する。また、TiOは、発電効率の向上にも寄与しうる。 Further, in order to improve the solubility and clarity of the glass, these raw materials may be added to the matrix composition raw material so that the total amount of SO 3 , F, Cl, SnO 2 is 2% or less in the glass. Good. Further, in order to improve the chemical durability of the glass, ZrO 2 , Y 2 O 3 , La 2 O 3 , TiO 2 and SnO 2 may be contained in the glass in a total amount of 5% or less. Among these, Y 2 O 3 , La 2 O 3 , and TiO 2 contribute to the improvement of the Young's modulus of the glass. TiO 2 can also contribute to the improvement of power generation efficiency.

また、ガラスの色調を調整するため、ガラス中にFe等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。 Further, in order to adjust the color tone of the glass, it may contain a colorant such as Fe 2 O 3 in the glass. The total content of such colorants is preferably 1% or less.

また、ガラス板は、環境負荷を考慮すると、As、Sbを実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。 Further, the glass plate is, considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.

上記ガラス板は、アルカリ溶出量が、二次イオン質量分析法(SIMS)によるNa/In強度比の計算値で0.15以上であることが好ましい。より好ましくは0.2以上である。また、アルカリ溶出量が、SIMSによるMo膜中のNaの量:単位atoms/ccで1E+20以上であることが好ましい。より好ましくは1.5E+20以上、さらに好ましくは2.0E+20以上、特に好ましくは2.5E+20以上である。また、SIMSによるMo膜中のKの量:単位atoms/ccで1E+18以上であることが好ましい。より好ましくは1E+19以上、さらに好ましくは3E+19以上、特に好ましくは5E+19以上である。   As for the said glass plate, it is preferable that the amount of alkali elution is 0.15 or more by the calculated value of Na / In intensity ratio by secondary ion mass spectrometry (SIMS). More preferably, it is 0.2 or more. Moreover, it is preferable that the alkali elution amount is 1E + 20 or more in terms of the amount of Na in the Mo film by SIMS: unit atoms / cc. More preferably, it is 1.5E + 20 or more, More preferably, it is 2.0E + 20 or more, Most preferably, it is 2.5E + 20 or more. The amount of K in the Mo film by SIMS is preferably 1E + 18 or more in units of atoms / cc. More preferably, it is 1E + 19 or more, More preferably, it is 3E + 19 or more, Most preferably, it is 5E + 19 or more.

上記ガラス板は、従来のガラス板と同様、溶解・清澄工程および成形工程を実施して製造できる。なお、上記したガラス板は、アルカリ金属酸化物(NaO、KO)を含有するアルカリガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法に適している。 The said glass plate can be manufactured by implementing a melt | dissolution and clarification process and a shaping | molding process similarly to the conventional glass plate. In addition, since the above glass plate is an alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O), SO 3 can be effectively used as a refining agent, and a float method is used as a forming method. Suitable for

初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス板の組成となるように原料を調製し、前記原料を溶解炉に連続的に投入し、1450〜1650℃程度に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス板に成形する。次に、リボン状のガラス板をフロート成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断して、ガラス板を得る。   First, molten glass obtained by melting raw materials is formed into a plate shape. For example, a raw material is prepared so that it may become the composition of the glass plate obtained, the said raw material is continuously thrown into a melting furnace, and it heats to about 1450-1650 degreeC, and obtains molten glass. The molten glass is formed into a ribbon-like glass plate by applying, for example, a float process. Next, after drawing the ribbon-shaped glass plate from the float forming furnace, it is cooled to room temperature by a cooling means and cut to obtain a glass plate.

ガラス基板2の表面に下部電極3やその下地層(例えばSiO等)等を成膜する際、ガラス基板2の表面が汚れていると正常に成膜できないおそれがあることから、ガラス板を洗浄することが好ましい。洗浄の方法は特に限定されないが、水による洗浄や洗浄剤による洗浄、酸化セリウムを含有したスラリーを散布しながらブラシ等でこする洗浄などが例示される。酸化セリウム含有のスラリーで洗浄した場合は、その後に塩酸や硫酸等の酸性洗浄剤等を用いて洗浄することが好ましい。洗浄後のガラス板表面には、汚れや酸化セリウム等の付着物によるガラス板表面の凹凸等がないことが好ましい。凹凸があると、成膜の際に、膜表面の凹凸や膜厚偏差、膜のピンホール等が生じ、発電効率が低下するおそれがある。凹凸は高低差で20nm以下が好ましい。 When forming the lower electrode 3 or its underlying layer (for example, SiO 2 ) on the surface of the glass substrate 2, the glass substrate 2 may not be formed normally if the surface of the glass substrate 2 is dirty. It is preferable to wash. The washing method is not particularly limited, and examples include washing with water, washing with a cleaning agent, and rubbing with a brush or the like while spraying a slurry containing cerium oxide. In the case of washing with a cerium oxide-containing slurry, it is preferably washed with an acidic detergent such as hydrochloric acid or sulfuric acid. It is preferable that the glass plate surface after washing does not have irregularities or the like on the glass plate surface due to dirt or deposits such as cerium oxide. If there is unevenness, unevenness on the surface of the film, film thickness deviation, pinholes in the film, and the like may occur during film formation, which may reduce power generation efficiency. The unevenness is preferably 20 nm or less with a height difference.

また、後述するアルカリ金属供給層を設ける場合、ガラス基板2としては、アルカリ金属を少量しか含まないもの、例えば無アルカリガラスであってもよい。なお、無アルカリガラスとは、酸化物換算で、LiO+NaO+KOの総和が0.1質量%以下のガラスを指す。 Moreover, when providing the alkali metal supply layer mentioned later, as the glass substrate 2, what contains only a small amount of alkali metals, for example, an alkali free glass may be sufficient. Note that the alkali-free glass, in terms of oxide, the sum of Li 2 O + Na 2 O + K 2 O refers to 0.1 mass% of glass.

無アルカリガラスとしては、例えば、酸化物基準の質量百分率表示で、SiO:50〜66%、Al:10.5〜22%、B:0〜12%、MgO:0〜8%、CaO:0〜14.5%、SrO:0〜24%、BaO:0〜13.5%を含有し、MgO+CaO+SrO+BaO:9〜29.5質量%であるものが挙げられる。 Examples of the alkali-free glass include SiO 2 : 50 to 66%, Al 2 O 3 : 10.5 to 22%, B 2 O 3 : 0 to 12%, MgO: 0 in terms of mass percentage based on oxide. -8%, CaO: 0 to 14.5%, SrO: 0 to 24%, BaO: 0 to 13.5%, and MgO + CaO + SrO + BaO: 9 to 29.5% by mass.

下部電極3は、例えば、Mo、Ti、Al、またはCr等で構成される。下部電極3の厚さは、100〜1000nmが好ましい。下部電極3の膜厚が過度に厚くなると、ガラス基板2との密着性が低下するおそれがある。また下部電極3の膜厚が過度に薄くなると、電気抵抗が増大する。下部電極3の形成方法は、特に限定されず、例えば、スパッタリング法、蒸着法、気相成膜法(PVD、CVD)等が例示できる。   The lower electrode 3 is made of, for example, Mo, Ti, Al, or Cr. The thickness of the lower electrode 3 is preferably 100 to 1000 nm. If the film thickness of the lower electrode 3 becomes excessively thick, the adhesion with the glass substrate 2 may be reduced. Moreover, when the film thickness of the lower electrode 3 becomes excessively thin, the electrical resistance increases. The formation method of the lower electrode 3 is not particularly limited, and examples thereof include a sputtering method, a vapor deposition method, and a vapor deposition method (PVD, CVD).

ガラス基板2と下部電極3との間、または下部電極3と光吸収層4との間、またはガラス基板2と下部電極3との間と下部電極3と光吸収層4との間、または下部電極3内に光吸収層4にアルカリ金属を拡散させて発電効率を向上させるためのアルカリ金属供給層を設けることができる。アルカリ金属供給層は、NaS、NaSe、NaCl、NaF等の化合物からなるものとしてもよいが、アルカリ金属を含むニオブ酸化物、例えば、LiNbO、NaNbO、KNbO等の化合物からなるものが好ましい。アルカリ金属を含むニオブ酸化物は、大気中で安定であり、水に対してほとんど溶解しないことから、太陽電池1の製造時の取り扱い性を向上でき、耐久性を向上できる。LiNbO、NaNbO、KNbOのうちでは、NaNbOが、融点が最も高く、LiNbO、KNbOと比較して、高温の焼結温度を選んで焼結できるので成膜に用いる焼結体スパッタリングターゲットを高密度で作製しやすい点で特に好ましい。 Between the glass substrate 2 and the lower electrode 3, or between the lower electrode 3 and the light absorbing layer 4, or between the glass substrate 2 and the lower electrode 3, and between the lower electrode 3 and the light absorbing layer 4, or below An alkali metal supply layer for improving the power generation efficiency by diffusing the alkali metal into the light absorption layer 4 in the electrode 3 can be provided. The alkali metal supply layer may be made of a compound such as Na 2 S, Na 2 Se, NaCl, or NaF, but is made of a niobium oxide containing an alkali metal, for example, a compound such as LiNbO 3 , NaNbO 3 , or KNbO 3. Is preferred. Since the niobium oxide containing an alkali metal is stable in the air and hardly dissolves in water, the handling property at the time of manufacturing the solar cell 1 can be improved and the durability can be improved. LiNbO 3, Of NaNbO 3, KNbO 3, sintered NaNbO 3 is, the melting point is highest, compared with LiNbO 3, KNbO 3, used for film formation because it sintered choose hot sintering temperature The sputtering target is particularly preferable because it can be easily produced at a high density.

バッファー層5は、例えば、半導体層を形成するCdやZnを含む化合物で構成される。Cdを含む化合物としては、CdS等があり、Znを含む化合物としては、ZnO、ZnS、ZnMgO等が例示される。バッファー層5は、図示しないが、複数の半導体層で構成されてもよい。この場合、光吸収層4に近い側にある第1の層は、前述のような、CdSまたはZnを含む化合物によって構成され、光吸収層4から遠い側にある第2の層は、ZnOまたはZnOを含む材料等で構成される。バッファー層5の膜厚は、特に限定されないが、50〜300nmが好ましい。   The buffer layer 5 is made of, for example, a compound containing Cd or Zn that forms a semiconductor layer. Examples of the compound containing Cd include CdS, and examples of the compound containing Zn include ZnO, ZnS, ZnMgO, and the like. Although not shown, the buffer layer 5 may be composed of a plurality of semiconductor layers. In this case, the first layer on the side close to the light absorption layer 4 is made of the compound containing CdS or Zn as described above, and the second layer on the side far from the light absorption layer 4 is ZnO or It is comprised with the material containing ZnO. Although the film thickness of the buffer layer 5 is not specifically limited, 50-300 nm is preferable.

透明導電層6は、例えばZnO、またはITOのような材料等で構成される。または、これらの材料にAl等のIII族元素をドープしてもよい。また、透明導電層6は、複数の層を積層させて構成してもよい。透明導電層6の厚さ(複数層の場合は全厚)は、特に限定されるものではないが、100〜3000nmが好ましい。   The transparent conductive layer 6 is made of a material such as ZnO or ITO, for example. Alternatively, these materials may be doped with a group III element such as Al. The transparent conductive layer 6 may be configured by laminating a plurality of layers. The thickness of the transparent conductive layer 6 (total thickness in the case of a plurality of layers) is not particularly limited, but is preferably 100 to 3000 nm.

透明導電層6には、さらに導電性の取り出し部材である上部電極7が電気的に接続される。上部電極7は、例えば、Ni、Cr、Al、およびAgから選ばれる1種以上の金属で構成されることが好ましい。   The transparent conductive layer 6 is further electrically connected to an upper electrode 7 that is a conductive extraction member. The upper electrode 7 is preferably made of, for example, one or more metals selected from Ni, Cr, Al, and Ag.

以下、実施例を参照して本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1]
3cm×3cmの正方形、厚さ1.1mmに加工したガラス基板(ソーダライムガラス板)をアセトン溶液の入ったビーカーに浸し、常温で超音波洗浄器にて5分間基板洗浄を行った。同様に、エタノール溶液でも基板洗浄を行い、さらに新しいアセトン溶液とエタノール溶液の各溶液にて同様の基板表面の洗浄を行った。その後、窒素ガンにて溶液を吹き飛ばし乾燥させた。
[Example 1]
A glass substrate (soda lime glass plate) processed to a 3 cm × 3 cm square and a thickness of 1.1 mm was immersed in a beaker containing an acetone solution, and the substrate was cleaned with an ultrasonic cleaner at room temperature for 5 minutes. Similarly, the substrate was cleaned with an ethanol solution, and the same substrate surface was cleaned with each of a new acetone solution and ethanol solution. Thereafter, the solution was blown off with a nitrogen gun and dried.

このガラス基板上に、スパッタ装置(TOKKI製)を用いてスパッタリング法により下部電極としてのモリブデン層を形成した。成膜条件は、成膜前加熱120℃、1分間、電力4.0W/cm、アルゴン流量80sccm、成膜圧力0.3Paにて2往復させ、厚さ約800nmのモリブデン層を成膜した。 On this glass substrate, a molybdenum layer as a lower electrode was formed by sputtering using a sputtering apparatus (manufactured by TOKKI). The film formation conditions were as follows: heating before pre-deposition 120 ° C., 1 minute, power 4.0 W / cm 2 , argon flow rate 80 sccm, film formation pressure 0.3 Pa, and reciprocating twice to form a molybdenum layer having a thickness of about 800 nm. .

多元蒸着装置の試料交換室にて、モリブデン層付きガラス基板に対して200℃、30分間の加熱を行い、基板表面の水分および不純物を飛ばした。その後、モリブデン層上に多元蒸着装置(EpiQuest製)を用いて、以下に示すようにして、厚さ1.8μm以上となるように光吸収層を成膜した。   In the sample exchange chamber of the multi-source deposition apparatus, the glass substrate with a molybdenum layer was heated at 200 ° C. for 30 minutes to remove moisture and impurities on the surface of the substrate. Thereafter, a light absorption layer was formed on the molybdenum layer so as to have a thickness of 1.8 μm or more using a multi-source deposition apparatus (manufactured by EpiQuest) as follows.

まず、基板温度を約400℃まで加熱し、GaおよびSeを蒸着源から蒸発させてモリブデン層表面にGaおよびSeの蒸着を行った(第1の工程(1度目のGa−Se蒸着工程))。この際、Seの蒸気圧を電離真空計にて測定し、1×10−3〜1×10−2Paの条件とした。そして、放射温度計を用いて、光を蒸着により形成された膜表面に照射し、放射温度計により光の干渉縞を観測し、その周期が3/4となるまで蒸着を行った。 First, the substrate temperature was heated to about 400 ° C., and Ga and Se were evaporated from the deposition source to deposit Ga and Se on the surface of the molybdenum layer (first step (first Ga-Se deposition step)). . Under the present circumstances, the vapor pressure of Se was measured with the ionization vacuum gauge, and it was set as the conditions of 1 * 10 < -3 > -1 * 10 <-2 > Pa. And using the radiation thermometer, light was irradiated to the film | membrane surface formed by vapor deposition, the interference fringe of light was observed with the radiation thermometer, and vapor deposition was performed until the period became 3/4.

GaおよびSeの蒸着後、基板温度を400℃に保ったまま、InおよびSeを蒸着源から蒸発させてモリブデン層表面にInおよびSeの蒸着を行った(第2の工程(1度目のIn−Se蒸着工程))。放射温度計を用いて、光を蒸着により形成された膜表面に照射し、放射温度計により光の干渉縞を観測し、その周期が2と3/4となるまで蒸着を行った。   After the deposition of Ga and Se, In and Se were evaporated from the deposition source while maintaining the substrate temperature at 400 ° C., and In and Se were deposited on the molybdenum layer surface (second step (first In— Se deposition process)). Using a radiation thermometer, light was irradiated onto the surface of the film formed by vapor deposition, and interference fringes of light were observed by the radiation thermometer, and vapor deposition was performed until the period became 2 and 3/4.

InおよびSeの蒸着後、加熱により基板温度を上昇させて、CuおよびSeを蒸着源から蒸発させてCuおよびSeの蒸着を行った(第3の工程)。加熱は、基板温度が600℃になるまで行い、600℃になった時点で温度が一定となるように保持した。モリブデン層上の膜全体の組成がCu過剰となるまで、CuおよびSeの蒸着を行った。Cuが過剰かどうかの判断は、放射温度計を用い、物性変化による波形変化を確認して行った。CuおよびSeの蒸着時間は、蒸着開始から波形変化点までの時間の1.3倍の時間とした。   After the deposition of In and Se, the substrate temperature was raised by heating, and Cu and Se were evaporated from the deposition source to perform the deposition of Cu and Se (third step). Heating was performed until the substrate temperature reached 600 ° C., and when the temperature reached 600 ° C., the temperature was kept constant. Cu and Se were deposited until the composition of the entire film on the molybdenum layer was excessive Cu. Whether Cu is excessive or not was determined by using a radiation thermometer and confirming a waveform change due to a change in physical properties. The deposition time for Cu and Se was 1.3 times the time from the start of deposition to the waveform change point.

CuおよびSeの蒸着後、InおよびSeを蒸着源から蒸発させてInおよびSeの蒸着を行った(第4の工程(2度目のIn−Se蒸着工程))。InおよびSeの蒸着時間は、1度目のGa−Se蒸着工程と1度目のIn−Se蒸着工程との合計の蒸着時間の0.4/2倍とした。   After the deposition of Cu and Se, In and Se were evaporated from the deposition source to deposit In and Se (fourth step (second In-Se deposition step)). The deposition time of In and Se was 0.4 / 2 times the total deposition time of the first Ga-Se deposition process and the first In-Se deposition process.

InおよびSeの蒸着後、GaおよびSeを蒸着源から蒸発させてGaおよびSeの蒸着を行った(第5の工程(2度目のGa−Se蒸着工程))。GaおよびSeの蒸着時間は、1度目のGa−Se蒸着工程と1度目のIn−Se蒸着工程との合計の蒸着時間の0.4/2倍とした。   After vapor deposition of In and Se, Ga and Se were evaporated from the vapor deposition source to perform vapor deposition of Ga and Se (fifth step (second Ga-Se vapor deposition step)). The deposition time of Ga and Se was set to 0.4 / 2 times the total deposition time of the first Ga-Se deposition process and the first In-Se deposition process.

以上のようにして、Cu(In1−yGa)Se(0.7≦x≦1.0、0.1≦y≦0.6、1.9≦z≦2.0)で示される組成を有し、CIGSの化学量論組成比に対してInおよびGaがCuに対して過剰に含有され(Cu/(In+Ga)<1)、かつ厚さ1.8〜2μmである光吸収層を成膜した。 As described above, Cu x (In 1-y Ga y ) Se z (0.7 ≦ x ≦ 1.0, 0.1 ≦ y ≦ 0.6, 1.9 ≦ z ≦ 2.0) Light having In and Ga in excess with respect to Cu with respect to the stoichiometric composition ratio of CIGS (Cu / (In + Ga) <1) and having a thickness of 1.8 to 2 μm An absorption layer was formed.

その後、光吸収層付きガラス基板を濃度10%シアン化カリウム溶液に60秒浸し洗浄し、リーク電流の原因となるCuSe層を除去した。その後、ビーカーに入れた純水にて2回洗浄し、窒素ガンにて水分を吹き飛ばし乾燥させた。   Thereafter, the glass substrate with the light absorption layer was immersed in a 10% strength potassium cyanide solution for 60 seconds and washed to remove the CuSe layer that causes leakage current. Then, it was washed twice with pure water in a beaker, dried by blowing off moisture with a nitrogen gun.

次に、光吸収層上にCBD(Chemical Bath Deposition)法にてCdS層を成膜した。成膜条件は0.015M硫酸カドミウム、1.5Mチオウレア、15Mアンモニア水溶液をビーカー内でマグネティックスターラーと超音波洗浄器にて混合させ、予め水温を80℃にしておいた恒温バス槽に浸し、溶液温度が安定したところで基板を入れマグネティックスターラーにて攪拌しながらCdS層を50〜100nm成膜した。その後、ビーカーに入れた純水中に基板を移し、超音波洗浄器にて洗浄し、さらに他のビーカーに用意した純水にて洗浄を行い、窒素ガンにて水分を吹き飛ばして乾燥させた。   Next, a CdS layer was formed on the light absorption layer by a CBD (Chemical Bath Deposition) method. The film forming conditions are as follows: 0.015M cadmium sulfate, 1.5M thiourea, and 15M ammonia aqueous solution are mixed in a beaker with a magnetic stirrer and an ultrasonic cleaner, and immersed in a constant temperature bath whose water temperature is 80 ° C. in advance. When the temperature was stabilized, the substrate was put in and a CdS layer was formed to a thickness of 50 to 100 nm while stirring with a magnetic stirrer. Thereafter, the substrate was transferred into pure water placed in a beaker, washed with an ultrasonic cleaner, further washed with pure water prepared in another beaker, and dried by blowing off moisture with a nitrogen gun.

このCdS層上にスパッタ装置(ANELVA社製)にて、ZnOターゲットを使用してZnO層を成膜し、さらにその上にAZOターゲット(Alを1.5wt%含有するZnOターゲット)を使用してAZO層を成膜した。成膜条件は、電力2.46W/cm、成膜圧力0.7Pa、Ar流量10sccm、常温にてZnOを厚さ約100nm、その上にAZOを厚さ約200nm成膜した。 A ZnO layer is formed on the CdS layer by a sputtering apparatus (manufactured by ANELVA) using a ZnO target, and an AZO target (a ZnO target containing 1.5 wt% of Al 2 O 3 ) is further formed thereon. An AZO layer was deposited using it. The film forming conditions were as follows: power 2.46 W / cm 2 , film forming pressure 0.7 Pa, Ar flow rate 10 sccm, ZnO with a thickness of about 100 nm at room temperature, and AZO with a thickness of about 200 nm thereon.

AZO層上に厚さ約1μmのAl電極を成膜した。成膜は、99.999%アルミニウム材料を加熱ボートに乗せ、加熱蒸着法により行った。また、成膜には、電極の形状に加工されたステンシルマスクを用いた。その後、尖った金属板を用いて、光吸収層までを削り、下部電極を残してセル化、および下部電極の作製を行い、一定面積(Al電極を除いた面積が約0.5cm)のセルが両側に各4個、合計8個のセルが並んだ太陽電池を作製した。 An Al electrode having a thickness of about 1 μm was formed on the AZO layer. The film formation was performed by a heat vapor deposition method with 99.999% aluminum material placed on a heating boat. For film formation, a stencil mask processed into the shape of an electrode was used. Then, using a pointed metal plate, the light absorption layer is scraped off, the lower electrode is left as a cell, and the lower electrode is fabricated, and a certain area (the area excluding the Al electrode is about 0.5 cm 2 ) A solar cell in which a total of 8 cells were arranged on each side with 4 cells on both sides was produced.

[実施例2]
光吸収層の成膜において、第5の工程(2度目のGa−Se蒸着工程)のGaおよびSeの蒸着時間を10秒短縮し、その代わりにInおよびSeの蒸着を10秒間行い(第6の工程)、その後Se雰囲気中(Seの圧力3×10−3〜1×10−2Pa)で基板温度を600℃にして5分間保持した(第7の工程)こと以外は、実施例1と同様にして太陽電池を作製した。
[Example 2]
In the formation of the light absorption layer, the Ga and Se vapor deposition time in the fifth step (second Ga-Se vapor deposition step) is shortened by 10 seconds, and instead, In and Se vapor deposition is performed for 10 seconds (the sixth). Example 1), except that the substrate temperature was kept at 600 ° C. for 5 minutes in the Se atmosphere (Se pressure 3 × 10 −3 to 1 × 10 −2 Pa) (seventh step). A solar cell was produced in the same manner as described above.

[実施例3]
光吸収層の成膜において、工程全体を通してSeの圧力を約2倍(1×10−2〜1.6×10−2Pa)としたこと以外は実施例1と同様にして太陽電池を作製した。
[Example 3]
In the formation of the light absorption layer, a solar cell was produced in the same manner as in Example 1 except that the Se pressure was approximately doubled (1 × 10 −2 to 1.6 × 10 −2 Pa) throughout the process. did.

[実施例4]
光吸収層の成膜において、第5の工程(2度目のGa−Se蒸着工程)のGaおよびSeの蒸着時間を10秒短縮し、その代わりにInおよびSeの蒸着を10秒間行うとともに(第6の工程)、工程全体を通してSeの圧力を2倍(1×10−2〜1.6×10−2Pa)としたこと以外は実施例1と同様にして太陽電池を作製した。
[Example 4]
In the formation of the light absorption layer, the deposition time of Ga and Se in the fifth step (second Ga-Se deposition step) is shortened by 10 seconds, and instead, In and Se are deposited for 10 seconds (first step). A solar cell was produced in the same manner as in Example 1 except that the Se pressure was doubled (1 × 10 −2 to 1.6 × 10 −2 Pa) throughout the entire process.

[実施例5]
光吸収層の成膜において、さらにSe雰囲気中(Seの圧力3×10−3〜1×10−2Pa)で基板温度を600℃で5分間保持した(第7の工程)こと以外は、実施例1と同様にして太陽電池を作製した。
[Example 5]
In film formation of the light absorption layer, the substrate temperature was further maintained at 600 ° C. for 5 minutes in the Se atmosphere (Se pressure 3 × 10 −3 to 1 × 10 −2 Pa) (seventh step). A solar cell was produced in the same manner as in Example 1.

[比較例1]
光吸収層の成膜を以下に示すような従来の3段階法により行ったこと以外は、実施例1と同様にしてCIGS太陽電池を作製した。
[Comparative Example 1]
A CIGS solar cell was produced in the same manner as in Example 1 except that the light absorption layer was formed by the conventional three-stage method as shown below.

基板を約400℃まで加熱し、In、Ga、およびSeを蒸着源から蒸発させてモリブデン層表面にIn、Ga、およびSeの蒸着を行った(1段階目)。この際、Seの蒸気圧を電離真空計にて測定し、5×10−3〜8×10−3Paに調整した。そして、LEC Company Limited社製「Infrared Thermometer KTL−PROシリーズ非接触・赤外線放射温度計」(以下放射温度計)を用い、蒸着により形成された膜表面に光を照射し、放射温度計により光の干渉縞を観測し、その周期が2と3/4となるまで蒸着を行った。 The substrate was heated to about 400 ° C., and In, Ga, and Se were evaporated from the deposition source, and In, Ga, and Se were deposited on the surface of the molybdenum layer (first stage). At this time, the vapor pressure of Se was measured with an ionization vacuum gauge and adjusted to 5 × 10 −3 to 8 × 10 −3 Pa. Then, using an “Infrared Thermometer KTL-PRO series non-contact / infrared radiation thermometer” (hereinafter referred to as a radiation thermometer) manufactured by LEC Company Limited, the film surface formed by vapor deposition is irradiated with light, and the radiation thermometer emits light. Interference fringes were observed and deposition was performed until the period was 2 and 3/4.

In、Ga、およびSeの蒸着後、基板を加熱すると同時に、CuおよびSeを蒸着源から蒸発させてCuおよびSeの蒸着を行った(2段階目)。加熱は、基板温度が520℃になるまで行い、520℃に達した後は520℃に保持した。モリブデン層上の膜全体の組成がCu過剰となるまでCuおよびSeの蒸着を行った。Cuが過剰かどうかの判断は、放射温度計を用い、物性変化による波形変化を測定して行った。2段階目の蒸着時間は、2段階目の蒸着開始から波形変化点までの時間の1.3倍の時間とした。   After the deposition of In, Ga, and Se, the substrate was heated, and at the same time, Cu and Se were evaporated from the deposition source to perform the deposition of Cu and Se (second stage). Heating was performed until the substrate temperature reached 520 ° C., and after reaching 520 ° C., the temperature was maintained at 520 ° C. Cu and Se were deposited until the composition of the entire film on the molybdenum layer was excessive Cu. Whether Cu is excessive or not was determined by measuring a change in waveform due to a change in physical properties using a radiation thermometer. The second stage deposition time was 1.3 times the time from the start of the second stage deposition to the waveform change point.

CuおよびSeの蒸着後、In、Ga、およびSeを蒸着源から蒸発させてIn、Ga、およびSeの蒸着を行った(3段階目)。3段階目の蒸着時間は、1段階目の蒸着時間に対して0.4倍の蒸着時間とした。   After the deposition of Cu and Se, In, Ga, and Se were evaporated from the deposition source to deposit In, Ga, and Se (third stage). The deposition time for the third stage was 0.4 times the deposition time for the first stage.

以上のようにして、Cu(In1−yGa)Se(0.7≦x≦1.0、0.1≦y≦0.6、1.9≦z≦2.0)で示される組成を有し、CIGSの化学量論組成比に対してInおよびGaがCuに対して過剰に含有され(Cu/(In+Ga)<1)、かつ厚さ1.8〜2μmである光吸収層を成膜した。 As described above, Cu x (In 1-y Ga y ) Se z (0.7 ≦ x ≦ 1.0, 0.1 ≦ y ≦ 0.6, 1.9 ≦ z ≦ 2.0) Light having In and Ga in excess with respect to Cu with respect to the stoichiometric composition ratio of CIGS (Cu / (In + Ga) <1) and having a thickness of 1.8 to 2 μm An absorption layer was formed.

[比較例2]
光吸収層の成膜において、2段階目、3段階目の基板温度を600℃としたこと以外は、比較例1と同様にして太陽電池を作製した。
[Comparative Example 2]
A solar cell was fabricated in the same manner as in Comparative Example 1 except that the substrate temperature in the second and third stages was set to 600 ° C. in the formation of the light absorption layer.

[比較例3]
光吸収層の成膜において、2段階目、3段階目の基板温度を650℃としたこと以外は、比較例1と同様にして太陽電池を作製した。
[Comparative Example 3]
A solar cell was fabricated in the same manner as in Comparative Example 1 except that the substrate temperature in the second and third stages was set to 650 ° C. in the formation of the light absorption layer.

[比較例4]
光吸収層の成膜において、CuおよびSeの蒸着(第3の工程)以降の工程において基板温度を520℃としたこと以外は、実施例1と同様にして太陽電池を作製した。
[Comparative Example 4]
A solar cell was fabricated in the same manner as in Example 1 except that the substrate temperature was set to 520 ° C. in the steps after the deposition of Cu and Se (third step) in the formation of the light absorption layer.

表1、2に、実施例および比較例の光吸収層の成膜プロセスをまとめて示す。   Tables 1 and 2 collectively show the film forming processes of the light absorption layers of Examples and Comparative Examples.

次に、実施例および比較例の太陽電池について以下の測定を行った。   Next, the following measurements were performed on the solar cells of Examples and Comparative Examples.

[太陽電池の電池効率の測定]
外部の光が内部に侵入することを遮断できる一辺約30cmの容器を準備し、その容器内を、容器内部における光の反射を抑えるために内部を黒く塗装し、上記容器内に太陽電池を設置した。なお、太陽電池には、あらかじめInGa溶剤(オーミック接触のため)を塗布したモリブデン層にプラス端子、8個のセル表面のAl電極にマイナス端子を、それぞれ電圧/電流発生器(装置名:R6243、ADVANTEST社製)に接続した。
[Measurement of battery efficiency of solar cells]
Prepare a container with a side of about 30cm that can block external light from entering the interior, paint the inside of the container in black to suppress reflection of light inside the container, and install solar cells in the container did. In addition, the solar cell has a positive terminal on the molybdenum layer previously coated with InGa solvent (for ohmic contact), a negative terminal on the Al electrodes on the eight cell surfaces, and a voltage / current generator (device name: R6243, Connected to ADVANTEST).

そして、容器内の温度が25℃となるように温度調節機にて制御した。容器内において外部光を遮断し、電池上部からキセノンランプ(USHI社製)を10秒間照射した。その後、60秒保持し、電池の温度を安定させた。その後、キセノンランプの未照射時と照射時にて、電圧を−1Vから+1Vまで0.015V間隔で変化させ、電流値を測定した。この照射時の電流と電圧特性から発電効率を算出した。   And it controlled with the temperature regulator so that the temperature in a container might be 25 degreeC. External light was blocked in the container, and a xenon lamp (USHI) was irradiated from the upper part of the battery for 10 seconds. Thereafter, the temperature of the battery was stabilized by holding for 60 seconds. Thereafter, the voltage was changed from −1 V to +1 V at an interval of 0.015 V when the xenon lamp was not irradiated and when it was irradiated, and the current value was measured. The power generation efficiency was calculated from the current and voltage characteristics during irradiation.

発電効率は、開放電圧(Voc)、短絡電流密度(Jsc)、および曲線因子(FF)から下記式(1)により求めた。
発電効率[%]=Voc[V]×Jsc[mA/cm]×FF[無次元]×100
/試験に用いる光源の照度[W/cm] ……(1)
The power generation efficiency was determined by the following formula (1) from the open circuit voltage (Voc), the short circuit current density (Jsc), and the fill factor (FF).
Power generation efficiency [%] = Voc [V] × Jsc [mA / cm 2 ] × FF [Dimensionless] × 100
/ Illuminance [W / cm 2 ] of the light source used for the test (1)

ここで、開放電圧(Voc)は、端子を開放した時の出力であり、短絡電流密度(Jsc)は、端子を短絡した時の電流である短絡電流(Isc)を有効面積で割ったものであり、曲線因子(FF)は、最大の出力を与える点である最大出力点の電圧(最大電圧値(Vmax))と最大出力点の電流(最大電流値(Imax))との積を開放電圧(Voc)と短絡電圧(Isc)との積で割ったものである。   Here, the open circuit voltage (Voc) is an output when the terminal is opened, and the short circuit current density (Jsc) is obtained by dividing the short circuit current (Isc), which is a current when the terminal is shorted, by the effective area. Yes, the fill factor (FF) is the product of the voltage at the maximum output point (maximum voltage value (Vmax)) and the current at the maximum output point (maximum current value (Imax)), which is the point that gives the maximum output. (Voc) divided by the product of the short circuit voltage (Isc).

[Ga濃度分布の測定]
二次イオン質量分析法(SIMS)により、光吸収層の上部側から厚さ方向に分布測定を行った。測定装置は、アルバック・ファイ社製「ADEPT1010」を使用し、測定条件は、一次イオン:O 、加速電圧:5kV、ビーム電流:700nAとした。
[Measurement of Ga concentration distribution]
Distribution measurement was performed in the thickness direction from the upper side of the light absorption layer by secondary ion mass spectrometry (SIMS). The measurement apparatus used was “ADEPT1010” manufactured by ULVAC-PHI, and the measurement conditions were primary ion: O 2 + , acceleration voltage: 5 kV, and beam current: 700 nA.

表3、4に、実施例および比較例の太陽電池の発電効率およびGa濃度分布の結果をまとめて示す。また、図3、4に、Ga濃度分布のプロファイル(SIMSによるエッチング時間とGaのカウント数との関係)を示す。なお、図3、4は、それぞれ実施例、比較例のGa濃度分布のプロファイルをまとめて示したものであり、図5〜13は、図3、4に示された実施例および比較例のGa濃度分布のプロファイルを個別に示したものである。   Tables 3 and 4 collectively show the results of the power generation efficiency and Ga concentration distribution of the solar cells of Examples and Comparative Examples. 3 and 4 show Ga concentration distribution profiles (relationship between SIMS etching time and Ga count). 3 and 4 collectively show the profiles of the Ga concentration distributions of the example and the comparative example, respectively, and FIGS. 5 to 13 show the Ga of the example and the comparative example shown in FIGS. The profile of density distribution is shown individually.

Figure 2013084664
Figure 2013084664

Figure 2013084664
Figure 2013084664

Figure 2013084664
Figure 2013084664

Figure 2013084664
Figure 2013084664

表3、4、図3〜13から明らかなように、所定の成膜プロセスを行うとともに、所定の基板温度とした実施例1〜5の太陽電池については、適切なGa濃度分布を得ることができ、高い発電効率が得られることがわかる。また、InおよびSeの蒸着を行う第6の工程、またはSe雰囲気中で保持する第7の工程を行うことで、より高い発電効率が得られることがわかる。   As is clear from Tables 3 and 4 and FIGS. 3 to 13, an appropriate Ga concentration distribution can be obtained for the solar cells of Examples 1 to 5 in which the predetermined film forming process is performed and the predetermined substrate temperature is set. It can be seen that high power generation efficiency can be obtained. It can also be seen that higher power generation efficiency can be obtained by performing the sixth step of depositing In and Se, or the seventh step of maintaining in the Se atmosphere.

一方、従来の成膜プロセスにおいて単に基板温度を高くした比較例2、3の太陽電池については、Ga濃度分布が均一化され、すなわち最小値/最大値が過度に大きくなるために、高い発電効率が得られず、また所定の成膜プロセスを行うが、基板温度を低くした比較例4の太陽電池については、Ga濃度分布が過度に形成されすぎ、すなわち最小値/最大値が過度に小さくなるために、高い発電効率が得られないことがわかる。   On the other hand, in the solar cells of Comparative Examples 2 and 3 in which the substrate temperature is simply increased in the conventional film formation process, the Ga concentration distribution is made uniform, that is, the minimum value / maximum value becomes excessively large, and thus high power generation efficiency. In the solar cell of Comparative Example 4 in which the substrate temperature is lowered, the Ga concentration distribution is excessively formed, that is, the minimum value / maximum value is excessively small. Therefore, it can be seen that high power generation efficiency cannot be obtained.

1…太陽電池、2…ガラス基板、3…下部電極、4…光吸収層、5…バッファー層、6…透明導電層、7…上部電極   DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... Glass substrate, 3 ... Lower electrode, 4 ... Light absorption layer, 5 ... Buffer layer, 6 ... Transparent conductive layer, 7 ... Upper electrode

Claims (4)

ガラス基板上に、
下部電極、
Cu、In、Ga、およびSeを含有する光吸収層、
バッファー層、
透明導電層、
および上部電極
が少なくともこの順に形成された太陽電池の製造方法であって、
前記光吸収層は、
基板温度を300〜500℃としてSeおよびGaを蒸着させる第1の工程と、
基板温度を300〜500℃としてSeおよびInを蒸着させる第2の工程と、
基板温度を前記第2の工程における温度から昇温して550〜630℃としてSeおよびCuを蒸着させる第3の工程と、
基板温度を550〜630℃としてSeおよびInを蒸着させる第4の工程と、
基板温度を550〜630℃としてSeおよびGaを蒸着させる第5の工程と
を少なくともこの順に前記下部電極上に行って形成することを特徴とする太陽電池の製造方法。
On a glass substrate
Bottom electrode,
A light absorbing layer containing Cu, In, Ga, and Se,
Buffer layer,
Transparent conductive layer,
And a method of manufacturing a solar cell in which at least the upper electrode is formed in this order,
The light absorbing layer is
A first step of depositing Se and Ga at a substrate temperature of 300 to 500 ° C .;
A second step of depositing Se and In at a substrate temperature of 300 to 500 ° C .;
A third step of evaporating Se and Cu by raising the substrate temperature from the temperature in the second step to 550 to 630 ° C .;
A fourth step of depositing Se and In at a substrate temperature of 550 to 630 ° C .;
And a fifth step of depositing Se and Ga at a substrate temperature of 550 to 630 ° C. at least in this order on the lower electrode.
前記第5の工程後、基板温度を550〜630℃としてSeおよびInを蒸着する第6の工程を行う請求項1記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein after the fifth step, a sixth step of depositing Se and In at a substrate temperature of 550 to 630 ° C is performed. 前記第5の工程後、または前記第6の工程を行う場合には前記第6の工程後、Se雰囲気中で550〜630℃の熱処理を行う第7の工程を行う請求項1または2記載の太陽電池の製造方法。   3. The seventh step of performing a heat treatment at 550 to 630 ° C. in a Se atmosphere after the fifth step or after the sixth step when performing the sixth step. 4. A method for manufacturing a solar cell. ガラス基板上に、下部電極、Cu、In、Ga、およびSeを含有する光吸収層、バッファー層、透明導電層、および上部電極が少なくともこの順に形成された太陽電池であって、
前記光吸収層は、Cu(In1−yGa)Se(0.7≦x≦1.0、0.1≦y≦0.6、1.9≦z≦2.0)で示される組成を有するカルコパイライト型結晶構造を有する化合物からなり、かつ二次イオン質量分析法による上部側主面から厚さ方向に700nmまでの範囲におけるGaのカウント数の最大値に対する前記上部側主面から下部側主面までの厚さ方向の範囲全体におけるGaのカウント数の最小値の百分率割合が8〜70%であることを特徴とする太陽電池。
A solar cell in which a lower electrode, a light absorbing layer containing Cu, In, Ga, and Se, a buffer layer, a transparent conductive layer, and an upper electrode are formed on a glass substrate at least in this order,
The light absorption layer is Cu x (In 1-y Ga y ) Se z (0.7 ≦ x ≦ 1.0, 0.1 ≦ y ≦ 0.6, 1.9 ≦ z ≦ 2.0). The upper main layer with respect to the maximum count number of Ga in the range from the upper main surface to 700 nm in the thickness direction by secondary ion mass spectrometry, comprising a compound having a chalcopyrite type crystal structure having the composition shown A solar cell, characterized in that the percentage of the minimum value of the Ga count number in the entire range in the thickness direction from the surface to the lower principal surface is 8 to 70%.
JP2011221909A 2011-10-06 2011-10-06 Manufacturing method of solar cell Expired - Fee Related JP5812487B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011221909A JP5812487B2 (en) 2011-10-06 2011-10-06 Manufacturing method of solar cell
KR1020120110796A KR20130037654A (en) 2011-10-06 2012-10-05 Method for producing solar cell, and solar cell
TW101137023A TW201320375A (en) 2011-10-06 2012-10-05 Method of producing solar cell and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221909A JP5812487B2 (en) 2011-10-06 2011-10-06 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2013084664A true JP2013084664A (en) 2013-05-09
JP5812487B2 JP5812487B2 (en) 2015-11-11

Family

ID=48438582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221909A Expired - Fee Related JP5812487B2 (en) 2011-10-06 2011-10-06 Manufacturing method of solar cell

Country Status (3)

Country Link
JP (1) JP5812487B2 (en)
KR (1) KR20130037654A (en)
TW (1) TW201320375A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125898A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs film and cigs solar cell using same
WO2014125899A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Method for manufacturing cigs film and method for manufacturing cigs solar cell using said method
WO2014125902A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs-film manufacturing method and cigs-solar-cell manufacturing method using same
WO2015166669A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Cigs semiconductor layer, method for manufacturing same, and cigs photoelectric conversion device in which said method is used
US9385260B2 (en) 2013-07-10 2016-07-05 Tsmc Solar Ltd. Apparatus and methods for forming thin film solar cell materials
CN111455320A (en) * 2019-01-18 2020-07-28 北京铂阳顶荣光伏科技有限公司 Preparation method of thin-film solar cell absorption layer and film coating equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838864A2 (en) * 1996-10-25 1998-04-29 Showa Shell Sekiyu Kabushiki Kaisha Method for producing thin-film solar cell and equipment for producing the same
JP2005072088A (en) * 2003-08-20 2005-03-17 Matsushita Electric Ind Co Ltd Solar cell and its producing process
EP2309548A2 (en) * 2009-10-09 2011-04-13 FUJIFILM Corporation Photoelectric conversion device, method for producing the same and solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838864A2 (en) * 1996-10-25 1998-04-29 Showa Shell Sekiyu Kabushiki Kaisha Method for producing thin-film solar cell and equipment for producing the same
JPH10135495A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Method and apparatus for manufacturing thin-film solar cell
JP2005072088A (en) * 2003-08-20 2005-03-17 Matsushita Electric Ind Co Ltd Solar cell and its producing process
EP2309548A2 (en) * 2009-10-09 2011-04-13 FUJIFILM Corporation Photoelectric conversion device, method for producing the same and solar battery
JP2011100976A (en) * 2009-10-09 2011-05-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125898A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs film and cigs solar cell using same
WO2014125899A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Method for manufacturing cigs film and method for manufacturing cigs solar cell using said method
WO2014125902A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs-film manufacturing method and cigs-solar-cell manufacturing method using same
JP2014154759A (en) * 2013-02-12 2014-08-25 Nitto Denko Corp Cigs film and cigs solar cell using the same
US9614111B2 (en) 2013-02-12 2017-04-04 Nitto Denko Corporation CIGS film, and CIGS solar cell employing the same
US9385260B2 (en) 2013-07-10 2016-07-05 Tsmc Solar Ltd. Apparatus and methods for forming thin film solar cell materials
TWI560897B (en) * 2013-07-10 2016-12-01 Taiwan Semiconductor Mfg Co Ltd Apparatus and method of forming thin film solar cell materials
WO2015166669A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Cigs semiconductor layer, method for manufacturing same, and cigs photoelectric conversion device in which said method is used
CN111455320A (en) * 2019-01-18 2020-07-28 北京铂阳顶荣光伏科技有限公司 Preparation method of thin-film solar cell absorption layer and film coating equipment

Also Published As

Publication number Publication date
KR20130037654A (en) 2013-04-16
JP5812487B2 (en) 2015-11-11
TW201320375A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6004048B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
WO2011049146A1 (en) Glass sheet for cu-in-ga-se solar cells, and solar cells using same
JP5812487B2 (en) Manufacturing method of solar cell
JP2011517132A (en) Glass substrate to support the electrode
US20130233386A1 (en) Glass substrate for cu-in-ga-se solar cells and solar cell using same
WO2012102346A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELLS AND SOLAR CELL USING SAME
JP6003904B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
KR20130110099A (en) Production process for solar cell and solar cell
KR20140142271A (en) Glass substrate for cu-in-ga-se solar cell, and solar cell using same
JP6156553B2 (en) CIGS solar cell glass substrate and CIGS solar cell
JP6210136B2 (en) Glass substrate
JP2014075407A (en) Substrate for cigs solar cell and manufacturing method for cigs solar cell using the same
JP6249033B2 (en) Glass plate
JP2016098133A (en) Glass substrate, cigs solar cell, method for manufacturing glass substrate
JP2014067903A (en) Glass substrate for solar battery use, solar battery, and method for manufacturing solar battery
JP2014139990A (en) Light absorption layer, solar cell, and method for manufacturing thereof
JP2016171158A (en) Cu-In-Ga-Se SOLAR CELL
CN111370510A (en) Thin-film solar cell modification method and cell prepared by same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5812487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees