JP2013083555A - Eddy current flaw detection sensor - Google Patents

Eddy current flaw detection sensor Download PDF

Info

Publication number
JP2013083555A
JP2013083555A JP2011223864A JP2011223864A JP2013083555A JP 2013083555 A JP2013083555 A JP 2013083555A JP 2011223864 A JP2011223864 A JP 2011223864A JP 2011223864 A JP2011223864 A JP 2011223864A JP 2013083555 A JP2013083555 A JP 2013083555A
Authority
JP
Japan
Prior art keywords
hole
outer cylinder
probe body
eddy current
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011223864A
Other languages
Japanese (ja)
Other versions
JP5871551B2 (en
Inventor
Daisuke Kobayashi
大輔 小林
Masanori Saiki
正則 齋木
Kazufumi Shimizu
和文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2011223864A priority Critical patent/JP5871551B2/en
Publication of JP2013083555A publication Critical patent/JP2013083555A/en
Application granted granted Critical
Publication of JP5871551B2 publication Critical patent/JP5871551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make work for scanning a detection coil along a hole efficient.SOLUTION: The eddy current flaw detection sensor 50 for inspecting a flaw of a cooling hole 25 provided inside a long engagement groove 23 in one direction has: a probe body 70 which is long in one direction and forms a first axis part 71 and a second axis part 75 back and forth in the one direction; a detection part 73 which is provided for the first axis part 71 of the probe body 70 and has a detection coil inside; and an outer cylinder part 80 which is attached to the second axis part 75 of the probe body 70 and forms a cylinder shape insertable inside the engagement groove 23. The outer cylinder part 80 is attached to the second axis part 75 of the probe body 70 relatively displaceably in two directions, the one direction and a rotation direction, a guide hole 87 imitating the shape of the cooling hole 25 is formed on the outer cylinder part 80, and the probe body 70 is provided with a guide pin 77 which circles around the guide hole 87.

Description

本発明は、渦流探傷センサに関する。   The present invention relates to an eddy current flaw detection sensor.

渦流探傷センサは、金属材料の表面に検出コイルを利用して渦電流を流し、表面亀裂やクラック等の欠陥による渦電流の変化を検出することによって、金属材料の欠陥を検出するものである。尚、本件に関連する技術としては、下記特許文献1に記載のものがある。   The eddy current flaw detection sensor detects a defect in a metal material by causing an eddy current to flow on the surface of the metal material using a detection coil and detecting a change in eddy current due to a defect such as a surface crack or a crack. In addition, there exists a thing of the following patent document 1 as a technique relevant to this case.

特開2001−349875公報JP 2001-349875 A

渦流探傷センサを用いる場合、検出を正確に行うには、プローブに設けた検出コイルを金属材料の検査面に沿って正確に走査することが必要である。しかし、例えばガスタービンロータの動翼を取り付ける嵌合溝に形成した冷却孔など狭小箇所では、プローブに設けた検出コイルを、孔の形状に沿って走査する作業は困難性を極め、作業性が著しく悪かった。   In the case of using an eddy current flaw detection sensor, in order to perform detection accurately, it is necessary to accurately scan a detection coil provided on the probe along the inspection surface of the metal material. However, for example, in a narrow spot such as a cooling hole formed in a fitting groove to which a moving blade of a gas turbine rotor is attached, it is extremely difficult to scan the detection coil provided on the probe along the shape of the hole. It was extremely bad.

本発明は上記のような事情に基づいて完成されたものであって、検出コイルを、孔に沿って走査する作業の効率化を図ることを目的とする。   The present invention has been completed based on the above situation, and an object thereof is to improve the efficiency of the operation of scanning the detection coil along the hole.

本発明は、一方向に長い溝の内部に設けられた孔の欠陥を検査する渦流探傷センサであって、一方向に長い形状をなし、第一軸部と第二軸部を前記一方向の前後に形成したプローブ本体と、前記プローブ本体の前記第一軸部に設けられ内部に検出コイルを有する検出部と、前記プローブ本体の前記第二軸部に装着され、かつ前記溝内へ挿通可能な筒型をなす外筒部とを備え、前記外筒部は前記プローブ本体の前記第二軸部に対して、前記一方向と回転方向の2方向に相対変位可能に装着され、前記外筒部に、前記孔の形状を模したガイド孔が形成され、前記プローブ本体に、前記ガイド孔に沿って周回移動するガイドピンが設けられているところに特徴を有する。この発明では、ガイド孔とガイドピンの案内作用により孔に沿って検出コイルを移動させることができる。そのため、検出コイルを孔に沿って簡単に走査できる。   The present invention is an eddy current flaw detection sensor for inspecting a defect in a hole provided in a groove that is long in one direction, has a shape that is long in one direction, and a first shaft portion and a second shaft portion are arranged in the one direction. A probe body formed in front and back, a detection part provided in the first shaft part of the probe body and having a detection coil therein, and attached to the second shaft part of the probe body and can be inserted into the groove An outer cylinder portion having a cylindrical shape, and the outer cylinder portion is attached to the second shaft portion of the probe main body so as to be relatively displaceable in two directions of the one direction and the rotation direction. A guide hole simulating the shape of the hole is formed in the part, and a guide pin that moves around the guide hole is provided in the probe body. In the present invention, the detection coil can be moved along the hole by the guide action of the guide hole and the guide pin. Therefore, the detection coil can be easily scanned along the hole.

この発明の実施態様として以下のようにすることが好ましい。
・溝への挿入時に外筒部を回り止めするストッパを設ける。このようにすれば、外筒部が回転しないので、孔に対してガイド孔の位置が回転方向にてずれ難い。そのため、孔に沿って検出コイルを正確に走査できる。
As an embodiment of the present invention, the following is preferable.
-Provide a stopper that prevents the outer cylinder from rotating when inserted into the groove. In this case, the outer cylinder portion does not rotate, so that the position of the guide hole is difficult to shift in the rotation direction with respect to the hole. Therefore, the detection coil can be accurately scanned along the hole.

本発明によれば、検出コイルを孔に沿って簡単に走査できる。そのため、作業性がよい。   According to the present invention, the detection coil can be easily scanned along the hole. Therefore, workability is good.

実施形態1における、ガスタービンロータの斜視図The perspective view of the gas turbine rotor in Embodiment 1. FIG. タービンディスクの一部を拡大した斜視図An enlarged perspective view of a part of a turbine disk 動翼の一部を拡大した斜視図A perspective view enlarging a part of a moving blade タービンディスクに動翼を取り付けた状態を示す斜視図The perspective view which shows the state which attached the rotor blade to the turbine disk その正面図(図4を正面側から見た図)Front view (view of FIG. 4 seen from the front side) 渦流探傷センサの斜視図Perspective view of eddy current flaw detection sensor センサヘッドの平面図Plan view of sensor head センサヘッドの側面図Side view of sensor head センサヘッドをタービンディスクの嵌合溝に挿入した状態を示す斜視図The perspective view which shows the state which inserted the sensor head in the fitting groove | channel of the turbine disk. その断面図(嵌合溝を上下方向に切断した断面図)Sectional view (cross-sectional view of the fitting groove cut vertically) 同じくその断面図(嵌合溝を垂直方向に切断した断面図)The cross-sectional view (cross-sectional view of the fitting groove cut in the vertical direction) ガイド孔とガイドピンによる案内作用を示す図Diagram showing guide action with guide holes and guide pins 実施形態2における、センサヘッドの断面図Sectional drawing of the sensor head in Embodiment 2.

<実施形態1>
本発明の実施形態1を図1ないし図12によって説明する。
図1は、ガスタービンロータの斜視図である。ガスタービンロータ10はロータ軸11に、円盤状をした金属製のタービンディスク20を介して、動翼30を固定したものである。タービンディスク20に対する動翼30の取り付け構造は、図2〜図5に示す通りであり、タービンディスク20に形成された嵌合溝23に対して動翼30の底部に形成した嵌合部33を嵌合させる構造となっている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view of a gas turbine rotor. In the gas turbine rotor 10, a moving blade 30 is fixed to a rotor shaft 11 via a disk-shaped metal turbine disk 20. The attachment structure of the moving blade 30 to the turbine disk 20 is as shown in FIGS. 2 to 5, and a fitting portion 33 formed at the bottom of the moving blade 30 with respect to the fitting groove 23 formed in the turbine disk 20. It has a structure to be fitted.

具体的に説明すると、タービンディスク20の嵌合溝23はロータ軸11の軸線L方向に延びており、タービンディスク20を前後に貫通している。一方、動翼30側の嵌合部33は、嵌合溝23に対して隙間なく嵌合する形状となっている。そのため、動翼30の嵌合部33を、前後のいずれかの方向から、嵌合溝23の奥方に差し込むことで、動翼30をタービンディスク20に固定できるようになっている(図4)。   More specifically, the fitting groove 23 of the turbine disk 20 extends in the direction of the axis L of the rotor shaft 11 and penetrates the turbine disk 20 in the front-rear direction. On the other hand, the fitting portion 33 on the moving blade 30 side has a shape that fits into the fitting groove 23 without a gap. Therefore, the moving blade 30 can be fixed to the turbine disk 20 by inserting the fitting portion 33 of the moving blade 30 into the back of the fitting groove 23 from either of the front and rear directions (FIG. 4). .

タービンディスク20の嵌合溝23の底部23Aは断面形状が概ね円弧型をなすと共に、内周面側には冷却孔25が形成されている(図2参照)。冷却孔25は、嵌合溝23の底部23Aを横切る横長形状をしていて、タービンディスク20を上下に貫通している。この冷却孔25は動翼30の内部に形成された冷却通路35と連通しており、ロータ軸11から冷却孔25を通じて動翼30の冷却通路35へ冷却風を流すことにより動翼30を冷却する構造となっている(図5参照)。   The bottom 23A of the fitting groove 23 of the turbine disk 20 is substantially arc-shaped in cross section, and a cooling hole 25 is formed on the inner peripheral surface side (see FIG. 2). The cooling hole 25 has a horizontally long shape that crosses the bottom 23 </ b> A of the fitting groove 23, and penetrates the turbine disk 20 up and down. The cooling hole 25 communicates with a cooling passage 35 formed inside the rotor blade 30, and cools the rotor blade 30 by flowing cooling air from the rotor shaft 11 through the cooling hole 25 to the cooling passage 35 of the rotor blade 30. (See FIG. 5).

本実施形態では、以下に説明する渦流探傷センサ50を用いて、嵌合溝23の底部23Aに形成された冷却孔25の欠陥を検査するものである。尚、渦流探傷センサ50の検出原理は、先の特許文献1に開示されている原理と同じであり、金属材料の表面(この例では、冷却孔25の孔縁)に検出コイル(この例では、検出コイル73A)を利用して渦電流を流し、表面亀裂やクラック等の欠陥による渦電流の変化を検出することによって、金属材料の欠陥を検出するものである。   In this embodiment, the defect of the cooling hole 25 formed in the bottom 23A of the fitting groove 23 is inspected using the eddy current flaw detection sensor 50 described below. The detection principle of the eddy current flaw detection sensor 50 is the same as that disclosed in the above-mentioned Patent Document 1, and a detection coil (in this example, a hole of the cooling hole 25) is formed on the surface of the metal material. The detection coil 73A) is used to flow an eddy current, and a change in the eddy current due to a defect such as a surface crack or a crack is detected to detect a defect in the metal material.

図6に示すように、渦流探傷センサ50は、センサヘッド60と演算装置100とから構成されている。演算装置100はセンサヘッド60に対してケーブルを介して電気的に接続されていて、センサヘッド60にて検出される検出信号に基づいて、冷却孔25の欠陥を検出する機能を果たすものである。   As shown in FIG. 6, the eddy current flaw detection sensor 50 includes a sensor head 60 and a calculation device 100. The arithmetic device 100 is electrically connected to the sensor head 60 via a cable, and performs a function of detecting a defect in the cooling hole 25 based on a detection signal detected by the sensor head 60. .

センサヘッド60は、図7、図8に示すようにプローブ本体70と、外筒部80とを備える。プローブ本体70は合成樹脂製であり、径の異なる2つの軸部71、75を前後に形成した一方向(図7では左右方向)に長い形状をなす。以下、プローブ本体70のうち、基端側の軸部(小径側)を第一軸部71とし、先端側の軸部(大径側)を第二軸部75と呼ぶ。   The sensor head 60 includes a probe main body 70 and an outer cylinder 80 as shown in FIGS. The probe body 70 is made of synthetic resin and has a long shape in one direction (left and right direction in FIG. 7) in which two shaft portions 71 and 75 having different diameters are formed in the front and rear directions. Hereinafter, in the probe main body 70, the proximal end side shaft portion (small diameter side) is referred to as a first shaft portion 71, and the distal end side shaft portion (large diameter side) is referred to as a second shaft portion 75.

第一軸部71の基端側(図7の左側)は取っ手74となる筒状部材が被せ付けられている。また、第一軸部71の外周面には検出部73が形成(具体的には、一体的に形成)されている。検出部73は、第二軸部75との境界に設けられた鍔部79の近傍にあって、第一軸部71の外周面から径方向外側に突出する突形状をしている。検出部73の内部には、検査対象物である冷却孔25の欠陥を検出するための検出コイル73Aが内蔵されている(図10参照)。   A cylindrical member serving as a handle 74 is put on the proximal end side (the left side in FIG. 7) of the first shaft portion 71. Further, a detection portion 73 is formed (specifically, integrally formed) on the outer peripheral surface of the first shaft portion 71. The detection unit 73 is in the vicinity of the flange 79 provided at the boundary with the second shaft portion 75, and has a protruding shape that protrudes radially outward from the outer peripheral surface of the first shaft portion 71. A detection coil 73A for detecting a defect in the cooling hole 25, which is an inspection object, is built in the detection unit 73 (see FIG. 10).

また、検出部73は、図10に示すように、嵌合溝23への挿入時、嵌合溝23の底部23Aの内面23Bに接触しない設定(一定のクリアランスを持たせる設定)となっている。このような設定(検出部73の先端を底部23Aの内面23Bから離す設定)としてあるのは、検出部73の先端を内面23Bに接触させると、走査時に微小な振動が発生し、検出部73を冷却孔25に沿って滑らかに走査できないからである。   Further, as shown in FIG. 10, the detection unit 73 is set so as not to contact the inner surface 23B of the bottom 23A of the fitting groove 23 (set to have a certain clearance) when inserted into the fitting groove 23. . This setting (setting the tip of the detection unit 73 away from the inner surface 23B of the bottom 23A) is that when the tip of the detection unit 73 is brought into contact with the inner surface 23B, minute vibrations occur during scanning, and the detection unit 73 This is because it cannot be smoothly scanned along the cooling hole 25.

第二軸部75には、中空円筒型の外筒部80が外挿されている。外筒部80は合成樹脂製であって、内径がプローブ本体70の第二軸部75の外形より少しだけ大きくなっていて、第二軸部75に対して最小限のクリアランスをもって嵌合している。以上のことから、プローブ本体70が外筒部80に対して自由に動くことが可能で、前記一方向にあたる軸方向(図7の左右方向)と回転方向の2方向に相対移動できる構成となっている。   A hollow cylindrical outer cylinder portion 80 is extrapolated to the second shaft portion 75. The outer cylindrical portion 80 is made of synthetic resin, has an inner diameter that is slightly larger than the outer shape of the second shaft portion 75 of the probe body 70, and is fitted to the second shaft portion 75 with a minimum clearance. Yes. From the above, the probe main body 70 can move freely with respect to the outer cylindrical portion 80, and can be relatively moved in two directions, ie, the axial direction corresponding to the one direction (left-right direction in FIG. 7) and the rotational direction. ing.

外筒部80の外径は、タービンディスク20の嵌合溝23の底部23Aの内径より少しだけ小さくなっていて、図9に示すように、外筒部80を含むセンサヘッド60の全体を、嵌合溝23の底部23Aの内側に挿入できる構成となっている。   The outer diameter of the outer cylinder 80 is slightly smaller than the inner diameter of the bottom 23A of the fitting groove 23 of the turbine disk 20, and as shown in FIG. 9, the entire sensor head 60 including the outer cylinder 80 is The fitting groove 23 can be inserted inside the bottom 23 </ b> A.

また、外筒部80にはストッパプレート83が取り付けられている。具体的には、後述するガイド孔87に対して、向かい合う位置(すなわち、180°反転した位置)に取り付けられている。このストッパプレート83は、嵌合溝23にセンサヘッド60を挿入した際に、嵌合溝23の一部に当接する設定となっている(図11参照)。ストッパプレート83は、嵌合溝23への挿入時、嵌合溝23に対して外筒部80を回り止めすると共に、嵌合溝23の冷却孔25に対して、外筒部80のガイド孔87を位置決め(回転方向にて位置決め)する機能を果たす。   A stopper plate 83 is attached to the outer cylinder portion 80. Specifically, it is attached to a position facing the guide hole 87 described later (that is, a position inverted by 180 °). The stopper plate 83 is set to contact a part of the fitting groove 23 when the sensor head 60 is inserted into the fitting groove 23 (see FIG. 11). When the stopper plate 83 is inserted into the fitting groove 23, the stopper plate 83 prevents the outer cylinder portion 80 from rotating with respect to the fitting groove 23, and the guide hole of the outer cylinder portion 80 with respect to the cooling hole 25 of the fitting groove 23. It functions to position 87 (position in the rotational direction).

図7、図8に戻って説明を続けると、外筒部80にはガイド孔87が形成され、プローブ本体70の第二軸部75の外周側にはガイド孔87の相手となるガイドピン77がネジで固定されている。これらガイド孔87とガイドピン77は、冷却孔25に沿って検出コイル73Aが移動するように、検出部73をガイド(案内)する機能を果たすものである。   7 and 8, the description will be continued. A guide hole 87 is formed in the outer cylindrical portion 80, and a guide pin 77 that is a counterpart of the guide hole 87 on the outer peripheral side of the second shaft portion 75 of the probe main body 70. Is fixed with screws. The guide hole 87 and the guide pin 77 serve to guide (guide) the detection unit 73 so that the detection coil 73 </ b> A moves along the cooling hole 25.

具体的に説明すると、ガイド孔87は、外筒部80の基端側(図7では左側)に形成されている。ガイド孔87の形状は、冷却孔25の孔形状と相似形状であり、冷却孔25の孔形状に対して一回り大きな形状となっている。図7や図8に示すように、ガイドピン77はガイド孔87に対して内側(径方向内側)から嵌合し、検出部73との関係では同一直線L1上に位置する位置関係に設定されている。   More specifically, the guide hole 87 is formed on the proximal end side (left side in FIG. 7) of the outer cylinder portion 80. The shape of the guide hole 87 is similar to the shape of the cooling hole 25 and is slightly larger than the shape of the cooling hole 25. As shown in FIGS. 7 and 8, the guide pin 77 is fitted to the guide hole 87 from the inner side (radially inner side), and is set in a positional relationship on the same straight line L <b> 1 in relation to the detection unit 73. ing.

次に、冷却孔25に沿って検出部73を走査する作業手順について説明する。走査作業を行うには、まず、ストッパプレート83を上に向けながら、センサヘッド60を検査対象となる嵌合溝23へ差し込み、その後、図9、図10に示すように、冷却孔25の孔縁に、検出部73が位置するように、センサヘッド60の位置(軸線L方向の前後の位置)を合わせる。図10の例では、ガイド孔87の奥側(図中左側)にガイドピン77を突き当てているので、冷却孔25の奥側(図中左側)の周縁に検出部73の位置を合わせることになる。   Next, an operation procedure for scanning the detection unit 73 along the cooling hole 25 will be described. In order to perform the scanning operation, first, the sensor head 60 is inserted into the fitting groove 23 to be inspected with the stopper plate 83 facing upward, and then, as shown in FIGS. The position of the sensor head 60 (front and rear positions in the direction of the axis L) is aligned with the edge so that the detection unit 73 is positioned. In the example of FIG. 10, since the guide pin 77 is abutted on the back side (left side in the figure) of the guide hole 87, the position of the detection unit 73 is aligned with the peripheral edge on the back side (left side in the figure) of the cooling hole 25. become.

そして、検出部73の位置を合わせることができたら、動かないように外筒部80を手で押さえながら、プローブ本体70の取っ手74を掴んで、ガイド孔87に沿ってガイドピン77が一周(周回移動)するようにプローブ本体70を操作する。具体的には、外筒部80に対して回転方向(図12のa矢印)や軸線L方向(図12のb矢印)にプローブ本体70を移動させる。これにより、ガイド孔87とガイドピン77による案内作用により、検出部73が冷却孔25に沿って移動し、冷却孔25を一周する(図12参照)。   And if the position of the detection part 73 can be adjusted, the handle 74 of the probe main body 70 will be grasped, holding the outer cylinder part 80 with a hand so that it may not move, and the guide pin 77 will make one round along the guide hole 87 ( The probe main body 70 is operated so as to move around. Specifically, the probe main body 70 is moved in the rotation direction (arrow a in FIG. 12) or the axis L direction (arrow b in FIG. 12) with respect to the outer cylinder portion 80. As a result, the detecting portion 73 moves along the cooling hole 25 by the guiding action of the guide hole 87 and the guide pin 77, and makes a round of the cooling hole 25 (see FIG. 12).

このように本実施形態では、ガイド孔87とガイドピン77によって検出部73の移動を案内するので、検出部73を冷却孔25に沿って走査することが可能であり、また走査作業自体も極めて簡単で作業性がよい。   Thus, in this embodiment, since the movement of the detection unit 73 is guided by the guide hole 87 and the guide pin 77, the detection unit 73 can be scanned along the cooling hole 25, and the scanning operation itself is extremely difficult. Easy and workable.

また、この実施形態では、ストッパプレート83によって外筒部80を回転止めする構造となっている。そのため、走査する際に、外筒部80の位置が回転方向にずれないので、冷却孔25に沿って検出部73を正確に走査できるというメリットがある。   In this embodiment, the outer cylinder portion 80 is prevented from rotating by the stopper plate 83. Therefore, when scanning, the position of the outer cylinder part 80 does not shift in the rotation direction, so that there is an advantage that the detection part 73 can be scanned accurately along the cooling hole 25.

<実施形態2>
次に、本発明の実施形態2を図13によって説明する。実施形態1では、プローブ本体70の第一軸部71に対して検出部73を一体的に形成した。そして、嵌合溝23との関係では、挿入時において、嵌合溝23の底部23Aの内面23Bと検出部73との間に一定のクリアランスを設ける設定とした(図10参照)。
<Embodiment 2>
Next, Embodiment 2 of the present invention will be described with reference to FIG. In the first embodiment, the detection unit 73 is formed integrally with the first shaft portion 71 of the probe main body 70. In the relationship with the fitting groove 23, a predetermined clearance is set between the inner surface 23B of the bottom 23A of the fitting groove 23 and the detection unit 73 at the time of insertion (see FIG. 10).

実施形態2では、検出部93を別部品とし、プローブ本体70の第一軸部71に設けた取り付け孔91に対して、径方向に移動可能に装着する構造としている。そして、取り付け孔91に、ばね95を設けて、径方向外側に検出部93を付勢する構造としている。実施形態2の構成では、検出部93を径方向外側に付勢する構造としてあることから、冷却孔25に沿って走査する間、検出部93が嵌合溝23の底部23Aの内面23B(冷却孔25の周縁)に対して接触した状態となる。このものでは、嵌合溝23Aの形状が修理等の影響で当初設計形状から変更があったとしても、嵌合溝23の底部23Aに対して検出部93が常に接触した状態となることから、変更後の溝形状に沿って冷却孔25の欠陥を検査できるというメリットがある。   In the second embodiment, the detection unit 93 is a separate component and is configured to be mounted so as to be movable in the radial direction in the mounting hole 91 provided in the first shaft portion 71 of the probe main body 70. And the spring 95 is provided in the attachment hole 91, and it is set as the structure which urges | biases the detection part 93 to radial direction outer side. In the configuration of the second embodiment, since the detection unit 93 is biased outward in the radial direction, the detection unit 93 scans along the cooling hole 25 while the detection unit 93 has an inner surface 23B (cooling) of the bottom 23A of the fitting groove 23. It will be in the state which contacted with respect to the periphery of the hole 25). In this case, even if the shape of the fitting groove 23A is changed from the initial design shape due to the influence of repair or the like, the detection unit 93 is always in contact with the bottom 23A of the fitting groove 23. There is an advantage that a defect of the cooling hole 25 can be inspected along the groove shape after the change.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)本実施形態では、検査対象の一例に、タービンディスク20の嵌合溝23に形成した冷却孔25を例示したが、溝の内側に形成した孔の検査であれば、それ以外の用途にも使用できる。   (1) In the present embodiment, the cooling hole 25 formed in the fitting groove 23 of the turbine disk 20 is illustrated as an example of the inspection target. However, if the inspection is performed on the hole formed inside the groove, other uses are possible. Can also be used.

20…タービンディスク
23…嵌合溝(本発明の「溝」に相当)
25…冷却孔(本発明の「孔」に相当)
50…渦流探傷センサ
70…プローブ本体
71…第一軸部
75…第二軸部
77…ガイドピン
80…外筒部
83…ストッパプレート(本発明の「ストッパ」に相当)
87…ガイド孔
20 ... Turbine disk 23 ... Fitting groove (corresponding to "groove" of the present invention)
25 ... Cooling hole (corresponding to "hole" of the present invention)
DESCRIPTION OF SYMBOLS 50 ... Eddy current flaw sensor 70 ... Probe main body 71 ... 1st axial part 75 ... 2nd axial part 77 ... Guide pin 80 ... Outer cylinder part 83 ... Stopper plate (equivalent to "stopper" of this invention)
87 ... Guide hole

Claims (2)

一方向に長い溝の内部に設けられた孔の欠陥を検査する渦流探傷センサであって、
一方向に長い形状をなし、第一軸部と第二軸部を前記一方向の前後に形成したプローブ本体と、
前記プローブ本体の前記第一軸部に設けられ内部に検出コイルを有する検出部と、
前記プローブ本体の前記第二軸部に装着され、かつ前記溝内へ挿通可能な筒型をなす外筒部とを備え、
前記外筒部は前記プローブ本体の前記第二軸部に対して、前記一方向と回転方向の2方向に相対変位可能に装着され、
前記外筒部に、前記孔の形状を模したガイド孔が形成され、
前記プローブ本体に、前記ガイド孔に沿って周回移動するガイドピンが設けられていることを特徴とする渦流探傷センサ。
An eddy current flaw detection sensor for inspecting a defect in a hole provided in a groove long in one direction,
A probe body having a long shape in one direction, and a first shaft portion and a second shaft portion formed in front and rear in the one direction,
A detection unit provided in the first shaft portion of the probe body and having a detection coil therein;
An outer cylinder part that is attached to the second shaft part of the probe body and forms a cylindrical shape that can be inserted into the groove;
The outer cylinder part is attached to the second shaft part of the probe main body so as to be relatively displaceable in two directions of the one direction and the rotation direction,
A guide hole simulating the shape of the hole is formed in the outer cylinder part,
An eddy current flaw detection sensor characterized in that a guide pin that circulates along the guide hole is provided in the probe body.
前記溝への挿入時に、前記溝の一部に当接して前記外筒部を回り止めするストッパを、前記外筒部に設けたことを特徴とする請求項1に記載の渦流探傷センサ。   The eddy current flaw detection sensor according to claim 1, wherein a stopper is provided on the outer cylinder portion to stop the outer cylinder portion from coming into contact with a part of the groove when inserted into the groove.
JP2011223864A 2011-10-11 2011-10-11 Eddy current flaw detection sensor Active JP5871551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223864A JP5871551B2 (en) 2011-10-11 2011-10-11 Eddy current flaw detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223864A JP5871551B2 (en) 2011-10-11 2011-10-11 Eddy current flaw detection sensor

Publications (2)

Publication Number Publication Date
JP2013083555A true JP2013083555A (en) 2013-05-09
JP5871551B2 JP5871551B2 (en) 2016-03-01

Family

ID=48528890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223864A Active JP5871551B2 (en) 2011-10-11 2011-10-11 Eddy current flaw detection sensor

Country Status (1)

Country Link
JP (1) JP5871551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845025A (en) * 2018-05-30 2018-11-20 中国航发动力股份有限公司 A kind of eddy detection system and method for the pin hole with copper sheathing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094980U (en) * 1973-12-20 1975-08-08
JPS5850460A (en) * 1981-09-19 1983-03-24 Hara Denshi Sokki Kk Flaw detector
JP2004264305A (en) * 2003-02-28 2004-09-24 General Electric Co <Ge> Internal eddy current inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5094980U (en) * 1973-12-20 1975-08-08
JPS5850460A (en) * 1981-09-19 1983-03-24 Hara Denshi Sokki Kk Flaw detector
JP2004264305A (en) * 2003-02-28 2004-09-24 General Electric Co <Ge> Internal eddy current inspection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845025A (en) * 2018-05-30 2018-11-20 中国航发动力股份有限公司 A kind of eddy detection system and method for the pin hole with copper sheathing

Also Published As

Publication number Publication date
JP5871551B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP4870393B2 (en) Method and apparatus for testing components
JP5167366B2 (en) Defect detection device for turbine blade and defect detection method for turbine blade
JP5557412B2 (en) Apparatus and system for inspecting parts
US7888932B2 (en) Surface flaw detection system to facilitate nondestructive inspection of a component and methods of assembling the same
JP5871551B2 (en) Eddy current flaw detection sensor
JP2021183980A (en) Roundness measuring device
JP6086736B2 (en) Vibration response monitoring device, rotating machine, and vibration response monitoring method
JP2008275614A (en) Method and installation for using eddy current for non-destructive inspection with automatic calibration
JP6304811B2 (en) Pipe inner diameter inspection device
JP5984648B2 (en) Clearance measurement system and clearance measurement method
JP2009186446A (en) Method and system for flaw detection of turbine rotor blade groove portion
JP5893903B2 (en) Inspection device
KR101289921B1 (en) Eddy current probe
JP2016211985A (en) Circularity measuring apparatus and measurement object fixture of the same
JP2007232697A (en) Device and method for inspecting roundness of inner circumference of cylindrical body
JP6168682B2 (en) Eddy current flaw detection probe and inspection method
KR101710576B1 (en) Ultrasonic Inspection apparatus equipped with bar-rail
JP2008139078A (en) Method and apparatus for measuring parallel holes
JP6255945B2 (en) Shape measuring device
KR101237225B1 (en) A fixture of the eddy current probe for inspecting on the blades airfoil
CN217542980U (en) Eddy current detection tool and eddy current detection device
KR20150126491A (en) Cooling flow test device of gas turbine
JP6731774B2 (en) Ultrasonic flaw detector
CN105043189B (en) A kind of detection instrument for windscreen wiper connecting rod output shaft
CN215114282U (en) Detection device for detecting size of specific area of flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160112

R150 Certificate of patent or registration of utility model

Ref document number: 5871551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250