JP2008139078A - Method and apparatus for measuring parallel holes - Google Patents

Method and apparatus for measuring parallel holes Download PDF

Info

Publication number
JP2008139078A
JP2008139078A JP2006323569A JP2006323569A JP2008139078A JP 2008139078 A JP2008139078 A JP 2008139078A JP 2006323569 A JP2006323569 A JP 2006323569A JP 2006323569 A JP2006323569 A JP 2006323569A JP 2008139078 A JP2008139078 A JP 2008139078A
Authority
JP
Japan
Prior art keywords
measured
axis
measuring
parallel
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323569A
Other languages
Japanese (ja)
Inventor
Kazumi Satake
和美 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006323569A priority Critical patent/JP2008139078A/en
Publication of JP2008139078A publication Critical patent/JP2008139078A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring parallel holes, capable of effectively and precisely measuring a parallelization degree of the parallel holes with respect to the axial center used as a reference of an object to be measured. <P>SOLUTION: A master pin 2 is set in set-pin support holes 7, 8 of a planetary carrier, and the planetary carrier is supported so as to be centered by a pair of support pins 18, 19, thereby obtaining the axial center used as the reference of the planetary carrier. Then, a bias of a plane to be measured 5 whose squareness to the pin axial center L1 of the master pin 2 is assured, is measured in the direction of the axial center of the planetary carrier, and the parallelization degree of the set-pin support holes 7, 8 is derived based on the measured result. Therefore, the parallelization degree of the set-pin support holes 7, 8 can be measured effectively and precisely. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被測定物の基準に対する平行穴の平行度、例えば、プラネタリーキャリアの軸心に対するセットピン支持穴の平行度を測定する方法及び装置に関する。   The present invention relates to a method and apparatus for measuring parallelism of a parallel hole with respect to a reference of an object to be measured, for example, parallelism of a set pin support hole with respect to an axis of a planetary carrier.

一般に、自動車のオートマチックトランスミッションは、リングギヤ、ピニオンギヤ、サンギヤ並びにプラネタリーキャリアによって構成されるプラネタリーギヤが組込まれて、入力ギヤ、出力ギヤ、固定ギヤの組み合わせパターンを切り替えることにより変速が行われる。プラネタリーギヤは、性能を確保する上で、噛み合わされるギヤ間の平行度が極めて重要であり、これらギヤ間における平行度の誤差が大きい場合、異音の発生、ギヤの破損等の不具合が発生する虞がある。そこで、従来、プラネタリーキャリアでは、軸心(基準)に対する一対のセットピン支持穴(平行穴)の平行度が3次元測定機を用いて測定されていた。ところで、このプラネタリーキャリアの軸心に対する一対のセットピン支持穴の平行度(以下、単にプラネタリーキャリアにおけるセットピン支持穴の平行度と称する)を測定するに際して、プラネタリーキャリアの軸心を高い精度で求める必要がある。   In general, an automatic transmission of an automobile incorporates a planetary gear constituted by a ring gear, a pinion gear, a sun gear, and a planetary carrier, and shifts are performed by switching a combination pattern of an input gear, an output gear, and a fixed gear. For planetary gears, the parallelism between meshed gears is extremely important for ensuring performance. If the parallelism error between these gears is large, problems such as the generation of abnormal noise and damage to the gears can occur. May occur. Therefore, conventionally, in a planetary carrier, the parallelism of a pair of set pin support holes (parallel holes) with respect to an axis (reference) has been measured using a three-dimensional measuring machine. By the way, when measuring the parallelism of the pair of set pin support holes with respect to the axis of the planetary carrier (hereinafter simply referred to as the parallelism of the set pin support holes in the planetary carrier), the axis of the planetary carrier is set high. It is necessary to calculate with accuracy.

しかしながら、プラネタリーキャリアは、軸部のセンタ穴を基準に機械加工が行われることから、従来、センタ穴の軸心に基きプラネタリーキャリアの軸心が求められていたが、センタ穴の軸心を3次元測定機によって測定するのに多大な時間を要していた。また、セットピン支持穴は、軸心方向に所定間隔をあけて配置されることから、セットピン支持穴の軸心は、3次元測定機で個別に求められたそれぞれのセットピン支持穴の中心を直線で結ぶことで求められており、個々のセットピン支持穴の形状や傾きに誤差があると、平行穴としてのセットピン支持穴の軸心を正確に求めることができず、延いてはプラネタリーキャリアにおけるセットピン支持穴の平行度を高い精度で求めることができなかった。特に、2方向から加工された平行穴の場合、相互の穴の軸心を一致させるのが極めて困難であり、平行穴の軸心を高い精度で求めることができない。   However, since the planetary carrier is machined based on the center hole of the shaft portion, conventionally, the axis of the planetary carrier has been required based on the axis of the center hole. It took a great deal of time to measure with a three-dimensional measuring machine. Moreover, since the set pin support holes are arranged at predetermined intervals in the axial direction, the axis of the set pin support hole is the center of each set pin support hole obtained individually by a three-dimensional measuring machine. If there is an error in the shape and inclination of each set pin support hole, the axis of the set pin support hole as a parallel hole cannot be obtained accurately, and eventually The parallelism of the set pin support hole in the planetary carrier could not be obtained with high accuracy. In particular, in the case of a parallel hole machined from two directions, it is extremely difficult to make the axes of the holes coincide with each other, and the axis of the parallel hole cannot be obtained with high accuracy.

さらに、プラネタリーキャリアにおいては、軸部軸心(基準)とセットピン支持穴(平行穴)との間隔(軸間距離)が短いため、3次元測定機の測定ヘッドがプラネタリーキャリアの軸部に干渉する場合がある。この場合、干渉を回避するための特殊な測定ヘッドを3次元測定機に装着する必要があり、設備コストが増大すると共に測定を難しくする要因になっていた。   Furthermore, in the planetary carrier, the distance between the shaft center (reference) and the set pin support hole (parallel hole) (distance between the axes) is short, so the measuring head of the three-dimensional measuring machine is the shaft of the planetary carrier. May interfere. In this case, it is necessary to mount a special measuring head for avoiding interference on the three-dimensional measuring machine, which increases the equipment cost and makes measurement difficult.

そこで本発明は、上記事情に鑑みてなされたもので、被測定物の基準としての軸心に対する平行穴の平行度を効率的に且つ高い精度で測定することが可能な平行穴測定方法及び平行穴測定装置を提供することを課題としてなされたものである。   Accordingly, the present invention has been made in view of the above circumstances, and a parallel hole measuring method and a parallel method capable of efficiently and highly accurately measuring the parallelism of a parallel hole with respect to an axis as a reference of an object to be measured. An object of the present invention is to provide a hole measuring device.

上記課題を解決するために、本発明の平行穴測定方法は、基準に対して偏心した平行穴を有する被測定物の、基準に対する平行穴の平行度を測定する方法であって、ピン軸心に対する直角度が保証された被測定面を有するマスターピンを被測定物の平行穴に所定の嵌め合い公差で嵌合させ、平行穴にマスターピンが嵌合された被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚を測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度が導出されることを特徴とする。
本発明の平行穴測定方法によれば、平行穴にマスターピンが嵌合された被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、マスターピンのピン軸心に対する直角度が保証された被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚(位置の偏差)を測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度が導出されるので、平行穴の平行度を効率的に且つ高い精度で測定することができる。
In order to solve the above-mentioned problems, a parallel hole measuring method of the present invention is a method for measuring the parallelism of a parallel hole with respect to a reference of a measured object having a parallel hole eccentric with respect to the reference. A master pin having a surface to be measured with a guaranteed perpendicularity is fitted into the parallel hole of the object to be measured with a predetermined fitting tolerance, and the object to be measured with the master pin fitted in the parallel hole is supported by the center. Centering the axis as a reference of the object to be measured by centering, in this state, measuring the deviation of the surface to be measured in the direction parallel to the axis as the reference of the object to be measured. Based on the result, the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is derived.
According to the parallel hole measuring method of the present invention, the center of the object to be measured, in which the master pin is fitted in the parallel hole, is centered and centered to obtain the axis as the reference of the object to be measured. The deviation (positional deviation) in the direction parallel to the axis as the reference of the object to be measured is measured on the surface to be measured, which is guaranteed to be perpendicular to the pin axis of the master pin. Since the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is derived, the parallelism of the parallel hole can be measured efficiently and with high accuracy.

上記課題を解決するために、本発明の平行穴測定装置は、基準に対して偏心した平行穴を有する被測定物の、基準に対する平行穴の平行度を測定する装置であって、平行穴に所定の嵌め合い公差で嵌合されるマスターピンと、マスターピンに形成されてピン軸心に対する直角度が保証された被測定面と、被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心が求められる心出しユニットと、被測定物が心出しユニットによって心出しされた状態で、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚を測定する測定する測定ユニットと、を備え、測定ユニットの測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度が導出されることを特徴とする。
本発明の平行穴測定装置によれば、平行穴にマスターピンが嵌合された被測定物を心出しユニットによってセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、マスターピンのピン軸心に対する直角度が保証された被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚(位置の偏差)を測定ユニットによって測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度を導出することにより、平行穴の平行度を効率的に且つ高い精度で測定することができる。
In order to solve the above problems, a parallel hole measuring apparatus according to the present invention is an apparatus for measuring the parallelism of a parallel hole with respect to a reference of an object having a parallel hole eccentric to the reference. A master pin that is fitted with a predetermined fitting tolerance, a measurement surface that is formed on the master pin and has a guaranteed perpendicularity with respect to the axis of the pin, and an object to be measured by centering the object to be measured in the center A centering unit that requires an axial center as the reference for the measurement object, and the object to be measured centered by the centering unit, in a direction parallel to the axis as the reference for the object to be measured And a measuring unit for measuring the deviation of the parallelism, wherein the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is derived based on the measurement result of the measuring unit.
According to the parallel hole measuring device of the present invention, the object to be measured, in which the master pin is fitted in the parallel hole, is centered by the centering unit by the centering unit to obtain the center as the reference of the object to be measured, In this state, the measurement unit measures the deviation (positional deviation) in the direction parallel to the axis as the reference of the object to be measured on the surface to be measured, which is guaranteed to be perpendicular to the pin axis of the master pin. Then, based on the measurement result, the parallelism of the parallel holes with respect to the axis as the reference of the object to be measured is derived, whereby the parallelism of the parallel holes can be measured efficiently and with high accuracy.

(発明の態様)
以下に、本願において特許請求が可能と認識されている発明(以下、請求可能発明と称する)の態様を例示し、例示された各態様について説明する。ここでは、各態様を、特許請求の範囲と同様に、項に区分すると共に各項に番号を付し、必要に応じて他の項の記載を引用する形式で記載する。これは、請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載、実施形態の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得る。
なお、以下の各項において、(1)〜(6)項の各々が、請求項1〜6の各々に相当する。
(Aspect of the Invention)
In the following, aspects of the invention that is recognized as being capable of being claimed in the present application (hereinafter referred to as claimable invention) will be exemplified, and each exemplified aspect will be described. Here, as in the claims, each aspect is divided into paragraphs, numbers are assigned to the respective paragraphs, and the descriptions of other paragraphs are cited as necessary. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiment, etc., and as long as the interpretation is followed, another aspect is added to the aspect of each section. Moreover, the aspect which deleted the component from the aspect of each term can also be one aspect of the claimable invention.
In the following items, each of items (1) to (6) corresponds to each of claims 1 to 6.

(1)基準に対して偏心した平行穴を有する被測定物の、基準に対する平行穴の平行度を測定する方法であって、ピン軸心に対する直角度が保証された被測定面を有するマスターピンを被測定物の平行穴に所定の嵌め合い公差で嵌合させ、平行穴にマスターピンが嵌合された被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚を測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度が導出されることを特徴とする平行穴測定方法。
本項に記載の平行穴測定方法は、平行穴にマスターピンが嵌合された被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、該マスターピンのピン軸心に対する直角度が保証された被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚を測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度を導出することにより、被測定物の基準としての軸心に対する平行穴の平行度を、マスターピンの被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚に基き測定することが可能になり、当該平行穴の平行度を効率的に且つ高い精度で測定することができる。
従来、被測定物の基準としての軸心に対する平行穴の平行度は3次元測定機によって測定されており、まず、被測定物の基準としての軸心を求め、次に、平行穴における一方の穴の中心と他方の穴の中心とを求め、双方の穴の中心を結ぶ直線を平行穴の軸心として求めていたので、平行穴の平行度の測定に多大な時間を要していた。そこで、本項の態様では、被測定物の基準としての軸心に対する平行穴の平行度を、マスターピンの被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚に基き効率的に測定することが可能になり、平行穴の平行度の測定時間を大幅に短縮することができる。
また、従来、平行穴の軸心を求めるのに、平行穴における一方の穴の中心と他方の穴の中心とが個別に測定されていたので、それぞれの穴の形状や被測定物の基準としての軸心に対する傾きに誤差がある場合、平行穴の軸心を正確に求めることができなかったが、本項の態様では、被測定物の基準としての軸心に対する平行穴の傾きが、平行穴に嵌合されたマスターピンのピン軸心の傾き、即ち、マスターピンの被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚となって現れる。そして、本項の態様では、このマスターピンの被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚、言い換えると、被測定面の、被測定物の基準としての軸心に対する直角度を測定することにより、被測定物の基準としての軸心に対する平行穴の平行度を高い精度で求めることができる。
本項の態様は、例えば、プラネタリーギヤに組込まれるプラネタリーキャリアにおける基準としての軸心に対するセットピン支持穴の平行度の測定に適用される。この場合、プラネタリーキャリアの一対のセットピン支持穴(平行穴)に嵌合されたマスターピンの被測定面の、プラネタリーキャリアの基準としての軸心に対して平行な方向への偏倚を測定することにより、プラネタリーキャリアの基準としての軸心に対するセットピン支持穴の平行度を効率的に且つ高い精度で測定することができる。この場合、マスターピンを用いたことで、製品(プラネタリーギヤ)の使用状況により近似した状態での測定が可能になり、測定結果の信頼性が高められる。
(1) A method of measuring a parallelism of a parallel hole with respect to a reference of a measurement object having a parallel hole eccentric with respect to a reference, the master pin having a measurement surface with a guaranteed perpendicularity with respect to the pin axis Is fitted to the parallel hole of the object to be measured with a predetermined fitting tolerance, and the object to be measured is centered by supporting the object to be measured with the master pin fitted to the parallel hole. In this state, the deviation of the surface to be measured in the direction parallel to the axis as the reference of the object to be measured is measured. Based on the measurement result, the deviation from the axis as the reference of the object to be measured is measured. A parallel hole measuring method, wherein the parallelism of the parallel holes is derived.
The parallel hole measuring method described in this section obtains an axis as a reference of the object to be measured by centering the object to be measured in which the master pin is fitted in the parallel hole, and in this state, Measure the deviation of the measured surface of the master pin, which is guaranteed to be perpendicular to the pin axis, in a direction parallel to the axis as the reference of the object to be measured. By deriving the parallelism of the parallel hole with respect to the axis as the reference of the object, the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is used as the reference of the object to be measured on the measurement surface of the master pin. Measurement can be performed based on the deviation in a direction parallel to the axis, and the parallelism of the parallel holes can be measured efficiently and with high accuracy.
Conventionally, the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is measured by a three-dimensional measuring machine. First, the axis as the reference of the object to be measured is obtained, and then one of the parallel holes is measured. Since the center of the hole and the center of the other hole were obtained and the straight line connecting the centers of the two holes was obtained as the axis of the parallel hole, it took a long time to measure the parallelism of the parallel holes. Therefore, in the aspect of this section, the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is set in the direction parallel to the axis of the measurement surface of the master pin as the reference of the object to be measured. It becomes possible to measure efficiently based on the deviation, and the measurement time of the parallelism of the parallel holes can be greatly shortened.
In addition, conventionally, the center of one hole and the center of the other hole in a parallel hole have been measured individually to determine the axis of the parallel hole. When there is an error in the inclination of the axis of the parallel hole, the axis of the parallel hole could not be obtained accurately. However, in the mode of this section, the inclination of the parallel hole with respect to the axis as the reference of the object to be measured is parallel. The inclination of the pin axis of the master pin fitted in the hole, that is, the deviation of the measured surface of the master pin in a direction parallel to the axis as the reference of the object to be measured appears. In the aspect of this section, the deviation of the measured surface of the master pin in the direction parallel to the axis as the reference of the measured object, in other words, as the measured object reference of the measured surface. By measuring the perpendicularity with respect to the axial center, the parallelism of the parallel hole with respect to the axial center as a reference of the object to be measured can be obtained with high accuracy.
The aspect of this section is applied to, for example, the measurement of the parallelism of the set pin support hole with respect to the axis as a reference in the planetary carrier incorporated in the planetary gear. In this case, the deviation of the measured surface of the master pin fitted in the pair of set pin support holes (parallel holes) of the planetary carrier in the direction parallel to the axis as the reference of the planetary carrier is measured. By doing so, the parallelism of the set pin support hole with respect to the axis as a reference of the planetary carrier can be measured efficiently and with high accuracy. In this case, by using the master pin, it is possible to perform measurement in a state approximated to the usage state of the product (planetary gear), and the reliability of the measurement result is improved.

(2)被測定物の基準としての軸心に平行に設けられた測定子を、心出しされた被測定物の平行穴に嵌合されたマスターピンの被測定面に当接させ、この状態で測定子を移動させて該測定子で被測定面を倣った時の、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測し、該計測結果に基き、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される(1)に記載の平行穴測定方法。
本項に記載の態様では、測定子を被測定面上で移動させて測定子で被測定面を倣った時の、該測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測することにより、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される。
(2) A measuring element provided parallel to the axis as the reference of the object to be measured is brought into contact with the surface to be measured of the master pin fitted in the parallel hole of the object to be measured, and this state Measure the displacement of the probe in the direction parallel to the axis as the reference of the object to be measured when the probe is moved and the surface to be measured is copied with the probe. The parallel hole measuring method according to (1), wherein the deviation of the surface to be measured in a direction parallel to the axis as the reference of the object to be measured is measured.
In the aspect described in this section, when the measuring element is moved on the surface to be measured and the measuring surface is imitated with the measuring element, the measuring element is parallel to the axis as the reference of the object to be measured. By measuring the displacement in the direction, the deviation of the surface to be measured in the direction parallel to the axis as the reference of the object to be measured is measured.

(3)測定子を心出しされた被測定物の平行穴に嵌合されたマスターピンの被測定面に当接させ、この状態で測定子を被測定物の基準としての軸心に平行な軸線の回りに少なくとも1回転させて該測定子で被測定面を倣った時の、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測し、該計測結果に基き、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される(1)又は(2)に記載の平行穴測定方法。
本項に記載の態様では、測定子を被測定物の基準としての軸心に平行な軸線(回転軸)の回りに少なくとも1回転させて該測定子で被測定面を倣った時の、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測することにより、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される。本項の態様では、測定子の回転軸をマスターピンの設計上の軸心位置(平行穴の軸心位置)に設定し、該回転軸の回りに測定子を円軌道で少なくとも1回転させて、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測する。
(3) The measuring element is brought into contact with the measured surface of the master pin fitted in the parallel hole of the measured object, and in this state, the measuring element is parallel to the axis as the reference of the measured object. Measure the displacement of the probe in a direction parallel to the axis as the reference of the object to be measured when the surface to be measured is copied by the probe with at least one rotation around the axis. The parallel hole measuring method according to (1) or (2), wherein the deviation of the surface to be measured in a direction parallel to the axis as a reference of the object to be measured is measured based on the result.
In the aspect described in this section, the measurement is performed when the measuring element is rotated at least once around an axis (rotation axis) parallel to the axis as the reference of the object to be measured and the surface to be measured is copied by the measuring element. By measuring the displacement of the child in the direction parallel to the axis as the reference of the object to be measured, the deviation of the surface to be measured in the direction parallel to the axis as the reference of the object to be measured Is measured. In this aspect, the rotation axis of the probe is set to the design center position of the master pin (axis position of the parallel hole), and the probe is rotated at least once in a circular orbit around the rotation axis. The displacement of the probe in the direction parallel to the axis as the reference of the object to be measured is measured.

(4)基準に対して偏心した平行穴を有する被測定物の、基準に対する平行穴の平行度を測定する装置であって、平行穴に所定の嵌め合い公差で嵌合されるマスターピンと、マスターピンに形成されてピン軸心に対する直角度が保証された被測定面と、被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心が求められる心出しユニットと、被測定物が心出しユニットによって心出しされた状態で、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚を測定する測定する測定ユニットと、を備え、測定ユニットの測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度が導出されることを特徴とする平行穴測定装置。
本項に記載の平行穴測定装置は、平行穴にマスターピンが嵌合された被測定物を心出しユニットによってセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、該マスターピンのピン軸心に対する直角度が保証された被測定面の、被測定物の軸心に対して平行な方向への偏倚(位置の偏差)を測定ユニットによって測定し、該測定結果に基き被測定物の基準としての軸心に対する平行穴の平行度を求めることにより、平行穴の平行度を効率的に且つ高い精度で測定することができる。
従来、被測定物の基準としての軸心に対する平行穴の平行度は3次元測定機によって測定されており、まず、被測定物の基準としての軸心を求め、次に、平行穴における一方の穴の中心と他方の穴の中心とを求め、双方の穴の中心を結ぶ直線を平行穴の軸心として求めていたので、平行穴の平行度の測定に多大な時間を要していた。そこで、本項の態様では、心出しユニットによって被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、測定ユニットによって、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚、言い換えると、被測定面の、被測定物の基準としての軸心に対する直角度を測定し、該測定結果に基き、被測定物の基準としての軸心に対する平行穴の平行度を求めることで、平行穴の平行度の測定時間を大幅に短縮することができる。
また、本項の態様では、マスターピンの一端にフランジ部を設けることにより、マスターピンが平行穴に対してピン部軸心方向へ位置決めされる。そして、フランジ部の端面に円形の被測定面が形成される。さらに、本項の態様では、マスターピンのピン部と平行穴との間にガタがある場合(嵌め合い誤差が大きい場合)、マスターピンが平行穴に対してガタの分だけ動いて正確な測定ができないため、ピン部の外形寸法(直径)が相違する複数種類のマスターピンを予め準備しておくことを推奨する。
(4) A device for measuring the parallelism of a parallel hole with respect to a reference of an object to be measured having a parallel hole eccentric with respect to a reference, the master pin being fitted to the parallel hole with a predetermined fitting tolerance, and a master A surface to be measured which is formed on a pin and guarantees a perpendicularity with respect to the pin axis; a centering unit which is required to have a center as a reference of the object to be measured by centering the object to be measured; A measuring unit that measures the deviation of the surface to be measured in a direction parallel to the axis as a reference of the object to be measured, with the object to be measured centered by the centering unit; A parallel hole measuring device, wherein the parallelism of a parallel hole with respect to an axis as a reference of an object to be measured is derived based on a measurement result of a measuring unit.
The parallel hole measuring device described in this section obtains an axis as a reference of the object to be measured by centering the object to be measured with the master pin fitted in the parallel hole by centering the centering unit, In this state, the deviation (positional deviation) in the direction parallel to the axis of the object to be measured of the surface to be measured in which the squareness of the master pin with respect to the pin axis is guaranteed is measured by the measurement unit. By calculating the parallelism of the parallel hole with respect to the axis as a reference of the object to be measured based on the measurement result, the parallelism of the parallel hole can be measured efficiently and with high accuracy.
Conventionally, the parallelism of the parallel hole with respect to the axis as the reference of the object to be measured is measured by a three-dimensional measuring machine. First, the axis as the reference of the object to be measured is obtained, and then one of the parallel holes is measured. Since the center of the hole and the center of the other hole were obtained and the straight line connecting the centers of the two holes was obtained as the axis of the parallel hole, it took a long time to measure the parallelism of the parallel holes. Therefore, in the aspect of this section, the center of the object to be measured is centered with the centering unit supported by the centering unit to obtain the axis as the reference of the object to be measured, The deviation in the direction parallel to the axis as the reference, in other words, the perpendicularity of the surface to be measured with respect to the axis as the reference of the object to be measured is measured, and the reference of the object to be measured is based on the measurement result. By calculating the parallelism of the parallel hole with respect to the axial center, the measurement time of the parallelism of the parallel hole can be greatly shortened.
Moreover, in the aspect of this term, by providing a flange portion at one end of the master pin, the master pin is positioned in the axial direction of the pin portion with respect to the parallel hole. A circular measured surface is formed on the end face of the flange portion. Furthermore, in this mode, when there is play between the pin part of the master pin and the parallel hole (when the fitting error is large), the master pin moves relative to the parallel hole by the amount of play and accurate measurement is performed. Therefore, it is recommended that a plurality of types of master pins with different external dimensions (diameters) of the pin portion be prepared in advance.

(5)測定ユニットは、所定の軌道で移動可能な測定子を備える計測ヘッドと、測定子を所定の軌道で移動させて測定子によって被測定面を倣った時の、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測する計測部と、を具備する(4)に記載の平行穴測定装置。
本項に記載の態様では、測定子を所定の軌道で移動させて被測定面を測定子で倣い、該測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測部によって計測し、該計測部の計測結果に基き、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される。
(5) The measuring unit includes a measuring head having a measuring element that can move along a predetermined trajectory, and the measuring object of the measuring element when the measuring element is moved along the predetermined trajectory and the surface to be measured is copied by the measuring element. The parallel hole measuring device according to (4), further comprising: a measuring unit that measures a displacement in a direction parallel to the axis as a reference of the object.
In the mode described in this section, the measuring element is moved along a predetermined trajectory, the surface to be measured is copied by the measuring element, and the measuring element is displaced in a direction parallel to the axis as the reference of the object to be measured. Is measured by the measuring unit, and based on the measurement result of the measuring unit, the deviation of the surface to be measured in the direction parallel to the axis as the reference of the object to be measured is measured.

(6)計測ヘッドは、測定子が、心出しユニットの軸心に対する平行度が保証された軸線の回りの回転半径Rの円軌道で移動される(4)又は(5)の平行穴測定装置。
本項に記載の態様では、測定子を心出しユニットの軸心に対する平行度が保証された軸線(回転軸)の回りの回転半径Rの円軌道で移動させて当該測定子で被測定面を倣い、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測部によって計測することにより、被測定面の、被測定物の基準としての軸心に対して平行な方向への偏倚が測定される。本項の態様では、測定子の回転軸をマスターピンの設計上の軸心位置(平行穴の軸心位置)に設定し、該回転軸の回りに測定子を円軌道で少なくとも1回転させて、測定子の、被測定物の基準としての軸心に対して平行な方向への変位を計測する。
(6) The measuring head is configured so that the measuring element is moved along a circular orbit having a rotation radius R around the axis line in which parallelism with the axis of the centering unit is guaranteed. .
In the embodiment described in this section, the measuring element is moved along a circular orbit having a rotation radius R around an axis line (rotating axis) in which parallelism with the axis of the centering unit is guaranteed, and the measurement surface is moved by the measuring element. By measuring the displacement of the tracing stylus in the direction parallel to the axis as the reference of the object to be measured, by the measuring unit, the axis of the measurement surface with respect to the axis as the reference of the object to be measured The deviation in the parallel direction is measured. In this aspect, the rotation axis of the probe is set to the design center position of the master pin (axis position of the parallel hole), and the probe is rotated at least once in a circular orbit around the rotation axis. The displacement of the probe in the direction parallel to the axis as the reference of the object to be measured is measured.

(7)被測定物がプラネタリーキャリアであり、平行穴がプラネタリーキャリアにおけるピニオンギヤのセットピンの両端部を支持する一対のセットピン支持穴である(4)〜(6)のいずれかに記載の平行穴測定装置。
本項に記載の態様では、プラネタリーキャリアの基準としての軸心に対する一対のセットピン支持穴の平行度を効率的に且つ高い精度で求めることができる。この場合、製品(プラネタリーギヤ)の使用状況により近似した状態での測定が可能になり、測定結果の信頼性が高められる。
本項の態様では、心出しユニットの先端部が円錐或いは截頭円錐形状に形成されて同軸度が保証された一対のセンタ支持治具によってプラネタリーキャリアのセンタ穴の両端をセンタ支持することにより、プラネタリーキャリアを心出しする。本項の態様では、心出しユニットを、圧縮コイルばねのばね力を利用してプラネタリーキャリアを支持するように構成してもよいし、或いはセンタ穴の内径寸法によっては、油圧チャックや機械式チャック等によってプラネタリーキャリアを支持するように構成してもよい。
本項の態様では、セットピン支持穴(平行穴)にマスターピンを嵌合させた時に、セットピン支持穴とマスターピンのピン部分との隙間が0〜0.002 mm となるように、マスターピンを製作する。これにより、プラネタリーキャリアのセットピン支持穴にピニオンギヤのセットピンを嵌合させた状態により近似した状態での測定が可能になる。
(7) The object to be measured is a planetary carrier, and the parallel holes are a pair of set pin support holes for supporting both ends of the set pin of the pinion gear in the planetary carrier. Parallel hole measuring device.
In the aspect described in this section, the parallelism of the pair of set pin support holes with respect to the shaft center as the reference of the planetary carrier can be obtained efficiently and with high accuracy. In this case, it is possible to perform measurement in a state approximated by the usage state of the product (planetary gear), and the reliability of the measurement result is improved.
In the aspect of this section, the tip of the centering unit is formed in a conical or frustoconical shape, and both ends of the center hole of the planetary carrier are center-supported by a pair of center support jigs whose coaxiality is guaranteed. , Centering on a planetary career. In the aspect of this section, the centering unit may be configured to support the planetary carrier using the spring force of the compression coil spring, or depending on the inner diameter of the center hole, a hydraulic chuck or mechanical type The planetary carrier may be supported by a chuck or the like.
In this aspect, when the master pin is fitted into the set pin support hole (parallel hole), the master pin is adjusted so that the clearance between the set pin support hole and the pin portion of the master pin is 0 to 0.002 mm. To manufacture. As a result, it is possible to perform measurement in a state closer to the state in which the set pin of the pinion gear is fitted in the set pin support hole of the planetary carrier.

被測定物の基準としての軸心に対する平行穴の平行度を効率的に且つ高い精度で測定することが可能な平行穴測定方法及び平行穴測定装置を提供することができる。   It is possible to provide a parallel hole measuring method and a parallel hole measuring apparatus capable of measuring the parallelism of a parallel hole with respect to an axis serving as a reference of an object to be measured efficiently and with high accuracy.

本発明の一実施形態を図1〜図4に基いて説明する。なお、本実施形態では、プラネタリーキャリア6(被測定物)の基準としての軸心L0に対する一対のセットピン支持穴7,8(平行穴)の平行度を測定する場合を説明する。平行穴測定装置1は、ピン軸心L1に対する直角度が保証された被測定面5が設けられて一対のセットピン支持穴7,8に嵌合されるマスターピン2(図3参照)と、プラネタリーキャリア6をセンタ支持して心出しすることで当該プラネタリーキャリア6の基準としての軸心L0が求められる心出しユニット3と、該心出しユニット3によってプラネタリーキャリア6が心出しされた状態で、一対のセットピン支持穴7,8に嵌合されたマスターピン2の被測定面5の、プラネタリーキャリア6の軸心LOに対して平行な方向(以下、プラネタリーキャリア軸心方向と称する、図1及び図3における上下方向)への偏倚(位置の偏差)を測定する測定ユニット4と、によって構成される。   An embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a case where the parallelism of the pair of set pin support holes 7 and 8 (parallel holes) with respect to the axis L0 as a reference of the planetary carrier 6 (measurement object) is described. The parallel hole measuring device 1 includes a master pin 2 (see FIG. 3) that is provided with a surface to be measured 5 in which a perpendicularity to the pin axis L1 is guaranteed and is fitted into a pair of set pin support holes 7 and 8. The centering unit 3 that requires the axis L0 as a reference for the planetary carrier 6 by centering the planetary carrier 6 with the center being supported, and the planetary carrier 6 is centered by the centering unit 3 In this state, a direction parallel to the axis LO of the planetary carrier 6 of the measured surface 5 of the master pin 2 fitted in the pair of set pin support holes 7 and 8 (hereinafter referred to as the planetary carrier axial direction) And a measurement unit 4 for measuring a deviation (positional deviation) in the vertical direction in FIGS. 1 and 3.

そして、平行穴測定装置1は、測定ユニット4によって測定された被測定面5のプラネタリーキャリア軸心方向への偏倚に基き、プラネタリーキャリア6の軸心LOに対するセットピン支持穴7,8の平行度が導出される構造になっている。図3に示されるように、マスターピン2は、セットピン支持穴7,8(平行穴)に嵌合されるピン部9と、該ピン部9の一端に形成されたフランジ部10とを有する。また、ピン部9は、セットピン支持穴7,8に嵌合させた時に、セットピン支持穴7,8との隙間が0〜0.002 mm となるように、外径寸法が設定される。そして、マスターピン2は、フランジ部10側の端面に、ピン軸心L1に対する直角度が保証された被測定面5が設けられる。なお、図2に示されるように、マスターピン2のフランジ部10の外周面にはローレット加工が施されている。図1に示されるように、心出しユニット3は、平行穴測定装置1の基台11上に設けられ、コ字形に形成された心出しフレーム13には、プラネタリーキャリア6の軸部12両端をセンタ支持する下部ヘッド14と上部ヘッド15とが配設される。   The parallel hole measuring device 1 then sets the set pin support holes 7 and 8 with respect to the axis LO of the planetary carrier 6 based on the deviation of the measured surface 5 measured by the measurement unit 4 in the direction of the planetary carrier axis. The parallelism is derived. As shown in FIG. 3, the master pin 2 has a pin portion 9 fitted into the set pin support holes 7 and 8 (parallel holes), and a flange portion 10 formed at one end of the pin portion 9. . Further, the outer diameter of the pin portion 9 is set so that the gap between the pin portion 9 and the set pin support holes 7 and 8 is 0 to 0.002 mm when fitted into the set pin support holes 7 and 8. The master pin 2 is provided with a surface to be measured 5 on which the perpendicularity with respect to the pin axis L1 is guaranteed on the end surface on the flange portion 10 side. As shown in FIG. 2, the outer peripheral surface of the flange portion 10 of the master pin 2 is knurled. As shown in FIG. 1, the centering unit 3 is provided on the base 11 of the parallel hole measuring device 1, and the centering frame 13 formed in a U-shape has both ends of the shaft portion 12 of the planetary carrier 6. A lower head 14 and an upper head 15 that support the center are disposed.

下部ヘッド14は、鉛直に立設された支持ピン18を備え、該支持ピン18の円錐形に形成された先端部が、プラネタリーキャリア6の軸部12の一端面12aに形成されたセンタ穴16の開口部に係合される。上部ヘッド15は、下部ヘッド14の支持ピン18に対する同軸度が保証された支持ピン19を備え、該支持ピン19は、截頭円錐形に形成された先端部が、プラネタリーキャリア6の軸部12の他端面12bに形成されたセンタ穴17の開口部に係合される。また、上部ヘッド15は、支持ピン19が圧縮コイルばね20のばね力によって下方(図1における下方向)へ付勢される。そして、心出しユニット3では、上部ヘッド15のレバー21を操作して圧縮コイルばね20を押し縮めながら上部ヘッド15の支持ピン19を上方(図1における上方向)へ移動させ、レバー21を保持した状態で、プラネタリーキャリア6のセンタ穴16を支持ピン18に係合させる。   The lower head 14 includes a support pin 18 erected vertically, and a tip portion formed in a conical shape of the support pin 18 has a center hole formed in one end surface 12 a of the shaft portion 12 of the planetary carrier 6. It is engaged with 16 openings. The upper head 15 includes a support pin 19 in which the coaxiality of the lower head 14 with respect to the support pin 18 is guaranteed, and the support pin 19 has a tip portion formed in a truncated cone shape and a shaft portion of the planetary carrier 6. 12 is engaged with the opening of the center hole 17 formed in the other end surface 12b. Further, the upper head 15 is urged downward (downward in FIG. 1) by the support pin 19 by the spring force of the compression coil spring 20. Then, in the centering unit 3, the lever 21 of the upper head 15 is operated to move the support pin 19 of the upper head 15 upward (upward in FIG. 1) while pushing and compressing the compression coil spring 20 to hold the lever 21. In this state, the center hole 16 of the planetary carrier 6 is engaged with the support pin 18.

さらに、プラネタリーキャリア6のセンタ穴16を支持ピン18に係合させた状態で、上部ヘッド15のレバー21を戻して支持ピン19を下方へ移動させることにより、該支持ピン19をプラネタリーキャリア6のセンタ穴17に係合させる。これにより、心出しユニット3は、プラネタリーキャリア6をセンタ支持、即ち、プラネタリーキャリア6の軸心L0を支持ピン18,19の軸心に一致させた状態で、プラネタリーキャリア6を一対の支持ピン18,19間に保持する構造になっている。図1及び図2に示されるように、測定ユニット4は、支持ピン18,19の軸心、延いては支持ピン18,19によってセンタ支持されたプラネタリーキャリア6の軸心L0に対する平行度が保証された測定子22を有する計測ヘッド23と、該計測ヘッド23を位置決め可能に支持する支持フレーム24と、を備える。   Further, with the center hole 16 of the planetary carrier 6 engaged with the support pin 18, the lever 21 of the upper head 15 is returned and the support pin 19 is moved downward, so that the support pin 19 is moved to the planetary carrier. 6 is engaged with the center hole 17. As a result, the centering unit 3 supports the planetary carrier 6 in the center, that is, in a state where the axis L0 of the planetary carrier 6 is aligned with the axis of the support pins 18 and 19, The structure is held between the support pins 18 and 19. As shown in FIGS. 1 and 2, the measurement unit 4 has a parallelism with respect to the axis of the support pins 18, 19, and thus to the axis L 0 of the planetary carrier 6 centered by the support pins 18, 19. A measurement head 23 having a guaranteed probe 22 and a support frame 24 that supports the measurement head 23 so as to be positioned are provided.

計測ヘッド23は、支持フレーム24のスライドアーム25(図1における左右方向へ水平移動可能)に保持されてプラネタリーキャリア6の軸心L0に対する平行度が保証されたブッシング26を備える。ブッシング26には、上端にフランジ部27が形成された中空軸28が、軸心回りに回転可能に嵌合される。中空軸28には、中空軸28のブッシング26から突出した部分にリング部材29が嵌合され、該リング部材29は、中空軸28の下端面にボルト30によって固定される。また、中空軸28の中空部には、下端部がリング部材29を貫通するスピンドル31が摺動可能に嵌合される。該スピンドル31の下端部には、測定子保持部材32が嵌合され、該測定子保持部材32は、スピンドル31の下端面にボルト33によって固定される。測定子保持部材32は、リング部材29に対し、軸心(同一軸心)回りの相対移動が規制されると共に軸心方向(図1における上下方向)への所定ストロークの相対移動が許容される。   The measurement head 23 includes a bushing 26 that is held by a slide arm 25 (movable horizontally in the left-right direction in FIG. 1) of the support frame 24 and in which parallelism with respect to the axis L0 of the planetary carrier 6 is guaranteed. A hollow shaft 28 having a flange portion 27 formed at the upper end is fitted to the bushing 26 so as to be rotatable about the axis. A ring member 29 is fitted to the hollow shaft 28 at a portion protruding from the bushing 26 of the hollow shaft 28, and the ring member 29 is fixed to the lower end surface of the hollow shaft 28 with a bolt 30. A spindle 31 having a lower end penetrating the ring member 29 is slidably fitted into the hollow portion of the hollow shaft 28. A measuring element holding member 32 is fitted to the lower end portion of the spindle 31, and the measuring element holding member 32 is fixed to the lower end surface of the spindle 31 by a bolt 33. The probe holding member 32 is restricted from relative movement around the axis (same axis) with respect to the ring member 29 and is allowed to move in a predetermined stroke in the axial direction (vertical direction in FIG. 1). .

計測ヘッド23は、センサブラケット36を介してスライドアーム25に設けられて中空軸28に対するスピンドル31の軸心方向への相対移動距離を計測する変位センサ35を備える。また、測定ユニット4は、変位センサ35の検出信号に基き、測定子22の、支持ピン18,19の軸心方向(プラネタリーキャリア軸心方向)への変位を計測する信号処理部(計測部)を備える。そして、平行穴測定装置1は、プラネタリーキャリア6が支持ピン18,19によってセンタ支持され、この状態で、計測ヘッド23の軸心がプラネタリーキャリア6のセットピン支持穴7,8に嵌合されたマスターピン2の被測定面5に測定子22が当接されると共に計測ヘッド23の軸心がマスターピン2の軸心(平行穴の軸心)に一致される。この状態で、中空軸28が軸心回りに1回転されることにより、測定子22がプラネタリーキャリア6の基準としての軸心L0に対する平行度が保証された計測ヘッド23の軸心回りに回転半径R(スピンドル31と測定子22との軸心間距離)の円軌道で回転される。   The measurement head 23 includes a displacement sensor 35 that is provided on the slide arm 25 via a sensor bracket 36 and measures a relative movement distance of the hollow shaft 28 in the axial direction of the spindle 31. Further, the measurement unit 4 is a signal processing unit (measurement unit) that measures the displacement of the probe 22 in the axial direction (planetary carrier axial direction) of the support pins 18 and 19 based on the detection signal of the displacement sensor 35. ). In the parallel hole measuring device 1, the planetary carrier 6 is center-supported by the support pins 18 and 19, and in this state, the axis of the measuring head 23 is fitted into the set pin support holes 7 and 8 of the planetary carrier 6. The measuring element 22 is brought into contact with the measured surface 5 of the master pin 2 and the axis of the measuring head 23 is aligned with the axis of the master pin 2 (the axis of the parallel hole). In this state, when the hollow shaft 28 is rotated once around the axis, the probe 22 rotates around the axis of the measuring head 23 in which the parallelism with the axis L0 as the reference of the planetary carrier 6 is guaranteed. It is rotated on a circular orbit having a radius R (distance between the axes of the spindle 31 and the probe 22).

そして、測定ユニット4では、測定子22によってマスターピン2の被測定面5を回転半径Rの円軌道で1回転だけ倣った時の、測定子22のプラネタリーキャリア軸心方向への偏倚(位置の偏差)が測定され、該測定結果に基き、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8(平行穴)の平行度が導出される構造になっている。なお、中空軸28のフランジ部27の外周面にはローレット加工が施されている。また、スピンドル31の上端部外周面には、中空軸28の上端面に当接されるストッパ34が装着される。さらに、リング部材29と測定子支持部材32との間には圧縮コイルばね37が収容されており、該圧縮コイルばね37のばね力によってリング部材29に対して測定子支持部材32が計測ヘッド23の軸心方向下側へ付勢、延いては測定子22が被測定面5に向けて付勢される。   In the measurement unit 4, the displacement (position) of the probe 22 in the direction of the axis of the planetary carrier when the measured surface 22 of the master pin 2 is copied by one rotation along the circular orbit of the rotation radius R by the probe 22. And the parallelism of the set pin support holes 7 and 8 (parallel holes) with respect to the axis L0 as the reference of the planetary carrier 6 is derived based on the measurement result. The outer peripheral surface of the flange portion 27 of the hollow shaft 28 is knurled. A stopper 34 that is in contact with the upper end surface of the hollow shaft 28 is mounted on the outer peripheral surface of the upper end portion of the spindle 31. Further, a compression coil spring 37 is accommodated between the ring member 29 and the probe support member 32, and the probe support member 32 is moved against the ring member 29 by the spring force of the compression coil spring 37. The stylus 22 is urged toward the measurement surface 5.

次に、上記平行穴測定装置1を用いて、プラネタリーキャリア6(被測定物)の基準としての軸心L0に対するセットピン支持穴7,8(平行穴)の平行度を測定する方法を説明する。まず、プラネタリーキャリア6のセットピン支持穴7,8にマスターピン2をセットする。次に、心出しユニット3の一対の支持ピン18,19によってプラネタリーキャリア6をセンタ支持する。これにより、プラネタリーキャリア6は、軸心L0を支持ピン18,19の軸心に一致させた状態、即ち、平行穴測定装置1において心出しされた状態で心出しユニット3に保持される。次に、スライドアーム25を水平に移動させて計測ヘッド23を計測位置に位置決めさせる。なお、計測位置では、計測ヘッド23の軸心がマスターピン2の軸心(平行穴の軸心)に一致し、測定子22はマスターピン2の被測定面5に当接される。   Next, a method for measuring the parallelism of the set pin support holes 7 and 8 (parallel holes) with respect to the axis L0 as a reference of the planetary carrier 6 (measurement object) using the parallel hole measuring device 1 will be described. To do. First, the master pin 2 is set in the set pin support holes 7 and 8 of the planetary carrier 6. Next, the planetary carrier 6 is center-supported by the pair of support pins 18 and 19 of the centering unit 3. Thereby, the planetary carrier 6 is held by the centering unit 3 in a state in which the axis L0 is aligned with the axis of the support pins 18, 19, that is, in a state centered in the parallel hole measuring device 1. Next, the slide arm 25 is moved horizontally to position the measurement head 23 at the measurement position. At the measurement position, the axis of the measurement head 23 coincides with the axis of the master pin 2 (the axis of the parallel hole), and the measuring element 22 is brought into contact with the surface to be measured 5 of the master pin 2.

この状態で、中空軸28のフランジ部27を手動操作して中空軸28を計測ヘッド23の軸心回りに回転させることにより、測定子22を、プラネタリーキャリア6の基準としての軸心L0に対する平行度が保証された計測ヘッド23の軸心回りに回転半径Rの円軌道で1回転させる。これにより、測定子22は、マスターピン2の被測定面5を所定の円軌道で倣う。そして、測定子22で被測定面5を倣った時の、測定子22のプラネタリーキャリア軸心方向への偏倚(位置の偏差、図4に示されるY)が測定され、該測定結果Yが、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8(平行穴)の平行度として導出される。   In this state, by manually operating the flange portion 27 of the hollow shaft 28 and rotating the hollow shaft 28 around the axis of the measuring head 23, the probe 22 is moved relative to the axis L 0 as a reference of the planetary carrier 6. One rotation is performed on a circular orbit having a rotation radius R around the axis of the measuring head 23 for which parallelism is guaranteed. As a result, the probe 22 follows the surface to be measured 5 of the master pin 2 in a predetermined circular orbit. Then, the deviation (positional deviation, Y shown in FIG. 4) of the measuring element 22 in the direction of the axis of the planetary carrier when the measuring element 22 follows the surface to be measured 5 is measured. The parallelism of the set pin support holes 7 and 8 (parallel holes) with respect to the axis L0 as the reference of the planetary carrier 6 is derived.

この実施形態では以下の効果を奏する。
本実施形態によれば、プラネタリーキャリア6(被測定物)のセットピン支持穴7,8(平行穴)にマスターピン2を嵌合させ、該プラネタリーキャリア6を一対の支持ピン18,19によってセンタ支持することで、プラネタリーキャリア6の基準としての軸心LOが求められ、この状態で、マスターピン2のピン軸心L1に対する直角度が保証された被測定面5の、プラネタリーキャリア軸心方向への偏倚を測定し、該測定結果に基き、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8の平行度が導出される。
したがって、従来、セットピン支持穴7,8の平行度は、3次元測定機によって測定されていたため、その測定に多大な時間を要していたが、本実施形態では、当該セットピン支持穴7,8に嵌合したマスターピン2の被測定面5の、プラネタリーキャリア軸心方向への偏倚に基き測定されるので、セットピン支持穴7,8の平行度を効率的に測定することが可能になり、平行穴の平行度の測定時間を大幅に短縮することができる。
This embodiment has the following effects.
According to this embodiment, the master pin 2 is fitted into the set pin support holes 7 and 8 (parallel holes) of the planetary carrier 6 (measurement object), and the planetary carrier 6 is connected to the pair of support pins 18 and 19. By supporting the center, the axis LO as a reference for the planetary carrier 6 is obtained. In this state, the planetary carrier of the surface to be measured 5 in which the perpendicularity of the master pin 2 to the pin axis L1 is guaranteed. The deviation in the axial direction is measured, and the parallelism of the set pin support holes 7 and 8 with respect to the axial center L0 as the reference of the planetary carrier 6 is derived based on the measurement result.
Therefore, conventionally, since the parallelism of the set pin support holes 7 and 8 has been measured by a three-dimensional measuring machine, it takes a lot of time for the measurement, but in the present embodiment, the set pin support holes 7 and 8 are measured. , 8 is measured based on the deviation of the measured surface 5 of the master pin 2 fitted to the planetary carrier axial direction, so that the parallelism of the set pin support holes 7, 8 can be measured efficiently. It becomes possible, and the measurement time of the parallelism of a parallel hole can be shortened significantly.

また、従来、セットピン支持穴7,8(平行穴)の軸心は、セットピン支持穴7の中心とセットピン支持穴8の中心とが個別に測定されており、それぞれの穴7,8の形状やプラネタリーキャリア6の軸心LOに対する傾きに誤差がある場合、セットピン支持穴7,8の軸心を正確に求めることができなかったが、本実施形態では、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8の傾きが、該セットピン支持穴7,8に嵌合されたマスターピン2のピン軸心L1の傾き、即ち、被測定面5の、プラネタリーキャリア軸心方向への偏倚となって現れるので、当該被測定面5のプラネタリーキャリア軸心方向への偏倚、言い換えると、被測定面5の、プラネタリーキャリア6の基準としての軸心L0に対する直角度を測定することにより、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8の平行度を効率的に求めることができる。   Conventionally, the axis of the set pin support holes 7 and 8 (parallel holes) has been measured separately for the center of the set pin support hole 7 and the center of the set pin support hole 8. If there is an error in the shape or inclination of the planetary carrier 6 with respect to the axial center LO, the axial centers of the set pin support holes 7 and 8 could not be obtained accurately. The inclination of the set pin support holes 7 and 8 with respect to the axis L0 as a reference is the inclination of the pin axis L1 of the master pin 2 fitted in the set pin support holes 7 and 8, that is, the surface 5 to be measured. Since it appears as a deviation in the direction of the planetary carrier axis, the deviation of the measured surface 5 in the direction of the planetary carrier axis, in other words, the axis of the measured surface 5 as a reference for the planetary carrier 6 Measuring perpendicularity to L0 Thus, the parallelism of the set pin support holes 7 and 8 with respect to the axis L0 as the reference of the planetary carrier 6 can be obtained efficiently.

さらに、本実施形態では、プラネタリーキャリア6のセットピン支持穴7,8にマスターピン2を嵌合させ、該マスターピン2に形成された被測定面5を測定子22によって測定することにより、プラネタリーキャリア6の基準としての軸心L0に対するセットピン支持穴7,8の平行度を求めることができるので、製品(プラネタリーギヤ)の使用状況により近似した状態での平行度測定が可能になり、測定結果の信頼性が高められる。   Furthermore, in this embodiment, the master pin 2 is fitted into the set pin support holes 7 and 8 of the planetary carrier 6, and the surface to be measured 5 formed on the master pin 2 is measured by the measuring element 22. Since the parallelism of the set pin support holes 7 and 8 with respect to the axis L0 as the reference of the planetary carrier 6 can be obtained, it is possible to measure the parallelism in a state approximated by the usage condition of the product (planetary gear) Thus, the reliability of the measurement result is improved.

なお、実施形態は上記に限定されるものではなく、例えば次のように構成してもよい。
セットピン支持穴7,8(平行穴)の長さL、測定子22の円軌道の半径R(図4参照)が本実施形態と異なる場合、測定子22のプラネタリーキャリア軸心方向への偏倚Yを、換算式 Y・R/L によって換算することで、平行穴の平行度を同一の基準で測定及び比較することができる。
平行穴測定装置1は、プラネタリーキャリア6(被測定物)の基準としての軸心L0に対するセットピン支持穴7,8(平行穴)の平行度を測定する場合にのみ適用されるものではなく、基準に対して偏心した平行穴の基準に対する平行度を測定する場合に広く適用される。
In addition, embodiment is not limited above, For example, you may comprise as follows.
When the length L of the set pin support holes 7 and 8 (parallel holes) and the radius R (refer to FIG. 4) of the circular orbit of the measuring element 22 are different from those of the present embodiment, the measuring element 22 in the direction of the planetary carrier axis. By converting the bias Y by the conversion formula Y · R / L, the parallelism of the parallel holes can be measured and compared on the same basis.
The parallel hole measuring device 1 is not applied only when measuring the parallelism of the set pin support holes 7 and 8 (parallel holes) with respect to the axis L0 as a reference of the planetary carrier 6 (object to be measured). It is widely applied when measuring parallelism with respect to a reference of a parallel hole eccentric with respect to the reference.

本実施形態の平行穴測定装置の正面図である。It is a front view of the parallel hole measuring device of this embodiment. 測定ユニットの説明図で、計測ヘッドの一部を断面で示した図である。It is explanatory drawing of a measurement unit, and is the figure which showed a part of measurement head in the cross section. プラネタリーキャリアのセットピン支持穴にマスターピンが嵌合された状態を示す図である。It is a figure which shows the state by which the master pin was fitted by the set pin support hole of the planetary carrier. 本実施形態の説明図で、セットピン支持穴の軸心の傾きが、マスターピンの被測定面のプラネタリーキャリア軸心方向への偏倚に基き測定されることを説明する図である。It is explanatory drawing of this embodiment, and is a figure explaining that the inclination of the axial center of a set pin support hole is measured based on the deviation to the planetary carrier axial center direction of the to-be-measured surface of a master pin.

符号の説明Explanation of symbols

1 平行穴測定装置、2 マスターピン、3 心出しユニット、4 測定ユニット、5 被測定面、6 プラネタリーキャリア(被測定物)、7,8 セットピン支持穴(平行穴)、22 測定子、23 計測ヘッド 1 parallel hole measuring device, 2 master pin, 3 centering unit, 4 measuring unit, 5 surface to be measured, 6 planetary carrier (object to be measured), 7, 8 set pin support hole (parallel hole), 22 measuring element, 23 Measuring head

Claims (6)

基準に対して偏心した平行穴を有する被測定物の、前記基準に対する前記平行穴の平行度を測定する方法であって、
ピン軸心に対する直角度が保証された被測定面を有するマスターピンを前記被測定物の前記平行穴に所定の嵌め合い公差で嵌合させ、前記平行穴に前記マスターピンが嵌合された前記被測定物をセンタ支持して心出しすることで被測定物の基準としての軸心を求め、この状態で、前記被測定面の、前記被測定物の基準としての軸心に対して平行な方向への偏倚を測定し、該測定結果に基き、前記被測定物の基準としての軸心に対する前記平行穴の平行度が導出されることを特徴とする平行穴測定方法。
A method of measuring the parallelism of the parallel hole with respect to the reference of an object to be measured having a parallel hole eccentric with respect to the reference,
A master pin having a surface to be measured with a guaranteed perpendicularity to the pin axis is fitted into the parallel hole of the object to be measured with a predetermined fitting tolerance, and the master pin is fitted into the parallel hole. The center of the object to be measured is centered with the center of the object to be measured to obtain the axis as a reference of the object to be measured. In this state, the surface to be measured is parallel to the axis as the reference of the object to be measured. A parallel hole measuring method, wherein a deviation in a direction is measured, and a parallelism of the parallel hole with respect to an axis as a reference of the object to be measured is derived based on the measurement result.
前記被測定物の軸心に平行に設けられた測定子を、心出しされた前記被測定物の前記平行穴に嵌合された前記マスターピンの前記被測定面に当接させ、この状態で前記測定子を移動させて該測定子で前記被測定面を倣った時の、前記測定子の、前記被測定物の基準としての軸心に対して平行な方向への変位を計測し、該計測結果に基き、前記被測定面の、前記被測定物の基準としての軸心に対して平行な方向への偏倚が測定されることを特徴とする請求項1に記載の平行穴測定方法。 A measuring element provided parallel to the axis of the object to be measured is brought into contact with the surface to be measured of the master pin fitted in the parallel hole of the object to be measured centered, and in this state Measuring the displacement of the measuring element in a direction parallel to the axis as a reference of the object to be measured when the measuring element is moved and the measuring surface is copied by the measuring element; The parallel hole measuring method according to claim 1, wherein a deviation of the surface to be measured in a direction parallel to an axis as a reference of the object to be measured is measured based on a measurement result. 前記測定子を心出しされた前記被測定物の前記平行穴に嵌合された前記マスターピンの前記被測定面に当接させ、この状態で前記測定子を前記被測定物の基準としての軸心に平行な軸線の回りに少なくとも1回転させて該測定子で前記被測定面を倣った時の、前記測定子の、前記被測定物の基準としての軸心に対して平行な方向への変位を計測し、該計測結果に基き、前記被測定面の、前記被測定物の基準としての軸心に対して平行な方向への偏倚が測定されることを特徴とする請求項1又は2に記載の平行穴測定方法。 The measuring element is brought into contact with the surface to be measured of the master pin fitted in the parallel hole of the object to be measured centered, and in this state, the measuring element is a shaft as a reference of the object to be measured. When the measuring surface is rotated by at least one rotation around an axis parallel to the center and the measuring surface is copied, the measuring device is moved in a direction parallel to the axis as a reference of the measuring object. 3. A displacement is measured, and based on the measurement result, a deviation of the surface to be measured in a direction parallel to an axis as a reference of the object to be measured is measured. 2. The parallel hole measuring method according to 1. 基準に対して偏心した平行穴を有する被測定物の、前記基準に対する前記平行穴の平行度を測定する装置であって、
前記平行穴に所定の嵌め合い公差で嵌合されるマスターピンと、
前記マスターピンに形成されてピン軸心に対する直角度が保証された被測定面と、
前記被測定物をセンタ支持して心出しすることで前記被測定物の基準としての軸心が求められる心出しユニットと、
前記被測定物が前記心出しユニットによって心出しされた状態で、前記被測定面の、前記被測定物の基準としての軸心に対して平行な方向への偏倚を測定する測定する測定ユニットと、
を備え、前記測定ユニットの測定結果に基き、前記被測定物の基準としての軸心に対する前記平行穴の平行度が導出されることを特徴とする平行穴測定装置。
An apparatus for measuring the parallelism of the parallel hole with respect to the reference of an object to be measured having a parallel hole eccentric with respect to the reference,
A master pin fitted in the parallel hole with a predetermined fitting tolerance;
A surface to be measured which is formed on the master pin and has a guaranteed perpendicularity to the pin axis;
A centering unit in which an axis as a reference of the object to be measured is required by centering the object to be measured and centering;
A measuring unit for measuring a deviation of the surface to be measured in a direction parallel to an axis as a reference of the object to be measured in a state where the object to be measured is centered by the centering unit; ,
The parallel hole measuring device is characterized in that the parallelism of the parallel hole with respect to an axis as a reference of the object to be measured is derived based on a measurement result of the measurement unit.
前記測定ユニットは、
所定の軌道で移動可能な測定子を備える計測ヘッドと、
前記測定子を所定の軌道で移動させて前記測定子によって前記被測定面を倣った時の、前記測定子の、前記被測定物の基準としての軸心に対して平行な方向への変位を計測する計測部と、
を具備することを特徴とする請求項4に記載の平行穴測定装置。
The measurement unit is
A measuring head having a probe that can move in a predetermined trajectory;
The displacement of the measuring element in a direction parallel to the axis as the reference of the object to be measured when the measuring element is moved along a predetermined trajectory and the surface to be measured is copied by the measuring element. A measuring unit to measure,
The parallel hole measuring device according to claim 4, comprising:
前記計測ヘッドは、前記測定子が、前記心出しユニットの軸心に対する平行度が保証された軸線の回りの回転半径Rの円軌道で移動されることを特徴とする請求項4又は5に記載の平行穴測定装置。 6. The measuring head according to claim 4 or 5, wherein the measuring element is moved in a circular orbit having a radius of rotation R around an axis in which parallelism with respect to the axis of the centering unit is guaranteed. Parallel hole measuring device.
JP2006323569A 2006-11-30 2006-11-30 Method and apparatus for measuring parallel holes Pending JP2008139078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323569A JP2008139078A (en) 2006-11-30 2006-11-30 Method and apparatus for measuring parallel holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323569A JP2008139078A (en) 2006-11-30 2006-11-30 Method and apparatus for measuring parallel holes

Publications (1)

Publication Number Publication Date
JP2008139078A true JP2008139078A (en) 2008-06-19

Family

ID=39600715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323569A Pending JP2008139078A (en) 2006-11-30 2006-11-30 Method and apparatus for measuring parallel holes

Country Status (1)

Country Link
JP (1) JP2008139078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975542A (en) * 2010-10-18 2011-02-16 河南德信电瓷有限公司 Method for measuring coaxiality of flange screw holes on both ends of porcelain housing
CN102589383A (en) * 2012-03-13 2012-07-18 江国辉 Inner gear ring gear measurement clamp
CN102620620A (en) * 2012-03-30 2012-08-01 江苏凌飞锻造有限公司 Device capable of rapidly positioning positions of shaft center holes and working method thereof
CN106323111A (en) * 2015-06-15 2017-01-11 浙江舜仕汽车技术有限公司 Detection process for car refill opening small door assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975542A (en) * 2010-10-18 2011-02-16 河南德信电瓷有限公司 Method for measuring coaxiality of flange screw holes on both ends of porcelain housing
CN102589383A (en) * 2012-03-13 2012-07-18 江国辉 Inner gear ring gear measurement clamp
CN102620620A (en) * 2012-03-30 2012-08-01 江苏凌飞锻造有限公司 Device capable of rapidly positioning positions of shaft center holes and working method thereof
CN106323111A (en) * 2015-06-15 2017-01-11 浙江舜仕汽车技术有限公司 Detection process for car refill opening small door assembly
CN106323111B (en) * 2015-06-15 2018-08-17 浙江舜仕汽车技术有限公司 The characterization processes of vehicle oil filler wicket assembly

Similar Documents

Publication Publication Date Title
JP5628873B2 (en) Parallel link robot
JPH05248801A (en) Indexing mechanism
JP7277693B2 (en) Roundness measuring device
JP2018021860A (en) Outer diameter measuring apparatus and measuring method
JP2022524778A (en) Calibration of non-contact sensor using uniaxial movement
JP2008139078A (en) Method and apparatus for measuring parallel holes
CN114719752A (en) Method for measuring geometric parameters of precision part based on universal tool microscope and measuring head
WO2016121490A1 (en) Roundness measurement device
JP5705092B2 (en) Roundness measuring device
JP6419380B1 (en) Inspection master
CN106705791B (en) Outer circle jumping detection tool for generator rotor
JP5971445B1 (en) Roundness measuring device
Lou et al. A self-calibration method for rotary tables’ five degrees-of-freedom error motions
JP2014077765A (en) Circularity measuring device
KR101568283B1 (en) Tortional clearance measuring apparatus for yoke assembly
TW201618888A (en) Method and device for measuring synchronization error of linear shaft and rotary shaft of machine tool
CN111336978A (en) Circumferential clearance measuring device and circumferential clearance measuring method
JP2018072175A (en) Outer diameter measurement device, and measurement method
JP6428149B2 (en) measuring device
JP2010271047A (en) Apparatus for measuring shaft having optical type and touch probe type measuring mechanisms and shaft supporting mechanism, and method for measuring specifications and accuracy of shaft by the apparatus
JPH10103905A (en) Measurement method
JP2007171007A (en) Position measuring method and device
JP3204906U (en) Angle measurement tool
JP2011220971A (en) Device and method for measuring outer diameter of component
JP2019152506A (en) Spherical inner diameter measuring device and measuring method