JP2013083223A - Technique of controlling angle of attack for translational blade - Google Patents

Technique of controlling angle of attack for translational blade Download PDF

Info

Publication number
JP2013083223A
JP2013083223A JP2011224419A JP2011224419A JP2013083223A JP 2013083223 A JP2013083223 A JP 2013083223A JP 2011224419 A JP2011224419 A JP 2011224419A JP 2011224419 A JP2011224419 A JP 2011224419A JP 2013083223 A JP2013083223 A JP 2013083223A
Authority
JP
Japan
Prior art keywords
blade
power transmission
connecting portion
translation
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011224419A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inagaki
稲垣拡之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011224419A priority Critical patent/JP2013083223A/en
Publication of JP2013083223A publication Critical patent/JP2013083223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/34Propulsive elements directly acting on water of non-rotary type of endless-track type
    • B63H2001/348Propulsive elements directly acting on water of non-rotary type of endless-track type with tracks oriented transverse to propulsive direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Abstract

PROBLEM TO BE SOLVED: To provide a technique of controlling an angle of attack, capable of stably controlling an angle of attack of a blade of a translational blade.SOLUTION: A fluid flow control apparatus in which translational blade vanes 1 go around an elliptic track in parallel is referred to as a translational blade. In the translational blade, connection part-equipped power transmission wheels 4 are connected to both blade ends of the translational blade vane 1 to establish the elliptic track. A flow of a fluid is controlled by wheeling the connection part-equipped power transmission wheels 4 in an interlocked manner while periodically controlling angles of attack of the translational blade vanes 1. The translational blade vane 1 comprises a blade part 2 and blade end connection parts 3 connected to both blade ends thereof. The blade end connection part 3 is provided with angle-of-attack support portions 3c for stabilizing the angle of attack at three or more positions not on the same straight line.

Description

本発明は、並進翼に関するものである。 The present invention relates to a translational wing.

従来一般に知られている流体流動制御装置としてプロペラまたはスクリューと呼ばれる回転翼がある。回転翼はブレードとブレードを回転軸に連結するハブとから構成され、ハブを回転中心としてブレードを回転させることによってブレードの運動エネルギーと流体の運動エネルギーとを相互変換する。回転翼の用途は広く、航空機・船舶などの推進装置、または送風機・ポンプなどの造流装置のように、ブレードの運動エネルギーを流体の運動エネルギーに変換する能動的な用途と、風車・水車などの発電装置のように、流体の運動エネルギーをブレードの運動エネルギーに変換する受動的な用途がある。 A conventionally known fluid flow control device is a rotor blade called a propeller or a screw. The rotor blade is composed of a blade and a hub connecting the blade to a rotation shaft, and the blade kinetic energy and fluid kinetic energy are mutually converted by rotating the blade around the hub. Applications of rotor blades are wide. Active applications that convert blade kinetic energy into fluid kinetic energy, such as aircraft and ship propulsion devices, or air flow generators such as blowers and pumps, and windmills and water turbines There are passive applications for converting fluid kinetic energy into blade kinetic energy.

特開平10−61598号公報JP-A-10-61598 特開2001−280230号公報JP 2001-280230 A 特許第4411821号公報Japanese Patent No. 4411821

回転翼の性能は、ブレードの形状、枚数、回転速度などによって決定される。これらの性能決定要因はブレードと流体とが効率よく運動エネルギーを相互変換するように最適化される。しかし、回転翼に求められる、軽量、小径、高強度などの設計要求はすべて運動エネルギーの変換効率を低下させる制約条件となる。回転翼はブレードの片翼端をハブに連結して回転するためブレードの翼端と翼根とでは回転速度が大きく異なる。また、回転翼のブレードには回転速度の二乗に比例する大きな遠心力が発生する。この回転翼の運動的特徴はブレードやハブの形状を複雑にさせ、運動エネルギーの変換効率を低下させる主な原因である。 The performance of the rotor blade is determined by the shape, number of blades, rotational speed, and the like. These performance determinants are optimized so that the blade and the fluid efficiently interconvert kinetic energy. However, design requirements such as light weight, small diameter, and high strength required for the rotor blades all become constraints that reduce the conversion efficiency of kinetic energy. Since the rotating blade rotates by connecting one blade tip of the blade to the hub, the rotational speed of the blade tip and the blade root are greatly different. Further, a large centrifugal force proportional to the square of the rotational speed is generated on the blade of the rotor blade. This kinematic characteristic of the rotor blade is the main cause of complicating the shape of the blade and the hub and reducing the conversion efficiency of kinetic energy.

本発明による流体流動制御装置はブレードの両翼端にローラーチェーン等の動力伝動輪を連結して長円軌道とし、ブレードの迎角を周期的に制御しながらこれらの動力伝動輪を連動して輪転させることによって流体の流動を制御する。 The fluid flow control device according to the present invention connects a power transmission wheel such as a roller chain to both blade ends of the blade to form an elliptical track, and these power transmission wheels are rotated in conjunction with each other while periodically controlling the angle of attack of the blade. To control the flow of fluid.

ブレードが長円軌道を並行して周回する流体流動制御装置を並進翼と呼ぶ。 A fluid flow control device in which a blade orbits an ellipse in parallel is called a translation blade.

並進翼はブレードが長円軌道を並行して周回するためブレードの周回速度は翼幅方向に一定である。したがって並進翼はブレードの翼型を翼幅方向に一定にすることができ、ブレードの全翼面で効率よく運動エネルギーの相互変換をすることができる。さらに並進翼はブレードを長尺にする、またはブレード数を増やして長円軌道を長くすることによってソリディティを最適な状態に保持したままで大型化することができる。 In the translation wing, since the blade orbits the ellipse in parallel, the rotation speed of the blade is constant in the blade width direction. Therefore, the translation blade can make the blade airfoil constant in the blade width direction, and can efficiently convert the kinetic energy between all blade surfaces of the blade. Furthermore, the translation blade can be enlarged while maintaining the solidity in an optimal state by making the blades longer or increasing the number of blades to make the elliptical orbit longer.

本発明による並進翼はブレードの迎角を安定して制御できることを特長とする。ブレードの迎角を安定して制御することによってブレードと流体の運動エネルギーを効率的に相互変換することができる。 The translation blade according to the present invention is characterized in that the angle of attack of the blade can be stably controlled. By stably controlling the angle of attack of the blade, the kinetic energy of the blade and the fluid can be efficiently interconverted.

並進翼羽根と動力伝動輪とを示す図である。It is a figure which shows a translation blade blade and a power transmission wheel. 並進翼羽根と動力伝動輪の長円軌道と動力伝動輪の連結部との位置関係を示す図である。It is a figure which shows the positional relationship of the translation blade blade | wing, the ellipse track of a power transmission wheel, and the connection part of a power transmission wheel. 並進翼の断面図である。It is sectional drawing of a translation wing | blade. 並進翼の断面図である。It is sectional drawing of a translation wing | blade.

本発明による並進翼は、並進翼羽根1の両翼端にアタッチメント付ローラーチェーン等の連結部付動力伝動輪4を連結して長円軌道とし、並進翼羽根1の迎角を周期的に制御しながらこれらの連結部付動力伝動輪4を連動して輪転させることによって流体の流動を制御する。 The translation blade according to the present invention connects the power transmission wheel 4 with a connecting portion such as a roller chain with an attachment to both blade ends of the translation blade blade 1 to form an elliptical track, and periodically controls the angle of attack of the translation blade blade 1. However, the fluid flow is controlled by rotating the power transmission wheels 4 with the connecting portion in conjunction with each other.

並進翼羽根1は、ブレード部2とブレード部2の両翼端に連結する翼端連結部3とから構成される。 The translation blade 1 includes a blade portion 2 and a blade tip connecting portion 3 that is connected to both blade tips of the blade portion 2.

並進翼羽根1のブレード部2は、ブレードと流体の運動エネルギーを相互変換する役割を持つ。ブレード部2の翼型は、流体の流動方向8に対して長円軌道の並進部分6cの往路と復路とで迎角が反転するため、キャンバーがゼロとなる対称翼、または対称翼に近い翼型とする。 The blade portion 2 of the translation blade 1 has a role of mutually converting the kinetic energy of the blade and the fluid. The blade shape of the blade part 2 is a symmetric wing with a camber of zero or a wing close to the symmetric wing because the angle of attack is reversed between the forward path and the backward path of the translational part 6c of the elliptical orbit with respect to the fluid flow direction A type.

並進翼羽根1の両翼端に連結する翼端連結部3は、連結部付動力伝動輪4とブレード部2とを連結する役割と、迎角を支持する役割とを持ち、それぞれの部位を、動力伝動輪連結部位3a、ブレード連結部位3b、迎角支持部位3cと呼ぶ。 The blade tip connecting portion 3 connected to both blade tips of the translation blade 1 has a role of connecting the power transmission wheel 4 with the connecting portion and the blade portion 2 and a role of supporting the angle of attack. They are referred to as a power transmission wheel connecting part 3a, a blade connecting part 3b, and an attack angle supporting part 3c.

翼端連結部3の動力伝動輪連結部位3aは、翼端連結部3と連結部付動力伝動輪の連結部4aとを連結する役割を持つ。この動力伝動輪連結部位3aは、並進翼羽根1が翼幅方向に直動可能に連結されており、並進翼羽根1が長円軌道の回転部分6dを周回する際の翼幅方向の距離の変化に対応できるようになっている。また、この動力伝動輪連結部位3aは、並進翼羽根1が翼幅方向の軸周りに回転可能に連結されており、並進翼羽根1が長円軌道の回転部分6dを自転しながら周回できるようになっている。さらに、この動力伝動輪連結部位3aは、並進翼羽根1が長円軌道の回転部分6dで自転する際の自転姿勢を安定させる為に並進翼羽根1の両翼端で翼弦方向に前後して配置される。 The power transmission wheel connecting portion 3a of the blade tip connecting portion 3 has a role of connecting the blade tip connecting portion 3 and the connecting portion 4a of the power transmission wheel with the connecting portion. This power transmission wheel connecting portion 3a is connected so that the translational blade 1 is linearly movable in the blade width direction, and the distance in the blade width direction when the translational blade 1 circulates the rotating portion 6d of the elliptical track. It can respond to changes. In addition, the power transmission wheel connecting portion 3a is connected so that the translation blade 1 can rotate around an axis in the blade width direction so that the translation blade 1 can circulate while rotating the rotating portion 6d of the elliptical orbit. It has become. Further, the power transmission wheel connecting portion 3a is moved back and forth in the chord direction at both blade tips of the translation blade blade 1 in order to stabilize the rotation posture when the translation blade blade 1 rotates at the rotating portion 6d of the elliptical orbit. Be placed.

翼端連結部3のブレード連結部位3bは、翼端連結部3とブレード部2とを連結する役割を持つ。このブレード連結部位3bは、ブレード部2が翼厚方向の軸周りに回転可能に連結されており、並進翼羽根1が長円軌道の回転部分6dを周回する際の翼弦方向の距離の変化に対応できるようになっている。 The blade connection portion 3 b of the blade tip connecting portion 3 has a role of connecting the blade tip connecting portion 3 and the blade portion 2. In the blade connecting portion 3b, the blade portion 2 is connected so as to be rotatable around an axis in the blade thickness direction, and the change in the distance in the chord direction when the translation blade 1 circulates the rotating portion 6d of the elliptical orbit. Can be adapted to.

翼端連結部3の迎角支持部位3cは、並進翼羽根1の迎角を支持する役割を持つ。この迎角支持部位3cは、並進翼羽根1の迎角を安定させる為に同一直線上ではない3ヶ所以上に設けられる。 The angle-of-attack support portion 3 c of the blade tip connection portion 3 has a role of supporting the angle of attack of the translational blade 1. This angle-of-attack support part 3c is provided in three or more places which are not on the same straight line in order to stabilize the angle of attack of the translation blade blade 1.

上記の特徴を持つ並進翼羽根1の両翼端に連結部付動力伝動輪4を連結し、これらの連結部付動力伝動輪4を連動して輪転させることによって並進翼羽根1を連結部付動力伝動輪4の長円軌道に沿って並行して周回させる。 A power transmission wheel 4 with a connecting portion is connected to both blade ends of the translation blade blade 1 having the above-described characteristics, and the power transmission wheel 4 with a connecting portion is rotated in conjunction with the power transmission wheel 4 with the connecting portion so that the power of the translation blade blade 1 is connected to the power. Circulate in parallel along the elliptical orbit of the transmission wheel 4.

並進翼羽根1の両翼端に設けられた迎角支持部位3cが連結部付動力伝動輪4の長円軌道に沿って配置された迎角案内部材5に支持されながら摺動または転動することによって並進翼羽根1の迎角が周期的に制御される。この迎角案内部材5は、並進翼羽根1の両翼端で偏心して配置されており、この偏心によって並進翼羽根1に迎角が与えられる。 The angle-of-attack support portions 3c provided at both blade ends of the translation blade 1 are slid or roll while being supported by the angle-of-attack guide member 5 disposed along the elliptical orbit of the power transmission wheel 4 with the connecting portion. Thus, the angle of attack of the translation blade 1 is controlled periodically. This angle-of-attack guide member 5 is arranged eccentrically at both blade tips of the translation blade blade 1, and the angle of attack is given to the translation blade blade 1 by this eccentricity.

図1〜3に示された並進翼は、並進翼羽根1の両翼端に迎角支持部位3cが合計4ヶ所ある形態である。 The translation blade shown in FIGS. 1 to 3 has a form in which there are a total of four angle-of-attack support portions 3 c at both blade ends of the translation blade 1.

図4に示された並進翼は、並進翼羽根1の両翼端に迎角支持部位3cが合計3ヶ所ある形態である。 The translation blade shown in FIG. 4 has a form in which there are a total of three attack angle support portions 3c at both blade ends of the translation blade 1.

本発明による並進翼は、従来一般に知られている回転翼に代わって、推進装置、造流装置、発電装置として利用可能である。 The translation blade according to the present invention can be used as a propulsion device, a flow generator, and a power generation device in place of a conventionally known rotary blade.

1 並進翼羽根
2 ブレード部
3 翼端連結部
3a 動力伝動輪連結部位
3b ブレード連結部位
3c 迎角支持部位
4 連結部付動力伝動輪
4a 連結部付動力伝動輪の連結部
4b 前方連結側の連結部付動力伝動輪の連結部の位置
4c 後方連結側の連結部付動力伝動輪の連結部の位置
5 迎角案内部材
6a 前方連結側の長円軌道
6b 後方連結側の長円軌道
6c 長円軌道の並進部分
6d 長円軌道の回転部分
7 並進翼羽根の周回方向
8 流体の流動方向
DESCRIPTION OF SYMBOLS 1 Translation blade 2 Blade part 3 Blade | tip tip connection part 3a Power transmission wheel connection part 3b Blade connection part 3c Attack angle support part 4 Power transmission wheel 4a with a connection part Connection part 4b of a power transmission wheel with a connection part Connection on the front connection side Position 4c of connecting part of power transmission wheel with part Position 5 of connecting part of power transmission wheel with connecting part on the back connection side Angle-of-attack guide member 6a Elliptical track 6b on the front connection side Elliptical path 6c on the back connection side Orbital translational part 6d Elliptical orbital rotating part 7 Translational blade blade rotation direction 8 Fluid flow direction

Claims (1)

並進翼羽根と連結部付動力伝動輪とを具備し、前記並進翼羽根はブレード部と該ブレード部の両翼端に連結する翼端連結部とから構成され、前記ブレード部はブレードと流体の運動エネルギーを相互変換する役割を持ち、前記翼端連結部は動力伝動輪連結部位とブレード連結部位と迎角支持部位とを備え、前記動力伝動輪連結部位は翼端連結部と連結部付動力伝動輪の連結部とを連結する役割を持ち、該動力伝動輪連結部位は並進翼羽根が翼幅方向に直動可能に連結され、該動力伝動輪連結部位は並進翼羽根が翼幅方向の軸周りに回転可能に連結され、該動力伝動輪連結部位は並進翼羽根の両翼端で翼弦方向に前後して配置され、前記ブレード連結部位は翼端連結部とブレード部とを連結する役割を持ち、該ブレード連結部位はブレード部が翼厚方向の軸周りに回転可能に連結され、前記迎角支持部位は並進翼羽根の迎角を支持する役割を持ち、該迎角支持部位は同一直線上ではない3ヶ所以上に設けられ、前記連結部付動力伝動輪は並進翼羽根との連結部を備え、前記並進翼羽根の両翼端に前記連結部付動力伝動輪を連結し、該連結部付動力伝動輪を連動して輪転させることによって並進翼羽根を連結部付動力伝動輪の長円軌道に沿って並行して周回させ、該並進翼羽根の両翼端に設けられた迎角支持部位が連結部付動力伝動輪の長円軌道に沿って配置された迎角案内部材に支持されながら摺動または転動することによって並進翼羽根の迎角が周期的に制御されることを特徴とする流体流動制御装置。 A translation blade having a power transmission wheel with a connecting portion, and the translation blade has a blade portion and a blade tip connecting portion connected to both blade tips of the blade portion, and the blade portion moves between the blade and the fluid. It has a role of mutually converting energy, and the blade tip connecting portion includes a power transmission wheel connecting portion, a blade connecting portion, and an attack angle supporting portion, and the power transmission wheel connecting portion is a blade tip connecting portion and a power transmission with a connecting portion. The power transmission wheel connection part is connected so that the translation blades can move linearly in the blade width direction, and the power transmission wheel connection part is a shaft of the translation blades in the blade width direction. The power transmission wheel connecting portions are arranged around the blades in the direction of the chords at both blade tips of the translation blade, and the blade connecting portion serves to connect the blade tip connecting portion and the blade portion. The blade connection part is the blade part The angle-of-attack support portion is rotatably connected around an axis in the thickness direction, and has a role of supporting the angle of attack of the translation blade, and the angle-of-attack support portions are provided at three or more locations that are not collinear. The power transmission wheel with a connecting portion is provided with a connecting portion with a translation blade blade, the power transmission wheel with the connection portion is connected to both blade ends of the translation blade blade, and the power transmission wheel with the connection portion is rotated together. The parallel blades circulate in parallel along the elliptical orbit of the power transmission wheel with the connecting portion, and the angle-of-attack support portions provided at both blade ends of the translation blade are the elliptical orbit of the power transmission wheel with the connecting portion. A fluid flow control device characterized in that the angle of attack of the translation blade is controlled periodically by sliding or rolling while being supported by the angle of attack guide members arranged along the axis.
JP2011224419A 2011-10-12 2011-10-12 Technique of controlling angle of attack for translational blade Pending JP2013083223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224419A JP2013083223A (en) 2011-10-12 2011-10-12 Technique of controlling angle of attack for translational blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224419A JP2013083223A (en) 2011-10-12 2011-10-12 Technique of controlling angle of attack for translational blade

Publications (1)

Publication Number Publication Date
JP2013083223A true JP2013083223A (en) 2013-05-09

Family

ID=48528644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224419A Pending JP2013083223A (en) 2011-10-12 2011-10-12 Technique of controlling angle of attack for translational blade

Country Status (1)

Country Link
JP (1) JP2013083223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073493A1 (en) * 2016-10-17 2018-04-26 Teknologian Tutkimuskeskus Vtt Oy Energy transforming device and method of transforming energy
CN110395388A (en) * 2019-06-06 2019-11-01 王镇辉 The driving fan in edge, double status switching mechanisms and wing, VTOL aircraft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR975126A (en) * 1942-02-10 1951-03-01 Aerodynamic turbine
JPS4836848A (en) * 1971-09-10 1973-05-31
JP2000516682A (en) * 1996-08-22 2000-12-12 ロブレス・アケソロ,ミゲル・アンヘル Energy generator by the action of wind
JP2001280230A (en) * 2000-03-31 2001-10-10 Univ Tokyo Impeller
JP2001322788A (en) * 2000-03-09 2001-11-20 Hitachi Ltd Moving walk of variable speed type and its handrail
US6435827B1 (en) * 2000-10-27 2002-08-20 James Steiner Apparatus for generating a fluid flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR975126A (en) * 1942-02-10 1951-03-01 Aerodynamic turbine
JPS4836848A (en) * 1971-09-10 1973-05-31
JP2000516682A (en) * 1996-08-22 2000-12-12 ロブレス・アケソロ,ミゲル・アンヘル Energy generator by the action of wind
JP2001322788A (en) * 2000-03-09 2001-11-20 Hitachi Ltd Moving walk of variable speed type and its handrail
JP2001280230A (en) * 2000-03-31 2001-10-10 Univ Tokyo Impeller
US6435827B1 (en) * 2000-10-27 2002-08-20 James Steiner Apparatus for generating a fluid flow

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073493A1 (en) * 2016-10-17 2018-04-26 Teknologian Tutkimuskeskus Vtt Oy Energy transforming device and method of transforming energy
US11479330B2 (en) * 2016-10-17 2022-10-25 Teknologian Tutkimuskeskus Vtt Oy Energy transforming device and method of transforming energy
CN110395388A (en) * 2019-06-06 2019-11-01 王镇辉 The driving fan in edge, double status switching mechanisms and wing, VTOL aircraft

Similar Documents

Publication Publication Date Title
US20180216599A1 (en) Horizontal axis wind machine with multiple rotors
US8747070B2 (en) Spinning horizontal axis wind turbine
US20200158074A1 (en) Vertical-shaft turbine
US20180030956A1 (en) Fluid Turbine with Control System
US20210163109A1 (en) Vertical axis fluid energy conversion device
US20110038726A1 (en) Independent variable blade pitch and geometry wind turbine
JP2006152922A (en) Windmill
AU2008222708B2 (en) Hubless windmill
JP2013083223A (en) Technique of controlling angle of attack for translational blade
JP2012092651A (en) Wind power generation apparatus
CN105840428A (en) Self-adaption variation paddle vertical shaft wind driven generator with blades provided with flaps
KR101057125B1 (en) Flap control unit
KR101301217B1 (en) Blade moving type vertical wind power generation
JP6574634B2 (en) Vertical wind power generation system and control method in vertical wind power generation system
JP2010223207A (en) Vertical type reaction wind turbine generator
KR20120115196A (en) Wind power generator with vertical rotor
JP2023530198A (en) Swivel propeller, method of operation, and preferred use thereof
CN220505237U (en) Variable pitch device of wind generating set
KR101629354B1 (en) Wind Turbine Blade Pitch Control Device and Wind Turbine Including the Same
US20180135594A1 (en) Current Powered Generator Apparatus
JP6398095B2 (en) Power equipment
RU2743564C1 (en) Vane engine
WO2013057512A3 (en) A turbine with rotation axis perpendicular to flow direction
KR20090102282A (en) A vertical axis wind turbin with rotate on it's own axis type wind plane
EP3112674A1 (en) A wind turbine system for generating electrical energy on a ship, and a ship comprising a wind turbine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004