JP2013081911A - Fluid mixer and fluid mixing method - Google Patents

Fluid mixer and fluid mixing method Download PDF

Info

Publication number
JP2013081911A
JP2013081911A JP2011224314A JP2011224314A JP2013081911A JP 2013081911 A JP2013081911 A JP 2013081911A JP 2011224314 A JP2011224314 A JP 2011224314A JP 2011224314 A JP2011224314 A JP 2011224314A JP 2013081911 A JP2013081911 A JP 2013081911A
Authority
JP
Japan
Prior art keywords
axis
flow path
fluid
axial direction
extends
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011224314A
Other languages
Japanese (ja)
Other versions
JP2013081911A5 (en
JP5781414B2 (en
Inventor
Ayano Otsubo
綾乃 大坪
Nagahiro Tsukada
修大 塚田
Norimasa Minamoto
法雅 源
Masako Kawarai
雅子 河原井
Masato Ito
正人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011224314A priority Critical patent/JP5781414B2/en
Priority to PCT/JP2012/075849 priority patent/WO2013054742A1/en
Publication of JP2013081911A publication Critical patent/JP2013081911A/en
Publication of JP2013081911A5 publication Critical patent/JP2013081911A5/ja
Application granted granted Critical
Publication of JP5781414B2 publication Critical patent/JP5781414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • G01N2030/347Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient mixers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8429Preparation of the fraction to be distributed adding modificating material
    • G01N2030/8435Preparation of the fraction to be distributed adding modificating material for chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8818Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving amino acids

Abstract

PROBLEM TO BE SOLVED: To achieve a fluid mixer in which spread of a component to be detected in a flow direction is small and which can improve analytical precision of an analytical apparatus.SOLUTION: Fluid flows in a +X axis direction in a flow path 115 before branching and branches to a +Y axis direction flow and a -Y axis direction flow at a branch flow path 116. The flow thereof bends in an X axis direction downstream and the flow bends in the +Y axis direction and the -Y axis direction further downstream. Even further downstream, the flow joins and bends in the -X axis direction. Furthermore, the flow bends in the +Z axis direction even further downstream and the flow bends in the +Xaxis direction even further downstream. Even further downstream, the flow bends in the -Z axis direction and the flow bends in the +X axis direction even further downstream. In the fluid mixer 921, stay time of the component to be detected flowing in the fluid mixer 921 is identical regardless of the place where the component to be detected flows in at an entrance cross-section of the fluid mixer 921. Thus, spread of the component to be detected in the flow direction is smaller at the downstream position in the fluid mixer 921 than that at the upstream position in the fluid mixer 921.

Description

本発明は、2種類以上の液体を混合する流体混合器に関する。   The present invention relates to a fluid mixer that mixes two or more kinds of liquids.

例えば、液体クロマトグラフのポストカラム反応を利用したアミノ酸分析装置がある。このアミノ酸分析装置は試料内のアミノ酸の含有量の測定や種類の同定を行う装置である。   For example, there is an amino acid analyzer using a post-column reaction of a liquid chromatograph. This amino acid analyzer is an apparatus for measuring the content of amino acids in a sample and identifying the type.

アミノ酸分析装置は、試料液を分離カラムに通して、試料液内の検出対象成分であるアミノ酸を分離し、分離したアミノ酸にニンヒドリン試薬などの試薬液を混合し、混合液を加熱することで反応させ、反応生成物を検出器で検出する装置である。   The amino acid analyzer passes the sample solution through a separation column, separates the amino acid that is the detection target component in the sample solution, mixes the separated amino acid with a reagent solution such as a ninhydrin reagent, and heats the mixture to react. The reaction product is detected by a detector.

従来のアミノ酸分析装置は、試薬液と検出対象成分とを混合するためにT字コネクタと配管とを用いていた。試薬液と検出対象成分はT字コネクタで合流し、その下流の配管内で濃度拡散によって混合する。   Conventional amino acid analyzers use a T-shaped connector and piping to mix the reagent solution and the detection target component. The reagent solution and the component to be detected are merged by a T-shaped connector and mixed by concentration diffusion in the downstream pipe.

この場合、混合に必要な時間が長いため、混合に必要な配管長が長くなり、その配管内において測定対象成分が流れ方向に拡がる。液体クロマトグラフでは、検出対象成分が配管内で流れ方向に拡がると、検出対象成分が検出器に流入してから流出するまでの時間が長くなるため、分析結果であるクロマトグラムのピーク幅が拡がり、分析精度が低下する。   In this case, since the time required for mixing is long, the pipe length required for mixing becomes long, and the component to be measured spreads in the flow direction in the pipe. In the liquid chromatograph, if the detection target component spreads in the pipe in the flow direction, the time from the detection target component flowing into the detector until it flows out becomes longer, so the peak width of the chromatogram that is the analysis result is expanded. Analytical accuracy decreases.

したがって、試薬液と検出対象成分の混合に必要な時間を短くするために流体混合器が用いられる。   Accordingly, a fluid mixer is used to shorten the time required for mixing the reagent solution and the detection target component.

分析装置内にある流体混合器の一例として、特許文献1に記載された技術がある。特許文献1に記載の流体混合器は、試薬液が流れる管状の試薬流路と、液体クロマトグラフ装置の分離カラムからの試料液が流れる管状の試料流路とが連結部にて合流する流体混合器である。   As an example of the fluid mixer in the analyzer, there is a technique described in Patent Document 1. Patent Document 1 discloses a fluid mixer in which a tubular reagent flow channel in which a reagent solution flows and a tubular sample flow channel in which a sample solution from a separation column of a liquid chromatograph apparatus merges at a connecting portion. It is a vessel.

この流体混合器は、連結部と、その下流の合流流路と、試薬流路および試料流路よりも流路断面積が大きくかつ流路長が短い大径部と、この大径部よりも流路断面積が小さくかつ流路長が長い小径部とが順に連結されている構造である。   The fluid mixer includes a connecting portion, a downstream confluence channel, a large-diameter portion having a larger channel cross-sectional area and a shorter channel length than the reagent channel and the sample channel, and a larger-diameter portion than the large-diameter portion. This is a structure in which a small-diameter portion having a small channel cross-sectional area and a long channel length is sequentially connected.

この流体混合器では、合流流路と大径部の幅が異なるため、大径部において渦流が発生し、この渦流により液体の混合が行われる。   In this fluid mixer, since the width of the large diameter portion is different from that of the merged flow path, a vortex is generated in the large diameter portion, and liquid is mixed by this vortex.

また、流体混合器の他の例としては、特許文献2に記載された技術がある。特許文献2に記載の流体混合器は、流路が分岐と混合を繰り返す構造である。この流路構造では、2つの流体の衝突、流れ方向の変化、流速の変化などで乱流が発生し、その結果、2つの流体が混合する流体混合器である。   As another example of the fluid mixer, there is a technique described in Patent Document 2. The fluid mixer described in Patent Document 2 has a structure in which the flow path repeats branching and mixing. In this flow path structure, a turbulent flow is generated by collision of two fluids, a change in flow direction, a change in flow velocity, etc., and as a result, the fluid mixer is a mixture of the two fluids.

特開2002−131326号公報JP 2002-131326 A 特開2008−246283号公報JP 2008-246283 A

特許文献1に記載の流体混合器にあっては、渦流によって液体を混合するが、この場合、渦流に巻き込まれた検出対象成分と渦流に巻き込まれなかった検出対象成分とは、流体混合器内での滞留時間が異なる。そのため、流体混合器の上流に比べて流体混合器の下流では検出対象成分の流れ方向の拡がりが大きくなる。   In the fluid mixer described in Patent Document 1, the liquid is mixed by the vortex. In this case, the detection target component that is involved in the vortex and the detection target component that is not involved in the vortex are contained in the fluid mixer. The residence time at is different. Therefore, the flow direction of the detection target component increases in the downstream of the fluid mixer compared to the upstream of the fluid mixer.

その結果、分析結果であるクロマトグラムのピーク幅が拡がり、分析精度が低下する。   As a result, the peak width of the chromatogram which is the analysis result is widened, and the analysis accuracy is lowered.

特許文献2に記載の流体混合器は、流体が分岐前の流路と、分岐流路と、合流後の流路とを流れることによって、流体が分岐と合流を繰り返す。この流体混合器の流路では、流路中央では流れが速く、流路の壁面近くでは流れが遅い流速分布を持つ。   In the fluid mixer described in Patent Document 2, the fluid repeats branching and merging when the fluid flows through the channel before branching, the branch channel, and the channel after merging. This fluid mixer has a flow velocity distribution in which the flow is fast at the center of the flow channel and the flow is slow near the wall surface of the flow channel.

また、特許文献2に記載の流体混合器では、分岐前の流路において流路中央の速い流れの位置にある流体は、分岐流路においては壁面近くの遅い流れの位置となり、合流後の流路においては再び流路中央の速い流れの位置となる。   Further, in the fluid mixer described in Patent Document 2, the fluid in the position of the fast flow in the center of the flow path in the flow path before branching becomes the position of the slow flow near the wall surface in the branch flow path, and the flow after the merging In the path, it becomes the position of the fast flow at the center of the flow path again.

また、分岐前の流路において流路中央と流路壁面近くの中間の中程度の速さの流れの位置にある流体は、分岐流路においては流路中央の速い流れの位置となり、合流後の流路においては再び流路中央と流路の壁面近くの中間の中程度の速さの流れの位置となる。   In addition, the fluid in the middle of the flow rate in the middle of the channel near the channel wall in the channel before branching becomes the position of the fast flow in the center of the channel in the branch channel. In this flow path, the flow position at a medium speed between the center of the flow path and the wall surface of the flow path is once again located.

一方、分岐前の流路において壁面近くの遅い流れの位置にある流体は、分岐流路においても壁面近くの遅い流れの位置にあり、合流後の流路においても壁面近くの遅い流れの位置にあり、常に遅い流れの位置を流れる。   On the other hand, the fluid in the position of the slow flow near the wall surface in the channel before branching is in the position of the slow flow near the wall surface in the branch channel, and the position of the slow flow near the wall surface in the channel after joining. There is always a slow flow position.

したがって、分岐前の流路において壁面近くの遅い流れの位置に流入する検出対象成分が分岐前の流路と分岐流路と合流後の流路に滞留する時間は、分岐前の流路において流路中央の速い流れの位置に流入する検出対象成分が分岐前の流路と分岐流路と合流後の流路に滞留する時間に比べて長い。   Therefore, the time during which the detection target component flowing into the position of the slow flow near the wall surface in the flow path before branching stays in the flow path before branching and the branch flow path flows in the flow path before branching. It is longer than the time during which the detection target component flowing into the fast flow position in the center of the path stays in the flow path before branching, the branch flow path, and the flow path after merging.

また、上記分岐前の流路において壁面近くの遅い流れの位置に流入する検出対象成分が分岐前の流路と分岐流路と合流後の流路に滞留する時間は、分岐前の流路において流路中央と流路壁面近くの中間の中程度の速さの流れの位置に流入する検出対象成分が分岐前の流路と分岐流路と合流後の流路に滞留する時間に比べて長い。   In addition, the time during which the detection target component flowing into the position of the slow flow near the wall surface in the channel before branching stays in the channel before branching and the channel after branching is determined in the channel before branching. The detection target component that flows into the middle of the flow path near the flow path center and near the flow path wall is longer than the residence time in the flow path before branching and the flow path after merging. .

すなわち、流体混合器の入口(分岐前の流路)の断面において、検出対象成分が流入する場所によって、流体混合器内に滞留する時間が異なる。その結果、流体混合器の上流に比べて流体混合器の下流では検出対象成分の流れ方向の拡がりが大きくなる。   That is, in the cross section of the inlet (flow path before branching) of the fluid mixer, the residence time in the fluid mixer varies depending on where the detection target component flows. As a result, in the downstream of the fluid mixer, the flow direction of the detection target component increases in comparison with the upstream of the fluid mixer.

その結果、アミノ酸分析装置の分析結果であるクロマトグラムのピーク幅が拡がり、分析精度が低下する。   As a result, the peak width of the chromatogram, which is the analysis result of the amino acid analyzer, widens, and the analysis accuracy decreases.

本発明の目的は、検出対象成分の流れ方向の拡がりが小さく、分析装置の分析精度を向上可能な流体混合器及び流体混合方法を実現することである。   An object of the present invention is to realize a fluid mixer and a fluid mixing method in which the flow direction of the detection target component is small and the analysis accuracy of the analyzer can be improved.

上記目的を達成するため、本発明は次のように構成される。   In order to achieve the above object, the present invention is configured as follows.

少なくとも2種類の流体を混合させる流体流路を有し、直交座標系の互いに直交する3軸を、第1軸、第2軸、第3軸としたとき、+第1軸方向に延び、流体導入口からの流体を+第1軸方向に流体を流し、上記第1の流路から第2の流路及び第3の流路に流体を分岐し、上記第2の流路と第3の流路とに分岐された流体を合流部で合流し、上記合流部で合流した流体を、−第1軸方向に流し、上記流体を導出口に導出する。   It has a fluid flow path for mixing at least two kinds of fluids, and when the three axes orthogonal to each other in the orthogonal coordinate system are defined as the first axis, the second axis, and the third axis, the fluid extends in the + first axis direction. The fluid from the inlet is + flowed in the first axial direction, the fluid is branched from the first channel to the second channel and the third channel, and the second channel and the third channel The fluid branched into the flow path is merged at the merge portion, the fluid merged at the merge portion is flowed in the first axis direction, and the fluid is led out to the outlet.

検出対象成分の流れ方向の拡がりが小さく、分析装置の分析精度を向上可能な流体混合器及び流体混合方法を実現することができる。   It is possible to realize a fluid mixer and a fluid mixing method in which the flow direction of the detection target component is small and the analysis accuracy of the analyzer can be improved.

本発明の流体混合器が適用されたアミノ酸分析装置の概略構成図である。It is a schematic block diagram of the amino acid analyzer to which the fluid mixer of the present invention is applied. 本発明の流体混合器の組み立て分解斜視図である。It is an assembly exploded perspective view of the fluid mixer of the present invention. 本発明とは異なる例であり、本発明との比較のため、流路内での検出対象成分の拡がりを示す図である。It is a different example from this invention, and is a figure which shows the expansion of the detection target component in a flow path for the comparison with this invention. 本発明の原理説明のため、検出対象成分の拡がりの抑制効果を示す図である。It is a figure which shows the suppression effect of the expansion of a detection target component for the principle description of this invention. 本発明の第1の実施例における流体混合器を複数組み合わせた例を示す図である。It is a figure which shows the example which combined multiple fluid mixers in the 1st Example of this invention. 配管内の検出対象成分と溶離液と試薬液の様子を説明する図である。It is a figure explaining the state of the detection target component, eluent, and reagent solution in the piping. 混合率と合流部からの距離の関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between a mixing rate and the distance from a confluence | merging part. 本発明の第2、第3の実施例による流体混合器の説明図である。It is explanatory drawing of the fluid mixer by the 2nd, 3rd Example of this invention. 本発明の第4の実施例における流体混合器が適用されたアミノ酸分析装置の概略構成図である。It is a schematic block diagram of the amino acid analyzer to which the fluid mixer in the 4th Example of this invention was applied.

以下、添付図面を参照して本発明の実施例について説明する。なお、本発明は以下に説明する実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, this invention is not limited to the Example demonstrated below.

図1は本発明の流体混合器が適応されたとアミノ酸分析装置の概略構成である。図1において、アミノ酸分析装置は、試料液容器1と、溶離液容器2と、オートサンプラー3と、溶離液送液ポンプ4と、試薬液容器5と、試薬液送液ポンプ6と、試料液中の検出対象成分を分離する分離カラム7とを備える。   FIG. 1 is a schematic configuration of an amino acid analyzer when the fluid mixer of the present invention is applied. 1, the amino acid analyzer includes a sample liquid container 1, an eluent container 2, an autosampler 3, an eluent liquid feed pump 4, a reagent liquid container 5, a reagent liquid feed pump 6, and a sample liquid. And a separation column 7 for separating the components to be detected therein.

また、アミノ酸分析装置は、流体混合器13と、反応部配管9と、反応部配管9を内部に有し、検出対象成分と試薬液を加温させて反応させるための加温機10と、反応部配管9で生じた反応生成物を検出する検出器11と、配管17と、廃液容器18とを備える。12は検出器11を通過した廃液、14は試料液、15は溶離液、16は試薬液である。   In addition, the amino acid analyzer has a fluid mixer 13, a reaction part pipe 9, and a reaction part pipe 9, and a warming machine 10 for heating and reacting the detection target component and the reagent solution, The detector 11 which detects the reaction product produced in the reaction part piping 9, the piping 17, and the waste liquid container 18 is provided. 12 is a waste liquid that has passed through the detector 11, 14 is a sample liquid, 15 is an eluent, and 16 is a reagent liquid.

図1に示したアミノ酸分析装置は、溶離液15が溶離液容器2から溶離液送液ポンプ4によって送液される。試料液14は試料液容器1からオートサンプラー3によって、溶離液15に合流し、分離カラム7に流れる。分離カラム7では、電荷の違いで試料液の中の検出対象成分が分離され、分離された検出対象成分は試薬液16と流体混合器13で合流する。流体混合器13は後述するように、A基板407、B基板408、C基板409が積層されている。   In the amino acid analyzer shown in FIG. 1, the eluent 15 is fed from the eluent container 2 by the eluent feed pump 4. The sample solution 14 joins the eluent 15 from the sample solution container 1 by the autosampler 3 and flows to the separation column 7. In the separation column 7, the detection target component in the sample solution is separated due to the difference in charge, and the separated detection target component is merged in the reagent solution 16 and the fluid mixer 13. As will be described later, the fluid mixer 13 is formed by laminating an A substrate 407, a B substrate 408, and a C substrate 409.

試薬液16は試薬液容器5から試薬液送液ポンプ6によって送液される。分離カラム7で分離された検出対象成分と試薬液16とは流体混合器13で混合された後、反応部配管9にて反応する。そして、反応部配管9で生じた反応生成物は検出器11にて検出され、廃液容器18に送液される。   The reagent solution 16 is fed from the reagent solution container 5 by the reagent solution feed pump 6. The detection target component separated by the separation column 7 and the reagent solution 16 are mixed by the fluid mixer 13 and then reacted in the reaction section pipe 9. Then, the reaction product generated in the reaction section pipe 9 is detected by the detector 11 and sent to the waste liquid container 18.

図6は、分離カラム7で分離された検出対象成分19(アミノ酸A21、アミノ酸B22、アミノ酸C23)と溶離液15と溶離液と試薬液の混合液27の配管内の分布を示す図である。図6において、配管17の内部には、アミノ酸A21、アミノ酸B22、アミノ酸C23、溶離液15、アミノ酸A21と試薬液と反応してできた反応生成物24、アミノ酸B22と試薬液が反応してできた反応生成物25、アミノ酸Cと試薬液が反応してできた反応生成物26、溶離液と試薬液の混合液27が存在sじている。   FIG. 6 is a diagram showing the distribution in the piping of the detection target component 19 (amino acid A21, amino acid B22, amino acid C23) separated by the separation column 7, the eluent 15, and the mixed liquid 27 of the eluent and the reagent liquid. In FIG. 6, the inside of the pipe 17 is formed by the reaction of amino acid A21, amino acid B22, amino acid C23, eluent 15, reaction product 24 obtained by reacting amino acid A21 with the reagent solution, and amino acid B22 and reagent solution. The reaction product 25, the reaction product 26 formed by the reaction of the amino acid C and the reagent solution, and the mixed solution 27 of the eluent and the reagent solution are present.

図6の(a)は、検出対象物成分19と溶離液15との混合前の配管17内を示し、検出対象成分19(アミノ酸A21、アミノ酸B22、アミノ酸C23)は、それぞれ溶離液15中に分離されて流れる。   6A shows the inside of the pipe 17 before the detection target component 19 and the eluent 15 are mixed, and the detection target components 19 (amino acid A21, amino acid B22, amino acid C23) are respectively contained in the eluent 15. Flow separated.

そして、流体混合器13でアミノ酸A21、アミノ酸B22、アミノ酸C23が試薬液16と混合する。図6の(b)は、検出対象物成分19と溶離液15との混合後の配管17内を示し、混合後の配管17内では、溶離液と試薬液の混合液27の中に、アミノ酸A21と試薬液が反応してできた反応生成物24、アミノ酸B22と試薬液が反応してできた反応生成物25、アミノ酸C23と試薬液16が反応してできた反応生成物26が存在するようになる。   The amino acid A21, amino acid B22, and amino acid C23 are mixed with the reagent solution 16 in the fluid mixer 13. FIG. 6B shows the inside of the pipe 17 after the detection target component 19 and the eluent 15 are mixed. In the pipe 17 after the mixing, an amino acid is contained in the mixed liquid 27 of the eluent and the reagent liquid. There is a reaction product 24 formed by reacting A21 with the reagent solution, a reaction product 25 formed by reacting the amino acid B22 with the reagent solution, and a reaction product 26 formed by reacting the amino acid C23 with the reagent solution 16. It becomes like this.

図2は本発明の流体混合器13の組み立て分解斜視図である。図2が示すように、本発明の第1の実施例による流体混合器13は、A基板407と、B基板408と、C基板409とから形成される。ネジ(図示せず)をネジ通し穴411に通してネジ穴410に回し入れることで、3枚の基板を積層して固定し、流体混合器13を形成する。A基板407には、A液401の導入口404、B液402の導入口405、混合液403の導出口406が形成されている。   FIG. 2 is an exploded perspective view of the fluid mixer 13 of the present invention. As shown in FIG. 2, the fluid mixer 13 according to the first embodiment of the present invention is formed of an A substrate 407, a B substrate 408, and a C substrate 409. By passing a screw (not shown) through the screw hole 411 and turning it into the screw hole 410, the three substrates are stacked and fixed, and the fluid mixer 13 is formed. In the A substrate 407, an inlet 404 for the A liquid 401, an inlet 405 for the B liquid 402, and an outlet 406 for the mixed liquid 403 are formed.

A基板407、B基板408、C基板409の材質は、例えば、ステンレス、ポリテトラフルオロエチレン、ポリエーテルエーテルケトンなどを用いることができる。図2に示した流体混合器により、図5に示す流路形状が形成される。   As the material of the A substrate 407, the B substrate 408, and the C substrate 409, for example, stainless steel, polytetrafluoroethylene, polyether ether ketone, or the like can be used. The flow channel shape shown in FIG. 5 is formed by the fluid mixer shown in FIG.

図3は、本発明とは異なる原理の流体混合器の説明図であり、本発明との比較例を示す図である。   FIG. 3 is an explanatory diagram of a fluid mixer based on a principle different from that of the present invention, and is a diagram showing a comparative example with the present invention.

図3の(a)は、1本の流路内での検出対象成分の流れ方向の拡がりを説明するための流路概略断面図である。図3の(a)において、1本の流路901に検出対象成分19が入り、流路内を通過する場合、流路内の流速分布は902のように、流路の流体流れ方向中心線から流路の壁面に向かうにつれて流速が遅くなる放物線状となる。このため、検出対象成分の分布も放物線状の分布904となり、検出対象成分の流れ方向の拡がりは905となる。   (A) of FIG. 3 is a flow-path schematic sectional drawing for demonstrating the expansion of the flow direction of the detection target component within one flow path. In FIG. 3A, when the detection target component 19 enters one flow path 901 and passes through the flow path, the flow velocity distribution in the flow path is the center line in the fluid flow direction of the flow path as indicated by 902. It becomes a parabolic shape in which the flow velocity becomes slower toward the wall surface of the flow path. For this reason, the distribution of the detection target component is also a parabolic distribution 904, and the spread in the flow direction of the detection target component is 905.

図3の(b)は、流路分岐前の流路111と、分岐流路112と、合流流路113とからなる比較例における流体混合器911内での検出対象成分の流れ方向の拡がりの様子を示す流路概略断面図である。   FIG. 3B shows the expansion of the flow direction of the detection target component in the fluid mixer 911 in the comparative example including the flow path 111 before branching the flow path, the branch flow path 112, and the merge flow path 113. It is a flow-path schematic sectional drawing which shows a mode.

図3の(b)では、分岐前の流路111に検出対象成分19が入り、分岐前の流路111を通過すると、検出対象成分が放物線状流速分布903によって分岐部62の直前の上流側では放物線状の分布930になっている。分布930の検出対象成分は分岐部62で、図3の(b)に示した+Y軸方向と−Y軸方向に分岐し(成分60および成分61)、分岐流路112内の流速分布903により、流路中央では速く移動し(中央成分908)、壁面付近では遅く移動する(壁面成分906)。そのため、合流部33の直前の上流側では、検出対象成分は成分30および成分31のように流れ方向に拡がる。   In FIG. 3B, when the detection target component 19 enters the pre-branch flow path 111 and passes through the pre-branch flow path 111, the detection target component is upstream upstream of the branch portion 62 by the parabolic flow velocity distribution 903. Then, it has a parabolic distribution 930. The component to be detected in the distribution 930 is a branching unit 62 that branches in the + Y-axis direction and the −Y-axis direction (component 60 and component 61) shown in FIG. It moves fast in the center of the flow path (central component 908), and moves slowly in the vicinity of the wall surface (wall surface component 906). Therefore, on the upstream side immediately before the merging portion 33, the detection target component spreads in the flow direction like the component 30 and the component 31.

合流部33において、成分30と成分31とが合流して図3の(b)に示した+X軸方向に流れ、成分40になる。   In the merging portion 33, the component 30 and the component 31 merge and flow in the + X-axis direction shown in FIG.

ここで、成分30については、流路内の壁面近くの流れの遅い成分(壁面成分906(合流流路113から遠い方の壁面の成分))が、合流流路内の中央に移動し(中央成分907)、流路中央の流れの速い成分(中央成分908)が合流流路内の壁面側に移動する(壁面側成分909)。   Here, with regard to the component 30, the slow-flow component near the wall surface in the flow path (wall surface component 906 (the wall surface component far from the merge flow path 113)) moves to the center in the merge flow path (center Component 907), a component having a fast flow at the center of the flow channel (central component 908) moves to the wall surface side in the merged flow channel (wall surface side component 909).

一方、分岐前の流路111での壁面近くの流れの遅い成分933は、分岐流路112内においても壁面近くの遅い流れの位置913にあり、合流流路113においても壁面近くの遅い流れの位置914にある。   On the other hand, the slow flow component 933 near the wall surface in the channel 111 before branching is in the slow flow position 913 near the wall surface also in the branch channel 112, and the slow flow near the wall surface also in the merge channel 113. It is in position 914.

したがって、合流流路113での成分の分布910の拡がりは912となる。   Therefore, the spread of the component distribution 910 in the merge channel 113 is 912.

分岐前の流路111において、流路中央の速い流れの位置にある流体934は、分岐流路112においては、壁面近くの遅い流れの位置935にあり、合流後の流路113においては、再び流路中央の速い流れの位置907にある。   In the flow path 111 before branching, the fluid 934 at the position of fast flow in the center of the flow path is in the position 935 of slow flow near the wall surface in the branch flow path 112, and again in the flow path 113 after merging. It is at a fast flow position 907 in the middle of the channel.

また、分岐前の流路111において、流路中央と流路壁面近くの中間の中程度の速さの流れの位置にある流体936は、分岐流路112においては流路中央の速い流れの位置908にあり、合流後の流路113においては再び流路中央と流路の壁面近くの中間の中程度の速さの流れの位置909にある。   In addition, in the flow path 111 before branching, the fluid 936 at the middle speed flow position in the middle of the flow path center and near the flow path wall surface in the branch flow path 112 has a fast flow position in the middle of the flow path. The flow path 113 after merging is again at the middle flow speed position 909 near the flow path center and the wall surface of the flow path.

一方、分岐前の流路111において壁面近くの遅い流れの位置にある流体933は、分岐流路112においても壁面近くの遅い流れの位置913にあり、合流後の流路113においても壁面近くの遅い流れの位置914にあり、常に遅い流れの位置を流れる。   On the other hand, the fluid 933 at the slow flow position near the wall surface in the channel 111 before branching is at the slow flow position 913 near the wall surface in the branch channel 112 and also near the wall surface in the channel 113 after joining. It is in the slow flow position 914 and always flows through the slow flow position.

したがって、分岐前の流路111において壁面近くの遅い流れの位置に流入する検出対象成分933が分岐前の流路111と分岐流路112と合流流路113に滞留する時間は、分岐前の流路111において流路中央の速い流れの位置に流入する検出対象成分934が分岐前の流路111と分岐流路112と合流流路113に滞留する時間より長い。また、検出対象成分933は、分岐前の流路111において流路中央と流路壁面近くの中間の中程度の速さの流れの位置に流入する検出対象成分936が分岐前の流路111と分岐流路112と合流流路113に滞留する時間に比べて長くなる。   Therefore, the time during which the detection target component 933 flowing into the position of the slow flow near the wall surface in the channel 111 before branching stays in the channel 111, the branch channel 112, and the merge channel 113 before branching is the flow before the branch. In the channel 111, the detection target component 934 that flows into the fast flow position in the center of the channel is longer than the residence time in the channel 111, the branch channel 112, and the merge channel 113 before branching. Further, the detection target component 933 flows into the middle flow speed position between the center of the flow path and the vicinity of the flow path wall in the flow path 111 before branching. This is longer than the time spent in the branch flow path 112 and the merge flow path 113.

すなわち、この流体混合器911内を流れる検出対象成分が流体混合器911内に滞留する時間は、流体混合器の入口(分岐前の流路111)断面において検出対象成分が流入する場所によって異なる。よって、流体混合器911の上流に比べて流体混合器911の下流では検出対象成分の流れ方向の拡がり912が大きくなる。その結果、アミノ酸分析装置の分析結果であるクロマトグラムのピーク幅が拡がり、分析精度が低下する。   In other words, the time during which the detection target component flowing in the fluid mixer 911 stays in the fluid mixer 911 differs depending on the location where the detection target component flows in the cross section of the inlet (flow path 111 before branching) of the fluid mixer. Therefore, the spread 912 in the flow direction of the detection target component is larger in the downstream of the fluid mixer 911 than in the upstream of the fluid mixer 911. As a result, the peak width of the chromatogram, which is the analysis result of the amino acid analyzer, widens, and the analysis accuracy decreases.

図4は、本発明の流体混合器の原理説明図であり、流路構造921において、検出対象成分の拡がりの抑制効果を示している。直交座標の互いに直交する軸を、第1軸、第2軸、第3軸とする。これらを、X軸、Y軸、Z軸として説明する。
ただし、第1軸をX、Y、Z軸のいずれにも設定可能である。同様に、第2軸、第3軸をX、Y、Z軸のいずれにも設定可能である。
FIG. 4 is a principle explanatory diagram of the fluid mixer of the present invention, and shows the effect of suppressing the spread of the detection target component in the flow path structure 921. The axes orthogonal to each other in the orthogonal coordinates are defined as a first axis, a second axis, and a third axis. These will be described as an X axis, a Y axis, and a Z axis.
However, the first axis can be set to any of the X, Y, and Z axes. Similarly, the second axis and the third axis can be set to any of the X, Y, and Z axes.

図4の(a)においては、分岐前の流路115の流れ方向をX軸とし、 分岐前の流路115の流れ方向に垂直な方向をY軸、Z軸とし、紙面に垂直な方向をZ軸とする。   In FIG. 4A, the flow direction of the flow path 115 before branching is taken as the X axis, the direction perpendicular to the flow direction of the flow path 115 before branching is taken as the Y axis and the Z axis, and the direction perpendicular to the paper surface is taken as the direction. The Z axis is assumed.

図4の(b)においては、分岐前の流路115の流れ方向をX軸とし、 分岐前の流路115の流れ方向に垂直な方向をY軸、Z軸とし、紙面に垂直な方向をY軸とする。   In FIG. 4B, the flow direction of the flow path 115 before branching is taken as the X axis, the direction perpendicular to the flow direction of the flow path 115 before branching is taken as the Y axis and the Z axis, and the direction perpendicular to the paper surface is taken as the direction. The Y axis is assumed.

図4の(b)は、流路の側面図を示し、図4の(a)は、図4の(b)のA−A線に沿った断面を示す。   4B shows a side view of the flow path, and FIG. 4A shows a cross section taken along the line AA in FIG. 4B.

流路構造921においては、図4の(a)に示すように、分岐前の流路115(第1の流路)に流体が+X軸方向に流れ、その下流の分岐流路116(第2の流路、第3の流路)で+Y軸方向と−Y軸方向の流れに分岐し、その下流でX軸方向に流れが曲がり、その下流で+Y軸方向と−Y軸方向に流れが曲がる。そして、その下流で第2の流路と第3の流路は合流部に接続され、分岐した流体がこの合流部で合流する。この合流部は第4の流路に接続されており、第4の流路は、−X軸方向に延び、流体の流れも−X軸方向に曲がる。   In the flow path structure 921, as shown in FIG. 4A, the fluid flows in the + X axis direction in the flow path 115 (first flow path) before branching, and the branch flow path 116 (second flow path) downstream thereof. The third flow path) branches into a flow in the + Y-axis direction and the −Y-axis direction, the flow bends in the X-axis direction downstream, and the flow in the + Y-axis direction and −Y-axis direction downstream. Bend. And the 2nd flow path and the 3rd flow path are connected to the confluence | merging part in the downstream, and the branched fluid merges in this confluence | merging part. This confluence portion is connected to the fourth flow path, the fourth flow path extends in the −X axis direction, and the flow of the fluid also bends in the −X axis direction.

さらに、図4の(b)に示すように、第4の流路は、流体を導出する導出口に導く第5の流路(導出路)に接続される。この第5の流路は、+Z軸方向に流れが曲がり、その下流で+X軸方向に流れが曲がり、その下流で−Z軸方向に流れが曲がり、その下流で+X軸方向に流れが曲がる。そして、第5の流路は、+X軸方向に延びて、流体は+X軸方向に流れる。   Furthermore, as shown in FIG. 4B, the fourth flow path is connected to a fifth flow path (lead-out path) that leads to a lead-out port that leads out the fluid. In the fifth flow path, the flow is bent in the + Z-axis direction, the flow is bent in the + X-axis direction downstream thereof, the flow is bent in the −Z-axis direction downstream thereof, and the flow is bent in the + X-axis direction downstream thereof. The fifth flow path extends in the + X axis direction, and the fluid flows in the + X axis direction.

図4の(a)において、流路構造921に流入する検出対象成分19は、流速分布915により、分岐部52の直前の上流側で放物線状の分布を持つ成分940となる。成分940は分岐部52で+Y軸方向と−Y軸方向に分岐し(成分50および成分51)、分岐流路116内の流速分布915により、流路中央では速く移動し(中央成分918)、壁面付近では遅く移動するため(壁面成分923)、成分53および成分54のように流れ方向に拡がる。   In FIG. 4A, the detection target component 19 flowing into the flow channel structure 921 becomes a component 940 having a parabolic distribution on the upstream side immediately before the branching portion 52 due to the flow velocity distribution 915. The component 940 branches in the + Y-axis direction and the −Y-axis direction at the branch portion 52 (component 50 and component 51), and moves fast in the center of the flow path due to the flow velocity distribution 915 in the branch flow path 116 (central component 918). Since it moves slowly in the vicinity of the wall surface (wall surface component 923), it spreads in the flow direction like the component 53 and the component 54.

合流部55で、成分53と成分54とが合流して−X軸方向に流れが曲がり、成分56になる。成分56については、成分53と成分54の壁面近くの遅い流れの成分(壁面成分923)が流路中央に移動し(中央成分917)、成分53と成分54の流路中央の速い流れの成分(中央成分918)が壁面側に移動する(壁面側成分919)。また、成分53と成分54の壁面近くの遅い流れの成分(壁面成分916)は、壁面における流の成分920となる。その後、図4の(b)に示すように、流体は+Z軸方向、+X軸方向、−Z軸方向、+X軸方向に流れ方向を変化していく。   In the merging portion 55, the component 53 and the component 54 are merged, and the flow is bent in the −X axis direction to become the component 56. For the component 56, the slow flow component (wall surface component 923) near the wall surfaces of the component 53 and the component 54 moves to the center of the flow path (central component 917), and the fast flow component of the component 53 and the component 54 at the center of the flow path. (Center component 918) moves to the wall surface side (wall surface component 919). Further, the slow flow component (wall surface component 916) near the wall surfaces of the component 53 and the component 54 becomes a flow component 920 on the wall surface. Thereafter, as shown in FIG. 4B, the flow direction of the fluid changes in the + Z axis direction, the + X axis direction, the −Z axis direction, and the + X axis direction.

したがって、分岐前の流路115の壁面近くの遅い流れの成分943は、分岐と合流後に流路中央の速い流れに位置する(中央成分917)。流体混合器出口での成分の分布926の拡がりは922となる。この広がり922は、図3に示した1本の流路901による拡がり905よりも小さく、分岐合流する流体混合器911による拡がり912よりも小さくなる。分布926は中心部925の成分より壁面部の成分が上流側に位置する状態となっており、流体混合器出口に向かうにつれ、中心部925の成分と壁面部の成分のとの距離は短縮する。   Therefore, the slow flow component 943 near the wall surface of the channel 115 before branching is located in the fast flow at the center of the channel after branching and merging (central component 917). The spread of the component distribution 926 at the fluid mixer outlet is 922. This spread 922 is smaller than the spread 905 by one flow path 901 shown in FIG. 3 and smaller than the spread 912 by the fluid mixer 911 that branches and merges. The distribution 926 is such that the wall surface component is located upstream of the central portion 925 component, and the distance between the central portion 925 component and the wall surface component decreases as the fluid mixer exits. .

本発明の流路構造921では、分岐前の流路115において、流路中央の速い流れの位置にある流体945は、分岐流路116においては壁面近くの遅い流れの位置946にあり、合流後の流路117においては壁面近くの遅い流れの位置920にある。   In the flow channel structure 921 of the present invention, in the flow channel 115 before branching, the fluid 945 at the fast flow position in the center of the flow channel is in the slow flow position 946 near the wall surface in the branch flow channel 116, and after the merging. In the flow path 117, the flow is located at a slow flow position 920 near the wall surface.

また、分岐前の流路115において、流路中央と流路壁面近くの中間の中程度の速さの流れの位置にある流体947は、分岐流路116においては流路中央の速い流れの位置918にあり、合流後の流路117においては再び流路中央と流路の壁面近くの中間の中程度の速さの流れの位置919にある。   Further, in the flow channel 115 before branching, the fluid 947 located at a medium speed flow position in the middle of the flow channel center and near the flow channel wall surface is located in the branch flow channel 116 at a fast flow position in the middle of the flow channel. In the flow channel 117 after merging, the flow channel 117 is again at the middle flow velocity position 919 near the flow channel center and the wall surface of the flow channel.

一方、分岐前の流路115において、壁面近くの遅い流れの位置にある流体943、944は、分岐流路116においても壁面近くの遅い流れの位置923にあり、合流後の流路117においては流路中央の速い流れの位置917にある。   On the other hand, in the flow channel 115 before branching, the fluids 943 and 944 in the slow flow position near the wall surface are also in the slow flow position 923 near the wall surface in the branch flow channel 116 and in the flow channel 117 after joining. It is at a fast flow position 917 in the middle of the channel.

したがって、分岐前の流路115において、壁面近くの遅い流れの位置に流入する検出対象成分943、944が分岐前の流路115と分岐流路116と合流流路117に滞留する時間は、分岐前の流路115において流路中央の速い流れの位置に流入する検出対象成分945が分岐前の流路115と分岐流路116と合流流路117に滞留する時間と同等となる。   Therefore, in the flow channel 115 before branching, the time during which the detection target components 943 and 944 flowing into the slow flow position near the wall surface stay in the flow channel 115, the branch flow channel 116, and the merge flow channel 117 before branching is branched. This is equivalent to the time during which the detection target component 945 flowing into the fast flow position in the center of the flow path in the previous flow path 115 stays in the flow path 115, the branch flow path 116, and the merge flow path 117 before branching.

また、壁面近くの遅い流れの位置に流入する検出対象成分943、944は、分岐前の流路115において流路中央と流路壁面近くの中間の中程度の速さの流れの位置に流入する検出対象成分947が分岐前の流路115と分岐流路116と合流流路117に滞留する時間と同等となる。   In addition, the detection target components 943 and 944 that flow into the position of the slow flow near the wall surface flow into the middle flow speed position near the channel center and the wall surface of the flow channel 115 before branching. This is equivalent to the time during which the detection target component 947 stays in the flow channel 115, the branch flow channel 116, and the merge flow channel 117 before branching.

すなわち、この流体混合器921内を流れる検出対象成分が流体混合器921内に滞留する時間は、流体混合器921の入口(分岐前の流路115)断面において検出対象成分が流入する場所によらず同等である。その結果、流体混合器921の上流に対する流体混合器921の下流における検出対象成分の流れ方向の拡がりが小さくなる。   That is, the time during which the detection target component flowing in the fluid mixer 921 stays in the fluid mixer 921 depends on the place where the detection target component flows in the cross section of the inlet (flow path 115 before branching) of the fluid mixer 921. Are equivalent. As a result, the spread in the flow direction of the detection target component downstream of the fluid mixer 921 with respect to the upstream of the fluid mixer 921 is reduced.

したがって、アミノ酸分析装置の分析結果であるクロマトグラムのピーク幅が拡がらず、アミノ酸分析装置の分析精度を向上することができる。   Therefore, the peak width of the chromatogram that is the analysis result of the amino acid analyzer does not widen, and the analysis accuracy of the amino acid analyzer can be improved.

なお、図4の(b)に示した流路において、+Z軸方向に延長した後、+X軸方向に延び、その後、−Z軸方向に延びているが、+Z軸方向への延長距離、+X軸方向への延長距離、及び−Z軸方向への延長距離は、流路の断面積、流体の流量等を考慮して、流路中心部分の検出対象成分と流路壁面部分の検出対象成分の位置関係が、流体混合器の出口部分で最も接近するように、つまり、拡がり922が最も小となるように設定することが可能である。   In the flow path shown in FIG. 4B, after extending in the + Z-axis direction, the channel extends in the + X-axis direction, and then extends in the −Z-axis direction, but the extension distance in the + Z-axis direction, + X The extension distance in the axial direction and the extension distance in the -Z-axis direction are determined in consideration of the cross-sectional area of the flow path, the flow rate of the fluid, etc. Can be set so as to be closest to each other at the outlet portion of the fluid mixer, that is, the spread 922 is the smallest.

図4に示した流体混合器921は、分岐前流路115と合流流路117との間でXY平面内での速い流れの位置と遅い流れの位置とを入れ替えた。しかし、XZ平面の流速分布によるXZ平面での検出対象成分の流れの拡がりが存在し、図4に示した流れの位置の入れ替えをXZ平面についても行うことで、XZ平面での検出対象成分の流れ方向の拡がりを抑えることができる。   The fluid mixer 921 shown in FIG. 4 interchanges the position of the fast flow and the position of the slow flow in the XY plane between the pre-branch channel 115 and the merge channel 117. However, the flow of the detection target component in the XZ plane due to the flow velocity distribution of the XZ plane exists, and the position of the detection target component in the XZ plane is changed by performing the change of the flow position shown in FIG. The spread in the flow direction can be suppressed.

XZ平面での流れの位置の入れ替えは、図4の流路921をX軸回りに角度90度回転させた流路構造に流体を流せばよい。XY平面での速い流れの位置と遅い流れの位置とを入れ替えを行う流体混合器と、XZ平面での速い流れの位置と遅い流れの位置とを入れ替えを行う流体混合器とを接続し、一つの流体混合器とすることができる。   In order to change the position of the flow in the XZ plane, the fluid may be flowed through a flow channel structure in which the flow channel 921 in FIG. 4 is rotated by an angle of 90 degrees around the X axis. A fluid mixer that exchanges the position of the fast flow and the slow flow in the XY plane and a fluid mixer that exchanges the position of the fast flow and the slow flow in the XZ plane are connected to each other. There can be two fluid mixers.

XZ平面での流れの位置の入れ替えの流路構造を以下に説明する。   The flow path structure for changing the position of the flow in the XZ plane will be described below.

図4に示したY軸をZ軸とし、Z軸をY軸として、分岐前の流路115(第1の流路)に流体が+X軸方向に流れ、その下流の分岐流路116(第2の流路、第3の流路)で+Z軸方向と−Z軸方向の流れに分岐し、その下流でX軸方向に流れが曲がり、その下流で+Z軸方向と−Z軸方向に流れが曲がる。そして、その下流で第2の流路と第3の流路は合流部に接続され、分岐した流体がこの合流部で合流する。この合流部は第4の流路に接続されており、第4の流路は、−X軸方向に延び、流体の流れも−X軸方向に曲がる。   With the Y-axis shown in FIG. 4 as the Z-axis and the Z-axis as the Y-axis, the fluid flows in the + X-axis direction in the channel 115 (first channel) before branching, and the branch channel 116 (first The second flow path and the third flow path), the flow branches in the + Z-axis direction and the −Z-axis direction, and the flow is bent downstream in the X-axis direction, and downstream in the + Z-axis direction and −Z-axis direction. Turns. And the 2nd flow path and the 3rd flow path are connected to the confluence | merging part in the downstream, and the branched fluid merges in this confluence | merging part. This confluence portion is connected to the fourth flow path, the fourth flow path extends in the −X axis direction, and the flow of the fluid also bends in the −X axis direction.

さらに、図4の(b)に示すように、第4の流路は、第5の流路に接続され、この第5の流路は、+Y軸方向に流れが曲がり、その下流で+X軸方向に流れが曲がり、その下流で−Y軸方向に流れが曲がり、その下流で+X軸方向に流れが曲がる。   Further, as shown in FIG. 4B, the fourth flow path is connected to the fifth flow path, and the flow of the fifth flow path is bent in the + Y-axis direction, and the downstream of the + X-axis The flow bends in the direction, the flow bends in the −Y-axis direction downstream thereof, and the flow bends in the + X-axis direction downstream thereof.

そして、第5の流路は、+X軸方向に延び、流体は+X軸方向に流れる。   The fifth flow path extends in the + X axis direction, and the fluid flows in the + X axis direction.

また、XY平面において、Y軸方向から流体が流入する場合は、図4のX軸とY軸とを入れ替えた場合の流路構造となる。この場合、合流後の流路117における流体の流れは、−Y方向となる。   Further, when the fluid flows in from the Y-axis direction on the XY plane, the flow path structure is obtained when the X axis and the Y axis in FIG. 4 are interchanged. In this case, the fluid flow in the flow path 117 after joining is in the −Y direction.

さらに、YZ平面において、+Z軸方向から流体が流入する場合は、図4において、X軸とZ軸とを入れ替えた場合の流路構造となる。この場合、合流後の流路117における流体の流れは、−Z方向となる。YZ平面において、−Z軸方向から流体が流入する場合は、合流後の流路117における流体の流れは、+Z方向となる。   Further, in the YZ plane, when the fluid flows in from the + Z axis direction, the flow path structure is obtained when the X axis and the Z axis are interchanged in FIG. In this case, the fluid flow in the flow path 117 after joining is in the −Z direction. In the YZ plane, when the fluid flows in from the −Z axis direction, the flow of the fluid in the flow path 117 after joining is in the + Z direction.

XY平面での速い流れの位置と遅い流れの位置とを入れ替えを行う流体混合器と、XZ平面での速い流れの位置と遅い流れの位置とを入れ替えを行う流体混合器と、YZ平面での速い流れの位置と遅い流れの位置とを入れ替えを行う流体混合器とを接続し、一つの流体混合器とすることも可能である。各流体混合器をそれぞれ複数個とし、6つ以上の流体混合器を接続して流体混合器を構成することも可能である。   A fluid mixer that swaps fast and slow flow positions in the XY plane, a fluid mixer that swaps fast and slow flow positions in the XZ plane, and a YZ plane It is also possible to connect a fluid mixer that exchanges the position of the fast flow and the position of the slow flow to form one fluid mixer. It is also possible to configure a fluid mixer by providing a plurality of fluid mixers and connecting six or more fluid mixers.

ここで、流体混合器に流路の一例として、断面形状が正方形であり、一辺の寸法が100〜1000マイクロメートルの配管を使用することができる。   Here, as an example of the flow path in the fluid mixer, a pipe having a square cross-sectional shape and a side dimension of 100 to 1000 micrometers can be used.

図5は、本発明の第1の実例による流体混合器の流路形状を示す図である。なお、後述する要素101〜106は、図4に示した本発明の原理に従って形成されているが、図示の都合上、分岐した流体が合流した直後に、−X軸方向、−Y軸方向又は+Z軸方向に流体を流す流路は省略されている。   FIG. 5 is a diagram showing the flow channel shape of the fluid mixer according to the first example of the present invention. Elements 101 to 106 to be described later are formed according to the principle of the present invention shown in FIG. 4. However, for convenience of illustration, immediately after the branched fluids merge, the −X axis direction, −Y axis direction, or A flow path for flowing fluid in the + Z-axis direction is omitted.

図5において、直交座標系の3軸を、X軸、Y軸、Z軸とすると、本発明の第1の実施例における流体混合器は、A液(試料液に相当)401と、B液(試薬液に相当)402が、それぞれの入口であるA液導入口404、B液導入口405から、−Z軸方向に導入され、A液401は+X軸方向に流れ、B液402は−X軸方向に流れて、合流部801で互いに合流し、その後に−Z軸方向に流れる。   In FIG. 5, assuming that the three axes of the orthogonal coordinate system are the X axis, the Y axis, and the Z axis, the fluid mixer in the first embodiment of the present invention has a liquid A (corresponding to a sample liquid) 401 and a liquid B. (Equivalent to reagent solution) 402 is introduced in the −Z axis direction from the A liquid inlet 404 and the B liquid inlet 405 which are the respective inlets, the A liquid 401 flows in the + X axis direction, and the B liquid 402 is − They flow in the X-axis direction, merge with each other at the merging portion 801, and then flow in the -Z-axis direction.

そのとき、A液401とB液402とがY軸方向から見て左右に位置する(流路断面A)。その下流で、−Y軸方向と+Y軸方向とに分岐部802で分岐し、+X軸方向に流れる(流路断面B)。その後、−Y軸方向と+Y軸方向に流れ、合流部803で合流し、−X軸方向から+Z軸方向に流された後、+X軸方向に流れ、分岐部804で、+Z軸方向と−Z軸方向に分岐し、+X軸方向に流れた後(流路断面C)、+Z軸方向と−Z軸方向に流れて合流部805で合流する。その後、−X軸方向に流れた後、+Y軸方向に流れ、+X軸方向と−X軸方向に分岐部806で分岐し、+Y軸方向に流れた後(流路断面D)、+X軸方向、−X軸方向に流れて、合流部807で合流する。その後、−Y軸方向に流れた後、+Z軸方向に流れ、+Y軸方向と−Y軸方向に分岐部808で分岐し、−Z軸方向に流れ(流路断面E)、+Y軸方向と−Y軸方向に流れて合流部809で合流する。   At that time, the liquid A 401 and the liquid B 402 are located on the left and right when viewed from the Y-axis direction (flow path cross section A). On the downstream side, the branch portion 802 branches in the −Y axis direction and the + Y axis direction, and flows in the + X axis direction (channel cross section B). After that, it flows in the −Y axis direction and the + Y axis direction, merges at the merge portion 803, flows from the −X axis direction to the + Z axis direction, and then flows in the + X axis direction, and at the branch portion 804, the + Z axis direction and − After branching in the Z-axis direction and flowing in the + X-axis direction (channel cross section C), the flow flows in the + Z-axis direction and the −Z-axis direction and merges at the junction 805. Then, after flowing in the -X axis direction, flowing in the + Y axis direction, branching in the + X axis direction and the -X axis direction at the branching portion 806, and flowing in the + Y axis direction (channel cross section D), the + X axis direction , Flows in the −X axis direction, and merges at the merge portion 807. Then, after flowing in the −Y-axis direction, it flows in the + Z-axis direction, branches in the + Y-axis direction and the −Y-axis direction at the branch portion 808, flows in the −Z-axis direction (channel cross section E), -Flows in the Y-axis direction and merges at the junction 809.

その後、+Z軸方向に流れた後、+X軸方向に流れ、+Z軸方向、続いて+X軸方向に流れた後、+Z軸方向と−Z軸方向に分岐部810で分岐する。そして、+X軸方向に流れた(流路断面F)後、+Z軸方向と−Z軸方向に流れ、合流部811で合流し、−X軸方向に流れた後、+Y軸方向に流れ、+X軸方向と−X軸方向に分岐部812で分岐し、+Y軸方向、+X軸方向、−X軸方向に流れた後、合流部813で合流し、−Y軸方向に流れた後、+Z軸方向に流れる。そして、混合液導出口406から混合液403が導出される。   Then, after flowing in the + Z-axis direction, it flows in the + X-axis direction, and then flows in the + Z-axis direction and then in the + X-axis direction, and then branches at the branching unit 810 in the + Z-axis direction and the −Z-axis direction. Then, after flowing in the + X axis direction (channel cross section F), it flows in the + Z axis direction and the −Z axis direction, merges at the merging portion 811, flows in the −X axis direction, then flows in the + Y axis direction, and + X Branches in the axial direction and −X axis direction at the branch portion 812, flows in the + Y axis direction, + X axis direction, and −X axis direction, then merges in the merge portion 813, flows in the −Y axis direction, and then + Z axis Flow in the direction. Then, the liquid mixture 403 is led out from the liquid mixture outlet 406.

A液401とB液402とは、流路内で層を形成し、A液401とB液402とが上下または左右に位置する。そして、A液401とB液402との2液の層間の距離が短くなり、互いに混合する。   The A liquid 401 and the B liquid 402 form a layer in the flow path, and the A liquid 401 and the B liquid 402 are positioned vertically or horizontally. Then, the distance between the two liquids of the liquid A 401 and the liquid B 402 is shortened and mixed with each other.

このように、要素101〜106をXY軸方向とXZ軸方向に繋ぎ合わせることで、1番目の要素101と3番目の要素103と6番目の要素106とは、XY軸方向の流速分布による拡がりを抑制し、2番目の要素102と4番目の要素104と5番目の要素105とは、XZ軸方向の流速分布による拡がりを抑制して、出口406での成分分布の拡がりを抑えることができる。   In this way, by connecting the elements 101 to 106 in the XY-axis direction and the XZ-axis direction, the first element 101, the third element 103, and the sixth element 106 are spread by the flow velocity distribution in the XY-axis direction. The second element 102, the fourth element 104, and the fifth element 105 can suppress the spread due to the flow velocity distribution in the XZ-axis direction and suppress the spread of the component distribution at the outlet 406. .

つなぎ合わせる要素数で、A液とB液との混合のしやすさが決まる。流路幅(119)が0.2mm、1つの要素の流路の長さ(118)が1.0mmとすると、5個目の要素数の多層流の厚さ(120)は0.00625mmとなる。検出対象成分のアミノ酸の一種であるグリシンの水中における拡散係数は1.04×10−9/sであるため、グリシンが水中で5個目の要素の多層流の厚さ0.00625mmを拡散する時間は0.009sである。流量が0.75mL/minのとき、1つの要素を流体が通過する平均時間は0.0137sであることから、6個目の要素を通過したときグリシンは試薬液と完全に混合する。 The number of elements to be joined determines the ease of mixing the liquid A and the liquid B. When the flow path width (119) is 0.2 mm and the flow path length (118) of one element is 1.0 mm, the thickness (120) of the multilayer flow of the fifth element number is 0.00625 mm. Become. Since the diffusion coefficient of glycine, which is a kind of amino acid to be detected, in water is 1.04 × 10 −9 m 2 / s, the thickness of the multilayer flow of the fifth element in water is 0.00625 mm. The diffusion time is 0.009 s. When the flow rate is 0.75 mL / min, the average time for the fluid to pass through one element is 0.0137 s, so that glycine completely mixes with the reagent solution when it passes through the sixth element.

このように、検出対象成分の拡散係数と流路寸法と流量に応じて要素の数を設けておけば、検出対象成分と試薬液が本発明の流体混合器を通過することで完全に混合する。   In this way, if the number of elements is set according to the diffusion coefficient, flow path dimensions, and flow rate of the detection target component, the detection target component and the reagent liquid are completely mixed by passing through the fluid mixer of the present invention. .

図7は、混合率と、合流部からの距離との関係のシミュレーション結果を示すグラフである。   FIG. 7 is a graph showing a simulation result of the relationship between the mixing ratio and the distance from the junction.

図7の横軸は、A液とB液の合流部からの距離(m)を示し、縦軸は、A液とB液とが流路断面に均一に拡がっているかを表す混合率を示す。混合率100%が完全に混合した状態である。   The horizontal axis of FIG. 7 shows the distance (m) from the confluence | merging part of A liquid and B liquid, and a vertical axis | shaft shows the mixing rate showing whether A liquid and B liquid spread uniformly in the flow-path cross section. . The mixing rate is 100%.

本発明の流体混合器での混合率の変化111(実線)と、本発明とは異なりT字コネクタでの混合率の変化112(破線)とを比較すると、本発明では、0.008m近辺で混合率がほぼ100%となっているのに対し、T字コネクタの場合は、混合率がほぼ100%となるのに約2m必要としている。このように、本発明の流体混合器ではT字コネクタよりも短い距離で混合が可能なことがわかる。   When the change 111 (solid line) in the fluid mixer of the present invention is compared with the change 112 (broken line) in the T-connector unlike the present invention, in the present invention, in the vicinity of 0.008 m, Whereas the mixing rate is almost 100%, in the case of the T-shaped connector, about 2 m is required for the mixing rate to be almost 100%. Thus, it can be seen that the fluid mixer of the present invention can mix at a shorter distance than the T-shaped connector.

したがって、本発明の流体混合器をアミノ酸分析装置に適用すると、検出対象成分と試薬の混合に必要な配管の長さが短くなるので、本発明の流体混合器を用いないアミノ酸分析装置よりも分析時間を短くすることができる。   Therefore, when the fluid mixer of the present invention is applied to an amino acid analyzer, the length of piping necessary for mixing the detection target component and the reagent is shortened. Therefore, the analysis is performed more than the amino acid analyzer that does not use the fluid mixer of the present invention. Time can be shortened.

また、本発明の流体混合器をアミノ酸分析装置に適用すると、検出対象成分と試薬の混合に必要な配管の長さが短くなるので、本発明の流体混合器を用いないアミノ酸分析装置よりもポンプの送液圧力を小さくすることができる。   Further, when the fluid mixer of the present invention is applied to an amino acid analyzer, the length of piping necessary for mixing the detection target component and the reagent is shortened, so that the pump is more pumped than the amino acid analyzer not using the fluid mixer of the present invention. The liquid feeding pressure can be reduced.

図8は、本発明の第2、第3の実施例における流体混合器の概略構成図である。図8の(a)が本発明の第2の実施例であり、図8の(b)が本発明の第3の実施例である。   FIG. 8 is a schematic configuration diagram of a fluid mixer in the second and third embodiments of the present invention. FIG. 8A shows a second embodiment of the present invention, and FIG. 8B shows a third embodiment of the present invention.

分岐流路の形状は、図4に記載のようなZ軸方向から見て、四角形の流路に限らず、図8の(a)に示す円形または楕円形の形状や、図8の(b)に示す菱形又は三角形の形状でもよい。つまり、流路の曲り部は直角以外の角度又は曲線状に曲がっていてもよい。   The shape of the branch flow path is not limited to a square flow path when viewed from the Z-axis direction as shown in FIG. 4, but is a circular or elliptical shape shown in FIG. The shape of a rhombus or triangle shown in FIG. That is, the bent portion of the flow path may be bent at an angle other than a right angle or a curved shape.

図8の(a)に示す楕円形の形状の流路では、図4に示す四角形の流路に比べて、曲がり部での淀みや渦流がより小さくなる。このため、検出対象成分の流路内の流れ方向の拡がりが小さくなり、アミノ酸分析装置の分析結果であるクロマトグラムのピーク幅が小さくなって、分析精度が向上する。   In the elliptical channel shown in FIG. 8A, the stagnation and eddy current at the bent portion are smaller than those in the rectangular channel shown in FIG. For this reason, the spread of the flow direction of the detection target component in the flow path is reduced, the peak width of the chromatogram which is the analysis result of the amino acid analyzer is reduced, and the analysis accuracy is improved.

また、図8の(b)に示す菱形の形状では、図4に示す四角形の流路に比べて曲がりの数が少ないため、曲がり部での淀みや渦流による検出対象成分の流路内の流れ方向の拡がりが小さくなる。このため、アミノ酸分析装置の分析結果であるクロマトグラムのピーク幅が小さくなり、分析精度が向上する。   In addition, in the rhombus shape shown in FIG. 8B, since the number of bends is smaller than that in the square flow path shown in FIG. 4, the flow of the detection target component in the flow path due to stagnation or vortex flow at the bends. Directional spread is reduced. For this reason, the peak width of the chromatogram which is the analysis result of the amino acid analyzer is reduced, and the analysis accuracy is improved.

図9は、本発明の第4に実施例である流体混合器をアミノ酸分析装置に適用した例の概略構成図である。   FIG. 9 is a schematic configuration diagram of an example in which a fluid mixer according to a fourth embodiment of the present invention is applied to an amino acid analyzer.

図1に示した例と、図9に示した例との相違点は、図1に示した例においては、流体混合器13と、反応部配管9を有する加温機10とが別箇に設けられているが、図9に示した例においては、本発明の流体混合器を反応部配管と兼用することにより、流体混合器と加温器とを一つとした流体混合加温器30として構成した点である。流体混合加温機30は、例えば、図5の構成の流路に加温機構を備えている。   The difference between the example shown in FIG. 1 and the example shown in FIG. 9 is that, in the example shown in FIG. 1, the fluid mixer 13 and the warming machine 10 having the reaction section pipe 9 are separately provided. In the example shown in FIG. 9, the fluid mixer / heater 30 is combined with the fluid mixer / heater by combining the fluid mixer of the present invention with the reaction pipe. It is a point that has been configured. The fluid mixing / warming machine 30 includes, for example, a heating mechanism in the flow path having the configuration shown in FIG.

この第4の実施例は、第1の実施例と同様な効果を有する他、流体混合器と加温機とを一体化してアミノ酸分析装置の構造を簡素化することができる。   The fourth embodiment has the same effects as the first embodiment, and can simplify the structure of the amino acid analyzer by integrating the fluid mixer and the warmer.

なお、本発明の流体混合器は、流体が互いに分岐した後に合流するまでの流路距離と、合流して再び分岐するまでの流路距離は、流路断面積、材質が同一であることを条件として原則的に同一である。ただし、流体流量、流路断面積を考慮して、流速分布が分岐前の流速分布と同一となる距離未満まで合流後の流路距離を延長可能である。   In the fluid mixer of the present invention, the flow path distance until the fluids are merged after branching from each other and the flow path distance until the fluids are merged and branched again are the same in cross-sectional area and material. The conditions are basically the same. However, in consideration of the fluid flow rate and the flow path cross-sectional area, the flow path distance after merging can be extended to less than the distance at which the flow velocity distribution is the same as the flow velocity distribution before branching.

また、上述した実施例においては、+X軸方向に流れる流体を2つに分岐し、合流した後に、−X軸方向に流すことにより、流路中央成分を壁面側成分の下流側とし、+Z軸方向→+X軸方向→−Z軸方向に流し、下流側となった流路を跨ぐ構成としているが、本発明はこの構成に限定されるものではない。   In the above-described embodiment, the fluid flowing in the + X axis direction is branched into two, and after joining, the flow channel central component is set to the downstream side of the wall surface side component by flowing in the −X axis direction. Although it is set as the structure which flows in the direction-> + X-axis direction->-Z-axis direction and straddles the flow path which became the downstream, this invention is not limited to this structure.

例えば、+X軸方向に流れる流体を2つに分岐し、合流した後に、+Z軸方向に流した後、−X軸方向に流し、その後、+Z軸方向→+X軸方向→−Z軸方向に流し、下流側となった流路を跨ぐ構成とすることも可能である。   For example, the fluid flowing in the + X-axis direction is branched into two, merged, then flowed in the + Z-axis direction, then flowed in the -X-axis direction, and then flowed in the + Z-axis direction → + X-axis direction → -Z-axis direction It is also possible to adopt a configuration straddling the flow path on the downstream side.

以上のように、本発明の流体混合器又は流体混合方法をアミノ酸分析装置に適用すると、クロマトグラムのピーク幅の拡がりが小さく、従来の流体混合器を用いるアミノ酸分析装置よりも分析精度が向上する。   As described above, when the fluid mixer or the fluid mixing method of the present invention is applied to an amino acid analyzer, the peak width of the chromatogram is small and the analysis accuracy is improved as compared with the amino acid analyzer using a conventional fluid mixer. .

また、本発明の流体混合器又は流体混合方法をアミノ酸分析装置に適用すると、検出対象成分と試薬の混合に必要な配管の長さが短くなるので、 流体混合器を用いないアミノ酸分析装置よりも分析時間が短くなる。   In addition, when the fluid mixer or the fluid mixing method of the present invention is applied to an amino acid analyzer, the length of the pipe necessary for mixing the detection target component and the reagent is shortened, so that the amino acid analyzer does not use a fluid mixer. Analysis time is shortened.

さらに、本発明の流体混合器又は流体混合方法をアミノ酸分析装置に適用すると、検出対象成分と試薬の混合に必要な配管の長さが短くなるので、流体混合器を用いないアミノ酸分析装置よりもポンプの送液圧力が小さくなる。   Furthermore, when the fluid mixer or the fluid mixing method of the present invention is applied to an amino acid analyzer, the length of piping necessary for mixing the component to be detected and the reagent is shortened, so that the amino acid analyzer does not use a fluid mixer. The pumping pressure is reduced.

1・・・試料液容器、2・・・溶離液容器、3・・・オートサンプラー、4・・・溶離液送液ポンプ、5・・・試薬液容器、6・・・試薬液送液ポンプ、7・・・分離カラム、9・・・反応部配管、10・・・加温機、11・・・検出器、12・・・廃液、13・・・流体混合器、14・・・試料液、15・・・溶離液、16・・・試薬液、17・・・配管、18・・・廃液容器、19・・・検出対象成分、30・・・流体混合加温機、115・・・分岐前の流路、116・・・分岐流路、117・・・合流後の流路、407〜409・・・基板   DESCRIPTION OF SYMBOLS 1 ... Sample liquid container, 2 ... Eluent liquid container, 3 ... Autosampler, 4 ... Eluent liquid feed pump, 5 ... Reagent liquid container, 6 ... Reagent liquid feed pump , 7 ... Separation column, 9 ... Reaction section piping, 10 ... Heating machine, 11 ... Detector, 12 ... Waste liquid, 13 ... Fluid mixer, 14 ... Sample Liquid, 15 ... eluent, 16 ... reagent solution, 17 ... piping, 18 ... waste liquid container, 19 ... component to be detected, 30 ... fluid mixing and heating machine, 115 ...・ Flow path before branching, 116... Branching flow path, 117... Flow path after joining, 407 to 409.

Claims (12)

少なくとも2種類の流体を混合させる流体流路を有する流体混合器において、
直交座標系の互いに直交する3軸を、第1軸、第2軸、第3軸としたとき、
+第1軸方向に延び、流体導入口からの流体を+第1軸方向に流す第1の流路と、
上記第1の流路から分岐する第2の流路及び第3の流路と、
上記第2の流路と第3の流路と接続された合流部と、
上記合流部に接続され、−第1軸方向に延びる第4の流路と、
上記第4の流路に接続され、流体を導出する導出口に導出する導出路と、
を備えることを特徴とする流体混合器。
In a fluid mixer having a fluid flow path for mixing at least two kinds of fluids,
When the three orthogonal axes of the orthogonal coordinate system are the first axis, the second axis, and the third axis,
A first flow path extending in the first axial direction and flowing fluid from the fluid inlet in the first axial direction;
A second channel and a third channel branched from the first channel;
A merging portion connected to the second flow path and the third flow path;
A fourth flow path connected to the junction and extending in the first axial direction;
A lead-out path that is connected to the fourth flow path and leads to a lead-out port that leads the fluid;
A fluid mixer comprising:
請求項1に記載の流体混合器において、
上記第2の流路は、上記第1の流路から+第2軸方向に延び、+第1軸方向に延び、−第2軸方向に延びて上記合流部に接続され、
上記第3の流路は、上記第1の流路から−第2軸方向に延び、+第1軸方向に延び、+第2軸方向に延びて上記合流部に接続されることを特徴とする流体混合器。
The fluid mixer according to claim 1.
The second flow path extends from the first flow path in the + second axial direction, extends in the first axial direction, extends in the second axial direction, and is connected to the junction.
The third flow path extends from the first flow path in the −second axial direction, extends in the + first axial direction, extends in the + second axial direction, and is connected to the merging portion. Fluid mixer.
請求項1に記載の流体混合器において、
上記第2の流路は、上記第1の流路から+第3軸方向に延び、+第1軸方向に延び、−第3軸方向に延びて上記合流部に接続され、
上記第3の流路は、上記第1の流路から−第3軸方向に延び、+第1軸方向に延び、+第3軸方向に延びて上記合流部に接続されることを特徴とする流体混合器。
The fluid mixer according to claim 1.
The second channel extends from the first channel in the + third axial direction, extends in the first axial direction, extends in the third axial direction, and is connected to the junction.
The third flow path extends from the first flow path in the −third axial direction, extends in the + first axial direction, extends in the + third axial direction, and is connected to the junction. Fluid mixer.
請求項2及び請求項3に記載の流体混合器を互いに接続されることを特徴とする流体混合器。   A fluid mixer, wherein the fluid mixers according to claim 2 and claim 3 are connected to each other. 請求項2に記載の流体混合器において、
上記第1軸をX軸、第2軸をY軸、第3軸をZ軸とした流体混合器である第1の要素と、
上記第1軸をX軸、第2軸をZ軸、第3軸をY軸とした流体混合器であり、上記第1の要素の導出路に接続される第2の要素と、
上記第1軸をY軸、第2軸をX軸、第3軸をZ軸とした流体混合器であり、上記第2の要素の導出路に接続される第3の要素と、
上記第1軸をZ軸、第2軸をY軸、第3軸をX軸とした流体混合器であり、上記第3の要素の導出路に接続される第4の要素と、
上記第1軸をX軸、第2軸をZ軸、第3軸をY軸とした流体混合器であり、上記第4の要素の導出路に接続される第5の要素と、
上記第1軸をY軸、第2軸をX軸、第3軸をZ軸とした流体混合器であり、上記第5の要素の導出路に接続される第6の要素と、
を備えることを特徴とする流体混合器。
The fluid mixer of claim 2 wherein
A first element that is a fluid mixer having the X axis as the first axis, the Y axis as the second axis, and the Z axis as the third axis;
A fluid mixer having the X axis as the first axis, the Z axis as the second axis, and the Y axis as the third axis, and a second element connected to the lead-out path of the first element;
A fluid mixer having the first axis as the Y-axis, the second axis as the X-axis, and the third axis as the Z-axis, and a third element connected to the lead-out path of the second element;
A fluid mixer having the first axis as the Z axis, the second axis as the Y axis, and the third axis as the X axis; a fourth element connected to the lead-out path of the third element;
A fluid mixer having the X axis as the first axis, the Z axis as the second axis, and the Y axis as the third axis, and a fifth element connected to the lead-out path of the fourth element;
A fluid mixer having the first axis as the Y axis, the second axis as the X axis, and the third axis as the Z axis, and a sixth element connected to the lead-out path of the fifth element;
A fluid mixer comprising:
アミノ酸を分析するアミノ酸分析装置において、
試料液と溶離液とを合流させるオートサンプラーと、
上記オートサンプラーから供給される混合液から検出対象成分を分離する分離カラムと、
上記分離カラムにより分離された検査対象成分と試薬液とを混合する流体混合器であり、直交座標系の互いに直交する3軸を、第1軸、第2軸、第3軸としたとき、+第1軸方向に延び、流体導入口からの流体を+第1軸方向に流す第1の流路と、上記第1の流路から分岐する第2の流路及び第3の流路と、上記第2の流路と第3の流路と接続された合流部と、上記合流部に接続され、−第1軸方向に延びる第4の流路と、上記第4の流路に接続され、流体を流体を導出する導出口に導出する導出路とを有する流体混合器と、
上記流体混合器により混合された試薬液及び検査対象成分を加温する加温機と、
上記加温機で生じる反応生成物を検出する検出器と、
を備えることを特徴とするアミノ酸分析装置。
In an amino acid analyzer for analyzing amino acids,
An autosampler that combines the sample solution and the eluent,
A separation column for separating the detection target component from the mixture supplied from the autosampler;
It is a fluid mixer that mixes the test target component separated by the separation column and the reagent solution, and when the three orthogonal axes of the orthogonal coordinate system are defined as the first axis, the second axis, and the third axis, A first flow path extending in the first axial direction and flowing the fluid from the fluid inlet in the first axial direction; a second flow path and a third flow path branched from the first flow path; A merge portion connected to the second flow channel and the third flow channel; a fourth flow channel connected to the merge portion and extending in the first axial direction; and connected to the fourth flow channel. A fluid mixer having a lead-out path for leading the fluid to a lead-out port for leading the fluid;
A heater for heating the reagent solution and the component to be inspected mixed by the fluid mixer;
A detector for detecting a reaction product generated in the warmer;
An amino acid analyzer comprising:
請求項6に記載のアミノ酸分析装置において、
上記流体混合器の上記第2の流路は、上記第1の流路から+第2軸方向に延び、+第1軸方向に延び、−第2軸方向に延びて上記合流部に接続され、
上記流体混合機の上記第3の流路は、上記第1の流路から−第2軸方向に延び、+第1軸方向に延び、+第2軸方向に延びて上記合流部に接続されることを特徴とするアミノ酸分析装置。
The amino acid analyzer according to claim 6,
The second flow path of the fluid mixer extends from the first flow path in the + second axial direction, extends in the + first axial direction, extends in the −second axial direction, and is connected to the merge portion. ,
The third flow path of the fluid mixer extends from the first flow path in the second axial direction, extends in the first axial direction, extends in the second axial direction, and is connected to the merge portion. An amino acid analyzer characterized by that.
請求項6に記載のアミノ酸分析装置において、
上記流体混合器の上記第2の流路は、上記第1の流路から+第3軸方向に延び、+第1軸方向に延び、−第3軸方向に延びて上記合流部に接続され、
上記流体混合機の上記第3の流路は、上記第1の流路から−第3軸方向に延び、+第1軸方向に延び、+第3軸方向に延びて上記合流部に接続されることを特徴とするアミノ酸分析装置。
The amino acid analyzer according to claim 6,
The second flow path of the fluid mixer extends from the first flow path in the +3 axis direction, extends in the +1 axis direction, extends in the −3 axis direction, and is connected to the merge portion. ,
The third flow path of the fluid mixer extends from the first flow path in the −3rd axial direction, extends in the + 1st axial direction, and extends in the + 3rd axial direction and is connected to the merging portion. An amino acid analyzer characterized by that.
アミノ酸を分析するアミノ酸分析装置において、
試料液と溶離液とを合流させるオートサンプラーと、
上記オートサンプラーから供給される混合液から検出対象成分を分離する分離カラムと、
上記分離カラムにより分離された検査対象成分と試薬液とを混合し、加温する流体混合加温器であり、直交座標系の互いに直交する3軸を、第1軸、第2軸、第3軸としたとき、+第1軸方向に延び、流体導入口からの流体を+第1軸方向に流す第1の流路と、上記第1の流路から分岐する第2の流路及び第3の流路と、上記第2の流路と第3の流路と接続された合流部と、上記合流部に接続され、−第1軸方向に延びる第4の流路と、上記第4の流路に接続され、流体を流体を導出する導出口に導出する導出路とを有する流体混合部と、この流体混合部を加温する加温部と有するする流体混合加温器と、
上記流体混合器により混合された試薬液及び検査対象成分を加温する加温機と、
上記加温機で生じる反応生成物を検出する検出器と、
を備えることを特徴とするアミノ酸分析装置。
In an amino acid analyzer for analyzing amino acids,
An autosampler that combines the sample solution and the eluent,
A separation column for separating the detection target component from the mixture supplied from the autosampler;
A fluid mixing and heating device that mixes and heats the component to be inspected and the reagent solution separated by the separation column, and the three axes orthogonal to each other in the orthogonal coordinate system are represented by a first axis, a second axis, and a third axis. When a shaft is used, the first flow path extends in the first axial direction and allows the fluid from the fluid inlet to flow in the first axial direction, the second flow path branched from the first flow path, and the second flow path 3, a merging section connected to the second and third flutes, a fourth chan- nel connected to the merging section and extending in the first axial direction, and the fourth And a fluid mixing / heating device having a fluid mixing section having a lead-out path for leading the fluid to a lead-out port for leading the fluid, and a heating section for heating the fluid mixing section,
A heater for heating the reagent solution and the component to be inspected mixed by the fluid mixer;
A detector for detecting a reaction product generated in the warmer;
An amino acid analyzer comprising:
請求項9に記載のアミノ酸分析装置において、
上記流体混合部の上記第2の流路は、上記第1の流路から+第2軸方向に延び、+第1軸方向に延び、−第2軸方向に延びて上記合流部に接続され、
上記流体混合機の上記第3の流路は、上記第1の流路から−第2軸方向に延び、+第1軸方向に延び、+第2軸方向に延びて上記合流部に接続されることを特徴とするアミノ酸分析装置。
The amino acid analyzer according to claim 9,
The second flow path of the fluid mixing section extends from the first flow path in the + second axial direction, extends in the + first axial direction, extends in the −second axial direction, and is connected to the merge section. ,
The third flow path of the fluid mixer extends from the first flow path in the second axial direction, extends in the first axial direction, extends in the second axial direction, and is connected to the merge portion. An amino acid analyzer characterized by that.
請求項9に記載のアミノ酸分析装置において、
上記流体混合部の上記第2の流路は、上記第1の流路から+第3軸方向に延び、+第1軸方向に延び、−第3軸方向に延びて上記合流部に接続され、
上記流体混合機の上記第3の流路は、上記第1の流路から−第3軸方向に延び、+第1軸方向に延び、+第3軸方向に延びて上記合流部に接続されることを特徴とするアミノ酸分析装置。
The amino acid analyzer according to claim 9,
The second flow path of the fluid mixing unit extends from the first flow path in the +3 axis direction, extends in the +1 axis direction, extends in the −3 axis direction, and is connected to the merge portion. ,
The third flow path of the fluid mixer extends from the first flow path in the −3rd axial direction, extends in the + 1st axial direction, and extends in the + 3rd axial direction and is connected to the merging portion. An amino acid analyzer characterized by that.
少なくとも2種類の流体を混合させる流体流路を有する流体混合方法において、
直交座標系の互いに直交する3軸を、第1軸、第2軸、第3軸としたとき、
+第1軸方向に延び、流体導入口からの流体を+第1軸方向に流体を流し、
上記第1の流路から第2の流路及び第3の流路に流体を分岐し、
上記第2の流路と第3の流路とに分岐された流体を合流部で合流し、
上記合流部で合流した流体を、−第1軸方向に流し、
上記流体を導出口に導出することを特徴とする流体混合方法。
In a fluid mixing method having a fluid flow path for mixing at least two kinds of fluids,
When the three orthogonal axes of the orthogonal coordinate system are the first axis, the second axis, and the third axis,
+ Extending in the first axial direction, flowing fluid from the fluid inlet + flowing fluid in the first axial direction,
Branching the fluid from the first flow path to the second flow path and the third flow path;
The fluid branched into the second flow path and the third flow path is merged at the merge section,
The fluid merged at the merging portion is flowed in the first axial direction,
A fluid mixing method, wherein the fluid is led out to a lead-out port.
JP2011224314A 2011-10-11 2011-10-11 Fluid mixer and fluid mixing method Expired - Fee Related JP5781414B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011224314A JP5781414B2 (en) 2011-10-11 2011-10-11 Fluid mixer and fluid mixing method
PCT/JP2012/075849 WO2013054742A1 (en) 2011-10-11 2012-10-04 Fluid mixer and fluid mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224314A JP5781414B2 (en) 2011-10-11 2011-10-11 Fluid mixer and fluid mixing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015141155A Division JP2015194499A (en) 2015-07-15 2015-07-15 Fluid mixer and fluid mixing method

Publications (3)

Publication Number Publication Date
JP2013081911A true JP2013081911A (en) 2013-05-09
JP2013081911A5 JP2013081911A5 (en) 2013-06-20
JP5781414B2 JP5781414B2 (en) 2015-09-24

Family

ID=48081798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224314A Expired - Fee Related JP5781414B2 (en) 2011-10-11 2011-10-11 Fluid mixer and fluid mixing method

Country Status (2)

Country Link
JP (1) JP5781414B2 (en)
WO (1) WO2013054742A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517474A (en) * 1978-07-25 1980-02-06 Hitachi Ltd Analysis method for amino acid
JP2001520112A (en) * 1997-10-22 2001-10-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Micro mixer
JP2002316169A (en) * 2001-04-23 2002-10-29 Sony Corp Sterilizing water making apparatus and sterilizing water making method
JP2003164883A (en) * 2001-11-30 2003-06-10 Sony Corp Device and method for producing sterilized water
JP2007085749A (en) * 2005-09-20 2007-04-05 Hitachi High-Technologies Corp Liquid chromatographic analysis method and liquid chromatograph device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007063A (en) * 2004-06-24 2006-01-12 Univ Of Tokyo Micro-mixer and fluid mixing method
JP3810778B2 (en) * 2004-07-02 2006-08-16 雄志 平田 Flat plate static mixer
JP2007252987A (en) * 2006-03-20 2007-10-04 Fujifilm Corp Inorganic particulate and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517474A (en) * 1978-07-25 1980-02-06 Hitachi Ltd Analysis method for amino acid
JP2001520112A (en) * 1997-10-22 2001-10-30 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Micro mixer
JP2002316169A (en) * 2001-04-23 2002-10-29 Sony Corp Sterilizing water making apparatus and sterilizing water making method
JP2003164883A (en) * 2001-11-30 2003-06-10 Sony Corp Device and method for producing sterilized water
JP2007085749A (en) * 2005-09-20 2007-04-05 Hitachi High-Technologies Corp Liquid chromatographic analysis method and liquid chromatograph device

Also Published As

Publication number Publication date
JP5781414B2 (en) 2015-09-24
WO2013054742A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5753846B2 (en) Liquid mixing device and liquid chromatograph
US9562879B2 (en) Pipe containing a metal casing with a plastics material inlay for use in low and high pressure applications, in particular as an HPLC column
WO2014034259A1 (en) Liquid mixers and liquid chromatographs
US9194780B2 (en) Microfluidic passive mixing chip
JP2010046634A (en) Reactor and reaction plant
JPWO2013111789A1 (en) Static mixer and apparatus using static mixer
JP4043718B2 (en) Branch piping system for gradient high performance liquid chromatography
CN103949170A (en) Split-flow convergent type mixer and mixing method
JP2008264640A (en) Mixing apparatus
JP5781414B2 (en) Fluid mixer and fluid mixing method
CN104076112A (en) Mixer and high performance liquid chromatograph
JP2015194499A (en) Fluid mixer and fluid mixing method
Fatima et al. Analysis of mass transfer performance of micromixer device with varying confluence angle using CFD
Wouters et al. Microfluidic membrane suppressor module design and evaluation for capillary ion chromatography
CN114159998A (en) Reagent mixing device and liquid chromatograph
JP5079303B2 (en) Flow injection analyzer
JP2009219957A (en) Gas-liquid mixing system and gas-liquid mixing method
JP2013081911A5 (en)
JP2008116428A (en) Method and structure for controlling particle position
Kuban et al. Application of a multichannel dropping dispenser in segmented continuous flow analysis
CN211785367U (en) Liquid chromatograph-mass spectrometer and mobile phase mixing system
CN216498636U (en) Reagent mixing device and liquid chromatograph
CN211785368U (en) Mobile phase mixing system and liquid chromatograph-mass spectrometer
Lee et al. Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Micro-channel
JP2007319813A (en) Micro-reactor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees