JP2013081275A - Contactless power feeding apparatus - Google Patents

Contactless power feeding apparatus Download PDF

Info

Publication number
JP2013081275A
JP2013081275A JP2011218972A JP2011218972A JP2013081275A JP 2013081275 A JP2013081275 A JP 2013081275A JP 2011218972 A JP2011218972 A JP 2011218972A JP 2011218972 A JP2011218972 A JP 2011218972A JP 2013081275 A JP2013081275 A JP 2013081275A
Authority
JP
Japan
Prior art keywords
value
power
coil
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011218972A
Other languages
Japanese (ja)
Other versions
JP5796444B2 (en
Inventor
Yuya Yamauchi
雄哉 山内
Toshisuke Kai
敏祐 甲斐
Tronnamchai Kleison
トロンナムチャイ クライソン
Yusuke Minagawa
裕介 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011218972A priority Critical patent/JP5796444B2/en
Priority to PCT/JP2012/073989 priority patent/WO2013051399A1/en
Publication of JP2013081275A publication Critical patent/JP2013081275A/en
Application granted granted Critical
Publication of JP5796444B2 publication Critical patent/JP5796444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contactless power feeding apparatus that can accurately detect a positional deviation of coils.SOLUTION: The contactless power feeding apparatus includes: measured value acquisition means 20 for acquiring measured values of voltage and current of a current flowing through a transmission apparatus 10; operation means 101 for storing a power feeding circuit theoretical expression including a coupling coefficient κ between a transmitting coil L1 of the transmission apparatus and a receiving coil L2 paired with the transmitting coil, to compute, from one of the measured values of voltage and current acquired by the measured value acquisition means and from the power feeding circuit theoretical expression, a theoretical value of the other of voltage and current of the current flowing through the transmission apparatus; and coil coupling state estimation means 100 for searching for such a coupling coefficient of the power feeding circuit theoretical expression as minimizes an error between the measured value of the other of voltage and current and the theoretical value of the other of voltage and current, and estimating a state of coupling between the transmitting coil and the receiving coil on the basis of such a coupling coefficient found.

Description

本発明は、非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding device.

平面状の1次コイルを含む送電装置と、平面状の2次コイルを含む受電装置とからなり、1次コイルと2次コイルとを電磁的に結合させて、送電装置が受電装置に対して電力の伝送を行う非接触電力伝送装置において、1次コイルと2次コイルとを位置決めさせるときに、2次コイルの誘起電圧に基づきその位置決めの状態を検出するものが知られている(特許文献1)。   The power transmission device includes a planar primary coil and a power reception device including a planar secondary coil. The power transmission device is connected to the power reception device by electromagnetically coupling the primary coil and the secondary coil. In a non-contact power transmission device that transmits power, a device that detects a positioning state based on an induced voltage of a secondary coil when positioning a primary coil and a secondary coil is known (Patent Document). 1).

特開2006−60909号公報JP 2006-60909 A

しかしながら、上記従来の非接触給電装置では2次コイルの誘起電圧に基づいて位置決めの状態を検出しているため、誘起電圧が小さくなると正確な測定が難しくなるため位置ズレ量を高精度に検出できなかった。   However, since the conventional non-contact power feeding device detects the positioning state based on the induced voltage of the secondary coil, it becomes difficult to accurately measure the induced voltage when the induced voltage becomes small. There wasn't.

本発明が解決しようとする課題は、コイルの位置ズレ量を精度よく検出できる非接触給電装置を提供することである。   The problem to be solved by the present invention is to provide a non-contact power feeding device that can accurately detect the amount of displacement of a coil.

本発明は、送電コイルの電流値又は電圧値の一方と結合係数を含む回路理論式とから演算した電圧値又は電流値の理論値と、電圧値又は電流値の測定値との差が最小となるように前記回路理論式の結合係数を探索し、当該探索された結合係数に基づいて送電コイルの位置ズレ量を求めることよって、上記課題を解決する。   In the present invention, the difference between the theoretical value of the voltage value or current value calculated from one of the current value or voltage value of the power transmission coil and the circuit theoretical formula including the coupling coefficient and the measured value of the voltage value or current value is minimized. The above problem is solved by searching for the coupling coefficient of the circuit theoretical formula so that the positional deviation amount of the power transmission coil is obtained based on the searched coupling coefficient.

本発明によれば、送電コイルの電流値又は電圧値の理論値と測定値との差が最小となる結合係数を演算により求めることができ、結合係数は送電コイルの位置ズレ量に相関するので、送電コイルの位置ズレ量を精度よく検出することができる。   According to the present invention, the coupling coefficient that minimizes the difference between the measured value and the theoretical value or the current value of the current value or voltage value of the power transmission coil can be obtained by calculation, and the coupling coefficient correlates with the positional deviation amount of the power transmission coil. The amount of positional deviation of the power transmission coil can be accurately detected.

本発明の一実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which one embodiment of this invention is applied. 図1の送電コイルL1及び受電コイルL2が対向した状態を示す平面図及び斜視図である。It is the top view and perspective view which show the state which the power transmission coil L1 and the receiving coil L2 of FIG. 1 opposed. 図1の送電コイルL1及び受電コイルL2が対向した状態を示す平面図及び斜視図であり、X軸方向にずれた場合を示す図である。It is the top view and perspective view which show the state which the power transmission coil L1 and the receiving coil L2 of FIG. 1 opposed, and is a figure which shows the case where it shift | deviates to the X-axis direction. 図2A,2Bに示す受電コイルL2がX軸方向およびZ軸方向にずれた場合の結合係数κの変化の一例を示すグラフである。3 is a graph showing an example of a change in the coupling coefficient κ when the power receiving coil L2 shown in FIGS. 2A and 2B is displaced in the X-axis direction and the Z-axis direction. 図3において、送電コイルL1と受電コイルL2との間の距離Lと結合係数κとの関係を示すグラフである。In FIG. 3, it is a graph which shows the relationship between the distance L between the power transmission coil L1 and the receiving coil L2, and the coupling coefficient (kappa). 従来技術におけるコイルの位置検出と結合係数との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between the position detection of a coil in a prior art, and a coupling coefficient. コイルの位置と充電効率の関係を示すグラフである。It is a graph which shows the relationship between the position of a coil, and charging efficiency. 送電電力の駆動周波数が変動した場合のコイルの位置と充電効率の関係を示すグラフである。It is a graph which shows the relationship between the position of a coil and charging efficiency when the drive frequency of transmitted power fluctuates. 結合係数κの推定可能範囲について本例と従来例とを比較した図(その1)である。It is the figure (the 1) which compared this example and the prior art about the estimation range of coupling coefficient (kappa). 結合係数κの推定可能範囲について本例と従来例とを比較した図(その2)である。It is the figure (the 2) which compared this example and the prior art about the estimation possible range of coupling coefficient (kappa). 結合係数κに対するインピーダンス特性を示すグラフである。It is a graph which shows the impedance characteristic with respect to coupling coefficient (kappa). 図1の共振回路の他の実施形態例を示す回路図である。FIG. 3 is a circuit diagram showing another embodiment of the resonance circuit of FIG. 1. 図1のコイル結合状態推定部を示すブロック図である。It is a block diagram which shows the coil connection state estimation part of FIG. 図11のコイル結合状態推定部の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the coil connection state estimation part of FIG. 図12のステップS2〜S6の制御処理を説明するための図(その1)である。FIG. 13 is a diagram (No. 1) for describing the control processing in steps S2 to S6 in FIG. 12; 図12のステップS2〜S6の制御処理を説明するための図(その2)である。FIG. 13 is a diagram (No. 2) for describing the control process of steps S2 to S6 of FIG. 12; 図12のステップS2〜S6の制御処理を説明するための図(その3)である。FIG. 13 is a diagram (No. 3) for illustrating the control processing in steps S2 to S6 in FIG. 12; 給電回路理論式を説明するための等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit for demonstrating a feeder circuit theoretical formula. 給電回路理論式に特定の電流値を代入したときの結合係数κと電圧との関係を示すグラフである。It is a graph which shows the relationship between coupling coefficient (kappa) and voltage when a specific electric current value is substituted to a feeder circuit theoretical formula. 図11のκ更新部で用いられる総当り法を説明するためのグラフである。It is a graph for demonstrating the brute force method used in (kappa) update part of FIG. 図11のκ更新部で用いられるニュートン・ラプソン法を説明するためのグラフである。12 is a graph for explaining the Newton-Raphson method used in the κ update unit in FIG. 11. 電流又は電圧の測定誤差による結合係数κの推定精度の違いを説明するためのグラフである。It is a graph for demonstrating the difference in the estimation precision of the coupling coefficient (kappa) by the measurement error of an electric current or a voltage. インバータ部の出力部及び送電コイルの入力部の結合係数に対するインピーダンス特性の一例を示すグラフである。It is a graph which shows an example of the impedance characteristic with respect to the coupling coefficient of the output part of an inverter part, and the input part of a power transmission coil. インバータ部の出力部及び送電コイルの入力部の結合係数に対するインピーダンス特性の他の例を示すグラフである。It is a graph which shows the other example of the impedance characteristic with respect to the coupling coefficient of the output part of an inverter part, and the input part of a power transmission coil. インバータ部の出力部及び送電コイルの入力部の結合係数に対するインピーダンス特性のさらに他の例を示すグラフである。It is a graph which shows the further another example of the impedance characteristic with respect to the coupling coefficient of the output part of an inverter part, and the input part of a power transmission coil. 本発明の他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which other embodiment of this invention is applied. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied. 図27の結合状態領域判別部を示すブロック図である。FIG. 28 is a block diagram illustrating a combined state region determination unit in FIG. 27. 電流又は電圧の測定誤差による結合係数κの推定精度の違いを説明するためのグラフである。It is a graph for demonstrating the difference in the estimation precision of the coupling coefficient (kappa) by the measurement error of an electric current or a voltage. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied. 図30の結合状態領域判別部を示すブロック図である。It is a block diagram which shows the combined state area | region discrimination | determination part of FIG. 2つのコイル結合状態推定値の平均値を取ることで推定誤差を抑えることができる一例を示すグラフである。It is a graph which shows an example which can suppress an estimation error by taking the average value of two coil connection state estimated values. 本発明のさらに他の実施の形態を適用した非接触給電システムを示すブロック図である。It is a block diagram which shows the non-contact electric power feeding system to which further another embodiment of this invention is applied.

《第1実施形態》
図1は本発明の一実施の形態を適用した非接触給電システム1であり、送電装置10と受電装置50とを備え、給電スタンドなどに設置される送電装置10から、車両などに搭載される受電装置50のバッテリなどの負荷53に非接触で電力を供給し、充電するシステムである。なお、送電装置10を車載し、受電装置を地上に配置するシステムであってもよい。
<< First Embodiment >>
FIG. 1 shows a non-contact power feeding system 1 to which an embodiment of the present invention is applied, which includes a power transmitting device 10 and a power receiving device 50, and is mounted on a vehicle or the like from a power transmitting device 10 installed on a power supply stand or the like. In this system, power is supplied to a load 53 such as a battery of the power receiving device 50 in a contactless manner and charged. In addition, the system which mounts the power transmission apparatus 10 and arrange | positions a power receiving apparatus on the ground may be sufficient.

本例の送電装置10は、商用電源(東日本は周波数50Hz,西日本は周波数60Hz)などの交流電源部11と、交流電源部11から送電される交流電圧を直流電圧に変換する直流電源部12と、電圧型インバータ部13と、電圧型インバータ部13から出力される高周波電力を受電装置50に非接触で供給する送電コイル(1次コイル)Lと、送電コイルLと並列に設けられて送電装置10の共振回路を構成する1次コンデンサC1Pと、を備える。 The power transmission apparatus 10 of this example includes an AC power supply unit 11 such as a commercial power supply (frequency is 50 Hz in eastern Japan and frequency is 60 Hz in west Japan), and a DC power supply unit 12 that converts an AC voltage transmitted from the AC power supply unit 11 into a DC voltage. The voltage type inverter unit 13, the power transmission coil (primary coil) L 1 for supplying the high frequency power output from the voltage type inverter unit 13 to the power receiving device 50 in a contactless manner, and the power transmission coil L 1 are provided in parallel. A primary capacitor C 1P that constitutes a resonance circuit of the power transmission device 10.

直流電源部12は、ダイオードDとダイオードD、ダイオードDとダイオードD、ダイオードDとダイオードDとのそれぞれが三並列に接続され、それぞれの中間接続点に交流電源部11の三相出力端子が接続されている。 The DC power supply unit 12 includes a diode D 1 and a diode D 2 , a diode D 3 and a diode D 4 , a diode D 5 and a diode D 6 , which are connected in parallel, and the AC power supply unit 11 is connected to each intermediate connection point. Three-phase output terminal is connected.

電圧型インバータ部13は、MOSFETなどのスイッチング素子S〜Sのそれぞれに逆並列接続されたダイオードD〜D10と、直流電圧の平滑コンデンサCとから構成され、直流電源部12から出力される直流電圧を1〜50kHz程度の高周波交流電力に逆変換する。 The voltage type inverter unit 13 includes diodes D 7 to D 10 connected in reverse parallel to switching elements S 1 to S 4 such as MOSFETs, and a DC voltage smoothing capacitor C 3. The output DC voltage is inversely converted to high frequency AC power of about 1 to 50 kHz.

そして、スイッチング素子S及びSとの中間接続点と、スイッチング素子S及びSの中間接続点のそれぞれに、送電コイルLと1次コンデンサC1Pとからなる共振回路が接続されている。なお、スイッチング素子SとSとの中間接続点及びスイッチング素子SとSとの中間接続点から共振回路に導出された高周波交流電力の端子部分を高周波交流電源の出力部ともいう。 Then, the intermediate connection point of the switching elements S 1 and S 2, each of the intermediate connection point of the switching elements S 3 and S 4, and the resonant circuit consisting of the power transmission coil L 1 and the primary capacitor C 1P is connected Yes. Incidentally, also referred to as an intermediate connection point and the switching element S 3 and S 4 to the output of the high-frequency AC power source to a high frequency AC power terminal portion derived to the resonant circuit from the intermediate connection point between the switching element S 1 and S 2.

受電装置50は、送電装置10の送電コイルLから電磁誘導作用により非接触状態で高周波交流電力を受電する受電コイル(2次コイル)Lと、受電コイルLに並列に設けられて受電装置50の共振回路を構成する2次コンデンサC2Pと、受電コイルLで受電した高周波交流電力を整流する整流部51と、平滑コンデンサCと、二次電池のバッテリなどからなる負荷53と、給電を遮断/導通するリレースイッチ52と、を備える。 The power receiving device 50 is provided in parallel with the power receiving coil (secondary coil) L 2 that receives high-frequency AC power from the power transmitting coil L 1 of the power transmitting device 10 in a non-contact state by electromagnetic induction, and the power receiving coil L 2 receives power. a secondary capacitor C 2P constituting the resonant circuit of the apparatus 50, a rectifying unit 51 for rectifying a high-frequency AC power received by the receiving coil L 2, a smoothing capacitor C 4, a load 53 composed of a battery of the rechargeable battery And a relay switch 52 that cuts off / conducts power supply.

整流部51は、ダイオードD11とダイオードD12、ダイオードD13とダイオードD14のそれぞれが並列に接続され、それぞれの中間接続点に、受電コイルLと2次コンデンサC2Pとで構成された共振回路の出力端子が接続されている。そして、整流部51の出力端子はリレースイッチ52を介して負荷53に接続されている。 Rectifier 51 includes a diode D 11 and a diode D 12, respectively of the diode D 13 and a diode D 14 are connected in parallel, the respective intermediate connection points, which is composed of a receiving coil L 2 and the secondary capacitor C 2P The output terminal of the resonance circuit is connected. The output terminal of the rectifying unit 51 is connected to the load 53 via the relay switch 52.

なお図示を省略するが、本例の非接触給電システム1は、上述した送電装置10及び受電装置50以外に、電圧型インバータ部13およびリレースイッチ52を制御する制御部と、負荷53の充電状態を監視して充電電力の指令値を生成する負荷制御部と、この負荷制御部にて生成した電力指令値を送電装置10に送信する通信部と、ユーザが充電を開始することを送電装置10に通知するための充電開始スイッチなどを備える。   In addition, although illustration is abbreviate | omitted, the non-contact electric power feeding system 1 of this example is the control part which controls the voltage type inverter part 13 and the relay switch 52 other than the power transmission apparatus 10 and the power receiving apparatus 50 which were mentioned above, and the charge state of the load 53 A load control unit that generates a command value for charging power, a communication unit that transmits the power command value generated by the load control unit to the power transmission device 10, and that the user starts charging. A charging start switch for notifying the device is provided.

電圧型インバータ部13を制御する制御部は、電圧型インバータ部13の出力電流の位相を検出する電流位相検出部と、負荷53の充電状態を監視して充電電力の指令値を生成する負荷制御部にて生成された負荷電力指令から電圧型インバータ部13のデューティ指令Dt,Dtを生成するデューティ指令生成部(電圧振幅指令部)と、デューティ指令Dt,Dtから電圧型インバータ部13のスイッチングパルスを生成するパルス生成部と、を備える。 The control unit that controls the voltage type inverter unit 13 includes a current phase detection unit that detects the phase of the output current of the voltage type inverter unit 13 and a load control that monitors the charging state of the load 53 and generates a command value for charging power. A duty command generation unit (voltage amplitude command unit) for generating duty commands Dt 1 and Dt 2 of the voltage type inverter unit 13 from the load power command generated by the unit, and a voltage type inverter unit from the duty commands Dt 1 and Dt 2 A pulse generator that generates thirteen switching pulses.

そして電圧型インバータ部13は、この制御部により以下のように制御される。すなわち、デューティ指令生成部では、負荷制御部からの負荷電力指令を受けて、負荷53に供給される電力が負荷制御部からの指令値に一致するようなデューティ指令Dt,Dtを生成する。次に三角波キャリア比較方式などを用いてPWM変調を行い、生成されたデューティ指令Dt,Dtと三角波キャリアとを比較し、スイッチング素子S〜Sの制御パルスを生成する。 The voltage type inverter unit 13 is controlled by the control unit as follows. That is, the duty command generation unit receives the load power command from the load control unit and generates duty commands Dt 1 and Dt 2 such that the power supplied to the load 53 matches the command value from the load control unit. . Next, PWM modulation is performed using a triangular wave carrier comparison method or the like, and the generated duty commands Dt 1 and Dt 2 are compared with the triangular wave carrier to generate control pulses for the switching elements S 1 to S 4 .

さらに本例の非接触給電システム1は、コイル結合状態推定部100を備え、このコイル結合状態推定部100は、理論値演算部101と誤差演算部102と誤差比較部103とκ更新部104とを含む。   Furthermore, the non-contact power feeding system 1 of this example includes a coil coupling state estimation unit 100, which includes a theoretical value calculation unit 101, an error calculation unit 102, an error comparison unit 103, and a κ update unit 104. including.

理論値演算部101は、電圧型インバータ部13と共振回路(送電コイルLと1次コンデンサC1P)との間、すなわち高周波交流電源の出力部に設けられた検出部20で検出した電圧及び電流の測定値を入力とし、結合係数κの理論値としてκ候補値aから順次誤差演算部102へ出力する。 The theoretical value calculation unit 101 includes a voltage detected by the detection unit 20 provided between the voltage-type inverter unit 13 and the resonance circuit (the power transmission coil L 1 and the primary capacitor C 1P ), that is, the output unit of the high-frequency AC power supply. The measured current value is input, and is sequentially output from the κ candidate value a to the error calculator 102 as the theoretical value of the coupling coefficient κ.

誤差演算部102は、検出部20で検出した電圧及び電流の測定値と、理論値演算部101で演算された理論値との誤差を演算し、誤差比較部103へ出力する。誤差比較部103は、誤差演算部102で演算された誤差と誤差許容値とを比較し、条件を満たした場合はκ推定値aをコイル結合状態推定値として外部へ出力する一方、条件を満たさない場合はκ候補値bをκ更新部104へ出力する。κ更新部74は、誤差比較部103の比較の結果、条件を満たさない場合には当該条件を満たすまでκ候補値aを次のb,c…に順次更新する。なお、これらコイル結合状態推定部100の動作の詳細は後述する。   The error calculation unit 102 calculates an error between the voltage and current measurement values detected by the detection unit 20 and the theoretical value calculated by the theoretical value calculation unit 101, and outputs the error to the error comparison unit 103. The error comparison unit 103 compares the error calculated by the error calculation unit 102 with the error allowable value, and when the condition is satisfied, outputs the κ estimated value a as the coil coupling state estimated value to the outside, while satisfying the condition. If not, the κ candidate value b is output to the κ update unit 104. If the result of the comparison by the error comparison unit 103 does not satisfy the condition, the κ update unit 74 sequentially updates the κ candidate value a to the next b, c... until the condition is satisfied. Details of the operation of the coil coupling state estimation unit 100 will be described later.

次に、図2A,図2B,図3及び図4を参照して、送電コイルL1と受電コイルL2との結合係数κが変化することを説明する。図2A及び図2Bは、送電コイルL1及び受電コイルL2が対向した状態を示す平面図a)と、斜視図b),c)である。図2A及び図2Bにおいて、X軸及びY軸は、送電コイルL1及び受電コイルL2の平面方向を示し、Z軸は高さ方向を示す。なお、本説明のために、送電コイルL1及び受電コイルL2は共に同じ円形形状とされているが、本例は必ずしも円形にする必要はなく、また送電コイルL1と受電コイルL2とを同一の形状にする必要もない。   Next, with reference to FIG. 2A, FIG. 2B, FIG. 3 and FIG. 4, it will be described that the coupling coefficient κ between the power transmission coil L1 and the power reception coil L2 changes. 2A and 2B are a plan view a) showing a state in which the power transmission coil L1 and the power reception coil L2 face each other, and perspective views b) and c). 2A and 2B, the X axis and the Y axis indicate planar directions of the power transmitting coil L1 and the power receiving coil L2, and the Z axis indicates the height direction. For the purpose of this description, the power transmission coil L1 and the power reception coil L2 are both formed in the same circular shape, but in this example, it is not always necessary to have a circular shape, and the power transmission coil L1 and the power reception coil L2 have the same shape. There is no need to make it.

いま、送電コイルL1を地上に、受電コイルL2を車載したとした場合に、図2Aに示すように、平面方向であるX軸、Y軸方向において、受電コイルL2が送電コイルL1に合致するように車両が駐車場に駐車されればよいが、運転者の技量により、図2Bに示すように、送電コイルL1と受電コイルL2との相対的な位置が、平面方向において、ずれてしまうことがある。また、車両の高さは、車両の種類や積荷量によって異なるため、送電コイルL1と受電コイルL2との高さ方向Zの距離は車高によっても異なる。   Now, assuming that the power transmission coil L1 is on the ground and the power reception coil L2 is mounted on the vehicle, as shown in FIG. 2A, the power reception coil L2 matches the power transmission coil L1 in the X-axis and Y-axis directions which are planar directions. However, depending on the skill of the driver, the relative positions of the power transmission coil L1 and the power reception coil L2 may be shifted in the plane direction, as shown in FIG. 2B. is there. Further, since the height of the vehicle varies depending on the type of vehicle and the load, the distance in the height direction Z between the power transmission coil L1 and the power reception coil L2 also varies depending on the vehicle height.

図3は、図2A,2Bに示すX軸方向およびZ軸方向の受電コイルL2に対する結合係数κの変化の一例を示す。図3に示すように、送電コイルL1の中心と受電コイルL2の中心とが一致する場合(図3のX軸の値がゼロに相当)は、送電コイルL1と受電コイルL2との間の漏れ磁束は少なく、結合係数κは大きくなる(同図の例ではκ=0.8)。一方、送電コイルL1と受電コイルL2との位置がX軸方向にずれると(あるいはZ軸方向の高さが変わると)、漏れ磁束が多くなり、図3に示すように結合係数κは小さくなる(同図の例ではκ=0.1)。   FIG. 3 shows an example of a change in the coupling coefficient κ for the power receiving coil L2 in the X-axis direction and the Z-axis direction shown in FIGS. 2A and 2B. As shown in FIG. 3, when the center of the power transmission coil L1 coincides with the center of the power reception coil L2 (the value of the X axis in FIG. 3 corresponds to zero), leakage between the power transmission coil L1 and the power reception coil L2 The magnetic flux is small and the coupling coefficient κ is large (κ = 0.8 in the example in the figure). On the other hand, when the positions of the power transmission coil L1 and the power reception coil L2 are shifted in the X-axis direction (or the height in the Z-axis direction is changed), the leakage magnetic flux increases, and the coupling coefficient κ decreases as shown in FIG. (In the example of the figure, κ = 0.1).

図4は、送電コイルL1と受電コイルL2との間の距離Lと結合係数κとの関係を示すグラフであり、距離Lとは、図2A,2B及び図3に示した受電コイルL2の平面方向X軸と高さ方向Z軸を用いて、L=√(X+Z)と定義する。なお、この場合は、送電コイルL1は固定とし、送電コイルL1に対する受電コイルL2の距離である。距離Lがゼロに近づくほど結合係数κは1に漸近する一方で、距離Lが大きくなるほど結合係数κはゼロに漸近する。 FIG. 4 is a graph showing the relationship between the distance L between the power transmission coil L1 and the power reception coil L2 and the coupling coefficient κ. The distance L is the plane of the power reception coil L2 shown in FIGS. 2A, 2B and FIG. Using the direction X-axis and the height direction Z-axis, L = √ (X 2 + Z 2 ) is defined. In this case, the power transmission coil L1 is fixed, and is the distance of the power reception coil L2 with respect to the power transmission coil L1. The coupling coefficient κ gradually approaches 1 as the distance L approaches zero, while the coupling coefficient κ gradually approaches zero as the distance L increases.

ところで、電動歯ブラシやひげ剃りシェーバー等のコードレス化された家電製品や携帯機器の充電に採用されている非接触給電装置は、送電コイルL1と受電コイルL2との距離が相対的に移動しないため、結合係数κが変動することを想定しなくてもよい。そのため、こうした従来の非接触給電システムでは、図5Aに示すように送電コイルと受電コイルの位置が所定範囲内にあるか否かを一の閾値によって判断すれば足りるものである。   By the way, since the distance between the power transmission coil L1 and the power reception coil L2 does not move relative to the non-contact power feeding device that is used for charging a cordless household appliance such as an electric toothbrush or a shaving shaver or a portable device, It is not necessary to assume that the coupling coefficient κ varies. Therefore, in such a conventional non-contact power feeding system, as shown in FIG. 5A, it is sufficient to determine whether or not the positions of the power transmitting coil and the power receiving coil are within a predetermined range based on one threshold value.

また、上記家電製品や携帯機器は、充電電力が小さくしかも容易に位置決めが可能であるため、送電コイルと受電コイルとの精密な位置検出が不要である。このため、上記従来技術では受電側コイルの誘起電圧を用いてコイルの位置関係を推定することができる。しかしながら、上記従来技術では、図5Bに示すように、コイルの結合状態が弱い場合には位置検出ができず、また位置検出範囲も狭い範囲に限定されるという問題がある。   In addition, since the above-described home appliances and portable devices can be positioned easily with a small charge power, precise position detection between the power transmission coil and the power reception coil is unnecessary. For this reason, in the said prior art, the positional relationship of a coil can be estimated using the induced voltage of a receiving side coil. However, as shown in FIG. 5B, the conventional technique has a problem that position detection cannot be performed when the coupling state of the coils is weak, and the position detection range is limited to a narrow range.

これに対して、上述したとおり送電コイルL1を地上(インフラ側)に設置し、受電コイルL2を車両に搭載して、非接触で車両のバッテリ53を充電するような場合などは、車両の停止状態や車高状態によって結合係数κ(距離L)は大きく変化する。結合係数κ(距離L)が変動すると、図6Aに示すように充電効率が大きく変動し、充電時間や消費電力に悪影響を及ぼすおそれがある。また、図6Aに示す結合係数κによる充電効率特性は、図6Bに示すように送電装置10の高周波交流電力の駆動周波数f,f,f…によっても変動する。そのため、送電コイルL1と受電コイルL2との位置関係、すなわち結合状態が検出できなければ、充電効率や最適なインバータ部13の駆動周波数が把握できない。裏を返せば、コイルの位置関係、すなわち結合状態が検出できれば、充電効率が把握でき、最適な駆動周波数でインバータ部13を動作させることが可能となる。 On the other hand, as described above, when the power transmission coil L1 is installed on the ground (infrastructure side), the power reception coil L2 is mounted on the vehicle, and the battery 53 of the vehicle is charged without contact, the vehicle is stopped. The coupling coefficient κ (distance L) varies greatly depending on the state and the vehicle height state. When the coupling coefficient κ (distance L) varies, the charging efficiency varies greatly as shown in FIG. 6A, which may adversely affect the charging time and power consumption. 6A also varies depending on the driving frequencies f 0 , f 1 , f 2 ... Of the high-frequency AC power of the power transmission device 10 as shown in FIG. 6B. Therefore, unless the positional relationship between the power transmission coil L1 and the power reception coil L2, that is, the coupling state can be detected, the charging efficiency and the optimal drive frequency of the inverter unit 13 cannot be grasped. In other words, if the positional relationship of the coils, that is, the coupling state can be detected, the charging efficiency can be grasped, and the inverter unit 13 can be operated at the optimum driving frequency.

図7は本例と従来例のコイル位置(=結合状態)の推定が可能な範囲を示した図である。従来例は前述のとおり受電コイルL2の誘起電圧を推定に用いているため、誘起電圧が検出できない範囲ではコイル位置(=結合状態)の推定も行えない。これに対して本例では、送電装置10の電流及び電圧の測定値からコイルL1,L2の結合状態推定を行うため、コイルの位置ズレが大きい範囲、すなわち結合係数κがゼロに近い範囲でも位置ズレの推定が可能となる。   FIG. 7 is a diagram showing a range in which the coil position (= coupled state) of this example and the conventional example can be estimated. Since the conventional example uses the induced voltage of the receiving coil L2 for estimation as described above, the coil position (= coupled state) cannot be estimated within the range where the induced voltage cannot be detected. On the other hand, in this example, since the coupling state estimation of the coils L1 and L2 is performed from the measured values of the current and voltage of the power transmission device 10, even in a range where the coil misalignment is large, that is, the coupling coefficient κ is close to zero. The deviation can be estimated.

図8は本例と従来例の比較を示す図である。従来例1,2はそれぞれ推定可能範囲内で一の閾値を設定することでコイル位置(=結合状態)を推定している。そのため、コイルが特定範囲内にあるか否かの判断しか行っていない。これに対して本例では、一の閾値を用いずに測定値と理論値との誤差からコイルの結合状態を推定するので、図8に示すようにリニアな推定が可能となる。なお、従来例においても閾値を細かく設定することでリニアな推定は可能であるが、こうした場合には各コイル位置に対してそれぞれの閾値を設定しなければならない。また、バッテリの負荷状態によって閾値も変わるため、全ての条件を満たすように設定するには大量のメモリが必要となりコストアップにつながるという問題がある。   FIG. 8 is a diagram showing a comparison between this example and the conventional example. In the conventional examples 1 and 2, the coil position (= coupled state) is estimated by setting one threshold within the estimable range. For this reason, it is only possible to determine whether or not the coil is within a specific range. In contrast, in this example, since the coil coupling state is estimated from the error between the measured value and the theoretical value without using one threshold value, linear estimation is possible as shown in FIG. In the conventional example, linear estimation is possible by finely setting the threshold value, but in such a case, each threshold value must be set for each coil position. In addition, since the threshold value changes depending on the load state of the battery, a large amount of memory is required to set so as to satisfy all the conditions, leading to a cost increase.

次に本例のコイル結合状態推定原理を説明する。なお、ここでは一例として送電側共振回路及び受電側共振回路ともに送電コイルL1及び受電コイルL2に対して並列にコンデンサC1P,C2Pを入れたが、共振回路の構成はこれに限定されず、図10に示すものを採用することができる。すなわち、図10のa)及びb)に示すようにコンデンサC1P,C2Pを送電コイルL1又は受電コイルL2に対して直列に接続した共振回路や、図10のc)及びd)に示すようにコンデンサC1P,C2Pに代えてコイル又はトランスを直列又は並列に接続した共振回路を採用することができる。 Next, the principle of estimating the coil coupling state of this example will be described. Here, as an example, the capacitors C 1P and C 2P are inserted in parallel with the power transmission coil L1 and the power reception coil L2 in both the power transmission side resonance circuit and the power reception side resonance circuit, but the configuration of the resonance circuit is not limited to this. The one shown in FIG. 10 can be adopted. That is, as shown in a) and b) of FIG. 10, a resonant circuit in which capacitors C 1P and C 2P are connected in series to the power transmission coil L1 or the power receiving coil L2, or as shown in c) and d) of FIG. Instead of the capacitors C 1P and C 2P , a resonance circuit in which a coil or a transformer is connected in series or in parallel can be adopted.

結合係数κが変化することで送電コイルL1及び受電コイルL2の自己インダクタンスと相互インダクタンスが変化するため、送電側共振回路から負荷側を見たインピーダンスは結合係数κによって変化が生じる。この一例として高周波交流電源の出力部(図1の検出部20が設けられた位置)から負荷側を見たときの結合係数κに対するインピーダンスの絶対値の特性を図9に示す。これより結合係数κと送電装置10側のインピーダンス(電圧、電流値)には相関関係があることがわかる。よって、送電装置10のインピーダンスを測定することでコイルL1,L2の結合状態を推定することが可能となる。   Since the self-inductance and the mutual inductance of the power transmission coil L1 and the power reception coil L2 change due to the change of the coupling coefficient κ, the impedance of the load side viewed from the power transmission side resonance circuit is changed by the coupling coefficient κ. As an example of this, FIG. 9 shows the characteristics of the absolute value of the impedance with respect to the coupling coefficient κ when the load side is viewed from the output portion of the high-frequency AC power supply (the position where the detection unit 20 of FIG. From this, it can be seen that there is a correlation between the coupling coefficient κ and the impedance (voltage, current value) on the power transmission device 10 side. Therefore, it is possible to estimate the coupling state of the coils L1 and L2 by measuring the impedance of the power transmission device 10.

図11は、図1のコイル結合状態推定部100の一例を示すブロック図である。コイル結合状態推定部100は、既述したとおり、理論値演算部101、誤差演算部102、誤差比較部103、κ更新部104を備える。   FIG. 11 is a block diagram illustrating an example of the coil coupling state estimation unit 100 of FIG. As described above, the coil coupling state estimation unit 100 includes the theoretical value calculation unit 101, the error calculation unit 102, the error comparison unit 103, and the κ update unit 104.

理論値演算部101は、結合係数κと電流及び電圧の理論的な関係式(以下、給電回路理論式とも言う。)を記憶する。図16Aに示す非接触給電システム1の等価回路において、送電装置10に流れる電流の電圧値をV,電流値をI,送電コイルL1と受電コイルL2の結合係数をκとすると、これら電圧値、電流値及び結合係数の理論的な関係式は、下記数式1のとおり電圧に対する電流の比であるインピーダンス式で表される。数式1において、A〜Gは、図16Aに示すコンデンサC1P,C2P、コイルL,L、負荷抵抗RLにより定まる既知のパラメータである。

Figure 2013081275
The theoretical value calculation unit 101 stores a theoretical relational expression (hereinafter also referred to as a power supply circuit theoretical expression) of the coupling coefficient κ, current, and voltage. In the equivalent circuit of the non-contact power feeding system 1 shown in FIG. 16A, assuming that the voltage value of the current flowing through the power transmitting device 10 is V, the current value is I, and the coupling coefficient between the power transmitting coil L1 and the power receiving coil L2 is κ, The theoretical relational expression of the current value and the coupling coefficient is expressed by an impedance equation that is a ratio of current to voltage as shown in Equation 1 below. In Equation 1, A to G are known parameters determined by the capacitors C 1P and C 2P , coils L 1 and L 2 , and load resistance RL shown in FIG. 16A.
Figure 2013081275

すなわち、図16Aに示す非接触給電システム1の等価回路では、送電装置10を流れる電流I及び電圧Vは送電コイルL1と受電コイルL2との結合係数κによって変動し、たとえば図16Bに示すように、ある特定の電流を送電装置10に流すとそのときの電圧は結合係数κにより変動することになる。逆に言えば、送電装置10を流れる電流の電圧と電流を測定すれば、上記給電回路理論式を用いて結合係数κを演算により求めることができる。なお、理論値演算部101に記憶する給電回路理論式は、上記数式1のインピーダンス式以外にも電流に対する電圧の比を表したアドミタンス式などを用いることができ、さらに簡易的なシミュレータであってもよい。   That is, in the equivalent circuit of the non-contact power feeding system 1 shown in FIG. 16A, the current I and the voltage V flowing through the power transmission device 10 vary depending on the coupling coefficient κ between the power transmission coil L1 and the power reception coil L2, and for example, as shown in FIG. When a specific current is passed through the power transmission device 10, the voltage at that time varies depending on the coupling coefficient κ. In other words, if the voltage and current of the current flowing through the power transmission device 10 are measured, the coupling coefficient κ can be obtained by calculation using the above power supply circuit theoretical formula. Note that the power supply circuit theoretical formula stored in the theoretical value calculation unit 101 can use an admittance formula representing the ratio of voltage to current in addition to the impedance formula of Formula 1 above, and is a simpler simulator. Also good.

図11に戻り、理論値演算部101は、κ更新部104から出力されたκ候補値aと、検出部20で検出された電圧の測定値を入力とし、電流の理論値(計算値)を誤差演算部102へ出力する。誤差演算部102は、理論値演算部101にて演算された電流理論値と、検出部20にて検出された電流測定値を入力とし、その電流の誤差を誤差比較部103へ出力する。   Returning to FIG. 11, the theoretical value calculation unit 101 receives the κ candidate value a output from the κ update unit 104 and the measured value of the voltage detected by the detection unit 20 as input, and calculates the theoretical value (calculated value) of the current. Output to the error calculator 102. The error calculation unit 102 receives the current theoretical value calculated by the theoretical value calculation unit 101 and the current measurement value detected by the detection unit 20, and outputs an error of the current to the error comparison unit 103.

誤差比較部103は、誤差演算部102にて演算された電流誤差と、κ更新部104から出力されたκ候補値aと、予め定められた電流誤差許容値(範囲)を入力とし、これらからκ候補値aが妥当であるか判断する。すなわち、誤差演算部102にて演算された電流誤差が電流誤差許容値(範囲)である場合は、その前提となったκ候補値が妥当な値であったものとして、当該κ候補値aをコイル結合状態推定値として出力する。逆に、誤差演算部102にて演算された電流誤差が電流誤差許容値(範囲)でなかった場合は、その前提となったκ候補値が妥当な値ではなかったものとして、当該κ候補値aに代えて新たなκ候補値bをκ更新部104へ出力する。κ更新部104は、誤差比較部103から出力されたκ候補値bを入力とし、現在のκ候補値aを次のκ候補値bに更新する。   The error comparison unit 103 receives the current error calculated by the error calculation unit 102, the κ candidate value a output from the κ update unit 104, and a predetermined current error allowable value (range) as inputs. It is determined whether the κ candidate value a is valid. That is, when the current error calculated by the error calculation unit 102 is the current error allowable value (range), the κ candidate value a that is a premise is assumed to be an appropriate value, and the κ candidate value a is Output as estimated coil coupling state. On the other hand, if the current error calculated by the error calculation unit 102 is not the current error allowable value (range), it is determined that the κ candidate value that is the premise is not an appropriate value, and the κ candidate value Instead of a, a new κ candidate value b is output to the κ update unit 104. The κ update unit 104 receives the κ candidate value b output from the error comparison unit 103, and updates the current κ candidate value a to the next κ candidate value b.

図12にコイル結合状態推定のフローチャートを示す。まず、検出部20により送電装置10を流れる電流の電圧及び電流を測定し(ステップS1)、初期κ候補値aおよび誤差許容値を読み込む(ステップS2)。次に、電圧の測定値と初期κ候補値を上記給電回路理論式に代入することで電流の理論値を演算する(ステップS3)。そして、この電流の理論値と電流の測定値との誤差値を演算し(ステップS4)、その誤差値が誤差許容値以下であるか否かを判断する(ステップS5)。ステップS5にて誤差値が誤差許容値以下でない場合は初期κ候補値を次のκ候補値に更新したのち(ステップS6)、ステップS3に戻り、誤差値が誤差許容値以下になるまでステップS3〜S6を繰り返し、κ候補値の更新を行う。ステップS4の誤差値が誤差許容値(理想的にはゼロ)以下になったら更新を止め、そのときのκ候補値aをコイル結合状態推定値として出力し推定を完了する(ステップS7)。   FIG. 12 shows a flowchart of the coil coupling state estimation. First, the voltage and current of the current flowing through the power transmission device 10 are measured by the detection unit 20 (step S1), and the initial κ candidate value a and the error allowable value are read (step S2). Next, the theoretical value of the current is calculated by substituting the measured voltage value and the initial κ candidate value into the theoretical formula of the feeder circuit (step S3). Then, an error value between the theoretical value of the current and the measured value of the current is calculated (step S4), and it is determined whether or not the error value is equal to or less than an allowable error value (step S5). If the error value is not equal to or smaller than the allowable error value in step S5, the initial κ candidate value is updated to the next κ candidate value (step S6), and the process returns to step S3, and step S3 is performed until the error value becomes equal to or smaller than the allowable error value. ˜S6 is repeated to update the κ candidate value. When the error value in step S4 becomes equal to or less than the allowable error value (ideally zero), the updating is stopped, and the κ candidate value a at that time is output as the coil coupling state estimated value to complete the estimation (step S7).

図12のステップS2〜S6のκ推定過程を、図13〜15を用いて模式的に説明する。なお、誤差許容値はゼロとする。図13は初期κ候補値(ここではκ=0)における状態を表している。初期κ候補値aでは誤差値が許容誤差値よりも大きく(ゼロではない)なっており、コイル結合状態推定値とならないことを意味する。よってκ候補値が更新される。   The κ estimation process in steps S2 to S6 in FIG. 12 will be schematically described with reference to FIGS. Note that the error tolerance is zero. FIG. 13 shows a state at an initial κ candidate value (here, κ = 0). In the initial κ candidate value a, the error value is larger (not zero) than the allowable error value, which means that the coil coupling state estimated value is not obtained. Therefore, the κ candidate value is updated.

次にκ候補値を更新した状態を図14に示す。初期κ候補値よりも誤差値は減少しているが、やはり誤差許容値よりも大きくなっている。よってκ候補値はさらに更新される。図15はκ候補値がκの真値と等しくなった状態を表す。この状態では電流の測定値と理論値が等しくなり誤差値はゼロとなる。よって許容誤差値の条件を満たし、このときのκ候補値がコイル結合状態推定値となる。   Next, FIG. 14 shows a state in which the κ candidate value is updated. Although the error value is smaller than the initial κ candidate value, it is still larger than the allowable error value. Therefore, the κ candidate value is further updated. FIG. 15 shows a state where the κ candidate value is equal to the true value of κ. In this state, the measured current value is equal to the theoretical value, and the error value is zero. Therefore, the condition of the allowable error value is satisfied, and the κ candidate value at this time becomes the coil coupling state estimated value.

なおκ候補値の更新には、図17に示すような総当り法や、図18に示すニュートン・ラプソン法などを用いればよい。図17に示す総当り法は、結合係数κを0〜1までの範囲で所定間隔ごとにスイープさせ(κ0,κ1…,κn)、誤差が最も小さくなる結合係数(同図ではκ3)を探索する演算手法である。また、図18に示すニュートン・ラプソン法は、傾きを利用して最も確からしいκを探索する演算手法であり、まず初期値κ0における傾きを求め、この傾きからX軸切片(κ1)を求める。このX軸切片κ1の誤差を演算して誤差許容値以下か否かを判断し、誤差許容値以下である場合はそのκ1を推定値とするが、誤差許容値以下でない場合は、次にκ1における傾きを求め、この傾きからX軸切片(κ2)を求め、順次これを繰り返し、誤差が最も小さくなる結合係数(同図ではκ3)を探索する。   In order to update the κ candidate value, a brute force method as shown in FIG. 17 or a Newton-Raphson method as shown in FIG. 18 may be used. In the round robin method shown in FIG. 17, the coupling coefficient κ is swept at predetermined intervals in the range of 0 to 1 (κ0, κ1,..., Κn), and the coupling coefficient (κ3 in the figure) with the smallest error is searched. This is a calculation method. Further, the Newton-Raphson method shown in FIG. 18 is an arithmetic method for searching for the most probable κ by using the slope. First, the slope at the initial value κ0 is obtained, and the X-axis intercept (κ1) is obtained from this slope. The error of the X-axis intercept κ1 is calculated to determine whether or not it is less than the allowable error value. If it is less than the allowable error value, κ1 is used as an estimated value. The X-axis intercept (κ2) is determined from this gradient, and this is repeated sequentially to search for a coupling coefficient (κ3 in the figure) with the smallest error.

また、上述した例では電圧の測定値から電流の理論値を算出し、電流の測定値と電流の理論値との誤差より結合係数κの推定を行っているが、電流の測定値を上記給電回路理論式に代入して電圧の理論値を求め、この電圧の理論値と電圧の測定値との誤差から結合係数κを推定してもよい。さらに、上記給電回路理論式の左辺のインピーダンスの測定値と当該インピーダンスの理論値とを比較してインピーダンス誤差を求め、これから結合係数κを推定してもよい。   In the above example, the theoretical value of the current is calculated from the measured value of the voltage, and the coupling coefficient κ is estimated from the error between the measured value of the current and the theoretical value of the current. The theoretical value of the voltage may be obtained by substituting it into the circuit theoretical formula, and the coupling coefficient κ may be estimated from the error between the theoretical value of the voltage and the measured value of the voltage. Further, the impedance error may be obtained by comparing the measured value of the impedance on the left side of the power supply circuit theoretical formula with the theoretical value of the impedance, and the coupling coefficient κ may be estimated from this.

以上のとおり、本例の非接触給電システム1によれば、送電コイルL1と受電コイルL2との距離が大きく、結合係数κが0に近い(結合が弱い)場合には送電装置10側の無効電力が増加するため、その変化が検出し易くなる。したがって、コイルの結合が弱い場合であってもコイルの結合状態の推定が可能となる。またこの場合に推定される結合係数κは、図8にて説明したとおり離散的な数値ではなく連続した数値であるため、結合係数κの推定精度が高くなる。これらの結果、送電コイルL1と受電コイルL2との位置ズレ量を精度よく検出することができるので、図6Aに示すように充電効率を高めることができるとともに、図6Bに示すように充電効率が高い駆動周波数を設定することができる。   As described above, according to the contactless power feeding system 1 of this example, when the distance between the power transmission coil L1 and the power receiving coil L2 is large and the coupling coefficient κ is close to 0 (coupling is weak), the power transmission apparatus 10 side is disabled. Since the power increases, the change is easily detected. Therefore, even when the coil coupling is weak, the coil coupling state can be estimated. Further, since the coupling coefficient κ estimated in this case is not a discrete numerical value but a continuous numerical value as described with reference to FIG. 8, the estimation accuracy of the coupling coefficient κ increases. As a result, the amount of positional deviation between the power transmission coil L1 and the power reception coil L2 can be detected with high accuracy, so that the charging efficiency can be increased as shown in FIG. 6A, and the charging efficiency is improved as shown in FIG. 6B. A high driving frequency can be set.

また、本例の非接触給電システム1によれば、送電装置10側にてコイルの結合状態を推定するので、受電装置50側にてコイルの結合状態を推定するのに比べて、電源へのフィードバックに要する通信時間が短縮される。このため、充電中にコイルの位置が変化して緊急停止を必要とする場合などには即座に対応措置することができる。   Further, according to the non-contact power feeding system 1 of this example, since the coupling state of the coil is estimated on the power transmission device 10 side, compared to estimating the coupling state of the coil on the power reception device 50 side, Communication time required for feedback is shortened. For this reason, when the position of the coil changes during charging and an emergency stop is required, an immediate countermeasure can be taken.

《第2実施形態》
上記第1実施形態のコイル結合状態推定部100は、理論的には推定誤差ゼロでの推定が可能である。しかしながら、実際には測定系に誤差が生じ、その影響によって推定誤差が発生する。この測定誤差による推定への影響について図19を用いて説明する。同図において、「○」は結合係数κ1の測定値1、「×」はκ2の測定値2、実線は理論式におけるインピーダンスの理論値をそれぞれ表している。
<< Second Embodiment >>
The coil coupling state estimation unit 100 of the first embodiment can theoretically perform estimation with zero estimation error. However, actually, an error occurs in the measurement system, and an estimation error occurs due to the influence. The influence of this measurement error on estimation will be described with reference to FIG. In the figure, “◯” represents the measured value 1 of the coupling coefficient κ1, “×” represents the measured value 2 of κ2, and the solid line represents the theoretical impedance value in the theoretical equation.

測定誤差とは、同κ軸上での理論値とのズレ(ΔZ1)で表現される。測定誤差が与える推定への影響を、まず測定値1について考える。κ1の状態でインピーダンスを測定した結果が測定値1である。この測定値1と同様のインピーダンスとなるκが推定値(ここではκ1´)となり、推定誤差はκ1−κ1´となる。つまり、測定誤差ΔZ1が推定に与える影響はκ1−κ1´となる。同様に、測定値2について考えると、測定誤差ΔZ2が推定に与える影響はκ2−κ2´となる。   The measurement error is expressed by a deviation (ΔZ1) from a theoretical value on the same κ axis. First, the measurement value 1 is considered for the influence of the measurement error on the estimation. The result of measuring the impedance in the state of κ1 is the measured value 1. Κ having the same impedance as the measurement value 1 is an estimated value (here, κ1 ′), and the estimation error is κ1−κ1 ′. That is, the influence of the measurement error ΔZ1 on the estimation is κ1-κ1 ′. Similarly, when the measurement value 2 is considered, the influence of the measurement error ΔZ2 on the estimation is κ2−κ2 ′.

ここで、2つの測定値1,2の推定誤差を比較すると、測定値2の誤差方が大きいことが理解される。つまり、測定値1付近のように結合係数κに対してインピーダンスの変化が急峻な領域では、測定誤差による影響は小さいが、測定値2のようなインピーダンス特性がフラットな領域では測定誤差の影響が大きくなる。   Here, when the estimation errors of the two measured values 1 and 2 are compared, it is understood that the error of the measured value 2 is large. That is, in the region where the impedance change is steep with respect to the coupling coefficient κ as in the vicinity of the measurement value 1, the influence of the measurement error is small, but in the region where the impedance characteristic is flat like the measurement value 2, the influence of the measurement error is. growing.

さて、図20にインバータ部13の出力部(図1の検出部20の部分)と、送電コイルL1のインピーダンス特性とを示す。これより、送電装置10の高周波交流電源部11,12,13と送電コイルL1とでは、インピーダンス特性が急峻になる領域が結合係数κによって異なることが理解される。また、図21,22は、図1の送電装置10および受電装置50の構成を変更したもののインピーダンス特性を示す。特性の概形や大きさに違いはあるが、変化量の大きい領域は、高周波交流電源11,12,13と送電コイルL1とで異なることが理解される。よって、本例では、以下に説明するとおり、上述した高周波交流電源部11,12,13と送電側コイルL1の特性を利用した構成とする。   Now, FIG. 20 shows the output part of the inverter part 13 (the part of the detection part 20 in FIG. 1) and the impedance characteristic of the power transmission coil L1. From this, it is understood that the region where the impedance characteristic is steep differs depending on the coupling coefficient κ between the high-frequency AC power supply units 11, 12, and 13 of the power transmission device 10 and the power transmission coil L <b> 1. 21 and 22 show the impedance characteristics of the power transmission device 10 and the power reception device 50 shown in FIG. Although there are differences in the general shape and size of the characteristics, it is understood that the region where the amount of change is large differs between the high-frequency AC power supplies 11, 12, 13 and the power transmission coil L1. Therefore, in this example, as described below, the configuration using the characteristics of the high-frequency AC power supply units 11, 12, and 13 and the power transmission side coil L1 described above is used.

図23は、本発明の第2実施形態(その1)を適用した非接触給電システム1であり、図1に示す非接触給電システム1に比べて図面上の相違はないが、結合係数κの推定に使用する電流及び電圧の測定値の検出部20を高周波交流電源部、換言すればインバータ部13の出力部に限定する点が相違する。その他の構成は既述した第1実施形態と同じであるため、その説明は省略する。   FIG. 23 is a non-contact power feeding system 1 to which the second embodiment (part 1) of the present invention is applied. Although there is no difference in the drawing compared to the non-contact power feeding system 1 shown in FIG. The difference is that the current and voltage measurement value detection unit 20 used for estimation is limited to the high-frequency AC power supply unit, in other words, the output unit of the inverter unit 13. Since other configurations are the same as those of the first embodiment described above, description thereof is omitted.

送電装置10及び受電装置50の回路構成は設計時に決定されるため、予め高周波交流電源部のインバータ部13の出力部のインピーダンス特性を把握することは可能である。したがって、設計時にインピーダンス特性が急峻となる領域、つまり推定誤差の小さい領域を把握することができる。この領域が、使用する領域と一致している場合は高周波交流電源部のインバータ部13の出力部の電流及び電圧を検出すればよい。   Since the circuit configurations of the power transmission device 10 and the power reception device 50 are determined at the time of design, it is possible to grasp the impedance characteristics of the output unit of the inverter unit 13 of the high-frequency AC power supply unit in advance. Therefore, it is possible to grasp a region where the impedance characteristic is steep at the time of design, that is, a region where the estimation error is small. If this area matches the area to be used, the current and voltage of the output part of the inverter part 13 of the high-frequency AC power supply part may be detected.

図3に示すように、結合係数κは高さによっても変化する。つまり、車両への適用を考えた場合に、横方向のズレがゼロであっても車高によって結合係数κの最大値が0.4であったり0.1であったりする。このように設計(車両)によって高い推定精度が要求される結合係数κの領域が異なるので、インピーダンス特性が急峻な狭域が、このように使用する領域に一致している場合は、本例のようにインバータ部13の出力部の電流及び電圧のみを検出すればよい。   As shown in FIG. 3, the coupling coefficient κ also changes depending on the height. That is, when considering application to a vehicle, the maximum value of the coupling coefficient κ may be 0.4 or 0.1 depending on the vehicle height even if the lateral displacement is zero. As described above, since the region of the coupling coefficient κ requiring high estimation accuracy differs depending on the design (vehicle), if the narrow region where the impedance characteristic is steep matches the region used in this way, Thus, only the current and voltage at the output section of the inverter section 13 need be detected.

図24は、本発明の第2実施形態(その2)を適用した非接触給電システム1であり、図1及び図23に示す非接触給電システム1に比べて、結合係数κの推定に使用する電圧及び電流の測定値の検出部21を送電コイルL1の入力部に限定する点が相違する。その他の構成は既述した第1実施形態と同じであるため、その説明は省略する。上記と同様の理由で、推定誤差の小さい領域と使用する領域とが一致している場合は、この送電コイルL1の入力部(検出部21)の電圧及び電流を検出すればよい。   FIG. 24 is a non-contact power feeding system 1 to which the second embodiment (No. 2) of the present invention is applied, and is used for estimating the coupling coefficient κ compared to the non-contact power feeding system 1 shown in FIGS. 1 and 23. The difference is that the voltage and current measurement value detection unit 21 is limited to the input unit of the power transmission coil L1. Since other configurations are the same as those of the first embodiment described above, description thereof is omitted. For the same reason as described above, when the region where the estimation error is small coincides with the region to be used, the voltage and current of the input unit (detection unit 21) of the power transmission coil L1 may be detected.

図25は、本発明の第2実施形態(その3)を適用した非接触給電システム1であり、図1,図23及び図24に示す非接触給電システム1に比べて、インバータ部13の出力部の電圧及び電流の測定値の検出部20と、その測定値を入力するコイル結合状態推定部100aと、送電コイルL1の入力部の電圧及び電流の測定値の検出部21と、その測定値を入力するコイル結合状態推定部100bと、が相違する。   FIG. 25 is a non-contact power feeding system 1 to which the second embodiment (No. 3) of the present invention is applied. Compared with the non-contact power feeding system 1 shown in FIGS. Voltage and current measurement value detection unit 20, coil coupling state estimation unit 100 a that inputs the measurement value, voltage and current measurement value detection unit 21 of the input part of power transmission coil L 1, and measurement value thereof Is different from the coil coupling state estimation unit 100b.

本例では、コイル結合状態推定部100a及び100bを出力することで、コイル結合の弱い状態から強い範囲まで、高い精度でコイル結合状態を推定することが可能となる。なお、2つのコイル結合状態推定値a,bをどのように取り扱うかについては後述する。   In this example, by outputting the coil coupling state estimation units 100a and 100b, it is possible to estimate the coil coupling state with high accuracy from a weak coil coupling state to a strong range. How to handle the two coil coupling state estimation values a and b will be described later.

《第3実施形態》
本例は、図25に示す実施形態、すなわち結合係数κの推定に測定値として用いる電圧及び電流を、インバータ部13の出力部(検出部20)及び送電コイルL1の入力部(検出部21)両方で検出するシステム構成であり、得られた2つのコイル結合状態推定値a,bをどのように取り扱うかについての実施形態である。
<< Third Embodiment >>
In this example, the voltage and current used as measured values for the estimation of the coupling coefficient κ shown in FIG. This is a system configuration that detects both, and is an embodiment of how to handle two obtained coil coupling state estimation values a and b.

上述したとおり、結合係数κに対してインピーダンス特性が急峻であれば測定誤差が推定値に与える影響を抑えることが可能となる。換言すれば、図19などに示す結合係数κに対するインピーダンス曲線の傾きの絶対値が相対的に大きいほど、測定誤差が大きくても推定値誤差は相対的に小さくなる。本例では、インバータ部13の出力部(検出部20)と、送電コイルL1の入力部(検出部21)のそれぞれのインピーダンス特性を用いるが、この特性には相反関係があるので、どちらか一方の急峻な領域が判別できれば推定誤差の大小判別が可能となる。   As described above, if the impedance characteristic is steep with respect to the coupling coefficient κ, the influence of the measurement error on the estimated value can be suppressed. In other words, as the absolute value of the slope of the impedance curve with respect to the coupling coefficient κ shown in FIG. 19 and the like is relatively large, the estimated value error is relatively small even if the measurement error is large. In this example, the respective impedance characteristics of the output section (detection section 20) of the inverter section 13 and the input section (detection section 21) of the power transmission coil L1 are used. If the steep region can be discriminated, the size of the estimation error can be discriminated.

そこで本例では、高周波交流電源のインバータ部13の出力部(検出部20)の力率を検出することで、この領域の判別を行う。インバータ部13の出力部のインピーダンスが極大(もしくは極小)になるところで力率は大きくなり、インピーダンスが極大(もしくは極小)から外れると力率は小さくなる。つまり、インバータ部13の出力部のインピーダンスと力率には相関関係がある。この関係に基づいて力率に閾値を設け、この閾値からどちらのコイル結合状態推定値の推定誤差が小さいかを判別する。   Therefore, in this example, this region is determined by detecting the power factor of the output unit (detection unit 20) of the inverter unit 13 of the high-frequency AC power supply. The power factor increases when the impedance of the output section of the inverter unit 13 is maximized (or minimized), and decreases when the impedance deviates from the maximum (or minimized). That is, there is a correlation between the impedance and the power factor of the output unit of the inverter unit 13. Based on this relationship, a threshold value is provided for the power factor, and it is determined from this threshold value which estimation error of the coil coupling state estimation value is small.

図26は本例の非接触給電システム1を示すブロック図である。図25の第2実施形態に係る非接触給電システム1との違いは、インバータ部13の出力部の力率(皮相電力Sに対する有効電力Pの割合=P/S)を検出する検出部20と、この力率、力率閾値及びコイル結合状態推定値a,bを入力とし、推定誤差の小さいものを判別して一つのコイル結合状態推定値を出力する結合状態領域判別部200が追加された点である。   FIG. 26 is a block diagram showing the non-contact power feeding system 1 of this example. The difference from the non-contact power feeding system 1 according to the second embodiment of FIG. 25 is that the detection unit 20 detects the power factor of the output unit of the inverter unit 13 (the ratio of the active power P to the apparent power S = P / S). A combined state region discriminating unit 200 is added which receives the power factor, power factor threshold value, and coil coupling state estimation values a and b as inputs, discriminates one having a small estimation error and outputs one coil coupling state estimation value. Is a point.

本例では、結合状態領域判別部200にて、インバータ部13の出力部である検出部20からの電圧と電流の測定値を入力し、これから力率P/Sを演算する。ここで、検出部20における電圧と電流の位相差をθとすると、力率P/S=cosθであり、電圧と電流の位相差θは検出部20からの電圧波形と電流波形から検出できるので、力率P/Sを演算することができる。   In this example, the combined state region discriminating unit 200 inputs measured values of voltage and current from the detecting unit 20 that is the output unit of the inverter unit 13, and calculates the power factor P / S therefrom. Here, if the phase difference between the voltage and the current in the detection unit 20 is θ, the power factor P / S = cos θ, and the phase difference θ between the voltage and the current can be detected from the voltage waveform and the current waveform from the detection unit 20. The power factor P / S can be calculated.

そして、力率が大きいとインバータ部13の出力部(検出部20)のインピーダンスが極大又は極小になり、力率が小さいとインピーダンスは極大又は極小から外れるという相関関係があるので、検出部20にて測定された電圧及び電流から求められた当該インバータ部13の出力部の力率が大きい場合にはインピーダンスが極大又は極小になる。したがって、この場合には、図19にて説明したとおり測定誤差による結合係数κの推定誤差が小さくなるので、インバータ部13の出力部(検出部20)の電圧及び電流の測定値を用いたコイル結合状態推定値aを採用し、これを最終的なコイル結合状態推定値として出力する。これにより、測定誤差の影響が小さい推定値の出力が可能となり、結合係数κ、ひいては送電コイルL1と受電コイルL2の位置ズレ量の精度が向上する。   When the power factor is large, the impedance of the output unit (detection unit 20) of the inverter unit 13 is maximized or minimized, and when the power factor is small, the impedance is deviated from the maximum or minimum. When the power factor of the output part of the inverter unit 13 obtained from the voltage and current measured in this way is large, the impedance becomes maximum or minimum. Accordingly, in this case, as described with reference to FIG. 19, the estimation error of the coupling coefficient κ due to the measurement error is reduced, so that the coil using the measured values of the voltage and current of the output unit (detection unit 20) of the inverter unit 13 is used. The combined state estimated value a is adopted, and this is output as the final coil combined state estimated value. As a result, it is possible to output an estimated value that is less influenced by the measurement error, and the accuracy of the coupling coefficient κ, and hence the positional deviation amount between the power transmission coil L1 and the power reception coil L2, is improved.

逆に、検出部20にて測定された電圧及び電流から求められた当該インバータ部13の出力部の力率が小さい場合にはインピーダンスが極大又は極小から外れることになる。したがって、この場合には、図19にて説明したとおり測定誤差による結合係数κの推定誤差が大きくなり、逆に送電コイルL1の入力部のインピーダンスが極大又は極小となって測定誤差による結合係数κの推定誤差が小さくなるので、送電コイルL1の入力部(検出部21)の電圧及び電流の測定値を用いたコイル結合状態推定値bを採用し、これを最終的なコイル結合状態推定値として出力する。これにより、測定誤差の影響が小さい推定値の出力が可能となり、結合係数κ、ひいては送電コイルL1と受電コイルL2の位置ズレ量の精度が向上する。また、測定誤差の影響が少ない結合状態推定値a,bを判別できるので、広い範囲でコイル結合状態の検出精度を高めることができる。   On the contrary, when the power factor of the output unit of the inverter unit 13 obtained from the voltage and current measured by the detection unit 20 is small, the impedance deviates from the maximum or the minimum. Accordingly, in this case, as described with reference to FIG. 19, the estimation error of the coupling coefficient κ due to the measurement error becomes large, and conversely, the impedance of the input part of the power transmission coil L1 becomes maximum or minimum and the coupling coefficient κ due to the measurement error. Therefore, the coil coupling state estimated value b using the measured values of the voltage and current of the input unit (detecting unit 21) of the power transmission coil L1 is adopted, and this is used as the final coil coupling state estimated value. Output. As a result, it is possible to output an estimated value that is less influenced by the measurement error, and the accuracy of the coupling coefficient κ, and hence the positional deviation amount between the power transmission coil L1 and the power reception coil L2, is improved. Further, since the coupling state estimation values a and b that are less affected by the measurement error can be discriminated, the detection accuracy of the coil coupling state can be increased over a wide range.

《第4実施形態》
本例は、図25に示す実施形態、すなわち結合係数κの推定に測定値として用いる電圧及び電流を、インバータ部13の出力部(検出部20)及び送電コイルL1の入力部(検出部21)の両方で検出するシステム構成であり、第3実施形態に対して、得られた2つのコイル結合状態推定値a,bをどのように取り扱うかについての他の実施形態である。
<< 4th Embodiment >>
In this example, the voltage and current used as measured values for the estimation of the coupling coefficient κ shown in FIG. This is a system configuration that detects both of them, and is another embodiment of how to handle the obtained two coil coupling state estimation values a and b with respect to the third embodiment.

上記第3実施形態では、インバータ部13の出力部(検出部20)の力率を検出し、この力率から2つのコイル結合状態推定値a,bの推定精度を判別したが、本例では検出部20,21それぞれのインピーダンスの大きさを比較することで推定誤差の小さいものを判別する。すなわち、図19に示すように、インピーダンス特性が急峻である領域はインピーダンスの大きさについても一方よりも大きくなることがわかる。この特性を利用してインピーダンス特性が急峻な領域を判別し、より推定誤差の小さいものを判別する。   In the third embodiment, the power factor of the output unit (detection unit 20) of the inverter unit 13 is detected, and the estimation accuracy of the two coil coupling state estimation values a and b is determined from this power factor. By comparing the magnitudes of the impedances of the detection units 20 and 21, it is determined whether the estimation error is small. That is, as shown in FIG. 19, it can be seen that the region where the impedance characteristic is steep is larger than the one in terms of the magnitude of the impedance. Using this characteristic, a region having a steep impedance characteristic is discriminated, and a region having a smaller estimation error is discriminated.

図27は本例の非接触給電システム1を示すブロック図である。図25の第2実施形態に係る非接触給電システム1との違いは、検出部20及び21それぞれの電圧及び電流と、コイル結合状態推定値a及びbを入力とし、コイル結合状態推定値を出力する結合状態領域判別部200が追加されている点である。   FIG. 27 is a block diagram showing the non-contact power feeding system 1 of this example. The difference from the non-contact power feeding system 1 according to the second embodiment of FIG. 25 is that the voltages and currents of the detection units 20 and 21 and the coil coupling state estimation values a and b are input and the coil coupling state estimation value is output. This is the point that a combined state region discriminating unit 200 is added.

図28は、図27の結合状態領域判別部200を示すブロック図であり、検出部20の電圧及び電流の測定値からインピーダンスの大きさを演算するインピーダンス演算部201と、検出部21の電圧及び電流の測定値からインピーダンスの大きさを演算するインピーダンス演算部202と、これらインピーダンス演算部201,202の出力からインピーダンスの大きさを比較するインピーダンス比較部203と、その比較結果からコイル結合状態推定値a及びbのどちらの推定誤差が小さいか判定してコイル結合状態推定値を出力するコイル結合状態判定部204と、を備える。   FIG. 28 is a block diagram showing the coupled state region discriminating unit 200 of FIG. 27, in which an impedance calculation unit 201 that calculates the magnitude of the impedance from the measured values of the voltage and current of the detection unit 20, and the voltage and An impedance calculation unit 202 that calculates the magnitude of the impedance from the measured current value, an impedance comparison unit 203 that compares the magnitude of the impedance from the outputs of the impedance calculation units 201 and 202, and a coil coupling state estimated value from the comparison result a coil coupling state determination unit 204 that determines which of the estimation errors a and b is smaller and outputs an estimated coil coupling state value.

上述したとおり、図19に示すようにインピーダンス特性が急峻である領域はインピーダンスの大きさについても一方よりも大きくなるので、検出部20,21のインピーダンスの大きい方が測定誤差による推定値の影響が少ない。したがって、コイル結合状態判定部204では、検出部20のインピーダンスの方が大きい場合には、この検出部20の電圧及び電流の測定値に基づいたコイル結合状態推定値aをコイル結合状態推定値として選択し、出力する。逆に検出部21のインピーダンスの方が大きい場合には、この検出部21の電圧及び電流の測定値に基づいたコイル結合状態推定値bをコイル結合状態推定値として選択し、出力する。これにより、測定誤差の影響が小さい推定値の出力が可能となり、結合係数κ、ひいては送電コイルL1と受電コイルL2の位置ズレ量の精度が向上する。また、測定誤差の影響が少ない結合状態推定値a,bを判別できるので、広い範囲でコイル結合状態の検出精度を高めることができる。   As described above, the region where the impedance characteristic is steep as shown in FIG. 19 has a larger impedance than the other. Therefore, the larger the impedance of the detection units 20 and 21, the greater the influence of the estimated value due to the measurement error. Few. Therefore, in the coil coupling state determination unit 204, when the impedance of the detection unit 20 is larger, the coil coupling state estimation value a based on the voltage and current measurement values of the detection unit 20 is used as the coil coupling state estimation value. Select and output. Conversely, when the impedance of the detection unit 21 is larger, the coil coupling state estimation value b based on the voltage and current measurement values of the detection unit 21 is selected and output as the coil coupling state estimation value. As a result, it is possible to output an estimated value that is less influenced by the measurement error, and the accuracy of the coupling coefficient κ, and hence the positional deviation amount between the power transmission coil L1 and the power reception coil L2, is improved. Further, since the coupling state estimation values a and b that are less affected by the measurement error can be discriminated, the detection accuracy of the coil coupling state can be increased over a wide range.

《第5実施形態》
本例は、図25に示す実施形態、すなわち結合係数κの推定に測定値として用いる電圧及び電流を、インバータ部13の出力部(検出部20)及び送電コイルL1の入力部(検出部21)の両方で検出するシステム構成であり、第3実施形態に対して、得られた2つのコイル結合状態推定値a,bをどのように取り扱うかについてのさらに他の実施形態である。
<< 5th Embodiment >>
In this example, the voltage and current used as measured values for the estimation of the coupling coefficient κ shown in FIG. This is a system configuration for detecting both of them, and is still another embodiment of how to handle the obtained two coil coupling state estimation values a and b with respect to the third embodiment.

上記第3実施形態では、インバータ部13の出力部(検出部20)の力率を検出し、この力率から2つのコイル結合状態推定値a,bの推定精度を判別したが、本例では検出部20,21それぞれのインピーダンスの微分値を比較することで推定誤差の小さいものを判別する。すなわち、図29に推定誤差の小さいものと大きいものの推定値におけるインピーダンス特性の傾き(微分値)を示す。このように、インピーダンス特性が急峻で推定誤差が小さいものは傾き(微分値の絶対値)が大きくなる。つまり、推定値におけるインピーダンス特性の微分値の絶対値を比較することで誤差の大小を判別できる。   In the third embodiment, the power factor of the output unit (detection unit 20) of the inverter unit 13 is detected, and the estimation accuracy of the two coil coupling state estimation values a and b is determined from this power factor. By comparing the differential values of the impedances of the detectors 20 and 21, it is determined whether the estimation error is small. That is, FIG. 29 shows the slope (differential value) of the impedance characteristics in the estimated values of the small and large estimation errors. As described above, the slope (absolute value of the differential value) increases when the impedance characteristic is steep and the estimation error is small. That is, the magnitude of the error can be determined by comparing the absolute value of the differential value of the impedance characteristic in the estimated value.

図30は本例の非接触給電システム1を示すブロック図である。図25の第2実施形態に係る非接触給電システム1との違いは、コイル結合状態推定値aおよびbを入力とし、コイル結合状態推定値を出力する結合状態領域判別部200を追加した点である。   FIG. 30 is a block diagram showing the non-contact power feeding system 1 of this example. The difference from the non-contact power feeding system 1 according to the second embodiment of FIG. 25 is that a coupling state region discriminating unit 200 that receives the coil coupling state estimation values a and b and outputs the coil coupling state estimation value is added. is there.

図31は、図30の結合状態領域判別部200を示すブロック図であり、コイル結合状態推定値aを入力とし、検出部20のインピーダンスの微分値を出力する微分値演算部211と、コイル結合状態推定値bを入力とし、検出部21のインピーダンスの微分値を出力する微分値演算部212と、それらの出力から微分値の大小を判定し、微分値の絶対値が大きい方を出力する微分値比較部213と、この出力とコイル結合状態推定値a及びbを入力とし、微分値の絶対値が大きい方のコイル結合状態推定値を出力するコイル結合状態判定部214と、を備える。   FIG. 31 is a block diagram showing the coupling state region discriminating unit 200 of FIG. 30, a differential value calculation unit 211 that receives the coil coupling state estimation value a and outputs a differential value of the impedance of the detection unit 20, and coil coupling The differential value calculation unit 212 that receives the state estimated value b as an input and outputs the differential value of the impedance of the detection unit 21, determines the magnitude of the differential value from the output, and outputs the differential value having the larger absolute value A value comparison unit 213; and a coil coupling state determination unit 214 that receives the output and the coil coupling state estimation values a and b and outputs a coil coupling state estimation value having a larger absolute value of the differential value.

上述したとおり、インピーダンス特性が急峻で推定誤差が小さいものは微分値の絶対値が大きくなるので、検出部20,21のインピーダンスの微分値の絶対値の大きい方が測定誤差による推定値の影響が少ない。したがって、コイル結合状態判定部214では、検出部20のインピーダンスの微分値の絶対値の方が大きい場合には、この検出部20の電圧及び電流の測定値に基づいたコイル結合状態推定値aをコイル結合状態推定値として選択し、出力する。逆に検出部21のインピーダンスの微分値の絶対値の方が大きい場合には、この検出部21の電圧及び電流の測定値に基づいたコイル結合状態推定値bをコイル結合状態推定値として選択し、出力する。これにより、測定誤差の影響が小さい推定値の出力が可能となり、結合係数κ、ひいては送電コイルL1と受電コイルL2の位置ズレ量の精度が向上する。また、測定誤差の影響が少ない結合状態推定値a,bを判別できるので、広い範囲でコイル結合状態の検出精度を高めることができる。   As described above, when the impedance characteristic is steep and the estimation error is small, the absolute value of the differential value is large. Therefore, when the absolute value of the differential value of the impedance of the detection units 20 and 21 is large, the estimation value is affected by the measurement error. Few. Therefore, in the coil coupling state determination unit 214, when the absolute value of the differential value of the impedance of the detection unit 20 is larger, the coil coupling state estimation value a based on the voltage and current measurement values of the detection unit 20 is calculated. Select as coil connection state estimated value and output. On the contrary, when the absolute value of the differential value of the impedance of the detection unit 21 is larger, the coil coupling state estimated value b based on the voltage and current measurement values of the detection unit 21 is selected as the coil coupling state estimated value. ,Output. As a result, it is possible to output an estimated value that is less influenced by the measurement error, and the accuracy of the coupling coefficient κ, and hence the positional deviation amount between the power transmission coil L1 and the power reception coil L2, is improved. Further, since the coupling state estimation values a and b that are less affected by the measurement error can be discriminated, the detection accuracy of the coil coupling state can be increased over a wide range.

《第6実施形態》
本例は、図25に示す実施形態、すなわち結合係数κの推定に測定値として用いる電圧及び電流を、インバータ部13の出力部(検出部20)及び送電コイルL1の入力部(検出部21)の両方で検出するシステム構成であり、第3実施形態に対して、得られた2つのコイル結合状態推定値a,bをどのように取り扱うかについてのさらに他の実施形態である。
<< 6th Embodiment >>
In this example, the voltage and current used as measured values for the estimation of the coupling coefficient κ shown in FIG. This is a system configuration for detecting both of them, and is still another embodiment of how to handle the obtained two coil coupling state estimation values a and b with respect to the third embodiment.

上記第3実施形態では、インバータ部13の出力部(検出部20)の力率を検出し、この力率から2つのコイル結合状態推定値a,bの推定精度を判別したが、本例では2つのコイル結合状態推定値a,bを平均することで、推定誤差の影響を抑える。   In the third embodiment, the power factor of the output unit (detection unit 20) of the inverter unit 13 is detected, and the estimation accuracy of the two coil coupling state estimation values a and b is determined from this power factor. By averaging the two coil coupling state estimation values a and b, the influence of the estimation error is suppressed.

すなわち、図32に平均値を取ることで推定誤差を抑えることができる一例を示す。2つのインピーダンス特性がκに対して対象でかつインピーダンス特性が交差するコイル結合状態で推定した結果がκ1´、κ2´である。この状況では2つの推定誤差はκ-κ1´、κ-κ2´となり、これは等しくなり、平均値を取れば推定誤差ゼロのコイル結合状態推定値を得ることができる。なお、これ以外にも測定精度が高く推定誤差が十分に小さい場合であれば平均値を取ることで、より精度の高いコイル結合状態推定値を得ることが可能である。   That is, FIG. 32 shows an example in which an estimation error can be suppressed by taking an average value. Κ1 ′ and κ2 ′ are the results of estimation in a coil coupling state in which two impedance characteristics are targets for κ and the impedance characteristics intersect. In this situation, the two estimation errors are κ-κ1 ′ and κ-κ2 ′, which are equal to each other. If an average value is taken, a coil coupling state estimation value with no estimation error can be obtained. In addition, if the measurement accuracy is high and the estimation error is sufficiently small, it is possible to obtain a more accurate coil coupling state estimation value by taking an average value.

図33は本例の非接触給電システム1を示すブロック図である。図25の第2実施形態に係る非接触給電システム1との違いは、コイル結合状態推定値aおよびbを入力とし、その平均値をコイル結合状態推定値として出力する結合状態領域判別部200を追加した点である。   FIG. 33 is a block diagram showing the non-contact power feeding system 1 of this example. The difference from the non-contact power feeding system 1 according to the second embodiment of FIG. 25 is that the coupled state region discriminating unit 200 that receives the coil coupled state estimated values a and b and outputs the average value as the coil coupled state estimated value. This is an added point.

上述したとおり、2つのコイル結合状態推定値a,bを平均すれば、それぞれの誤差も小さくなるので、測定誤差の影響が小さい推定値の出力が可能となり、結合係数κ、ひいては送電コイルL1と受電コイルL2の位置ズレ量の精度が向上する。   As described above, if the two coil coupling state estimation values a and b are averaged, the respective errors are also reduced, so that it is possible to output an estimation value that is less affected by the measurement error, and the coupling coefficient κ and, consequently, the power transmission coil L1. The accuracy of the positional deviation amount of the power receiving coil L2 is improved.

上記検出部20,21は本発明に係る測定値取得手段に相当し、上記理論値演算部101は本発明に係る演算手段に相当し、上記誤差演算部102、誤差比較部103及びκ更新部104は本発明に係るコイル結合状態推定手段に相当し、結合状態領域判別部200は本発明に係る結合領域判別手段に相当する。   The detection units 20 and 21 correspond to the measurement value acquisition unit according to the present invention, the theoretical value calculation unit 101 corresponds to the calculation unit according to the present invention, and the error calculation unit 102, the error comparison unit 103, and the κ update unit. Reference numeral 104 corresponds to the coil coupling state estimation unit according to the present invention, and the coupling state region determination unit 200 corresponds to the coupling region determination unit according to the present invention.

1…非接触給電システム
10…送電装置
11…交流電源部
12…直流電源部
13…電圧型インバータ部
〜D10…ダイオード
1P,C3…コンデンサ
〜S…MOSFET
…送電コイル
50…受電装置
…受電コイル
11〜D14…ダイオード
,C2P…コンデンサ
51…整流部
52…リレースイッチ
53…負荷
100…コイル結合状態推定部
101…理論値演算部
102…誤差演算部
103…誤差比較部
104…κ更新部
200…結合状態領域判別部
1 ... non-contact power supply system 10 ... power transmission apparatus 11 ... AC power supply unit 12 ... DC power supply 13 ... voltage type inverter unit D 1 to D 10 ... diodes C 1P, C 3 ... capacitors S 1 to S 4 ... MOSFET
L 1 ... power transmission coil 50 ... power receiving device L 2 ... power receiving coils D 11 to D 14 ... diode C 4 , C 2P ... capacitor 51 ... rectifier 52 ... relay switch 53 ... load 100 ... coil coupling state estimation unit 101 ... theoretical value Calculation unit 102 ... Error calculation unit 103 ... Error comparison unit 104 ... κ update unit 200 ... Combined state region determination unit

Claims (9)

送電装置を流れる電流の電圧及び電流の測定値を取得する測定値取得手段と、
前記送電装置の送電コイルと、当該送電コイルと対をなす受電コイルとの結合係数を含む給電回路理論式を記憶し、前記測定値取得手段により取得された電圧及び電流の一方の測定値と前記給電回路理論式とから、前記送電装置を流れる電流の電圧及び電流の他方の理論値を演算する演算手段と、
前記電圧及び電流の他方の測定値と、前記電圧及び電流の他方の理論値との誤差が最小となるように、前記給電回路理論式の結合係数を探索し、探索された結合係数に基づいて前記送電コイルと前記受電コイルとの結合状態を推定するコイル結合状態推定手段と、を備える非接触給電装置。
A measurement value acquisition means for acquiring a voltage of the current flowing through the power transmission device and a measurement value of the current;
A power feeding circuit theoretical formula including a coupling coefficient between a power transmission coil of the power transmission device and a power receiving coil paired with the power transmission coil is stored, and one measured value of the voltage and current acquired by the measured value acquisition unit and the From the feeder circuit theoretical formula, a calculation means for calculating the other theoretical value of the voltage and current of the current flowing through the power transmission device,
A search is made for a coupling coefficient of the feeder circuit theoretical formula so that an error between the other measured value of the voltage and current and the other theoretical value of the voltage and current is minimized, and based on the searched coupling coefficient. A non-contact power feeding apparatus comprising: a coil coupling state estimation unit that estimates a coupling state between the power transmission coil and the power reception coil.
前記コイル結合状態推定手段は、
前記電圧及び電流の他方の測定値と、前記電圧及び電流の他方の理論値との誤差を演算する誤差演算部と、
前記誤差演算部にて演算された誤差と許容値とを比較する誤差比較部と、
前記誤差が前記許容値以下になるまで前記給電回路理論式の結合係数を更新する結合係数更新部と、を備える請求項1に記載の非接触給電装置。
The coil coupling state estimation means includes
An error calculator that calculates an error between the other measured value of the voltage and current and the other theoretical value of the voltage and current;
An error comparison unit that compares the error calculated by the error calculation unit with an allowable value;
The non-contact electric power feeder of Claim 1 provided with the coupling coefficient update part which updates the coupling coefficient of the said electric power feeding circuit theoretical formula until the said error becomes below the said tolerance.
前記送電装置は、前記送電コイルを含む共振回路部に高周波交流電力を供給する高周波交流電源を含み、
前記測定値取得手段は、前記高周波交流電源の出力部の電圧及び電流の測定値のみを取得する請求項1又は2に記載の非接触給電装置。
The power transmission device includes a high-frequency AC power source that supplies high-frequency AC power to a resonance circuit unit including the power transmission coil,
The non-contact power feeding apparatus according to claim 1, wherein the measurement value acquisition unit acquires only measurement values of voltage and current of an output unit of the high-frequency AC power supply.
前記測定値取得手段は、前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値のみを取得する請求項1又は2に記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 1, wherein the measurement value acquisition unit acquires only measurement values of voltage and current of an input unit in which high-frequency AC power is input to the power transmission coil. 前記送電装置は、前記送電コイルを含む共振回路部に高周波交流電力を供給する高周波交流電源を含み、
前記測定値取得手段は、
前記高周波交流電源の出力部の電圧及び電流の測定値と、
前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値と、の両方を取得する請求項1又は2に記載の非接触給電装置。
The power transmission device includes a high-frequency AC power source that supplies high-frequency AC power to a resonance circuit unit including the power transmission coil,
The measurement value acquisition means includes
Measurement values of voltage and current at the output of the high-frequency AC power source,
The non-contact power feeding device according to claim 1, wherein both a voltage value and a current measurement value of an input unit into which high-frequency AC power is input to the power transmission coil are acquired.
前記高周波交流電源の出力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Aと、
前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Bと、
前記高周波交流電源の出力部の力率と、
を取得する結合領域判別手段をさらに備え、
前記結合領域判別手段は、前記高周波交流電源の出力部の力率に応じて、前記結合状態推定値A及び前記結合状態推定値Bのいずれか一方を出力する請求項5に記載の非接触給電装置。
A coupling state estimation value A estimated by the coil coupling state estimation means based on measured values of voltage and current at the output of the high-frequency AC power source;
A coupling state estimation value B estimated by the coil coupling state estimation means based on the measured values of the voltage and current of the input unit to which high-frequency AC power is input to the power transmission coil;
The power factor of the output section of the high-frequency AC power supply;
Further comprising a combined region discriminating means for obtaining
6. The non-contact power feeding according to claim 5, wherein the coupling region discriminating unit outputs one of the coupling state estimation value A and the coupling state estimation value B in accordance with a power factor of an output unit of the high-frequency AC power source. apparatus.
前記高周波交流電源の出力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Aと、
前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Bと、
前記高周波交流電源の出力部のインピーダンスと、
前記送電コイルに高周波交流電力が入力される入力部のインピーダンスと、
を取得する結合領域判別手段をさらに備え、
前記結合領域判別手段は、前記2つのインピーダンスの絶対値に応じて、前記結合状態推定値A及び前記結合状態推定値Bのいずれか一方を出力する請求項5に記載の非接触給電装置。
A coupling state estimation value A estimated by the coil coupling state estimation means based on measured values of voltage and current at the output of the high-frequency AC power source;
A coupling state estimation value B estimated by the coil coupling state estimation means based on the measured values of the voltage and current of the input unit to which high-frequency AC power is input to the power transmission coil;
The impedance of the output section of the high-frequency AC power supply;
The impedance of the input section where high frequency AC power is input to the power transmission coil;
Further comprising a combined region discriminating means for obtaining
The non-contact power feeding device according to claim 5, wherein the coupling region determination unit outputs one of the coupling state estimation value A and the coupling state estimation value B according to an absolute value of the two impedances.
前記高周波交流電源の出力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Aと、
前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Bと、
前記高周波交流電源の出力部のインピーダンスの微分値と、
前記送電コイルに高周波交流電力が入力される入力部のインピーダンスの微分値と、
を取得する結合領域判別手段をさらに備え、
前記結合領域判別手段は、前記2つのインピーダンスの微分値の絶対値の大きさに応じて、前記結合状態推定値A及び前記結合状態推定値Bのいずれか一方を出力する請求項5に記載の非接触給電装置。
A coupling state estimation value A estimated by the coil coupling state estimation means based on measured values of voltage and current at the output of the high-frequency AC power source;
A coupling state estimation value B estimated by the coil coupling state estimation means based on the measured values of the voltage and current of the input unit to which high-frequency AC power is input to the power transmission coil;
The differential value of the impedance of the output part of the high-frequency AC power supply,
The differential value of the impedance of the input part where high frequency alternating current power is input to the power transmission coil,
Further comprising a combined region discriminating means for obtaining
The said coupling area | region discrimination | determination means outputs any one of the said coupling | bonding state estimated value A and the said coupling | bonding state estimated value B according to the magnitude | size of the absolute value of the differential value of the said two impedance. Non-contact power feeding device.
前記高周波交流電源の出力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Aと、
前記送電コイルに高周波交流電力が入力される入力部の電圧及び電流の測定値に基づいて前記コイル結合状態推定手段で推定された結合状態推定値Bと、
を取得する結合領域判別手段をさらに備え、
前記結合領域判別手段は、前記結合状態推定値A及び前記結合状態推定値Bの平均値を出力する請求項5に記載の非接触給電装置。
A coupling state estimation value A estimated by the coil coupling state estimation means based on measured values of voltage and current at the output of the high-frequency AC power source;
A coupling state estimation value B estimated by the coil coupling state estimation means based on the measured values of the voltage and current of the input unit to which high-frequency AC power is input to the power transmission coil;
Further comprising a combined region discriminating means for obtaining
The non-contact power feeding apparatus according to claim 5, wherein the coupling region determination unit outputs an average value of the coupling state estimation value A and the coupling state estimation value B.
JP2011218972A 2011-10-03 2011-10-03 Non-contact power feeding device Active JP5796444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011218972A JP5796444B2 (en) 2011-10-03 2011-10-03 Non-contact power feeding device
PCT/JP2012/073989 WO2013051399A1 (en) 2011-10-03 2012-09-20 Wireless power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218972A JP5796444B2 (en) 2011-10-03 2011-10-03 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2013081275A true JP2013081275A (en) 2013-05-02
JP5796444B2 JP5796444B2 (en) 2015-10-21

Family

ID=48043563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218972A Active JP5796444B2 (en) 2011-10-03 2011-10-03 Non-contact power feeding device

Country Status (2)

Country Link
JP (1) JP5796444B2 (en)
WO (1) WO2013051399A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233359A (en) * 2014-06-09 2015-12-24 株式会社デンソー Non-contact power transmission system
CN112332485A (en) * 2020-10-29 2021-02-05 中国地质大学(武汉) Wireless charging system and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201388B2 (en) * 2013-04-15 2017-09-27 日産自動車株式会社 Contactless power supply system
US10538165B2 (en) * 2015-09-22 2020-01-21 Ford Global Technologies, Llc Parameter estimation of loosely coupled transformer
US10029577B2 (en) * 2016-06-15 2018-07-24 Qualcomm Incorporated Methods and apparatus for positioning a vehicle
CN110239374B (en) * 2019-06-21 2023-11-28 天津工业大学 Unmanned aerial vehicle wireless charging device and method capable of achieving self-adaptive positioning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191259A (en) * 1995-01-11 1996-07-23 Sony Chem Corp Transmitter-receiver for contactless ic card system
JPH11338983A (en) * 1998-05-21 1999-12-10 Kokusai Electric Co Ltd Reader-writer for non-contact ic card, and output power control method therefor
JP2006060909A (en) * 2004-08-19 2006-03-02 Seiko Epson Corp Noncontact power transmitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199975A (en) * 2010-03-18 2011-10-06 Nec Corp Device, system and method for noncontact power transmission
JP2012070463A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Non-contact power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191259A (en) * 1995-01-11 1996-07-23 Sony Chem Corp Transmitter-receiver for contactless ic card system
JPH11338983A (en) * 1998-05-21 1999-12-10 Kokusai Electric Co Ltd Reader-writer for non-contact ic card, and output power control method therefor
JP2006060909A (en) * 2004-08-19 2006-03-02 Seiko Epson Corp Noncontact power transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233359A (en) * 2014-06-09 2015-12-24 株式会社デンソー Non-contact power transmission system
CN112332485A (en) * 2020-10-29 2021-02-05 中国地质大学(武汉) Wireless charging system and method

Also Published As

Publication number Publication date
WO2013051399A1 (en) 2013-04-11
JP5796444B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5796444B2 (en) Non-contact power feeding device
EP2827472B1 (en) Non-contact power feeding apparatus and non-contact power feeding method
EP2713475B1 (en) Wireless power transmitter and method of controlling power thereof
JP6119756B2 (en) Non-contact power supply system and power transmission device
US9649946B2 (en) Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
EP2950417A1 (en) Wireless power transmission system and power transmission device
US10256675B2 (en) Power-supplying device and wireless power supply system
WO2013084754A1 (en) Contactless power transmission device
JP2013211932A (en) Power transmission system
JPWO2012073349A1 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
JP2012070463A (en) Non-contact power supply device
JP2013211933A (en) Power transmission system
US20210408846A1 (en) Wireless charging apparatus, position detection method, and system
WO2018221532A1 (en) Power transmission device, wireless power transmission system, and control device
JP2014124019A (en) Wireless power transmission system
JP5761508B2 (en) Power transmission system
US11228213B2 (en) Power transmitter and method of operation therefor
JP2013212033A (en) Power transmission system
JP2013223301A (en) Power reception device and power transmission device of contactless power transfer unit
JP2013212034A (en) Power transmission system
JP5761507B2 (en) Power transmission system
KR101428162B1 (en) Apparatus for supplying power and apparatus for transmitting wireless power and method for detecting resonance frequency
JP2014121101A (en) Non-contact feeder
JP5812264B2 (en) Power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5796444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151