JP2013080936A - Silicon carbide substrate, semiconductor device and wiring board - Google Patents

Silicon carbide substrate, semiconductor device and wiring board Download PDF

Info

Publication number
JP2013080936A
JP2013080936A JP2012256337A JP2012256337A JP2013080936A JP 2013080936 A JP2013080936 A JP 2013080936A JP 2012256337 A JP2012256337 A JP 2012256337A JP 2012256337 A JP2012256337 A JP 2012256337A JP 2013080936 A JP2013080936 A JP 2013080936A
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
sic
frequency loss
ghz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256337A
Other languages
Japanese (ja)
Other versions
JP5632900B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Akinobu Teramoto
章伸 寺本
Sumihisa Sano
純央 佐野
Fusao Fujita
房雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Tohoku University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Tohoku University NUC
Priority to JP2012256337A priority Critical patent/JP5632900B2/en
Publication of JP2013080936A publication Critical patent/JP2013080936A/en
Application granted granted Critical
Publication of JP5632900B2 publication Critical patent/JP5632900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem that an electronic element cannot be mounted practically on a silicon carbide when mounting a device such as an electronic element because a high-frequency loss of the silicon carbide substrate is large.SOLUTION: Because it is found that an electronic element can be mounted and sufficiently operated when a silicon nitride substrate has a high-frequency loss under 20 GHz of 2.0 dB/mm and under, the silicon carbide substrate having a high frequency loss of 2.0 dB/mm and over is heated at 2000°C and over. According to this heat treatment, a high frequency loss under 20 GHz can be made 2.0 dB/mm and under. Further, by manufacturing the silicon nitride substrate by CVD without flowing nitride to a heater, the high frequency loss can be made 2.0 dB/mm and under.

Description

本発明は、炭化珪素(SiC)基板、当該炭化珪素基板を含む半導体装置、及び配線基板に関する。   The present invention relates to a silicon carbide (SiC) substrate, a semiconductor device including the silicon carbide substrate, and a wiring substrate.

一般に、炭化珪素基板は、酸やアルカリ等の薬品に対する耐食性に優れているため、例えば、特許文献1に示されているように、CMP(化学機械研磨)に用いられる研磨パッドを処理、調整するのに使用されている。   In general, since a silicon carbide substrate is excellent in corrosion resistance to chemicals such as acid and alkali, for example, as shown in Patent Document 1, a polishing pad used in CMP (chemical mechanical polishing) is processed and adjusted. Is used.

一方、炭化珪素基板は、特許文献2に示されているように、シリコン基板等に比較して割れ難く、且つ、熱伝導が高いため、SOI(Semiconductor On Insulator)用基板として用いることが企図されている。この場合、SOI基板の基体材料として炭化珪素を用い、当該炭化珪素基体上に絶縁膜を介してシリコン基板が形成される場合がある。即ち、SOI基板では、支持部材として炭化珪素を用い、半導体素子を形成する素子形成領域としてシリコンが使用されることが多い。   On the other hand, as disclosed in Patent Document 2, the silicon carbide substrate is less likely to crack than a silicon substrate or the like, and has high thermal conductivity, so that it is intended to be used as a substrate for SOI (Semiconductor On Insulator). ing. In this case, silicon carbide may be used as a base material for the SOI substrate, and a silicon substrate may be formed on the silicon carbide base via an insulating film. That is, in an SOI substrate, silicon carbide is often used as a support member, and silicon is often used as an element formation region for forming a semiconductor element.

また、特許文献3のように、炭化珪素を含むセラミックスによって、低損失の高周波用配線基板を形成することも提案されている。   In addition, as disclosed in Patent Document 3, it is also proposed to form a low-loss high-frequency wiring board using ceramics containing silicon carbide.

特開2006−95637号公報JP 2006-95637 A 特願2007−184896号Japanese Patent Application No. 2007-184896 特開2000−228461号公報JP 2000-228461 A

特許文献2及び3に記載されたように、炭化珪素基板を支持基板、配線基板として使用するだけでなく、最近では炭化珪素基板に、半導体装置等、各種の電子素子を搭載すること、或いは、炭化珪素基板内に電子素子を形成することも考慮されている。このように、炭化珪素基板に対して直接、電子素子が取り付けられるようになると、今迄提案されてきた炭化珪素基板をそのまま使用することは出来ない。   As described in Patent Documents 2 and 3, not only using a silicon carbide substrate as a support substrate and a wiring substrate, but recently mounting various electronic elements such as a semiconductor device on the silicon carbide substrate, or It is also considered to form an electronic element in a silicon carbide substrate. Thus, when an electronic element is directly attached to a silicon carbide substrate, the silicon carbide substrate proposed so far cannot be used as it is.

例えば、GHz帯域のように高周波帯域で使用される電子素子に用いられる炭化珪素基板では、高周波における損失が小さいものが要求される。しかしながら、従来提案されている炭化珪素基板は、高周波損失が大きい等、電気的特性が不十分であるため、電子素子を実際に実装した炭化珪素基板の例について提案されていないのが実情である。   For example, a silicon carbide substrate used for an electronic device used in a high frequency band such as the GHz band is required to have a small loss at a high frequency. However, the silicon carbide substrate that has been proposed in the past has insufficient electrical characteristics such as a large high-frequency loss. Therefore, the actual situation is that an example of a silicon carbide substrate on which an electronic device is actually mounted has not been proposed. .

本発明の目的は、高周波損失の小さい炭化珪素基板を提供することである。   An object of the present invention is to provide a silicon carbide substrate with low high-frequency loss.

本発明の他の目的は、高周波損失の小さい炭化珪素基板を含む半導体装置、配線基板等を提供することにある。   Another object of the present invention is to provide a semiconductor device, a wiring board, and the like including a silicon carbide substrate with low high-frequency loss.

本発明の第1の態様によれば、周波数20GHzにおける損失が2dB/mm以下であることを特徴とする炭化珪素基板が得られる。   According to the first aspect of the present invention, there is obtained a silicon carbide substrate characterized in that loss at a frequency of 20 GHz is 2 dB / mm or less.

本発明の第2の態様によれば、第1の態様において、多結晶炭化珪素によって形成されていることを特徴とする炭化珪素基板が得られる。   According to the second aspect of the present invention, there is obtained a silicon carbide substrate characterized in that it is formed of polycrystalline silicon carbide in the first aspect.

本発明の第3の態様によれば、周波数20GHzにおける損失が2dB/mm以下の多結晶炭化珪素によって形成された基板を含むことを特徴とする半導体装置が得られる。   According to the third aspect of the present invention, there is obtained a semiconductor device including a substrate formed of polycrystalline silicon carbide having a loss at a frequency of 20 GHz of 2 dB / mm or less.

本発明の第4の態様によれば、周波数20GHzにおける損失が2dB/mm以下の多結晶炭化珪素によって形成された炭化珪素基板を含むことを特徴とする配線基板が得られる。   According to the fourth aspect of the present invention, there is obtained a wiring board including a silicon carbide substrate formed of polycrystalline silicon carbide having a loss at a frequency of 20 GHz of 2 dB / mm or less.

本発明によれば、20GHzにおける高周波損失を2dB/mm以下まで低減した炭化珪素基板が得られる。更に、通常の製法によって得られた炭化珪素基板を2000℃以上に加熱することにより、高周波損失を2dB/mm以下まで低下させることができた。   According to the present invention, a silicon carbide substrate in which high-frequency loss at 20 GHz is reduced to 2 dB / mm or less can be obtained. Furthermore, the high frequency loss could be reduced to 2 dB / mm or less by heating the silicon carbide substrate obtained by a normal manufacturing method to 2000 ° C. or higher.

(a)、(b)、(c)、及び(d)は本発明に係るSiC基板を作製するのに用いられる予備SiC基板の製造方法を説明する工程図である。(A), (b), (c), and (d) is process drawing explaining the manufacturing method of the preliminary | backup SiC substrate used for producing the SiC substrate which concerns on this invention. 本発明に係るSiC基板を製造する際に使用される熱処理炉を説明する図である。It is a figure explaining the heat treatment furnace used when manufacturing the SiC substrate which concerns on this invention. 図2に示された熱処理炉における熱処理工程を示す図である。It is a figure which shows the heat processing process in the heat processing furnace shown by FIG. 図2及び図3に示された熱処理工程で得られたSiC基板の高周波損失特性を示すグラフである。It is a graph which shows the high frequency loss characteristic of the SiC substrate obtained by the heat treatment process shown by FIG.2 and FIG.3. 図2及び図3に示された熱処理工程で得られた他のSiC基板の高周波損失特性を示すグラフである。It is a graph which shows the high frequency loss characteristic of the other SiC substrate obtained by the heat treatment process shown by FIG.2 and FIG.3. SiC基板の高周波損失特性を測定する測定方法を説明する図である。It is a figure explaining the measuring method which measures the high frequency loss characteristic of a SiC substrate.

以下、本発明を適用した好適な実施形態について、図面を参照しながら詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments to which the present invention is applied will be described in detail with reference to the drawings.

図1を参照して、本発明に係る炭化珪素(SiC)基板を製造する際に用いられる前処理段階の炭化珪素基板(予備炭化珪素基板と呼ぶ)の製造方法について説明する。   With reference to FIG. 1, a method of manufacturing a silicon carbide substrate (referred to as a preliminary silicon carbide substrate) at a pretreatment stage used when manufacturing a silicon carbide (SiC) substrate according to the present invention will be described.

まず、図1(a)に示すように、黒鉛基材10を用意する。ここでは、作製するSiC基板の寸法に合わせた高純度黒鉛からなる所定寸法の円板状黒鉛基材を用意した。その後、当該円板状黒鉛基材10をCVD装置に導入し、図1(b)のように、CVDにより黒鉛基材10の上面、下面、及び周面に炭化珪素12を所定の厚さ成長させる。成長した炭化珪素12は3C−SiC結晶構造を有していた。具体的に説明すると、CVD装置として、反応部とヒーター部を備えたCVD炉を使用し、ヒーター部にガス(例えば、窒素ガス)を流せるものを使用した。円板状黒鉛基材10は上記CVD装置内で、水素雰囲気で所定の温度(例えば、1000〜1600℃)で加熱、保持することによって炭化珪素12を成長させた。   First, as shown to Fig.1 (a), the graphite base material 10 is prepared. Here, a disc-shaped graphite base material having a predetermined size made of high-purity graphite matched to the size of the SiC substrate to be produced was prepared. Thereafter, the disk-shaped graphite substrate 10 is introduced into a CVD apparatus, and silicon carbide 12 is grown to a predetermined thickness on the upper surface, the lower surface, and the peripheral surface of the graphite substrate 10 by CVD as shown in FIG. Let The grown silicon carbide 12 had a 3C—SiC crystal structure. Specifically, as a CVD apparatus, a CVD furnace equipped with a reaction part and a heater part was used, and a device capable of flowing a gas (for example, nitrogen gas) into the heater part was used. The disc-shaped graphite base material 10 was grown in the above CVD apparatus by heating and holding at a predetermined temperature (for example, 1000 to 1600 ° C.) in a hydrogen atmosphere.

尚、CVD装置内の圧力は、例えば、1.3kPaであった。この状態で、キャリアガスである水素ガス(H2)とともに、SiCの原料となるSiCl4、C3H8などを体積%で5〜20%供給する。SiCの原料の組み合わせとしてはSiH4/CH4, SiH4/C2H4, SiH4/C3H8, SiCl4/CCl4, SiCl4/CH4, CH3SiCl3, (CH3)2SiCl2でもよい。これらのガスを供給することにより、黒鉛基材10の表面にSiCの層である3C−SiC結晶体12が所望の厚さ(例えば、0.5〜1mm)だけ成膜された。 In addition, the pressure in a CVD apparatus was 1.3 kPa, for example. In this state, together with hydrogen gas (H 2 ) as a carrier gas, 5 to 20% by volume of SiCl 4 , C 3 H 8 or the like as a raw material for SiC is supplied. SiC raw material combinations include SiH 4 / CH 4 , SiH 4 / C 2 H 4 , SiH 4 / C 3 H 8 , SiCl 4 / CCl 4 , SiCl 4 / CH 4 , CH 3 SiCl 3 , (CH 3 ) 2 SiCl 2 may be used. By supplying these gases, a 3C-SiC crystal body 12 as a SiC layer was formed on the surface of the graphite substrate 10 by a desired thickness (for example, 0.5 to 1 mm).

ここでは、ヒーターの消耗を防ぐために流していた窒素を流さないで製作したSiC基板と、窒素を流した状態で製作したSiC基板の2種類のSiC基板を作製した。   Here, two types of SiC substrates were manufactured: a SiC substrate manufactured without flowing nitrogen to prevent the heater from being consumed, and a SiC substrate manufactured with nitrogen flowing.

次に、3C−SiC結晶を成長させた黒鉛基材10を機械研磨して、図1(c)に示すように、周面のSiCを研削して除去した。機械研磨は、例えばダイヤモンド砥粒を用いて行った。   Next, the graphite base material 10 on which the 3C—SiC crystal was grown was mechanically polished, and the SiC on the peripheral surface was removed by grinding as shown in FIG. The mechanical polishing was performed using, for example, diamond abrasive grains.

続いて、上面及び下面を3C−SiCで覆われた黒鉛基材10を酸素雰囲気で900〜1400℃で加熱することにより、黒鉛基材10を燃焼させて脱離することにより除去し、これによって、2枚の3C−SiC基板14を得た(図1(d))。   Subsequently, the graphite substrate 10 whose upper and lower surfaces are covered with 3C—SiC is heated at 900 to 1400 ° C. in an oxygen atmosphere, so that the graphite substrate 10 is removed by burning and desorbing. Two 3C-SiC substrates 14 were obtained (FIG. 1 (d)).

以下、3C−SiC基板14を機械研磨し、最後にウエハエッジ部分の面取り加工、洗浄を行なった後に所定の検査を行なって、高純度のSiC基板を作製した。このようにして得られた3C−SiC基板は、SiC結晶のポリタイプの1つである3C−SiC結晶(多結晶SiC)によって形成されていた。なお、本例では、3C−SiCのSiC基板の例について説明したが、本発明の高周波用途のSiC基板のポリタイプは、例えば4H−SiCであってもよく、炭化珪素(SiC)の多結晶構造には特に限定されない。ここでは、CVD等により作製されたSiC基板を予備炭化珪素(SiC)基板と呼ぶものとする。   Thereafter, the 3C-SiC substrate 14 was mechanically polished, and finally the wafer edge portion was chamfered and cleaned, and then a predetermined inspection was performed to manufacture a high-purity SiC substrate. The 3C—SiC substrate thus obtained was formed of 3C—SiC crystal (polycrystalline SiC), which is one of polytypes of SiC crystal. In addition, although the example of the SiC substrate of 3C-SiC was demonstrated in this example, the polytype of the SiC substrate for high frequency use of this invention may be 4H-SiC, for example, and it is a polycrystal of silicon carbide (SiC). The structure is not particularly limited. Here, a SiC substrate manufactured by CVD or the like is referred to as a preliminary silicon carbide (SiC) substrate.

図2を参照して、図1(d)によって得られた炭化珪素基板(予備炭化珪素(SiC)基板)14の高周波損失改善の方法について説明する。予備炭化珪素基板14の高周波損失の改善は、図2に示された熱処理炉内で熱処理することによって可能であることが判明した。   With reference to FIG. 2, a method for improving the high-frequency loss of silicon carbide substrate (preliminary silicon carbide (SiC) substrate) 14 obtained in FIG. 1 (d) will be described. It has been found that the high frequency loss of the preliminary silicon carbide substrate 14 can be improved by heat treatment in the heat treatment furnace shown in FIG.

図2に示された熱処理炉は、ステンレス製の炉体20を有し、炉内は、熱処理部(反応部)21とヒーター部22とを備え、熱処理部21とヒーター部22とは黒鉛部材あるいは炭化珪素もしくはこれらを含む材料によって覆われた隔壁24によって区分されている。また、炉内の熱処理部21内には、アルゴンやヘリウム等の希ガスと窒素を選択的に流すことができ、真空ポンプにより炉内を真空に引くことができる。   The heat treatment furnace shown in FIG. 2 has a stainless steel furnace body 20, and the furnace includes a heat treatment part (reaction part) 21 and a heater part 22. The heat treatment part 21 and the heater part 22 are graphite members. Or it is divided by the partition 24 covered with silicon carbide or a material containing these. Further, a rare gas such as argon or helium and nitrogen can be selectively flowed into the heat treatment section 21 in the furnace, and the inside of the furnace can be evacuated by a vacuum pump.

熱処理方法としては、まず、予備SiC基板14(黒鉛基材を除去していない黒鉛基材付きSiC12でも良い)を準備し、炉20内の反応部21にセットする。セットする際、黒鉛製の治具を用いてセットすることが望ましいが、予備SiC基板14を直接積み重ねてセットしてもよい。SiC基板14をセットした後、図3に示す熱処理が行われる。この例では、CVD装置でSiCを成長する際に、ヒーター部に窒素を流さないで製作した予備SiC基板(A基板と呼ぶ)と窒素を流した状態で製作した予備SiC基板(B基板と呼ぶ)とを用意し、両者に、図2に示した熱処理炉を用いた熱処理を施した。   As a heat treatment method, first, a preliminary SiC substrate 14 (which may be SiC 12 with a graphite base material from which the graphite base material has not been removed) is prepared and set in the reaction section 21 in the furnace 20. When setting, it is desirable to set using a graphite jig, but the preliminary SiC substrate 14 may be directly stacked and set. After setting the SiC substrate 14, the heat treatment shown in FIG. 3 is performed. In this example, when SiC is grown by a CVD apparatus, a preliminary SiC substrate (referred to as “A substrate”) manufactured without flowing nitrogen through the heater portion and a preliminary SiC substrate (referred to as “B substrate”) manufactured while flowing nitrogen are used. And both were subjected to heat treatment using the heat treatment furnace shown in FIG.

図3に示すように、まず、予備SiC基板14をセットした後、炉内を−90kPaまで減圧して、その後、炉内雰囲気を窒素に置換する。これを2回繰り返す。この工程は炉内の空気を窒素に置換するためである。この置換工程は2回以上行っても良い。また、窒素の他にアルゴンやヘリウム等の希ガスを用いてもよい。炉内の空気を窒素に置換した後、800℃まで窒素雰囲気にて昇温する。800℃に達すると、炉内の雰囲気を窒素雰囲気からアルゴン雰囲気に置換する。この置換には約30分程度要する。800℃までは熱電対を用いて温度の測定を行う。   As shown in FIG. 3, first, after setting the preliminary SiC substrate 14, the pressure in the furnace is reduced to -90 kPa, and then the atmosphere in the furnace is replaced with nitrogen. Repeat this twice. This process is for replacing the air in the furnace with nitrogen. This replacement step may be performed twice or more. In addition to nitrogen, a rare gas such as argon or helium may be used. After replacing the air in the furnace with nitrogen, the temperature is raised to 800 ° C. in a nitrogen atmosphere. When the temperature reaches 800 ° C., the atmosphere in the furnace is replaced from a nitrogen atmosphere to an argon atmosphere. This replacement takes about 30 minutes. Up to 800 ° C., temperature is measured using a thermocouple.

続いて、アルゴン雰囲気で、800℃から処理温度(2000℃〜2300℃)まで昇温し、この熱処理温度に約1時間保持する。800℃から処理温度(2000℃〜2300℃)までについては、1700℃以上の温度を熱電対で測定できないため、放射温度計を用いて温度測定を行う。本熱処理炉では熱電対と放射温度計を用いたが、他に測定できる測定装置があればそれを用いてもよい。尚、実験によれば、熱処理温度は2300℃のように、高い熱処理温度が好ましいことが判明した。実験では処理時間を1時間としたが、処理時間については高周波損失が小さくなるように時間を調整すればよい。   Subsequently, the temperature is raised from 800 ° C. to a treatment temperature (2000 ° C. to 2300 ° C.) in an argon atmosphere, and the heat treatment temperature is maintained for about 1 hour. From 800 ° C. to the processing temperature (2000 ° C. to 2300 ° C.), since a temperature of 1700 ° C. or higher cannot be measured with a thermocouple, temperature measurement is performed using a radiation thermometer. In this heat treatment furnace, a thermocouple and a radiation thermometer are used. However, if there is another measuring device that can measure, it may be used. According to experiments, it has been found that a high heat treatment temperature such as 2300 ° C. is preferable. In the experiment, the processing time was 1 hour, but the processing time may be adjusted so that the high-frequency loss is reduced.

熱処理後、20時間程度で室温まで降温する。熱処理後のSiC基板の表面を研磨、洗浄し、本発明に係る炭化珪素(SiC)基板が得られる。   After the heat treatment, the temperature is lowered to room temperature in about 20 hours. The surface of the SiC substrate after the heat treatment is polished and washed to obtain a silicon carbide (SiC) substrate according to the present invention.

図4を参照すると、A基板を熱処理することによって得られたSiC基板の高周波損失特性が示されている。図4では、横軸にGHz帯域の周波数、縦軸に高周波損失(RF−loss(dB/mm))が示されている。図4の曲線C1からも明らかな通り、熱処理をしない未熱処理基板でも、CVD装置内で窒素ガスを流さなかったSiC基板(即ち、A基板)は20GHzにおける高周波損失が1.4dB/mmと極めて低いことが判る。   Referring to FIG. 4, the high-frequency loss characteristic of the SiC substrate obtained by heat-treating the A substrate is shown. In FIG. 4, the horizontal axis indicates the frequency in the GHz band, and the vertical axis indicates the high-frequency loss (RF-loss (dB / mm)). As is clear from the curve C1 in FIG. 4, the SiC substrate (that is, the A substrate) in which the nitrogen gas was not flowed in the CVD apparatus, even if the substrate was not heat-treated, had a very high frequency loss of 1.4 dB / mm at 20 GHz. It turns out that it is low.

本発明者等の知見によれば、20GHzにおいて2.0dB/mm以下の高周波損失を示すSiC基板は、電子素子を実装するのに実用上問題がないことが判明した。したがって、窒素ガスを流さないで製作されたSiC基板は、十分な高周波損失特性を有していることが判る。   According to the knowledge of the present inventors, it has been found that a SiC substrate showing a high frequency loss of 2.0 dB / mm or less at 20 GHz has no practical problem in mounting an electronic element. Therefore, it can be seen that the SiC substrate manufactured without flowing nitrogen gas has sufficient high-frequency loss characteristics.

更に、上記した未熱処理A基板に対して、2000℃、2150℃、及び2300℃で図3の熱処理を施したSiC基板の高周波損失特性がそれぞれ曲線C2、C3、及びC4で示されている。曲線2〜C4を比較しても明らかな通り、熱処理を施すことによって未熱処理SiC基板よりも高周波損失を低下させることができ、且つ、熱処理温度が高い程、高周波損失は低下することが判る。   Further, the high-frequency loss characteristics of the SiC substrate subjected to the heat treatment of FIG. 3 at 2000 ° C., 2150 ° C., and 2300 ° C. with respect to the above-described unheated A substrate are shown by curves C2, C3, and C4, respectively. As is apparent from comparison of curves 2 to C4, it can be seen that the high-frequency loss can be reduced by performing the heat treatment as compared with the unheated SiC substrate, and the higher the heat-treatment temperature, the lower the high-frequency loss.

実際、2300℃で熱処理したSiC基板は20GHzにおける高周波損失が1dB/mmよりも低いのに対し、2000℃及び2150℃で熱処理したSiC基板の20GHzにおける高周波損失は約1dB/mm程度である。更に、2000℃及び2150℃で熱処理したSiC基板の40GHzにおける高周波損失は約2dB/mm程度であり、他方、2300℃で熱処理したSiC基板は40GHzにおける高周波損失が1.5dB/mm程度である。   In fact, the SiC substrate heat-treated at 2300 ° C. has a high-frequency loss at 20 GHz lower than 1 dB / mm, whereas the SiC substrate heat-treated at 2000 ° C. and 2150 ° C. has a high-frequency loss at 20 GHz of about 1 dB / mm. Furthermore, the high frequency loss at 40 GHz of the SiC substrate heat treated at 2000 ° C. and 2150 ° C. is about 2 dB / mm, while the SiC substrate heat treated at 2300 ° C. has a high frequency loss at 40 GHz of about 1.5 dB / mm.

上記したように、2000℃以上の熱処理を受けたSiC基板は40GHzにおける高周波損失の点でも十分使用に耐えることが分かる。   As described above, it can be seen that the SiC substrate that has been subjected to the heat treatment at 2000 ° C. or higher sufficiently withstands high frequency loss at 40 GHz.

図5を参照すると、B基板を熱処理した場合の高周波損失特性が示されている。図5からも明らかな通り、未熱処理状態のB基板の高周波損失特性、2000℃の熱処理を受けたSiC基板の高周波損失特性、及び、2300℃の熱処理を受けたSiC基板の高周波損失特性がそれぞれ曲線C5、C6、及びC7で示されている。   Referring to FIG. 5, the high-frequency loss characteristic when the B substrate is heat-treated is shown. As is clear from FIG. 5, the high-frequency loss characteristic of the B substrate in the unheated state, the high-frequency loss characteristic of the SiC substrate that has been subjected to the heat treatment at 2000 ° C., and the high-frequency loss characteristic of the SiC substrate that has been subjected to the heat treatment at 2300 ° C. Curves C5, C6, and C7 are shown.

曲線C5からも明らかな通り、未熱処理のB基板は、20GHzにおいて約2.5dB/mmの高周波損失を示していることから、電子素子等の実装には不十分である。しかしながら、B基板を2000℃及び2300℃で熱処理して得られたSiC基板は、曲線C6及び曲線C7に示すように、20GHzにおける高周波損失が2.0dB/mm以下であるから、電子素子実装用の基板として使用できる。   As is apparent from the curve C5, the unheated B substrate exhibits a high-frequency loss of about 2.5 dB / mm at 20 GHz, and is insufficient for mounting an electronic device or the like. However, the SiC substrate obtained by heat-treating the B substrate at 2000 ° C. and 2300 ° C. has a high-frequency loss at 20 GHz of 2.0 dB / mm or less as shown by the curves C6 and C7. Can be used as a substrate.

次に、図4及び図5に示された高周波損失(dB/mm)の測定方法について説明しておく。   Next, a method for measuring the high frequency loss (dB / mm) shown in FIGS. 4 and 5 will be described.

図6を参照すると、高周波損失測定用の配線図が示されている。図示されているように、SiC基板14の表面中央部に、線幅Sの信号導体線30が配置されており、当該信号導体線30の両側に、間隔Wを置いてグランド導体線32が配置されている。ここでは、信号導体線30とグランド導体線32との間の間隔W及び信号導体線幅Sを変化させることにより、特性インピーダンス50Ωとなるように調整されている。この場合、信号導体線30の長さは1mmとしている。   Referring to FIG. 6, a wiring diagram for high frequency loss measurement is shown. As shown in the drawing, a signal conductor line 30 having a line width S is arranged at the center of the surface of the SiC substrate 14, and ground conductor lines 32 are arranged on both sides of the signal conductor line 30 with a gap W therebetween. Has been. Here, the characteristic impedance is adjusted to 50Ω by changing the interval W and the signal conductor line width S between the signal conductor line 30 and the ground conductor line 32. In this case, the length of the signal conductor wire 30 is 1 mm.

信号導体線30、グランド導体線32は、SiC基板14上に蒸着法によりAlを1μm程度蒸着し、フォトレジストにて信号導体線30とグランド導体線32からなるコプレナー線路パターンを形成している。この例では、信号導体線30とグランド導体線32はいずれも蒸着法により形成されたものであるが、蒸着法以外にスパッタリング法、CVD法やメッキ法等を使用して導体線30、32を形成してもよい。更に、図示された例では、導体線30、32として、Alを用いたが、Cu、Au等の金属を用いてもよい。   For the signal conductor line 30 and the ground conductor line 32, about 1 μm of Al is vapor-deposited on the SiC substrate 14 by a vapor deposition method, and a coplanar line pattern composed of the signal conductor line 30 and the ground conductor line 32 is formed of a photoresist. In this example, the signal conductor wire 30 and the ground conductor wire 32 are both formed by vapor deposition. However, the conductor wires 30 and 32 may be formed by using a sputtering method, a CVD method, a plating method, or the like in addition to the vapor deposition method. It may be formed. Further, in the illustrated example, Al is used for the conductor wires 30 and 32, but a metal such as Cu or Au may be used.

導体線30、32の一方の端子から信号を入射して、他方の端子に透過してきた信号を、ネットワークアナライザーを用いて測定した。この場合、信号周波数が10MHzから50GHzまでの伝送特性を測定した。   A signal was incident from one terminal of the conductor wires 30 and 32, and a signal transmitted through the other terminal was measured using a network analyzer. In this case, transmission characteristics with a signal frequency from 10 MHz to 50 GHz were measured.

図4及び図5に示された測定結果には、1、5、10、20、30、40GHzの信号における信号通過特性の動作伝送行列(S21)の値がdB/mmとして示されている。 In the measurement results shown in FIG. 4 and FIG. 5, the value of the operation transmission matrix (S 21 ) of the signal passing characteristic in the signal of 1, 5, 10, 20, 30, 40 GHz is shown as dB / mm. .

以上説明した実施形態では、電子素子を搭載、実装するSiC基板について説明したが、本発明に係るSiC基板は、これに限定されることなく、配線基板用、研磨パッド調整用、或いはSOIの支持基板としても使用できる。電子素子を搭載、実装するSiC基板としては、例えばSiC基板の上にSi層やその他の半導体層を形成し、この半導体層を電子素子の少なくとも一部としたものがある。あるいは、別に作成した電子素子をSiC基板上に搭載したものがある。またSOIの支持基板としては、例えば、SiC基板の上に絶縁物層を設けその上にSi等の半導体層を設けたSOI構成がある。配線基板としては、SiC基板の表面上に直接または他の絶縁物層を介して所定パターンの配線層を設けた構造のものが例示される。   In the embodiment described above, the SiC substrate on which the electronic element is mounted and mounted has been described. However, the SiC substrate according to the present invention is not limited to this, and is used for wiring substrates, for polishing pad adjustment, or for supporting SOI. It can also be used as a substrate. As a SiC substrate on which an electronic element is mounted and mounted, for example, there is one in which a Si layer or other semiconductor layer is formed on a SiC substrate, and this semiconductor layer is used as at least a part of the electronic element. Or there exists what mounted the electronic element produced separately on the SiC substrate. As an SOI support substrate, for example, there is an SOI configuration in which an insulating layer is provided on a SiC substrate and a semiconductor layer such as Si is provided thereon. Examples of the wiring board include a structure in which a wiring layer having a predetermined pattern is provided directly on the surface of the SiC substrate or via another insulating layer.

10 黒鉛基材
12 SiC
14 SiC基板
20 熱処理炉の炉体
22 ヒーター
24 黒鉛部材
10 Graphite base material 12 SiC
14 SiC substrate 20 Furnace body of heat treatment furnace 22 Heater 24 Graphite member

Claims (4)

CVD法による多結晶炭化珪素によって構成され、信号通過特性の動作伝送行列(S21)で表される周波数20GHzにおける伝送損失が2dB/mm以下になるように熱処理されたものであることを特徴とする炭化珪素基板。   It is composed of polycrystalline silicon carbide by CVD, and is heat-treated so that the transmission loss at a frequency of 20 GHz represented by the operation transmission matrix (S21) of signal transmission characteristics is 2 dB / mm or less. Silicon carbide substrate. 信号通過特性の動作伝送行列(S21)で表される周波数20GHzにおける伝送損失が2dB/mm以下になるように熱処理された、CVD法による多結晶炭化珪素の基板と、当該基板上に形成された半導体層又は電子素子を含むことを特徴とする半導体装置。   A polycrystalline silicon carbide substrate formed by CVD and heat-treated so that the transmission loss at a frequency of 20 GHz represented by the operation transmission matrix (S21) of the signal passing characteristic is 2 dB / mm or less, and formed on the substrate A semiconductor device comprising a semiconductor layer or an electronic element. 信号通過特性の動作伝送行列(S21)で表される周波数20GHzにおける伝送損失が2dB/mm以下になるように熱処理された、CVD法による多結晶炭化珪素の基板と、当該基板上に形成された絶縁物層と、当該絶縁物層上に設けられた半導体層又は電子素子を含むことを特徴とする半導体装置。   A polycrystalline silicon carbide substrate formed by CVD and heat-treated so that the transmission loss at a frequency of 20 GHz represented by the operation transmission matrix (S21) of the signal passing characteristic is 2 dB / mm or less, and formed on the substrate A semiconductor device including an insulator layer and a semiconductor layer or an electronic element provided over the insulator layer. 信号通過特性の動作伝送行列(S21)で表される周波数20GHzにおける伝送損失が2dB/mm以下になるように熱処理された、CVD法による多結晶炭化珪素によって形成された炭化珪素基板を含んでいることを特徴とする配線基板。   It includes a silicon carbide substrate formed of polycrystalline silicon carbide by a CVD method, heat-treated so that the transmission loss at a frequency of 20 GHz represented by the operation transmission matrix (S21) of the signal passing characteristic is 2 dB / mm or less. A wiring board characterized by that.
JP2012256337A 2012-11-22 2012-11-22 Silicon carbide substrate, semiconductor device, and wiring substrate Active JP5632900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256337A JP5632900B2 (en) 2012-11-22 2012-11-22 Silicon carbide substrate, semiconductor device, and wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256337A JP5632900B2 (en) 2012-11-22 2012-11-22 Silicon carbide substrate, semiconductor device, and wiring substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008108815A Division JP5260127B2 (en) 2008-04-18 2008-04-18 Method for producing silicon carbide

Publications (2)

Publication Number Publication Date
JP2013080936A true JP2013080936A (en) 2013-05-02
JP5632900B2 JP5632900B2 (en) 2014-11-26

Family

ID=48527044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256337A Active JP5632900B2 (en) 2012-11-22 2012-11-22 Silicon carbide substrate, semiconductor device, and wiring substrate

Country Status (1)

Country Link
JP (1) JP5632900B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823052A (en) * 1994-07-06 1996-01-23 Mitsubishi Materials Corp Thick film hybrid ic board provided with lead terminal
JP2000351615A (en) * 1999-04-07 2000-12-19 Ngk Insulators Ltd Silicon carbide body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823052A (en) * 1994-07-06 1996-01-23 Mitsubishi Materials Corp Thick film hybrid ic board provided with lead terminal
JP2000351615A (en) * 1999-04-07 2000-12-19 Ngk Insulators Ltd Silicon carbide body

Also Published As

Publication number Publication date
JP5632900B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
TWI330206B (en) Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv
JP4985625B2 (en) Method for producing silicon carbide single crystal
JP5260127B2 (en) Method for producing silicon carbide
US8507922B2 (en) Silicon carbide substrate, semiconductor device, and SOI wafer
JP2008088036A (en) Method for producing silicon carbide single crystal
TWI725910B (en) Wafer, epitaxial wafer and manufacturing method of the same
JP2007331955A (en) Method for producing diamond
CN108183065A (en) A kind of method and compound substrate for eliminating silicon wafer warpage
JP2010064918A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal wafer, and silicon carbide single crystal semiconductor power device
JP7256635B2 (en) LAMINATED SUBSTRATE, METHOD FOR MANUFACTURING LAMINATED SUBSTRATE, AND METHOD FOR MANUFACTURING FREE-STANDING SUBSTRATE
JP3145664B2 (en) Wafer heating device
US7414823B2 (en) Holder for use in semiconductor or liquid-crystal manufacturing device and semiconductor or liquid-crystal manufacturing device in which the holder is installed
JP5632900B2 (en) Silicon carbide substrate, semiconductor device, and wiring substrate
JP2014024701A (en) Method for producing silicon carbide substrate
JP2008544945A (en) Oxygen-sensitive silicon layer and method for obtaining the silicon layer
JPS60200519A (en) Heating element
JP5769680B2 (en) Silicon carbide structure and manufacturing method thereof
JP2005132703A (en) Method for manufacturing silicon carbide substrate, and silicon carbide substrate
JP4744016B2 (en) Manufacturing method of ceramic heater
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
JP2004363335A (en) Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP2005093519A (en) Silicon carbide substrate and method of manufacturing the same
JP2021095584A (en) Manufacturing method of silicon carbide polycrystalline substrate
JP2012001394A (en) Substrate for growing single crystal diamond, and method for producing the single crystal diamond
JP3862864B2 (en) Ceramic heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141010

R150 Certificate of patent or registration of utility model

Ref document number: 5632900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250