JP2013080071A - Naked eye stereoscopic vision display - Google Patents

Naked eye stereoscopic vision display Download PDF

Info

Publication number
JP2013080071A
JP2013080071A JP2011219715A JP2011219715A JP2013080071A JP 2013080071 A JP2013080071 A JP 2013080071A JP 2011219715 A JP2011219715 A JP 2011219715A JP 2011219715 A JP2011219715 A JP 2011219715A JP 2013080071 A JP2013080071 A JP 2013080071A
Authority
JP
Japan
Prior art keywords
autostereoscopic display
optical element
light
stereoscopic
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219715A
Other languages
Japanese (ja)
Other versions
JP5832843B2 (en
Inventor
Takafumi Koike
崇文 小池
Michio Oikawa
道雄 及川
Masami Yamazaki
眞見 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2011219715A priority Critical patent/JP5832843B2/en
Publication of JP2013080071A publication Critical patent/JP2013080071A/en
Application granted granted Critical
Publication of JP5832843B2 publication Critical patent/JP5832843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a naked eye stereoscopic vision display that has an improved stereoscopic effect and image quality by realizing a smooth stereoscopic image without changing a space between light beams so as to solve a problem included in a prior art in which: when a space between pixels is sensed, a stereoscopic effect or image quality is lost despite an abundant number of pixels.SOLUTION: A naked eye stereoscopic vision display includes a two-dimensional image display system, and an optical device. The optical device provides a stereoscopic image by deflecting light emitted from the two-dimensional image display system before double-reflecting the deflected light.

Description

裸眼立体視ディスプレイに関する。   The present invention relates to an autostereoscopic display.

背景技術として、特開2008−139524号公報(特許文献1)がある。この公報には、プロジェクタから投影された光線は,マイクロレンズアレイを通った時に偏光し,指向性のある光線として拡がるため,人の左右の目には異なる光線が入射し,人は立体映像として映像を知覚することが開示されている.このように光線を何らかの方法によって偏光させる技術を用いて,その偏光した光線を人に見せることにより立体知覚が可能となる。   As background art, there exists Unexamined-Japanese-Patent No. 2008-139524 (patent document 1). In this publication, the light projected from the projector is polarized when it passes through the microlens array and spreads as a directional light. It is disclosed to perceive video. In this way, by using a technique for polarizing a light beam by some method, a three-dimensional perception can be realized by showing the polarized light beam to a person.

ここで、「偏光」とは、光の進行方向を変えることである。また、一般に、物質内を光が通過する時、微視的には、物質を構成する原子や分子に光が散乱されたり、構造的な不連続部分で光が回折されたりする。これが、巨視的には、光の拡散、あるいは屈折として観測される。   Here, “polarized light” means changing the traveling direction of light. In general, when light passes through a substance, microscopically, the light is scattered by atoms and molecules constituting the substance, or the light is diffracted by structural discontinuities. Macroscopically, this is observed as light diffusion or refraction.

特開2008−139524号公報JP 2008-139524 A

特許文献1においては、プロジェクタから投影された光線は、マイクロレンズを通ったあと、非常に小さな領域(この領域を以下,偏光支点と呼ぶ)に集光され、この領域を支点として,指向性の光線として拡がるため、人が立体視ディスプレイを観察する際に、光線が作る輝点は非常に小さな画素として認識される。   In Patent Document 1, a light beam projected from a projector passes through a microlens, and is then focused on a very small region (this region is hereinafter referred to as a polarization fulcrum). Since it spreads as a light ray, when a person observes a stereoscopic display, a bright spot formed by the light ray is recognized as a very small pixel.

例えば特許文献1のように複数のプロジェクタから光線が投影されている場合、プロジェクタが十分密に並び、となりあう光線間の間隔が小さくてとなりあう上述の偏光支点どうしが十分に近ければ、画素間の間隔も十分小さく、問題ない。しかし現実的にはプロジェクタ間の間隔は広くとなりあう光線間の間隔を十分小さくできないので、人が画面を観察した際に、滑らかさのない、画素間に隙間のある映像として知覚されてしまうという課題が存在する。このように画素間の隙間を知覚されてしまうと、画素数としては多く存在していても、立体感や画質感が損なわれるという結果となってしまうという問題がある。   For example, when light rays are projected from a plurality of projectors as in Patent Document 1, if the projectors are arranged sufficiently densely and the above-described polarization fulcrums that are close to each other are sufficiently close to each other, The interval is sufficiently small, and there is no problem. In reality, however, the spacing between projectors cannot be made sufficiently small, so when a person observes the screen, it is perceived as a non-smooth image with a gap between pixels. There are challenges. If the gap between the pixels is perceived in this way, there is a problem that even if there are many pixels, the stereoscopic effect and the image quality are impaired.

そこで光線間の間隔を変えることなく立体映像が滑らかとなり、立体感、画質感を向上した裸眼立体視ディスプレイが求められている。   Therefore, there is a need for an autostereoscopic display in which stereoscopic images are smoothed without changing the spacing between light beams, and the stereoscopic effect and image quality are improved.

裸眼立体視ディスプレイは、二次元映像装置と、光学素子とを有し、
光学素子は、二次元映像装置から出射された光を偏光させた後に、偏光された光を複屈折させることにより、立体映像を提供する。
The autostereoscopic display has a two-dimensional image device and an optical element,
The optical element provides stereoscopic images by polarizing light emitted from the two-dimensional image device and then birefringing the polarized light.

表示される立体映像の輝点面積が広がるため,光線間の間隔を変えなくても、立体映像が滑らかとなり、立体感、画質感を向上した裸眼立体視ディスプレイを提供することができる。   Since the bright spot area of the displayed stereoscopic image is widened, it is possible to provide an autostereoscopic display with a smooth stereoscopic image and an improved stereoscopic effect and image quality without changing the interval between light beams.

裸眼立体視ディスプレイの構成図の例である。It is an example of a block diagram of an autostereoscopic display. 複屈折素子の例である。It is an example of a birefringent element. 複屈折素子の例である。It is an example of a birefringent element. 複屈折素子の例である。It is an example of a birefringent element. 裸眼立体視ディスプレイの構成図の例である。It is an example of a block diagram of an autostereoscopic display. 裸眼立体視ディスプレイの構成図の例である。It is an example of a block diagram of an autostereoscopic display.

以下、実施例を,図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.

本実施例では、偏光効果を持つ光学素子と複屈折素子とを有する裸眼立体視ディスプレイの例を説明する。   In this embodiment, an example of an autostereoscopic display having an optical element having a polarization effect and a birefringent element will be described.

図1は、本実施例の裸眼立体視ディスプレイの構成図の例である。
裸眼立体視ディスプレイは、二次元映像表示デバイス1、光学素子2、複屈折素子10を有する。
FIG. 1 is an example of a configuration diagram of an autostereoscopic display according to the present embodiment.
The autostereoscopic display includes a two-dimensional image display device 1, an optical element 2, and a birefringent element 10.

二次元映像表示デバイス1から出射した光線は、光学素子2で偏光され,偏光状態に応じて複屈折素子10で異なる2つの屈折率で屈折して2つの方向に異なる偏光で出射する。   The light beam emitted from the two-dimensional image display device 1 is polarized by the optical element 2 and refracted at two different refractive indexes by the birefringent element 10 according to the polarization state, and is emitted with different polarized light in two directions.

二次元映像表示デバイス1から出射した光線が光学素子2と複屈折素子10によって偏光されるので、図1の右側からユーザが観察した時に,右目3,左目4に,それぞれ別の光線5,6が入射する.この結果、違う色や輝度を持つ光線が右目3と左目4入射するため,裸眼で立体視が可能となる.
さらに、二次元映像表示デバイス1から出射した光線は複屈折素子10によって2つ光線に分けられるので、この2つの光線によって作られる輝点の面積は、複屈折素子10を用いなかった場合に1つの光線によって作られる輝点の面積よりも広くなる。したがって、複屈折素子10を使用しない場合と比べて、画素間の間隔が狭くなり、滑らかな立体映像を提供することができる。 二次元映像表示デバイス1は,液晶ディスプレイ,プラズマディスプレイ,有機ELディスプレイ,電界放出ディスプレイ,プロジェクタなどの一般的な映像表示装置として用いられているものであれば良い.二次元映像表示デバイス1から出射する光は、偏光していない状態,または,2つ以上の偏光状態の光が混じった状態であればよい.
光学素子2は,通常複数の単レンズ(単光学素子)121を有する.通常,単光学素子121は,光軸が格子上に並んだり,光軸が最密充填構造の中心に一致するなどや何らかの規則に沿って並べられている.単レンズ121としては,バリアやピンホール,レンチキュラや球面凸レンズなどが用いられる.
ここで光軸とは、光学素子の中心を通り,光学素子に垂直な直線である.光学素子がレンズの場合は,光軸はレンズ中心を通りレンズ面に垂直な直線となる。
Since the light beam emitted from the two-dimensional image display device 1 is polarized by the optical element 2 and the birefringent element 10, when the user observes from the right side of FIG. Is incident. As a result, light rays with different colors and brightness are incident on the right eye 3 and the left eye 4, so that stereoscopic vision is possible with the naked eye.
Furthermore, since the light beam emitted from the two-dimensional image display device 1 is divided into two light beams by the birefringent element 10, the area of the bright spot formed by these two light beams is 1 when the birefringent element 10 is not used. It is wider than the area of the bright spot created by two rays. Therefore, compared with the case where the birefringent element 10 is not used, the interval between pixels is narrowed, and a smooth stereoscopic image can be provided. The two-dimensional image display device 1 may be any device used as a general image display device such as a liquid crystal display, a plasma display, an organic EL display, a field emission display, and a projector. The light emitted from the two-dimensional image display device 1 may be in a state where it is not polarized or in a state where light in two or more polarization states is mixed.
The optical element 2 usually has a plurality of single lenses (single optical elements) 121. In general, the single optical elements 121 are arranged according to some rules, such as the optical axis is arranged on a lattice, the optical axis is coincident with the center of the close-packed structure, or the like. As the single lens 121, a barrier, a pinhole, a lenticular, a spherical convex lens, or the like is used.
Here, the optical axis is a straight line that passes through the center of the optical element and is perpendicular to the optical element. When the optical element is a lens, the optical axis is a straight line passing through the center of the lens and perpendicular to the lens surface.

図2は,複屈折素子の例である.
複屈折素子10に入射した光20は,光の偏光状態に応じて2つの異なる屈折率で屈折を行い,2つの方向(21および22)に光が出射する.複屈折素子の厚さに応じて屈折量は制御可能である。滑らかな立体映像を得るためには、複屈折素子10を用いない場合における隣り合う輝点間の距離の半分程度輝点が移動する複屈折量が得られるような厚みの複屈折素子を用いるのが良い.なお、複屈折素子10の一例として、方解石やルチル、水晶、液晶で構成された素子を用いることができる。
Figure 2 shows an example of a birefringent element.
The light 20 incident on the birefringent element 10 is refracted at two different refractive indexes according to the polarization state of the light, and the light is emitted in two directions (21 and 22). The amount of refraction can be controlled according to the thickness of the birefringent element. In order to obtain a smooth stereoscopic image, a birefringent element having such a thickness that a birefringence amount by which a bright spot moves about half the distance between adjacent bright spots when the birefringent element 10 is not used is obtained. Is good. As an example of the birefringent element 10, an element made of calcite, rutile, crystal, or liquid crystal can be used.

図3は,複屈折素子の断面の例である.
複屈折素子10は,片側が球面,その逆側が平面の形状を有し,球面部分の形状に対して,最大で元の球面の曲率半径の10%程度長さのランダムな形状歪みを有する.
ここで,ランダムとは、非規則的であることを意味するが,コンピュータの乱数生成プログラムにより生成された乱数などを用いても良い。
Figure 3 shows an example of a cross section of a birefringent element.
The birefringent element 10 has a spherical shape on one side and a flat shape on the opposite side, and has a random shape distortion with a maximum length of about 10% of the radius of curvature of the original spherical surface with respect to the shape of the spherical portion.
Here, “random” means irregular, but a random number generated by a computer random number generation program may be used.

図4は,複屈折素子の別の例である.図4に示す複屈折素子10は入射した光20を円複屈折させる.すなわち複屈折素子10は、例えば,光軸を中心とした円41上に入射光40を複屈折させる.円複屈折の量としては,例えば屈折素子10を用いない場合における隣り合う最も近い輝点間の距離の半分だけ輝点が広がる量とか,近辺数個の輝点との距離の平均値分だけ輝点が広がる量とすると良い.このような複屈折素子10を用いると、光軸の周囲全方向に輝点面積が広がるので、全方向で画素間の間隔を狭くすることができ、より滑らかな立体映像を提供することができる。   Figure 4 shows another example of a birefringent element. The birefringent element 10 shown in FIG. 4 makes the incident light 20 circularly birefringent. That is, the birefringent element 10 birefringes incident light 40 on a circle 41 centered on the optical axis, for example. As the amount of circular birefringence, for example, when the refractive element 10 is not used, the amount by which the luminescent spot spreads by half of the distance between the nearest adjacent luminescent spots, or the average value of the distances from several neighboring luminescent spots. It should be the amount that the bright spot spreads. When such a birefringent element 10 is used, the bright spot area increases in all directions around the optical axis, so that the interval between pixels can be reduced in all directions, and a smoother stereoscopic image can be provided. .

本実施例では、偏光効果と複屈折効果の両方を持つ光学素子アレイを有するプロジェクタ方式裸眼立体視ディスプレイの例を説明する。   In this embodiment, an example of a projector-type autostereoscopic display having an optical element array having both a polarization effect and a birefringence effect will be described.

図5は,本実施例の裸眼立体視ディスプレイの構成図である。本実施例では、光学素子2および複屈折素子10に変えて、光学素子50として偏光作用と複屈折作用の両方を有する光学素子アレイを用いる。なお、光学素子アレイの一例として、水晶から製作した単球面レンズアレイや、硝子から製作した中空のレンズアレイに液晶を充填したものを用いることができる。また、二次元映像表示デバイス1としてプロジェクタ91を用いる.
図1の構成との大きな違いは,二次元映像表示デバイス1としてプロジェクタ91を用いた場合,プロジェクタ91と光学素子50との距離が、図1の二次元映像表示デバイス1と光学素子2との距離より長くなることである.図1に示す実施例1の二次元映像表示デバイス1と光学素子2の距離は,通常,光学素子2の焦点距離fにほぼ等しいのに対して,図9の構成では,プロジェクタ91と光学素子50の距離は,プロジェクタ91の焦点距離f’にほぼ等しくなる.通常f’>fである.
短焦点プロジェクタの場合は,画角θが大きくなるため,画面中央に比べて画面端では光線が斜めに入射している.
そこで、各単光学素子121の光軸と、プロジェクタ91の投影中心と当該単光学素子121の中心を結ぶ直線とが並行となるように、各各単光学素子121を傾けて配置することで光学素子50を構成する.
この結果,観察が裸眼立体視ディスプレイを正面からではなく,斜めから見たときの画質が向上する.
FIG. 5 is a configuration diagram of the autostereoscopic display of this embodiment. In this embodiment, instead of the optical element 2 and the birefringent element 10, an optical element array having both a polarizing action and a birefringent action is used as the optical element 50. As an example of the optical element array, a single spherical lens array manufactured from quartz or a hollow lens array manufactured from glass filled with liquid crystal can be used. A projector 91 is used as the 2D video display device 1.
A major difference from the configuration of FIG. 1 is that when a projector 91 is used as the 2D video display device 1, the distance between the projector 91 and the optical element 50 is such that the distance between the 2D video display device 1 and the optical element 2 of FIG. It is longer than the distance. The distance between the two-dimensional image display device 1 and the optical element 2 according to the first embodiment shown in FIG. 1 is generally substantially equal to the focal length f of the optical element 2, whereas in the configuration of FIG. The distance of 50 is almost equal to the focal length f ′ of the projector 91. Usually, f ′> f.
In the case of a short-focus projector, the angle of view θ is larger, so the light beam is incident obliquely at the edge of the screen compared to the center of the screen.
Therefore, the optical axis of each single optical element 121 and each single optical element 121 are inclined and arranged so that the projection center of the projector 91 and the straight line connecting the centers of the single optical elements 121 are parallel to each other. The element 50 is configured.
As a result, the image quality is improved when viewing the autostereoscopic display from an angle rather than from the front.

本実施例では、偏光効果と複屈折効果の両方を持つ光学素子アレイを有するマルチプロジェクタ方式裸眼立体視ディスプレイの例を説明する。   In this embodiment, an example of a multi-projector autostereoscopic display having an optical element array having both a polarization effect and a birefringence effect will be described.

図6は,本実施例の裸眼立体視ディスプレイの構成図である。   FIG. 6 is a configuration diagram of the autostereoscopic display of this embodiment.

図5とのちがいは、二次元映像表示デバイス1として複数のプロジェクタを備えるプロジェクタ群101を用いたことである.その他の構成は,既に説明した図5に示された同一の符号を付された構成と,同一の機能を有するので,その説明は省略する.
本構成では,複数台プロジェクタを用いているため,映像が明るくなり,また光線数が向上するため画質が向上する効果がある.また,光学素子50が複屈折効果を持つため,画素の輝点面積を大きくする効果があり,プロジェクタ群101を構成するプロジェクタ間の配置間隔を狭めて光線間の距離を狭めなくても、滑らかで自然な立体映像の表示が可能となる.
なお、本発明は上記した3つの実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
A difference from FIG. 5 is that the projector group 101 including a plurality of projectors is used as the two-dimensional video display device 1. The other configurations have the same functions as the configurations denoted by the same reference numerals shown in FIG. 5 and will not be described.
In this configuration, since multiple projectors are used, the image becomes brighter and the number of rays is improved, so that the image quality is improved. Further, since the optical element 50 has a birefringence effect, there is an effect of increasing the bright spot area of the pixel, and even if the arrangement interval between the projectors constituting the projector group 101 is narrowed and the distance between the light beams is not narrowed, It is possible to display natural 3D images.
Note that the present invention is not limited to the three embodiments described above, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 二次元映像表示デバイス
2 光学素子
3 右目
4 左目
5 光線
6 光線
10 複屈折素子
91 プロジェクタ
101 プロジェクタ群
DESCRIPTION OF SYMBOLS 1 Two-dimensional image display device 2 Optical element 3 Right eye 4 Left eye 5 Light 6 Light 10 Birefringence element 91 Projector 101 Projector group

Claims (8)

二次元映像装置と、
光学素子とを有し、
前記光学素子は、前記二次元映像装置から出射された光を偏光させた後に、偏光された光を複屈折させることにより、立体映像を提供することを特徴とする裸眼立体視ディスプレイ。
A two-dimensional image device,
An optical element,
The autostereoscopic display, wherein the optical element provides a stereoscopic image by polarizing the light emitted from the two-dimensional image device and then birefringing the polarized light.
請求項1に記載の裸眼立体視ディスプレイであって、
前記光学素子は、方解石で構成された素子を備えており、
前記方解石で構成された素子が前記偏光された光を複屈折させることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
The optical element comprises an element composed of calcite,
An autostereoscopic display, wherein an element made of the calcite birefringes the polarized light.
請求項1に記載の裸眼立体視ディスプレイであって、
前記光学素子は、ルチルで構成された素子を備えており、
前記ルチルで構成された素子が前記偏光された光を複屈折させることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
The optical element comprises an element composed of rutile,
An autostereoscopic display characterized in that an element composed of the rutile birefringes the polarized light.
請求項1に記載の裸眼立体視ディスプレイであって、
前記光学素子は、液晶で構成された素子を備えており、
前記液晶で構成された素子が前記偏光された光を複屈折させることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
The optical element includes an element composed of liquid crystal,
An autostereoscopic display characterized in that an element composed of the liquid crystal birefringes the polarized light.
請求項1に記載の裸眼立体視ディスプレイであって、
前記光学素子は、前記偏光された光を円複屈折させることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
The autostereoscopic display, wherein the optical element causes birefringence of the polarized light.
請求項1乃至5記載の裸眼立体視ディスプレイであって、
前記二次元映像装置としてプロジェクタを備えることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
An autostereoscopic display comprising a projector as the two-dimensional video apparatus.
請求項1乃至5記載の裸眼立体視ディスプレイであって、
前記二次元映像装置として、複数のプロジェクタを有するプロジェクタ群を備えることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 1,
An autostereoscopic display comprising a projector group having a plurality of projectors as the two-dimensional video apparatus.
請求項6乃至7記載の裸眼立体視ディスプレイであって、
前記光学素子は、複数の単光学素子を備えており、
前記複数の単光学素子は各々、当該単光学素の光軸が前記二次元映像装置の投影中心と当該単光学素の中心とを結ぶ直線と並行になるよう配置されていることを特徴とする裸眼立体視ディスプレイ。
The autostereoscopic display according to claim 6,
The optical element comprises a plurality of single optical elements,
Each of the plurality of single optical elements is arranged such that the optical axis of the single optical element is parallel to a straight line connecting the projection center of the two-dimensional image device and the center of the single optical element. Autostereoscopic display.
JP2011219715A 2011-10-04 2011-10-04 Autostereoscopic display Active JP5832843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219715A JP5832843B2 (en) 2011-10-04 2011-10-04 Autostereoscopic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219715A JP5832843B2 (en) 2011-10-04 2011-10-04 Autostereoscopic display

Publications (2)

Publication Number Publication Date
JP2013080071A true JP2013080071A (en) 2013-05-02
JP5832843B2 JP5832843B2 (en) 2015-12-16

Family

ID=48526488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219715A Active JP5832843B2 (en) 2011-10-04 2011-10-04 Autostereoscopic display

Country Status (1)

Country Link
JP (1) JP5832843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297931A (en) * 2014-10-27 2015-01-21 京东方科技集团股份有限公司 Naked-eye 3D display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262371A (en) * 1995-03-17 1996-10-11 Tsushin Hoso Kiko Stereoscopic image reproducing device and method therefor
JP2006113218A (en) * 2004-10-13 2006-04-27 Epson Toyocom Corp Depolarizing plate and electrooptical equipment
JP2006276466A (en) * 2005-03-29 2006-10-12 Toshiba Corp Stereoscopic image display device
JP2007013648A (en) * 2005-06-30 2007-01-18 Sharp Corp Radio communication system and communication terminal
JP2010513970A (en) * 2006-12-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display device and system using the device
JP2010114591A (en) * 2008-11-05 2010-05-20 Hitachi Ltd Naked eye stereoscopic viewing system
JP2010224191A (en) * 2009-03-23 2010-10-07 Toshiba Corp Apparatus for displaying stereoscopic image

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262371A (en) * 1995-03-17 1996-10-11 Tsushin Hoso Kiko Stereoscopic image reproducing device and method therefor
JP2006113218A (en) * 2004-10-13 2006-04-27 Epson Toyocom Corp Depolarizing plate and electrooptical equipment
JP2006276466A (en) * 2005-03-29 2006-10-12 Toshiba Corp Stereoscopic image display device
JP2007013648A (en) * 2005-06-30 2007-01-18 Sharp Corp Radio communication system and communication terminal
JP2010513970A (en) * 2006-12-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Autostereoscopic display device and system using the device
JP2010114591A (en) * 2008-11-05 2010-05-20 Hitachi Ltd Naked eye stereoscopic viewing system
JP2010224191A (en) * 2009-03-23 2010-10-07 Toshiba Corp Apparatus for displaying stereoscopic image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小柳修爾, オプトロニクス 光技術用語辞典, vol. 第3版, JPN6015005421, 21 November 2005 (2005-11-21), JP, pages 352, ISSN: 0003005902 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297931A (en) * 2014-10-27 2015-01-21 京东方科技集团股份有限公司 Naked-eye 3D display device

Also Published As

Publication number Publication date
JP5832843B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US9538165B2 (en) Image display apparatus
TWI514006B (en) Multi-view display
JP6154957B2 (en) 3D display device
TWI481902B (en) Image display apparatus
JP2013045087A (en) Three-dimensional image display apparatus
US9268147B2 (en) Autostereoscopic display device and autostereoscopic display method using the same
JPWO2013161257A1 (en) Liquid crystal optical element and image display apparatus including the same
JP5320469B2 (en) Stereoscopic image display device
US9377676B2 (en) Autostereoscopic display device
TW201426014A (en) Stereo display system
TWI477816B (en) Autostereoscopic display device and liquid crystal lens thereof
JP2012208211A (en) Naked eye stereoscopic display
WO2013132600A1 (en) Image display device and optical device
KR102595087B1 (en) Lens panel and display device including the same
JP3925500B2 (en) Image display device and portable terminal device using the same
JP2007271668A (en) Stereoscopic video display apparatus
JP5424342B2 (en) Stereoscopic image display device
JP5832843B2 (en) Autostereoscopic display
JP6080121B2 (en) Reproduced image display device
JP2011128636A (en) Color stereoscopic display device
JP2010054917A (en) Naked-eye stereoscopic display device
JP2013121041A (en) Stereoscopic image display device and stereoscopic image display method
KR101023042B1 (en) 3d display apparatus
TWI551890B (en) Multi-view auto-stereoscopic display and angle-magnifying screen thereof
US20140104841A1 (en) Display light source

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5832843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250