JP2013080011A - Optical frequency comb signal generator - Google Patents

Optical frequency comb signal generator Download PDF

Info

Publication number
JP2013080011A
JP2013080011A JP2011218637A JP2011218637A JP2013080011A JP 2013080011 A JP2013080011 A JP 2013080011A JP 2011218637 A JP2011218637 A JP 2011218637A JP 2011218637 A JP2011218637 A JP 2011218637A JP 2013080011 A JP2013080011 A JP 2013080011A
Authority
JP
Japan
Prior art keywords
electrode
optical frequency
modulation
frequency comb
signal generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011218637A
Other languages
Japanese (ja)
Inventor
Masayuki Mototani
将之 本谷
Yoichi Hosokawa
洋一 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2011218637A priority Critical patent/JP2013080011A/en
Publication of JP2013080011A publication Critical patent/JP2013080011A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical frequency comb signal generator which can be made compact and can provide a large modulation depth without using an impedance matching circuit such as a stub.SOLUTION: An optical frequency comb signal generator includes a Mach-Zehnder optical waveguide 2 formed on a ferroelectric substrate 1 and a modulation electrode 31, 32, for modulating light wave propagating through the branch waveguides, provided for each branch waveguide such that the Mach-Zehnder optical waveguide 2 outputs a light wave which simultaneously generates a plurality of optical frequency components having a predetermined frequency difference. Each modulation electrode includes a resonant electrode 31, 32 having different electrode length, and a feeder line 40 is split into two to feed a same modulation signal to each modulation electrode and laid out such that the distance from a branching point 41 to a contact point 44, 45 with each resonant electrode is the same. At the contact points, the standing wave W1, W2 formed on each resonant electrode is in phase with each other, and each feeder line is impedance-matched with corresponding resonant electrode at the contact point 44, 45.

Description

本発明は、光周波数コム信号発生器に関し、特に、マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を変調する変調電極を各々に設け、所定の周波数差を有する複数の光周波数成分を同時に生成している光波を得る光周波数コム信号発生器に関する。   The present invention relates to an optical frequency comb signal generator, and more particularly, a plurality of optical frequency components having a predetermined frequency difference, each provided with a modulation electrode that modulates a light wave propagating through two branch waveguides of a Mach-Zehnder type optical waveguide. The present invention relates to an optical frequency comb signal generator that obtains a light wave that is simultaneously generated.

光通信技術や光計測技術において、等間隔の周波数差を有する複数の光周波数成分を同時に生成する機能を持った光周波数コム信号発生器が利用されている。例えば、光周波数コム信号は、光計測のための短パルス光源として応用可能である。   In optical communication technology and optical measurement technology, an optical frequency comb signal generator having a function of simultaneously generating a plurality of optical frequency components having a frequency difference of equal intervals is used. For example, the optical frequency comb signal can be applied as a short pulse light source for optical measurement.

光周波数コム信号の発生方法としては、特許文献1や非特許文献1のように、2電極型のマッハツェンダー(MZ)型変調器と2種類の変調信号を用いて、平坦な光周波数コム信号を発生させる方法がある。   As a method for generating an optical frequency comb signal, a flat optical frequency comb signal using a two-electrode Mach-Zehnder (MZ) modulator and two types of modulation signals as in Patent Document 1 and Non-Patent Document 1 is used. There is a way to generate.

また、特許文献2のように、単一のMZ型変調器と1種類の変調信号を用いて、平坦な光周波数コム信号を発生させる方法がある。   Further, as in Patent Document 2, there is a method of generating a flat optical frequency comb signal using a single MZ type modulator and one type of modulation signal.

特許文献1等のように、2電極型のMZ型変調器を用いて、平坦な光周波数コム信号を発生させる方法では、広いスペクトル帯域を得るために、大きな変調度が必要となる。例えば、2〜3ps程度の超短パルスを得るためには、数Wレベルの大きな高周波入力を必要としてきた。また、光周波数コム信号が発生する条件になるように、2種類の変調信号の振幅、位相を正確に調節する必要がある。   In a method of generating a flat optical frequency comb signal using a two-electrode type MZ modulator as in Patent Document 1, a large degree of modulation is required to obtain a wide spectrum band. For example, in order to obtain an ultrashort pulse of about 2 to 3 ps, a large high frequency input of several W level has been required. Further, it is necessary to accurately adjust the amplitude and phase of the two types of modulation signals so that the optical frequency comb signal is generated.

特許文献2のように、1種類の変調信号を用いて、平坦な光周波数コム信号を発生させる方法についても同様に、大きな変調度を必要とするという問題がある。この課題に対し、変調電極を共振型電極とすることで、変調効率の改善が期待できるが、インピーダンス整合のためにスタブを設ける必要があり、給電線路の回路が複雑になるとともに、光変調器を構成する基板のサイズが大きくなるという問題がある。   Similarly to Patent Document 2, a method of generating a flat optical frequency comb signal using one type of modulation signal also has a problem that a large degree of modulation is required. To solve this problem, the modulation electrode can be expected to improve the modulation efficiency. However, it is necessary to provide a stub for impedance matching, and the circuit of the feeder line becomes complicated. There is a problem that the size of the substrate constituting the substrate increases.

特開2007−248660号公報JP 2007-248660 A 特開2009−175576号公報JP 2009-175576 A

坂本高秀 他,「マハツェンダ型光変調器を用いた超平坦光周波数コム発生のための条件」,信学技報,vol.105,no.172,pp.49−53,Nov.2005Takahide Sakamoto et al., “Conditions for generating an ultra-flat optical frequency comb using a Mach-Zehnder optical modulator”, IEICE Technical Report, vol. 105, no. 172, pp. 49-53, Nov. 2005

本発明が解決しようとする課題は、上述したような問題を解決し、スタブ等のインピーダンス整合回路を使用することなく、小型化が可能で、大きな変調度を得ることができる光周波数コム信号発生器を提供することである。   The problem to be solved by the present invention is to generate an optical frequency comb signal that solves the above-described problems and can be miniaturized without using an impedance matching circuit such as a stub and can obtain a large modulation degree. Is to provide a vessel.

上記課題を解決するため、請求項1に係る発明は、強誘電体基板上に2つの分岐導波路を有するマッハツェンダー型光導波路が形成され、該分岐導波路を伝搬する光波を変調する変調電極を各分岐導波路に対応して設け、該マッハツェンダー型光導波路から出力される光波が、所定の周波数差を有する複数の光周波数成分を同時に生成している光波となる光周波数コム信号発生器において、各変調電極は、電極長の異なる共振電極を備え、1種類の変調信号を各変調電極に印加する給電線路は、1つの給電線路を2つに分岐し、分岐点から各共振電極への接続点までの距離が等しく、さらに、該接続点は、各共振電極に形成される定在波の位相が同相であり、かつ該給電線路と該共振電極とは該接続点においてインピーダンス整合していることを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a modulation electrode for modulating a light wave propagating in a branching waveguide, wherein a Mach-Zehnder type optical waveguide having two branching waveguides is formed on a ferroelectric substrate. Is provided corresponding to each branching waveguide, and an optical frequency comb signal generator in which an optical wave output from the Mach-Zehnder type optical waveguide becomes an optical wave simultaneously generating a plurality of optical frequency components having a predetermined frequency difference , Each modulation electrode includes resonance electrodes having different electrode lengths, and a feed line for applying one type of modulation signal to each modulation electrode branches one feed line into two, and from the branch point to each resonance electrode And the connection point has the same phase of the standing wave formed at each resonance electrode, and the feed line and the resonance electrode are impedance-matched at the connection point. Have The features.

請求項2に係る発明は、請求項1に記載の光周波数コム信号発生器において、該共振電極の電極端は、開放−開放、短絡−短絡、短絡−開放のいずれかの組み合わせを用いることを特徴とする。   According to a second aspect of the present invention, in the optical frequency comb signal generator according to the first aspect, the electrode end of the resonance electrode uses any combination of open-open, short-circuit-short, short-circuit-open. Features.

請求項3に係る発明は、請求項1又は2に記載の光周波数コム信号発生器において、該分岐導波路に沿って配置された各共振電極の長さは、光周波数コム信号が発生する条件を満たすように各々長さが設定されていることを特徴とする。   The invention according to claim 3 is the optical frequency comb signal generator according to claim 1 or 2, wherein the length of each resonance electrode arranged along the branching waveguide is such that the optical frequency comb signal is generated. Each length is set so as to satisfy the above.

請求項4に係る発明は、請求項1乃至3のいずれかに記載の光周波数コム信号発生器において、各共振電極の長さ(L,L)を、L=n・c/(2・f・n)、L2=n・c/(2・f・n)とし(ただし、n、nは自然数、fは共振周波数)、各分岐導波路にかかる変調度をA、Aとしたとき、共振電極長L、Lは、A/A=A/(A+π/2)=(n/n1/2の条件を満たすように各々長さが設定されていることを特徴とする。 The invention according to claim 4 is the optical frequency comb signal generator according to any one of claims 1 to 3, wherein the length (L 1 , L 2 ) of each resonance electrode is set to L 1 = n 1 · c / (2 · f · n m ), L 2 = n 2 · c / (2 · f · n m ) (where n 1 and n 2 are natural numbers, and f is a resonance frequency), and the modulation applied to each branch waveguide When the degrees are A 1 and A 2 , the resonance electrode lengths L 1 and L 2 are as follows: A 1 / A 2 = A 1 / (A 1 + π / 2) = (n 1 / n 2 ) 1/2 Each length is set so as to satisfy the above.

請求項1に係る発明により、強誘電体基板上に2つの分岐導波路を有するマッハツェンダー型光導波路が形成され、該分岐導波路を伝搬する光波を変調する変調電極を各分岐導波路に対応して設け、該マッハツェンダー型光導波路から出力される光波が、所定の周波数差を有する複数の光周波数成分を同時に生成している光波となる光周波数コム信号発生器において、各変調電極は、電極長の異なる共振電極を備え、1種類の変調信号を各変調電極に印加する給電線路は、1つの給電線路を2つに分岐し、分岐点から各共振電極への接続点までの距離が等しく、さらに、該接続点は、各共振電極に形成される定在波の位相が同相であり、かつ該給電線路と該共振電極とは該接続点においてインピーダンス整合しているため、小型化が可能で、大きな変調度を得ることができる光周波数コム信号発生器を提供することができる。   According to the first aspect of the present invention, a Mach-Zehnder type optical waveguide having two branch waveguides is formed on a ferroelectric substrate, and a modulation electrode for modulating a light wave propagating through the branch waveguide corresponds to each branch waveguide. In the optical frequency comb signal generator in which the light wave output from the Mach-Zehnder type optical waveguide is a light wave that simultaneously generates a plurality of optical frequency components having a predetermined frequency difference, each modulation electrode is A feed line having resonance electrodes with different electrode lengths and applying one type of modulation signal to each modulation electrode branches one feed line into two, and the distance from the branch point to the connection point to each resonance electrode is In addition, the connection point has the same phase of the standing wave formed in each resonance electrode, and the feed line and the resonance electrode are impedance matched at the connection point, so that the size can be reduced. Possible, It is possible to provide an optical frequency comb signal generator which can obtain a deal of modulation.

つまり、従来の2電極型の光変調器を用いた場合では、2種類の変調信号が必要であり、変調信号を光周波数コムが平坦化するような条件になるように、振幅と位相を調整する必要があった。本発明の光周波数コム信号発生器では、変調信号は1種類で良く、給電線路を2つに分岐し、分岐点から各変調電極までの距離(長さ)が等しいため、光周波数コムが平坦化するような条件になるように、別途、振幅や位相を調整する必要がない。   In other words, when a conventional two-electrode optical modulator is used, two types of modulation signals are required, and the amplitude and phase are adjusted so that the optical signal is flattened by the optical frequency comb. There was a need to do. In the optical frequency comb signal generator of the present invention, only one type of modulation signal may be used, the feed line is branched into two, and the distance (length) from the branch point to each modulation electrode is equal, so the optical frequency comb is flat. There is no need to separately adjust the amplitude and phase so as to satisfy the conditions.

また、変調電極に共振電極を用いることで、変調効率が向上し、大きな変調度が得られると共に、低駆動電圧化も可能となる。特に、スタブや整合回路を用いず、給電位置の調整によるインピーダンス整合を行うため、簡易に作製が可能であり、またデバイスサイズの小型化が可能となる。   Further, by using a resonance electrode as the modulation electrode, the modulation efficiency is improved, a large degree of modulation can be obtained, and a low drive voltage can be achieved. In particular, impedance matching is performed by adjusting the feeding position without using a stub or a matching circuit, so that the device can be easily manufactured and the device size can be reduced.

請求項2に係る発明により、共振電極の電極端は、開放−開放、短絡−短絡、短絡−開放のいずれかの組み合わせを用いることができるため、変調電極の配置に応じて適切な共振電極の構造を採用することができ、設計の自由度が大きくなる。   According to the invention of claim 2, since the electrode end of the resonance electrode can use any combination of open-open, short-circuit-short-circuit, and short-circuit-open, an appropriate resonance electrode can be used depending on the arrangement of the modulation electrode. The structure can be adopted, and the degree of freedom in design is increased.

請求項3に係る発明により、分岐導波路に沿って配置された各共振電極の長さは、光周波数コム信号が発生する条件を満たすように各々長さが設定されているため、光周波数コム信号を簡単な構成で容易に得ることができる。   According to the invention of claim 3, since the length of each resonance electrode arranged along the branching waveguide is set so as to satisfy the condition for generating the optical frequency comb signal, the optical frequency comb The signal can be easily obtained with a simple configuration.

請求項4に係る発明により、各共振電極の長さ(L,L)を、L=n・c/(2・f・n)、L2=n・c/(2・f・n)とし(ただし、n、nは自然数、fは共振周波数)、各分岐導波路にかかる変調度をA、Aとしたとき、共振電極長L、Lは、A/A=A/(A+π/2)=(n/n1/2の条件を満たすように各々長さが設定されているため、当該条件を満足するように共振電極長を調整するだけで、容易に光周波数コム信号を得ることができる。 According to the invention of claim 4, the length (L 1 , L 2 ) of each resonance electrode is set to L 1 = n 1 · c / (2 · f · n m ), L 2 = n 2 · c / (2 F · n m ) (where n 1 and n 2 are natural numbers, and f is the resonance frequency), and the modulation degree applied to each branch waveguide is A 1 and A 2 , the resonant electrode lengths L 1 and L 2 Are set to satisfy the condition of A 1 / A 2 = A 1 / (A 1 + π / 2) = (n 1 / n 2 ) 1/2 and satisfy the condition Thus, an optical frequency comb signal can be easily obtained simply by adjusting the resonant electrode length.

本発明の光周波数コム信号発生器の概略を説明する図である。It is a figure explaining the outline of the optical frequency comb signal generator of this invention. 共振電極の端部が(a)開放−開放、(b)開放−短絡、(c)短絡−短絡となる場合の組み合わせを説明する図である。It is a figure explaining the combination in case the edge part of a resonant electrode becomes (a) open-open, (b) open-short circuit, (c) short circuit-short circuit. 基板の一部にPLC(プレーナ光回路)を用いた光周波数コム信号発生器の概略を説明する図である。It is a figure explaining the outline of the optical frequency comb signal generator which used PLC (planar optical circuit) for a part of board | substrate.

以下、本発明の光周波数コム信号発生器について、詳細に説明する。
本発明の光制御素子は、図1に示すように、強誘電体基板1上に2つの分岐導波路(21,22)を有するマッハツェンダー型光導波路2が形成され、該分岐導波路を伝搬する光波を変調する変調電極(31,32)を各分岐導波路に対応して設け、該マッハツェンダー型光導波路から出力される光波が、所定の周波数差を有する複数の光周波数成分を同時に生成している光波となる光周波数コム信号発生器において、各変調電極は、電極長の異なる共振電極(31,32)を備え、1種類の変調信号を各変調電極に印加する給電線路は、1つの給電線路40を2つに分岐し、分岐点41から各共振電極への接続点(44,45)までの距離が等しく、さらに、該接続点は、各共振電極に形成される定在波(点線で示した波形。W1,W2)の位相が同相であり、かつ該給電線路と該共振電極とは該接続点(44,45)においてインピーダンス整合していることを特徴とする。
Hereinafter, the optical frequency comb signal generator of the present invention will be described in detail.
As shown in FIG. 1, in the light control element of the present invention, a Mach-Zehnder type optical waveguide 2 having two branch waveguides (21, 22) is formed on a ferroelectric substrate 1, and propagates through the branch waveguide. A modulation electrode (31, 32) for modulating a light wave to be provided is provided corresponding to each branch waveguide, and the light wave output from the Mach-Zehnder optical waveguide simultaneously generates a plurality of optical frequency components having a predetermined frequency difference. In the optical frequency comb signal generator to be a light wave, each modulation electrode has resonance electrodes (31, 32) having different electrode lengths, and a feed line for applying one type of modulation signal to each modulation electrode is 1 One feed line 40 is branched into two, the distance from the branch point 41 to the connection point (44, 45) to each resonance electrode is equal, and the connection point is a standing wave formed at each resonance electrode. (Waveforms indicated by dotted lines. W1, W2) Phases are in phase, and the power feed line and the resonance electrode, characterized in that in the impedance matching at the connection point (44, 45).

強誘電体基板1としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)やタンタル酸リチウム(LT)結晶が好適に利用される。本発明の光制御素子では、図1のように、光導波路上に共振型電極を配置する構成が、最も効果的な変調が期待できるため、Zカット型の基板が好ましい。   As the ferroelectric substrate 1, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, lithium niobate (LN) or lithium tantalate (LT) crystals having a high electro-optic effect are preferably used. In the light control element of the present invention, as shown in FIG. 1, a configuration in which a resonance electrode is disposed on an optical waveguide can expect the most effective modulation. Therefore, a Z-cut substrate is preferable.

光導波路2は、基板にリッジを形成する方法や基板の一部の屈折率を調整する方法、又は両者を組み合わせた方法で形成することが可能である。リッジ型導波路では、光導波路となる基板部分を残すように、その他の部分を機械的に切削したり、化学的にエッチングを施すことで除去する。また、光導波路の両側に溝を形成することも可能である。屈折率を調整する方法では、Tiなどを熱拡散法したり、プロトン交換法などを利用することで、光導波路に対応する基板表面の一部の屈折率を、基板自体の屈折率より高くなるよう構成する。   The optical waveguide 2 can be formed by a method of forming a ridge on the substrate, a method of adjusting the refractive index of a part of the substrate, or a method of combining both. In the ridge type waveguide, other portions are removed by mechanical cutting or chemical etching so as to leave a substrate portion to be an optical waveguide. It is also possible to form grooves on both sides of the optical waveguide. In the method of adjusting the refractive index, the refractive index of a part of the substrate surface corresponding to the optical waveguide becomes higher than the refractive index of the substrate itself by using a thermal diffusion method such as Ti or a proton exchange method. Configure as follows.

変調電極は、共振電極(31,32)などの信号電極や給電線路(共振電極に変調信号を供給する配線。40,42,43)と、接地電極(不図示)などで構成されている。変調電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。また、各電極は、必要に応じて、基板との間にSiO膜などのバッファ層を介して配置されている。バッファ層には、光導波路を伝搬する光波が、変調電極により吸収又は散乱されることを防止する効果を有している。また、バッファ層の構成としては、必要に応じ、薄板の焦電効果を緩和するため、Si膜などを組み込むことも可能である。 The modulation electrode includes a signal electrode such as a resonance electrode (31, 32), a feed line (wiring for supplying a modulation signal to the resonance electrode, 40, 42, 43), a ground electrode (not shown), and the like. The modulation electrode can be formed by forming a Ti / Au electrode pattern, a gold plating method, or the like. Also, each electrode is optionally arranged via a buffer layer such as SiO 2 film between a substrate. The buffer layer has an effect of preventing light waves propagating through the optical waveguide from being absorbed or scattered by the modulation electrode. Moreover, as a structure of a buffer layer, in order to relieve the pyroelectric effect of a thin plate, a Si film or the like can be incorporated as necessary.

次に、図1に示す光変調器が光周波数コム信号発生器として機能するための条件について説明する。
以下では、変調電極は共振型とし、両端は開放とした。給電線路に供給された変調信号は二つに分岐され、それぞれ共振電極に接続される。分岐点から共振線路への接続点までの距離は等しくなるように調整する。共振電極への接続点はインピーダンスが整合し、それぞれの電極に立つ定在波が同相となる位置とする。
Next, conditions for the optical modulator shown in FIG. 1 to function as an optical frequency comb signal generator will be described.
In the following, the modulation electrode is a resonance type and both ends are open. The modulation signal supplied to the feed line is branched into two and each connected to the resonance electrode. The distance from the branch point to the connection point to the resonance line is adjusted to be equal. The connection point to the resonance electrode is a position where the impedance is matched and the standing wave standing on each electrode is in phase.

MZ変調器に入力される高周波信号は正弦波とし、両アームにかかる位相変調を以下の式(1)ようにあらわす。ただし、iは、各共振電極を区別するために付したものであり、i=1は一方の共振電極1(符号31)、i=2は他方の共振電極2(符号32)を意味する。
θ=A・sin(ωt)+B ・・・・(1)
The high frequency signal input to the MZ modulator is a sine wave, and the phase modulation applied to both arms is expressed by the following equation (1). However, i is given to distinguish each resonance electrode, i = 1 means one resonance electrode 1 (reference numeral 31), and i = 2 means the other resonance electrode 2 (reference numeral 32).
θ i = A i · sin (ω m t) + B i ··· (1)

ここでは高周波信号による位相変調の振幅、ωは変調周波数、BはDCバイアスによる位相変調分を含めて光波が分岐導波路(以下、「アーム」とも言う。)を進行したときの直流的な位相進みである。アーム1(符号21)とアーム2(符号22)に入力される高周波信号は、分岐点41から接続点(44,45)までの距離(給電線路42及び43の長さ)を等しくし、タイミングが完全に一致しているとした。 Here, the amplitude of the phase modulation by the high frequency signal, ω m is the modulation frequency, B i is the direct current when the light wave travels through the branched waveguide (hereinafter also referred to as “arm”) including the phase modulation by the DC bias. Phase advance. The high frequency signals input to the arm 1 (reference numeral 21) and the arm 2 (reference numeral 22) make the distances (the lengths of the feed lines 42 and 43) from the branch point 41 to the connection points (44, 45) equal, and the timing Are completely matched.

MZ型光変調の出力波形は、次式(2)で表すことができる。
E=1/2Ein・ei(ω0+n・ωm)t・eiB1・[J(A)+J(A+ΔA)・eiΔθ
・・・・(2)
The output waveform of MZ type light modulation can be expressed by the following equation (2).
E = 1 / 2E in · e i (ω0 + n · ωm) t · e iB1 · [J n (A) + J n (A + ΔA) · e iΔθ ]
(2)

式(2)において、J(・)はn次の第1種ベッセル関数であり、A、ΔA、Δθはそれぞれ、以下のような意味を示す。
共振電極1における位相変調の変調効率(振幅値)A=A
共振電極2における位相変調の変調効率(振幅値)A=A+ΔA
2つのアーム間の直流的な光位相差Δθ=B−B
また、ωは光変調器に入射する光の周波数である。また、nは周波数コム成分の変調次数に対応しており、級数を構成している要素は、それぞれ周波数コム成分の電界に対応している。
In Expression (2), J n (•) is an n-th order first-type Bessel function, and A, ΔA, and Δθ have the following meanings, respectively.
Modulation efficiency (amplitude value) of phase modulation at the resonance electrode 1 A 1 = A
Modulation efficiency (amplitude value) of phase modulation at the resonance electrode 2 A 2 = A + ΔA
DC optical phase difference between two arms Δθ = B 1 −B 2
Ω 0 is the frequency of light incident on the optical modulator. Further, n corresponds to the modulation order of the frequency comb component, and the elements constituting the series respectively correspond to the electric field of the frequency comb component.

それぞれの周波数コム成分が現われる周波数は式(2)からわかるようにω+nωである。式(2)から、それぞれの周波数コム成分のパワーを求めると、以下の式(3)となる。
=1/4・Pin・[J (A)+J (A+ΔA)+2J(A)J(A+ΔA)・cos(Δθ)] ・・・・(3)
inは変調器に入射する光のパワーである。
The frequency at which each frequency comb component appears is ω 0 + nω m as can be seen from equation (2). When the power of each frequency comb component is obtained from the equation (2), the following equation (3) is obtained.
P n = 1/4 · P in · [J n 2 (A) + J n 2 (A + ΔA) + 2J n (A) J n (A + ΔA) · cos (Δθ)] (3)
P in is the power of the light entering the modulator.

今、Aが十分大きいとき、
±ΔA+Δθ=π ・・・・(4)
の条件のときに、nによらずPは、
=Pin・[1−cos(2Δθ)]/[2p(2A+ΔA)] ・・・・(5)
と一定の値となる。特に、
ΔA=1/2π,Δθ=1/2π又は3/2π ・・・・(6)
のとき出射光パワーが最大となる。
Now when A is big enough,
± ΔA + Δθ = π (4)
P n is
P n = P in · [1-cos (2Δθ)] / [2p (2A 1 + ΔA)] (5)
And a constant value. In particular,
ΔA = 1 / 2π, Δθ = 1 / 2π or 3 / 2π (6)
In this case, the output light power becomes maximum.

つまり式(6)の条件を満たすようにアーム1とアーム2の変調効率を調整することができれば、変調信号は1種類でよいことがわかる。
図1のように、それぞれの共振電極の長さをL、Lとする。周波数fで共振するためには、それぞれの共振電極長は式(7−1,7−2)を満たせば良い。
=n・c/(2・f・n) ・・・・(7−1)
=n・c/(2・f・n) ・・・・(7−2)
ここでfは変調周波数、nはマイクロ波の実効屈折率、cは真空中の光速、n,nはそれぞれ独立な自然数である。
In other words, if the modulation efficiency of the arm 1 and the arm 2 can be adjusted so as to satisfy the condition of the expression (6), it can be seen that one type of modulation signal is sufficient.
As shown in FIG. 1, the lengths of the respective resonance electrodes are L 1 and L 2 . In order to resonate at the frequency f, the length of each resonance electrode only needs to satisfy the expressions (7-1, 7-2).
L 1 = n 1 · c / (2 · f · n m ) (7-1)
L 2 = n 2 · c / (2 · f · n m ) (7-2)
Here, f is the modulation frequency, nm is the effective refractive index of the microwave, c is the speed of light in vacuum, and n 1 and n 2 are independent natural numbers.

今、アーム1の変調効率がA である場合、 アーム2の変調効率Aは、式(8)となる。
A2=A1・(n/n1/2 ・・・・(8)
式(6)を満たすような電極長は、式(9)を満たすように調整すればよい。
/A=A/(A+π/2)=(n/n1/2 ・・・(9)
Now, when the modulation efficiency of the arm 1 is A 1 , the modulation efficiency A 2 of the arm 2 is expressed by Expression (8).
A2 = A1 · (n 2 / n 1 ) 1/2 ... (8)
The electrode length that satisfies the equation (6) may be adjusted so as to satisfy the equation (9).
A 1 / A 2 = A 1 / (A 1 + π / 2) = (n 1 / n 2) 1/2 ··· (9)

例えば、光周波数コムが発生するように、それぞれのアームの変調効率をA=4.5π、A=5.0π とした場合、アーム1と2の共振電極はそれぞれ、L=9/2Λ、L=11/2Λとすればよい。なお、Λはマイクロ波の波長を意味する。 For example, when the modulation efficiency of each arm is A 1 = 4.5π and A 2 = 5.0π so that an optical frequency comb is generated, the resonance electrodes of arms 1 and 2 are respectively L 1 = 9 / 2Λ m and L 2 = 11 / 2Λ m may be set. Note that Λ m means the wavelength of the microwave.

以上のように、本発明の光周波数コム信号発生器では、変調電極を共振型とすることで変調効率を向上させるとともに、電極長L,Lの調整だけで、平坦な光周波数コム発生条件を満たすように構成されている。 As described above, the optical frequency comb signal generator of the present invention improves the modulation efficiency by making the modulation electrode resonant, and generates a flat optical frequency comb only by adjusting the electrode lengths L 1 and L 2. It is configured to satisfy the conditions.

光周波数コムが発生する条件は複数あり、また共振電極の端は、図2(a)のように開放−開放の組み合わせ(共振電極3の両端が接地電極5と短絡していない。)だけでなく、図2(b)のように開放−短絡の組み合わせ、図2(c)のように短絡−短絡の組み合わせでも可能である。   There are a plurality of conditions for generating the optical frequency comb, and the end of the resonance electrode is only an open-open combination (both ends of the resonance electrode 3 are not short-circuited with the ground electrode 5) as shown in FIG. Alternatively, a combination of an open circuit and a short circuit as shown in FIG. 2B and a combination of a short circuit and a short circuit as shown in FIG.

共振電極で光周波数コムを発生させるためには、式(9)を満たす必要がある。以下の、表1に開放−開放、表2に開放−短絡、表3には短絡−短絡の場合において、光周波数コムが発生する共振電極長を示した。発生しない場合は×、発生する場合は○とした。   In order to generate an optical frequency comb at the resonant electrode, it is necessary to satisfy the equation (9). Table 1 shows the length of the resonant electrode where an optical frequency comb is generated in the case of open-open, Table 2 open-short, and Table 3 short-short. When it did not occur, it was marked with ×, and when it occurred, it was marked with ○.

Figure 2013080011
Figure 2013080011

Figure 2013080011
Figure 2013080011

Figure 2013080011
Figure 2013080011

表1〜3より、共振電極の端部が開放又は短絡に変更された場合でも、限られた条件ではあるが、2つの共振電極により光周波数コム信号が発生可能であることが理解される。   From Tables 1 to 3, it is understood that even when the end of the resonance electrode is changed to open or short-circuit, the optical frequency comb signal can be generated by the two resonance electrodes under a limited condition.

本発明の光周波数コム信号発生器は、図1に示すものに限らず、図3のように、PLC(プレーナ光回路)を用いて構成することも可能である。例えば、光導波路2の一部を石英や半導体などの光導波路が形成できる基板10に形成して、強誘電体基板1と接合することで、光周波数コム信号発生器を構成する。   The optical frequency comb signal generator of the present invention is not limited to that shown in FIG. 1, but can also be configured using a PLC (planar optical circuit) as shown in FIG. For example, a part of the optical waveguide 2 is formed on a substrate 10 on which an optical waveguide such as quartz or semiconductor can be formed, and bonded to the ferroelectric substrate 1 to constitute an optical frequency comb signal generator.

さらに、本発明の光周波数コム信号発生器では、給電線路と共振電極とのインピーダンス整合は、両者の接続点を調整することで、容易に両者のインピーダンスを整合させることが可能である。しかしながら、インピーダンス整合をより改善するため、必要に応じ、共振電極に接続される給電線路に、スタブや整合回路を付加することも可能である。   Furthermore, in the optical frequency comb signal generator of the present invention, impedance matching between the feed line and the resonance electrode can be easily matched by adjusting the connection point between the two. However, in order to further improve the impedance matching, it is possible to add a stub or a matching circuit to the feed line connected to the resonance electrode as necessary.

以上説明したように、本発明によれば、スタブ等のインピーダンス整合回路を使用することなく、小型化が可能で、大きな変調度を得ることができる光周波数コム信号発生器を提供することが可能となる。   As described above, according to the present invention, it is possible to provide an optical frequency comb signal generator that can be miniaturized and can obtain a large modulation degree without using an impedance matching circuit such as a stub. It becomes.

1 強誘電体基板
2 光導波路
31,32 共振電極
DESCRIPTION OF SYMBOLS 1 Ferroelectric substrate 2 Optical waveguide 31, 32 Resonant electrode

Claims (4)

強誘電体基板上に2つの分岐導波路を有するマッハツェンダー型光導波路が形成され、該分岐導波路を伝搬する光波を変調する変調電極を各分岐導波路に対応して設け、該マッハツェンダー型光導波路から出力される光波が、所定の周波数差を有する複数の光周波数成分を同時に生成している光波となる光周波数コム信号発生器において、
各変調電極は、電極長の異なる共振電極を備え、
1種類の変調信号を各変調電極に印加する給電線路は、1つの給電線路を2つに分岐し、分岐点から各共振電極への接続点までの距離が等しく、
さらに、該接続点は、各共振電極に形成される定在波の位相が同相であり、かつ該給電線路と該共振電極とは該接続点においてインピーダンス整合していることを特徴とする光周波数コム信号発生器。
A Mach-Zehnder type optical waveguide having two branch waveguides is formed on a ferroelectric substrate, and a modulation electrode for modulating a light wave propagating through the branch waveguide is provided corresponding to each branch waveguide, and the Mach-Zehnder type In the optical frequency comb signal generator in which the light wave output from the optical waveguide becomes a light wave that simultaneously generates a plurality of optical frequency components having a predetermined frequency difference,
Each modulation electrode includes resonant electrodes with different electrode lengths,
A feed line that applies one type of modulation signal to each modulation electrode branches one feed line into two, and the distance from the branch point to the connection point to each resonance electrode is equal,
Further, the connection point has an optical frequency characterized in that the phase of the standing wave formed in each resonance electrode is in phase, and the feed line and the resonance electrode are impedance matched at the connection point. Com signal generator.
請求項1に記載の光周波数コム信号発生器において、該共振電極の電極端は、開放−開放、短絡−短絡、短絡−開放のいずれかの組み合わせを用いることを特徴とする光周波数コム信号発生器。   2. The optical frequency comb signal generator according to claim 1, wherein an electrode end of the resonant electrode uses any combination of open-open, short-circuit-short-circuit, and short-circuit-open. vessel. 請求項1又は2に記載の光周波数コム信号発生器において、該分岐導波路に沿って配置された各共振電極の長さは、光周波数コム信号が発生する条件を満たすように各々長さが設定されていることを特徴とする光周波数コム信号発生器。   3. The optical frequency comb signal generator according to claim 1 or 2, wherein the length of each resonance electrode arranged along the branch waveguide is such that each length satisfies a condition for generating the optical frequency comb signal. An optical frequency comb signal generator characterized by being set. 請求項1乃至3のいずれかに記載の光周波数コム信号発生器において、各共振電極の長さ(L,L)を、L=n・c/(2・f・n)、L2=n・c/(2・f・n)とし(ただし、n、nは自然数、fは共振周波数)、各分岐導波路にかかる変調度をA、Aとしたとき、共振電極長L、Lは、A/A=A/(A+π/2)=(n/n1/2の条件を満たすように各々長さが設定されていることを特徴とする光周波数コム信号発生器。 The optical frequency comb signal generator according to any one of claims 1 to 3, wherein the length (L 1 , L 2 ) of each resonance electrode is L 1 = n 1 · c / (2 · f · n m ). , L 2 = n 2 · c / (2 · f · n m ) (where n 1 and n 2 are natural numbers, and f is the resonance frequency), and the degree of modulation applied to each branch waveguide is represented by A 1 and A 2 . Then, the resonant electrode lengths L 1 and L 2 have lengths so as to satisfy the condition of A 1 / A 2 = A 1 / (A 1 + π / 2) = (n 1 / n 2 ) 1/2 , respectively. An optical frequency comb signal generator characterized by being set.
JP2011218637A 2011-09-30 2011-09-30 Optical frequency comb signal generator Withdrawn JP2013080011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218637A JP2013080011A (en) 2011-09-30 2011-09-30 Optical frequency comb signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218637A JP2013080011A (en) 2011-09-30 2011-09-30 Optical frequency comb signal generator

Publications (1)

Publication Number Publication Date
JP2013080011A true JP2013080011A (en) 2013-05-02

Family

ID=48526450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218637A Withdrawn JP2013080011A (en) 2011-09-30 2011-09-30 Optical frequency comb signal generator

Country Status (1)

Country Link
JP (1) JP2013080011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140362433A1 (en) * 2013-06-10 2014-12-11 Finisar Sweden Ab Semiconductor optical amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140362433A1 (en) * 2013-06-10 2014-12-11 Finisar Sweden Ab Semiconductor optical amplifier
US9209606B2 (en) * 2013-06-10 2015-12-08 Finisar Sweden Ab Semiconductor optical amplifier

Similar Documents

Publication Publication Date Title
US7689067B2 (en) Nested modulator
JP4771216B2 (en) Ultra-flat optical frequency comb signal generator
US9250455B2 (en) Optical modulator
US8737773B2 (en) Optical control element
US10018888B2 (en) Advanced techniques for improving high-efficiency optical modulators
JP5299859B2 (en) Ultra-flat optical frequency comb signal generator
JP2008250081A (en) Optical control device
JP5051026B2 (en) Manufacturing method of optical waveguide device
CN1282028C (en) Wide hand electro-optical modulators
JP2014066941A (en) Optical modulator
CN1432846A (en) Integrated coplanar optical waveguide optoelectronic modulator
WO2008108154A1 (en) Optical phase modulator
JP5077480B2 (en) Optical waveguide device
JP5462837B2 (en) Optical device or light modulator
WO2006025333A1 (en) Electrooptic ssb optical modulator and optical frequency shifter
CN113972953A (en) Triangular waveform generator based on two single-drive Mach-Zehnder modulators
JP2013080011A (en) Optical frequency comb signal generator
JP3695708B2 (en) Light modulator
JP2012068679A (en) Optical waveguide element
JP2002062516A (en) Electro-optic ssb optical modulator and optical frequency shifter having cyclic domain inversion structure
JP4991910B2 (en) Light control element
EP1640788A1 (en) Method of driving Mach-Zehnder light modulator and light modulating device
JP5622293B2 (en) Nested modulator
JP6088349B2 (en) Traveling-wave electrode light modulator
JP2010237593A (en) Light control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202