JP2013079426A - Production method for zinc-electroplated steel sheet - Google Patents

Production method for zinc-electroplated steel sheet Download PDF

Info

Publication number
JP2013079426A
JP2013079426A JP2011219874A JP2011219874A JP2013079426A JP 2013079426 A JP2013079426 A JP 2013079426A JP 2011219874 A JP2011219874 A JP 2011219874A JP 2011219874 A JP2011219874 A JP 2011219874A JP 2013079426 A JP2013079426 A JP 2013079426A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
electrogalvanized
chromate
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219874A
Other languages
Japanese (ja)
Other versions
JP5772465B2 (en
Inventor
Toru Imokawa
透 妹川
Kazuaki Tsuchimoto
和明 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011219874A priority Critical patent/JP5772465B2/en
Publication of JP2013079426A publication Critical patent/JP2013079426A/en
Application granted granted Critical
Publication of JP5772465B2 publication Critical patent/JP5772465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for a zinc-electroplated steel sheet with a chromate-free chemical conversion film having both corrosion resistance and high conductivity.SOLUTION: A zinc-electroplating process 2 is carried out on the surface of a steel sheet 1 in a sulfate zinc-electroplating bath containing one or more elements selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate in an amount of ≥0.75 mol/L in total and having a pH value of ≥1.2 and ≤2.5, at a current density of ≥220 A/dmand ≤500 A/dmto form a zinc-electroplated steel sheet. Further, a chromate-free chemical conversion film 3 having an average thickness of ≥0.05 μm and ≤1.0 μm is formed as a top layer, thereby a zinc-electroplated chromate-free chemical conversion-treated steel sheet is formed.

Description

本発明は、電気亜鉛めっき鋼板の製造方法に係り、特にクロメートフリー化成処理電気亜鉛めっき鋼板の導電性向上に関する。   The present invention relates to a method for producing an electrogalvanized steel sheet, and more particularly to an improvement in conductivity of a chromate-free chemical conversion electrogalvanized steel sheet.

近年、薄型テレビに代表されるデジタル家電の進展に伴い、これらの電気・電子製品からの電磁波漏洩が大きな問題となっている。電気・電子製品から漏洩する電磁波は、他の電気・電子製品に対する妨害波として作用し誤作動等を招来する。そのため、国内外において電気・電子製品の電磁波漏洩に関する規格が設けられており、CISPR(国際無線障害特別委員会)やVCCI(情報処理装置等電波障害自主規制協議会)では、周波数:30〜1000MHzでの漏洩電磁波について、電界強度の上限値を規定している。また、外部からの電気的な妨害による誤作動等の障害を防止する対策も必要となる。   In recent years, with the development of digital home appliances typified by flat-screen televisions, leakage of electromagnetic waves from these electric and electronic products has become a major problem. Electromagnetic waves leaking from electrical / electronic products act as interference waves for other electrical / electronic products and cause malfunctions. For this reason, standards for electromagnetic wave leakage of electrical and electronic products have been established both in Japan and overseas, and CISPR (International Committee for Radio Interference) and VCCI (Voluntary Control Council for Radio Interferences such as Information Processing Equipment) have a frequency of 30 to 1000 MHz. The upper limit value of the electric field strength is specified for the electromagnetic wave leaking at. In addition, it is necessary to take measures to prevent failures such as malfunctions due to external electrical interference.

これらの対策として、例えば液晶・PDP(プラズマディスプレイパネル)等の薄型テレビなどでは、内蔵される回路基板を電磁的に遮蔽する目的で、シールドボックス等の素材として電磁波シールド性を有する鋼板が用いられている。ここで、鋼板の電磁波シールド性は該鋼板の導電性に左右され、導電性が高いほど電磁波シールド性は良好となる。そのため、電気・電子製品の構成部材として用いられる鋼板には、優れた導電性を有することが要求される。一方、電気・電子製品は様々な腐食環境下で使用されることから、これらの構成部材は、実使用環境で所望の耐食性を有することも重要となる。また、特に薄型テレビのシールドボックスなどでは、耐指紋性等の意匠性も要求される。   As measures against these problems, for example, thin-screen televisions such as liquid crystal displays and PDPs (plasma display panels) use a steel plate having electromagnetic wave shielding properties as a material for a shield box or the like for the purpose of electromagnetically shielding a built-in circuit board. ing. Here, the electromagnetic wave shielding property of the steel sheet depends on the electrical conductivity of the steel sheet, and the higher the electrical conductivity, the better the electromagnetic wave shielding property. Therefore, steel plates used as constituent members of electric / electronic products are required to have excellent conductivity. On the other hand, since electric / electronic products are used in various corrosive environments, it is important that these components have desired corrosion resistance in an actual use environment. In particular, design properties such as fingerprint resistance are also required in shield boxes for flat-screen televisions.

以上のように、薄型テレビをはじめとする電気・電子製品の構成部材は、その素材として高い導電性を有するとともに耐食性や耐指紋性(意匠性)にも優れた素材を適用することが必要とされている。そのため、電気・電子製品を構成する部材の素材としては、電磁波シールド性を有するとともに優れた耐食性を兼ね備えた電気亜鉛めっき鋼板に、更に耐食性や耐指紋性等の特性を向上させるために化成処理が施された電気亜鉛めっきベース化成処理鋼板が広く用いられている。   As described above, components of electrical and electronic products such as flat-screen TVs need to be applied with materials that have high conductivity as well as excellent corrosion resistance and fingerprint resistance (design properties). Has been. Therefore, as a material of members constituting electric / electronic products, chemical conversion treatment is applied to electrogalvanized steel sheets that have electromagnetic wave shielding properties and excellent corrosion resistance, in order to further improve characteristics such as corrosion resistance and fingerprint resistance. The applied electrogalvanized base chemical conversion steel sheet is widely used.

従来、上記の化成処理としてクロメート処理が広く用いられてきたが、環境負荷低減の観点から、クロメートフリー化成処理への変更が進められている。しかし、クロメートフリー化成処理で十分な耐食性を発現させるためには、クロメート処理と比較して処理皮膜の膜厚を増加させる必要がある。化成処理皮膜は通常、絶縁性である為、クロメートフリー化成処理皮膜を具えた電気亜鉛めっき鋼板では、クロメート皮膜を具えた電気亜鉛めっき鋼板に比べて導電性が大幅に低下している。   Conventionally, chromate treatment has been widely used as the chemical conversion treatment described above, but a change to chromate-free chemical conversion treatment is being promoted from the viewpoint of reducing the environmental load. However, in order to develop sufficient corrosion resistance by the chromate-free chemical conversion treatment, it is necessary to increase the film thickness of the treatment film as compared with the chromate treatment. Since the chemical conversion treatment film is usually insulative, the electrogalvanized steel sheet provided with the chromate-free chemical conversion treatment film has a significantly lower conductivity than the electrogalvanized steel sheet provided with the chromate film.

ここで、薄型テレビのシールドボックス等をはじめとする電気・電子製品の構成部材は、多くの場合、素材となる鋼板同士を接合して所望の形状に形成される。そのため、上記のように導電性が大幅に低下した電気亜鉛めっきベース化成処理鋼板を電気・電子製品の構成部材に適用した場合、電気亜鉛めっきベース化成処理鋼板同士の接触面、すなわち化成処理皮膜同士が接触する部分で十分な電磁波シールド特性を確保することができず、電磁波が漏洩してしまう。   Here, in many cases, the structural members of electric and electronic products such as a shielded box of a thin television are formed in a desired shape by joining steel plates as raw materials. Therefore, when the electrogalvanized base chemical conversion treated steel sheet having a significantly reduced conductivity as described above is applied to a component of an electrical / electronic product, the contact surfaces between the electrogalvanized base chemical treated steel sheets, that is, the chemical conversion coatings A sufficient electromagnetic shielding characteristic cannot be ensured at the portion where the contact is made, and the electromagnetic wave leaks.

以上の理由により、電気亜鉛めっきベース化成処理鋼板においては、導電性の向上を図る技術が強く要望されている。
絶縁性皮膜を具えた鋼板の導電性を高めるうえでは、化成処理皮膜の被覆率を制御することが極めて有効とされており、現在までに様々な技術が提案されている。
For the above reasons, there is a strong demand for a technique for improving conductivity in the electrogalvanized base chemical conversion treated steel sheet.
In order to increase the electrical conductivity of a steel sheet provided with an insulating film, it is extremely effective to control the coverage of the chemical conversion film, and various techniques have been proposed so far.

例えば、特許文献1には、表面粗度が中心線平均粗さRa(JIS B 0601)で1.0μm以下である金属板またはクロメート被覆金属板またはクロメート被覆めっき金属板の上層に、シリカを5〜35%含有する付着量0.25〜1g/m2の有機複合皮膜を、被覆面積率が70〜99%となるように形成する技術が提案されている。また、特許文献2には、表面粗度が中心線平均粗さRa(JIS B 0601)で1.0μm以下である金属板またはクロメート被覆金属板またはクロメート被覆めっき金属板の上層に、固形潤滑剤を重量%で1〜30%含有する有機複合皮膜を、被覆面積率が70〜99%となるように形成する技術が提案されている。そして、これらの技術によると、有機複合皮膜を塗装する前の原板(金属板またはクロメート被覆金属板またはクロメート被覆めっき金属板)の表面に凹凸を設け、原板表面凹部に有機複合皮膜が入りこむようにし、原板が有機複合皮膜に覆われていない部分(すなわち、有機複合皮膜から、下層の金属やクロメート皮膜が露出した部分)を設けることで、絶縁性皮膜を具えた鋼板であっても優れた導電性が得られるとされている。 For example, Patent Document 1 discloses that silica is added to an upper layer of a metal plate, a chromate-coated metal plate or a chromate-coated plated metal plate having a surface roughness of 1.0 μm or less in the center line average roughness Ra (JIS B 0601). A technique has been proposed in which an organic composite film containing 35% and having an adhesion amount of 0.25 to 1 g / m 2 is formed so that the covering area ratio is 70 to 99%. Patent Document 2 discloses that a solid lubricant is applied to an upper layer of a metal plate, a chromate-coated metal plate or a chromate-coated plated metal plate having a surface roughness of 1.0 μm or less in centerline average roughness Ra (JIS B 0601). There has been proposed a technique for forming an organic composite film containing 1 to 30% by weight so that the covering area ratio is 70 to 99%. And according to these technologies, the surface of the original plate (metal plate, chromate-coated metal plate or chromate-coated plated metal plate) before coating the organic composite film is provided with irregularities so that the organic composite film enters the concave portions of the original plate surface. By providing a part of the original plate that is not covered with the organic composite film (that is, the part where the underlying metal or chromate film is exposed from the organic composite film), even a steel plate with an insulating film has excellent conductivity. It is said that sex can be obtained.

しかしながら、JIS B 0601(および同JISで引用されるJIS B 0651)では、中心線平均粗さRaを測定する際のカットオフ値が0.08mm以上に規定されている。このカットオフ値からも明らかであるように、特許文献1および2で提案された技術は、有機複合皮膜を形成する前の金属板表面に比較的長い波長の凹凸を付与し、その凸部を有機複合皮膜から露出させようとするもの、或いは、図2に示すように、上記金属板10表面の凹凸の輪郭に沿うようにめっき層21やクロメート皮膜22を形成し、クロメート皮膜の凸部を有機複合皮膜30から露出させようとするものある。そのため、金属やクロメート皮膜の露出部の面積率自体は1〜30%と低いが、露出部一箇所あたりの面積が大きくなってしまい、十分な耐食性が得られないという問題があった。   However, in JIS B 0601 (and JIS B 0651 cited in the same JIS), the cut-off value when measuring the center line average roughness Ra is defined as 0.08 mm or more. As is clear from this cut-off value, the techniques proposed in Patent Documents 1 and 2 give relatively long wavelength irregularities to the surface of the metal plate before forming the organic composite film, and As shown in FIG. 2, the plating layer 21 and the chromate film 22 are formed along the contour of the irregularities on the surface of the metal plate 10 as shown in FIG. Some are intended to be exposed from the organic composite film 30. Therefore, although the area ratio of the exposed portion of the metal or chromate film itself is as low as 1 to 30%, there is a problem that the area per exposed portion becomes large and sufficient corrosion resistance cannot be obtained.

また、特許文献3には、金属材の表面形態を制御して表面処理皮膜の被覆率を70%以上100%未満とする技術、具体的には、凹部を有するロールで金属板を圧延してその表面に高さ0.5〜30μmの凸部を設けたのち、表面処理皮膜を形成することで、表面処理皮膜の被覆率を70%以上100%未満とする技術が提案されている。そして、この技術によると、金属板表面の凸部を表面処理皮膜から露出させることにより、絶縁性皮膜を具えた鋼板であっても優れた導電性が得られるとされている。   Patent Document 3 discloses a technique for controlling the surface form of a metal material so that the coverage of the surface treatment film is 70% or more and less than 100%, specifically, rolling a metal plate with a roll having a recess. A technique has been proposed in which the surface treatment film is formed to have a coverage of 70% or more and less than 100% by forming a surface treatment film after providing a convex portion having a height of 0.5 to 30 μm on the surface. And according to this technique, it is said that the electrical conductivity which was excellent even if it was the steel plate provided with the insulating film by exposing the convex part of the surface of a metal plate from a surface treatment film.

しかしながら、上記の如く凹部を有するロールで金属板を圧延することにより、金属板表面にミクロンオーダー以下の短い波長の凹凸を形成することは不可能である。そのため、特許文献3で提案された技術でも、表面処理皮膜を形成する前の原板(金属板)に付与される凹凸は比較的長い波長の凹凸なとり、特許文献1および2で提案された技術と同様、十分な耐食性が得られないという問題があった。なお、特許文献3には、析出条件を調整して金属板に電気めっきを粒状に析出させることで、金属板表面に所望の凸部を設けることができるとされているが、特許文献3には、その具体的な電気めっき条件等については何ら記載されていない。   However, it is impossible to form irregularities with short wavelengths of the order of microns or less on the surface of the metal plate by rolling the metal plate with a roll having concave portions as described above. Therefore, even with the technique proposed in Patent Document 3, the unevenness imparted to the original plate (metal plate) before the surface treatment film is formed is uneven with a relatively long wavelength, and the techniques proposed in Patent Documents 1 and 2 Similarly, there was a problem that sufficient corrosion resistance could not be obtained. In Patent Document 3, it is said that a desired convex portion can be provided on the surface of the metal plate by adjusting the deposition conditions and depositing the electroplating in a granular manner on the metal plate. Does not describe any specific electroplating conditions.

以上のように、絶縁性皮膜を具えた鋼板である電気亜鉛めっきベース化成処理鋼板に導電性を発現させるためには、電気亜鉛めっきが絶縁性皮膜から露出した部分を形成する必要がある。しかしながら、上記の従来技術は何れも、めっき前の下地鋼板の表面凹凸を意図的に制御することで、めっき(下地鋼板の凹凸に追随し、ほぼ膜厚一定で形成される)後に、下地鋼板の凸部に化成処理皮膜の薄い部分あるいは露出部分を形成するものであった。ここで、下地鋼板の凹凸の波長は、スキンパスロールの形状などにもよるが通常は10μm以上のオーダーである。そのため、従来技術では、下地鋼板の表面凹凸が比較的長い波長の凹凸となることから、露出部一箇所あたりの面積が大きくなってしまい、導電性は向上するものの本来の重要特性である耐食性が低下してしまうという問題があった。   As described above, in order to develop electrical conductivity in the electrogalvanized base chemical conversion treated steel plate, which is a steel plate provided with an insulating coating, it is necessary to form a portion where the electrogalvanizing is exposed from the insulating coating. However, each of the above prior arts intentionally controls the surface irregularities of the base steel plate before plating, so that the base steel plate after plating (follows the irregularities of the base steel plate and is formed with a substantially constant film thickness). A thin part or an exposed part of the chemical conversion film was formed on the convex part of the film. Here, the wavelength of the unevenness of the base steel plate is usually on the order of 10 μm or more although it depends on the shape of the skin pass roll. Therefore, in the conventional technology, the surface unevenness of the base steel sheet becomes unevenness of a relatively long wavelength, so the area per one exposed portion becomes large, and although the conductivity is improved, the corrosion resistance, which is an inherent important characteristic, is improved. There was a problem of being lowered.

このような問題に対し、特許文献4には、化成処理皮膜付き電気亜鉛めっき鋼板に関し、鋼板表面に最大高さ粗さ(Rz)が0.6〜1.1μm(但し、カットオフ値:0.01mm)の電気亜鉛めっき層を形成し、該電気亜鉛めっき層の上層に平均皮膜厚さが0.05〜1.0μmの化成処理皮膜を形成することで、化成処理皮膜に対する露出部の面積率を電気亜鉛めっき被覆面積の0.3〜1.0%とする技術が提案されている。また、鋼板表面に最大高さ粗さ(Rz)が0.6〜1.1μm(但し、カットオフ値:0.01mm)の電気亜鉛めっき層を形成するための具体的手段として、電解浴を硫酸水溶液とし、電解電流密度を100〜200A/dm2の範囲とする手段が提案されている。なお、上記の最大高さ粗さRzは、JIS B 0601(2001)に規定される「最大高さ粗さ」である。また、上記においてカットオフ値λcを0.01mm(10μm)とするのは、下地鋼板に起因する表面方向の波長10μm以上の凹凸から、電気亜鉛めっき結晶の微小凹凸を抽出して評価するためである。 With respect to such a problem, Patent Document 4 relates to an electrogalvanized steel sheet with a chemical conversion coating, and has a maximum height roughness (Rz) of 0.6 to 1.1 μm (provided that the cut-off value is 0.01 mm) on the steel sheet surface. By forming an electrogalvanized layer and forming a chemical conversion treatment film having an average film thickness of 0.05 to 1.0 μm on the upper layer of the electrogalvanization layer, the area ratio of the exposed portion with respect to the chemical conversion treatment film is determined as the electrogalvanized coating area. The technology which makes 0.3 to 1.0% of is proposed. Moreover, as a specific means for forming an electrogalvanized layer having a maximum height roughness (Rz) of 0.6 to 1.1 μm (however, a cut-off value: 0.01 mm) on the steel sheet surface, the electrolytic bath is an aqueous sulfuric acid solution, Means for setting the electrolytic current density in the range of 100 to 200 A / dm 2 have been proposed. The maximum height roughness Rz is the “maximum height roughness” defined in JIS B 0601 (2001). The reason why the cut-off value λc is set to 0.01 mm (10 μm) in the above is to extract and evaluate the micro unevenness of the electrogalvanized crystal from the unevenness having a wavelength of 10 μm or more due to the surface steel plate. .

特開平10−330955号公報JP-A-10-330955 特開平10−330956号公報JP-A-10-330956 特開2005−139551号公報JP 2005-139551 A 特開2011−32528号公報JP 2011-32528 A

特許文献4で提案された技術は、亜鉛結晶に起因した微小な凹凸(波長:ミクロン〜サブミクロンオーダー程度の短い波長の凹凸)を電気亜鉛めっき層の表面に付与する技術であり、図1に示すように、鋼板1に形成された電気亜鉛めっき層2表面の微細な凹凸のうちの凸部を化成処理皮膜3から露出させようとするものである。スキンパスにより形成された下地鋼板の凹凸に対応するような比較的大きな亜鉛露出部(図2)がなくても、亜鉛結晶に起因した微小な凹凸によって形成されるミクロン以下レベルの亜鉛露出部(図1)でも高い導電性を確保することが可能である。また、図1に示すように亜鉛露出部が極微細であれば、耐食性への影響も非常に小さく抑えることができる。そのため、特許文献4で提案された技術によると、化成処理皮膜付き電気亜鉛めっき鋼板の導電性と耐食性を高度に両立することができる。   The technique proposed in Patent Document 4 is a technique for imparting fine irregularities (wavelength: irregularities with a short wavelength on the order of micron to submicron order) due to zinc crystals to the surface of the electrogalvanized layer. As shown, the convex portion of the fine irregularities on the surface of the electrogalvanized layer 2 formed on the steel plate 1 is to be exposed from the chemical conversion coating 3. Even if there is no relatively large zinc exposed portion (FIG. 2) corresponding to the unevenness of the underlying steel plate formed by the skin pass, a zinc exposed portion of a submicron level (FIG. 2) formed by minute unevenness caused by the zinc crystal. Even in 1), it is possible to ensure high conductivity. Moreover, if the zinc exposure part is very fine as shown in FIG. 1, the influence on corrosion resistance can also be suppressed very small. Therefore, according to the technique proposed in Patent Document 4, the conductivity and corrosion resistance of the electrogalvanized steel sheet with a chemical conversion coating can be highly compatible.

しかしながら、特許文献4で提案された技術では、鋼板表面に最大高さ粗さ(Rz)が0.6〜1.1μm(但し、カットオフ値λc:0.01mm)の電気亜鉛めっき層を形成する際の電流密度は、最大でも200A/dm2である。したがって、より生産性を向上させる為、更に高い電流密度で最大高さ粗さ(Rz)が0.6〜1.1μmの電気亜鉛めっき層を形成する技術が望まれていた。
すなわち、大量生産される薄型テレビ等の電子・電器製品に対しては、その素材となる化成処理電気亜鉛めっき鋼板を高い生産性をもって安定的に生産・供給することが要求されるが、特許文献4で提案された技術では、所望の特性を具えた高品質の電気亜鉛めっきベース化成処理鋼板が得られるものの、生産性に限界があり、更に生産性を向上させる技術が求められていた。
However, in the technique proposed in Patent Document 4, the current when forming an electrogalvanized layer having a maximum height roughness (Rz) of 0.6 to 1.1 μm (however, a cutoff value λc: 0.01 mm) on the surface of the steel sheet. The density is at most 200 A / dm 2 . Therefore, in order to further improve productivity, a technique for forming an electrogalvanized layer having a maximum current roughness (Rz) of 0.6 to 1.1 μm at a higher current density has been desired.
That is, for electronic and electrical products such as flat-screen TVs that are mass-produced, it is required to stably produce and supply the chemical conversion electrogalvanized steel sheet as the material with high productivity. In the technique proposed in No. 4, although a high-quality electrogalvanized base chemical conversion treated steel sheet having desired characteristics can be obtained, productivity is limited, and a technique for further improving productivity has been demanded.

本発明は上述した現状を踏まえて開発されたもので、本発明の目的は、導電性と耐食性が共に優れたクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板の製造方法に関し、生産性を高めることが可能な方法を提供することにある。   The present invention was developed based on the above-mentioned present situation, and the object of the present invention relates to a method for producing an electrogalvanized steel sheet with a chromate-free chemical conversion coating film that has both excellent conductivity and corrosion resistance, and is intended to increase productivity. It is to provide a possible method.

特許文献4で提案された技術では、鋼板表面に電気亜鉛めっき層を形成する際の電流密度が200A/dm2を超えると、電気亜鉛めっき層の最大高さ粗さRz(カットオフ値λc:0.01mm)が所望の値未満となり、化成処理後の電気亜鉛めっき鋼板の導電性が十分に得られないとされている。
そこで、更に高い生産性を実現すべく、本発明者らは、鋼板表面に電気亜鉛めっき層を形成するに際し、200A/dm2を超える高電流密度とした場合であっても最大高さ粗さRzが0.6〜1.1μm(カットオフ値λc:0.01mm)の電気亜鉛めっき層を安定して形成し得る手段について鋭意検討した。
In the technique proposed in Patent Document 4, when the current density when forming the electrogalvanized layer on the steel sheet surface exceeds 200 A / dm 2 , the maximum height roughness Rz (cutoff value λc: 0.01 mm) is less than the desired value, and it is said that the electrogalvanized steel sheet after the chemical conversion treatment is not sufficiently conductive.
Therefore, in order to achieve higher productivity, the present inventors, when forming an electrogalvanized layer on the steel sheet surface, have a maximum height roughness even when a high current density exceeding 200 A / dm 2 is used. The inventors have intensively studied means for stably forming an electrogalvanized layer having an Rz of 0.6 to 1.1 μm (cutoff value λc: 0.01 mm).

その結果、鋼板表面に電気亜鉛めっき層を形成する際、電気亜鉛めっき浴として、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を所定量含有し、所定のpHを持つ硫酸酸性電気亜鉛めっき浴を使用し、更に電流密度を220〜500A/dm2とすることにより、所望の最大高さ粗さRz :0.6〜1.1μm(カットオフ値λc:0.01mm)を有する電気亜鉛めっき層を得ることが可能であることを知見した。
更に、このようにして得られた電気亜鉛めっき鋼板にクロメートフリー化成処理を施すに際し、クロメートフリー処理皮膜の膜厚を適正範囲に制御することで、高度な導電性と耐食性を兼ね備えた電気亜鉛めっきベースクロメートフリー化成処理鋼板を安定して得られることを知見した。
As a result, when forming an electrogalvanized layer on the steel sheet surface, the electrogalvanizing bath contains a predetermined amount of one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate, and has a predetermined pH. Electricity with a desired maximum height roughness Rz: 0.6-1.1 μm (cut-off value λc: 0.01 mm) by using a sulfuric acid electrogalvanizing bath and further setting the current density to 220-500 A / dm 2 It has been found that a galvanized layer can be obtained.
Furthermore, when the chromate-free chemical conversion treatment is applied to the electrogalvanized steel sheet thus obtained, the electrogalvanization with high conductivity and corrosion resistance is achieved by controlling the film thickness of the chromate-free treatment film to an appropriate range. It was found that a base chromate-free chemical conversion treated steel sheet can be obtained stably.

本発明は、これらの知見に基づきなされたものであり、その要旨は次のとおりである。
[1]鋼板表面に電気亜鉛めっき処理を施し電気亜鉛めっき鋼板とする電気亜鉛めっき鋼板の製造方法において、前記電気亜鉛めっき処理が、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有しpHが1.2以上2.5以下である硫酸酸性電気亜鉛めっき浴中で、電流密度を220A/dm2以上500A/dm2以下とする処理であることを特徴とする電気亜鉛めっき鋼板の製造方法。
The present invention has been made based on these findings, and the gist thereof is as follows.
[1] In the method for producing an electrogalvanized steel sheet by subjecting the surface of the steel sheet to electrogalvanizing treatment to obtain an electrogalvanized steel sheet, the electrogalvanizing treatment is one or two selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate. It is characterized in that the current density is 220 A / dm 2 or more and 500 A / dm 2 or less in a sulfuric acid electrogalvanizing bath containing 0.75 mol / L or more in total and having a pH of 1.2 to 2.5. A method for producing an electrogalvanized steel sheet.

[2]前記[1]に記載の方法により製造された電気亜鉛めっき鋼板に、更に上層として平均厚さ0.05μm以上1.0μm以下のクロメートフリー化成処理皮膜を形成することを特徴とする電気亜鉛めっき鋼板の製造方法。 [2] Electrogalvanizing characterized in that a chromate-free chemical conversion coating film having an average thickness of 0.05 μm or more and 1.0 μm or less is further formed as an upper layer on the electrogalvanized steel sheet produced by the method described in [1]. A method of manufacturing a steel sheet.

本発明の方法によれば、家電製品、電子・電気機器等の用途に供して好適な、耐食性と導電性が共に優れた電気亜鉛めっきベースクロメートフリー化成処理鋼板を、工業的レベルで安定して生産することが可能となる。   According to the method of the present invention, an electrogalvanized base chromate-free chemically treated steel sheet excellent in both corrosion resistance and conductivity, suitable for use in home appliances, electronic / electric equipment, etc., can be stably produced at an industrial level. It becomes possible to produce.

本発明の方法に従い製造された電気亜鉛めっきベースクロメートフリー化成処理鋼板(断面)の表面部を模式的に示した図である。It is the figure which showed typically the surface part of the electrogalvanization base chromate-free chemical conversion treatment steel plate (cross section) manufactured according to the method of this invention. 従来の方法に従い製造された絶縁性皮膜付き鋼板(断面)の表面部を模式的に示した図である。It is the figure which showed typically the surface part of the steel plate with an insulating film (cross section) manufactured according to the conventional method.

以下、本発明について詳細に説明する。
本発明は、電気亜鉛めっき処理時に形成される亜鉛結晶の析出形態を制御することで、鋼板表面に、最大高さ粗さRz(JIS B 0601(2001)に規定される「最大高さ粗さ」)が0.6〜1.1μm(但し、カットオフ値λc:0.01mm)の電気亜鉛めっき層、すなわち図1の如く亜鉛結晶に起因した微細な(波長の短い)凹凸を有する電気亜鉛めっき層を形成しようとするものである。そして、本発明は、鋼板表面に電気亜鉛めっき処理を施し電気亜鉛めっき鋼板とする電気亜鉛めっき鋼板の製造方法において、前記電気亜鉛めっき処理が、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有しpHが1.2以上2.5以下である硫酸酸性電気亜鉛めっき浴中で、電流密度を220A/dm2以上500A/dm2以下とする処理であることを特徴とする。
Hereinafter, the present invention will be described in detail.
The present invention controls the precipitation form of zinc crystals formed during the electrogalvanization process, so that the maximum height roughness Rz (JIS B 0601 (2001) “maximum height roughness” ”) Is 0.6 to 1.1 μm (however, cut-off value λc: 0.01 mm), that is, an electrogalvanized layer having fine (short wavelength) irregularities due to zinc crystals as shown in FIG. It is something to try. And this invention is the manufacturing method of the electrogalvanized steel sheet which electrogalvanizes to the steel plate surface, and makes the electrogalvanized steel sheet, The said electrogalvanization process is chosen from sodium sulfate, potassium sulfate, ammonium sulfate, and magnesium sulfate This is a treatment to make the current density 220 A / dm 2 or more and 500 A / dm 2 or less in a sulfuric acid electrogalvanizing bath containing one or two or more in total of 0.75 mol / L or more and having a pH of 1.2 to 2.5. It is characterized by that.

本発明における原板となる鋼板は、従来公知のめっき用鋼板であって、冷延板、熱延板等がいずれも好適に使用できる。また、板厚は0.2〜4.0mmが望ましい。
なお、本発明においては、原板となる鋼板に所定の電気亜鉛めっき処理を施すが、必要に応じて電気亜鉛めっき処理に先立ち前処理、例えば、鋼板表面を清浄化するための脱脂処理および水洗さらに鋼板表面を活性化するための酸洗処理および水洗する前処理を施すことが好ましい。
The steel plate used as the original plate in the present invention is a conventionally known steel plate for plating, and any of a cold-rolled plate and a hot-rolled plate can be suitably used. The plate thickness is preferably 0.2 to 4.0 mm.
In the present invention, a predetermined electrogalvanizing treatment is performed on the steel plate as the original plate, but if necessary, a pretreatment prior to the electrogalvanizing treatment, for example, a degreasing treatment and water washing for cleaning the steel plate surface It is preferable to perform a pickling treatment for activating the steel plate surface and a pretreatment for washing with water.

続いて、上記の如く必要に応じて前処理が施された鋼板に電気亜鉛めっき処理を施すが、本発明では、電気亜鉛めっきで使用するめっき浴を、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有しpHが1.2以上2.5以下である硫酸酸性電気亜鉛めっき浴とする。これにより、適正電流密度(220A/dm2以上500A/dm2以下)で電解した際、電気亜鉛めっき層表面に、亜鉛結晶に起因したミクロンオーダーあるいはそれ以下の波長を有する凹凸を与えることができ、適正な表面粗さ、すなわちカットオフ値λc:0.01mmで測定した場合の最大高さ粗さRzが0.6〜1.1μmである電気亜鉛めっき層を得ることができる。 Subsequently, the steel sheet that has been pretreated as described above is subjected to electrogalvanizing treatment as described above. In the present invention, the plating bath used in electrogalvanizing is sodium sulfate, potassium sulfate, ammonium sulfate, and magnesium sulfate. A sulfuric acid electrogalvanizing bath containing a total of 0.75 mol / L or more of one or more selected from the above and having a pH of 1.2 to 2.5. As a result, when electrolysis is performed at an appropriate current density (220 A / dm 2 or more and 500 A / dm 2 or less), the surface of the electrogalvanized layer can be provided with irregularities having a wavelength of micron order or less due to zinc crystals. An electrogalvanized layer having an appropriate surface roughness, that is, a maximum height roughness Rz of 0.6 to 1.1 μm when measured at a cutoff value λc of 0.01 mm can be obtained.

特許文献4で提案された技術のように、めっき浴として所定の亜鉛濃度に調整した硫酸浴を用いた場合、電流密度が200A/dm2を超えると、電気亜鉛めっき層表面における亜鉛結晶の凹凸が微細になり過ぎてしまう。そのため、カットオフ値λc:0.01mmで測定される電気亜鉛めっき層の最大高さ粗さRzが所望の値未満(0.6μm未満)となってしまう。なお、電流密度が大きくなるにつれて亜鉛結晶の凹凸が微細になる理由は、電流密度が大きくなるにつれ、亜鉛結晶成長速度に比較して亜鉛結晶の核生成速度が速くなる結果、形成される亜鉛結晶が微細化し過ぎるためと推測される。 When a sulfuric acid bath adjusted to a predetermined zinc concentration is used as a plating bath as in the technique proposed in Patent Document 4, if the current density exceeds 200 A / dm 2 , the unevenness of zinc crystals on the surface of the electrogalvanized layer Becomes too fine. Therefore, the maximum height roughness Rz of the electrogalvanized layer measured at a cutoff value λc: 0.01 mm is less than a desired value (less than 0.6 μm). The reason why the unevenness of the zinc crystal becomes finer as the current density is increased is that the nucleation rate of the zinc crystal is increased as the current density is increased as compared with the growth rate of the zinc crystal. Is presumed to be too fine.

そこで、本発明では、亜鉛結晶の析出形態を調整する目的で、所定の亜鉛濃度に調整した硫酸浴に、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を含有させる。このような硫酸酸性電気亜鉛めっき浴を用いることにより、200A/dm2を超える電流密度で電気亜鉛めっき処理を施す際、亜鉛結晶に起因した凹凸が微細化し過ぎることがなく、最大高さ粗さが0.6〜1.1μmである電気亜鉛めっき層が得られる。なお、このような効果が得られる理由は定かではないが、所定の亜鉛濃度に調整した硫酸浴に、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を含有させ、更に220A/dm2以上の高い電流密度でめっきすると、電気亜鉛めっき時の過電圧を大巾に高め、亜鉛めっきのZn六方稠密晶の優先配向面が(0002)面から以下の面に変化するためであると推測される。 Therefore, in the present invention, for the purpose of adjusting the precipitation form of zinc crystals, the sulfuric acid bath adjusted to a predetermined zinc concentration contains one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate. By using such a sulfuric acid electrogalvanizing bath, when the electrogalvanizing process is performed at a current density exceeding 200 A / dm 2 , the unevenness caused by the zinc crystals is not excessively refined, and the maximum height roughness An electrogalvanized layer having a thickness of 0.6 to 1.1 μm is obtained. Although the reason why such an effect is obtained is not clear, a sulfuric acid bath adjusted to a predetermined zinc concentration contains one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate, and magnesium sulfate, When plating at a high current density of 220 A / dm 2 or more, the overvoltage during electrogalvanization is greatly increased, and the preferential orientation plane of zinc hexagonal dense crystals in galvanization changes from the (0002) plane to the following plane. Presumed to be.

Figure 2013079426
Figure 2013079426

上記した硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上の合計含有量が0.75mol/L未満の場合、上記した効果を十分に発現することができず、カットオフ値λc:0.01mmで測定される電気亜鉛めっき層の最大高さ粗さRzが所望の値未満(0.6μm未満)となってしまう。そのため、本発明では、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有するものとする。実操業下での電気亜鉛めっき浴中の成分濃度等のばらつきも考慮すると、上記含有量を1.0mol/L以上とすることが好ましい。   When the total content of one or more selected from the above-mentioned sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate is less than 0.75 mol / L, the above-mentioned effects cannot be fully exhibited, and the cutoff value λc : The maximum height roughness Rz of the electrogalvanized layer measured at 0.01 mm is less than a desired value (less than 0.6 μm). Therefore, in the present invention, one or two or more kinds selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate are contained in total of 0.75 mol / L or more. Taking into account variations in the concentration of components in the electrogalvanizing bath under actual operation, the content is preferably 1.0 mol / L or more.

なお、上記した硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上の合計含有量が過剰になると、これらの成分が硫酸酸性電気亜鉛めっき浴中に溶解せず、粉状に残ってしまう。そのため、上記した硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上の合計含有量の上限は、これらの成分の溶解度を超えない程度とすることが好ましく、2.0mol/L以下とすることが好ましい。   When the total content of one or more selected from the above-mentioned sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate is excessive, these components are not dissolved in the sulfuric acid electrogalvanizing bath and become powdery. It will remain. Therefore, the upper limit of the total content of one or more selected from the above-mentioned sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate is preferably not more than the solubility of these components, 2.0 mol / L or less It is preferable that

硫酸酸性電気亜鉛めっき浴のpHは、1.2以上2.5以下の範囲とすることが必要である。pHが1.2未満では、電気亜鉛めっき層表面に形成される亜鉛結晶に起因した凹凸が小さくなり過ぎ、必要なRzが得られない。また、pHが2.5を超えると、亜鉛電析の電流効率が低下し、所定の亜鉛付着量を得るために必要な電気量が増大するため、製造コスト(電気代)の上昇を招く。なお、実操業下での電気亜鉛めっき浴中の成分濃度等のばらつきを考慮すると、pHを1.6以上2.2以下の範囲とすることがより好ましい。   The pH of the sulfuric acid electrogalvanizing bath needs to be in the range of 1.2 to 2.5. If the pH is less than 1.2, the unevenness caused by the zinc crystals formed on the surface of the electrogalvanized layer becomes too small, and the required Rz cannot be obtained. On the other hand, if the pH exceeds 2.5, the current efficiency of zinc electrodeposition is reduced, and the amount of electricity required to obtain a predetermined amount of zinc deposition increases, leading to an increase in manufacturing cost (electricity cost). In consideration of variations in the component concentration and the like in the electrogalvanizing bath under actual operation, the pH is more preferably in the range of 1.6 to 2.2.

電気亜鉛めっき処理における電解電流密度は、220 A/dm2以上500A/dm2以下とする必要がある。上記のように、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有した硫酸酸性電気亜鉛めっき浴を用いる場合、220A/dm2未満では、電気亜鉛めっき層表面における亜鉛結晶の凹凸が小さくなり過ぎ、所望のRzが得られない。一方、電解電流密度が500A/dm2を超えると、亜鉛電析の電流効率が急激に低下してしまう。したがって、本発明では、電気亜鉛めっき処理における電解電流密度は、220 A/dm2以上500A/dm2以下とする。好ましくは、250A/dm2以上400A/dm2以下である。 Electrolytic current density in the electrolytic zinc plating treatment, it is necessary to be 220 A / dm 2 or more 500A / dm 2 or less. As described above, when using a sulfuric acid electrogalvanizing bath containing 0.75 mol / L or more in total of one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate, at less than 220 A / dm 2 , The unevenness of the zinc crystal on the surface of the electrogalvanized layer becomes too small, and the desired Rz cannot be obtained. On the other hand, when the electrolytic current density exceeds 500 A / dm 2 , the current efficiency of zinc electrodeposition is drastically lowered. Therefore, in the present invention, the electrolytic current density in the electrolytic zinc plating treatment, and 220 A / dm 2 or more 500A / dm 2 or less. Preferably, it is 250 A / dm 2 or more and 400 A / dm 2 or less.

なお、硫酸酸性電気亜鉛めっき浴中の亜鉛濃度は、1mol/L以上とすることが望ましい。1mol/L未満では、220 A/dm2以上の高電流密度でめっき焼けを生じ、めっき外観が不均一となり易い。また、上記亜鉛濃度の上限は、温度低下時に溶解度が低下して硫酸亜鉛が析出するのを防ぐため、2.5mol/L程度が現実的である。 The zinc concentration in the sulfuric acid electrogalvanizing bath is desirably 1 mol / L or more. If it is less than 1 mol / L, plating burn occurs at a high current density of 220 A / dm 2 or more, and the plating appearance tends to be non-uniform. The upper limit of the zinc concentration is practically about 2.5 mol / L in order to prevent the zinc sulfate from precipitating due to a decrease in solubility when the temperature is lowered.

本発明では、その他のめっき浴条件について特に規定されないが、めっき浴温度を30〜70℃、相対流速を0〜4m/sとすることが好ましい。また、電気亜鉛めっきは、電解を複数回に分割することも可能である。電気亜鉛めっきの片面当たりの亜鉛付着量としては、5〜30g/m2が望ましい。 In the present invention, other plating bath conditions are not particularly defined, but it is preferable that the plating bath temperature is 30 to 70 ° C. and the relative flow rate is 0 to 4 m / s. Moreover, electrogalvanizing can also divide electrolysis into multiple times. As zinc adhesion amount per one side of electrogalvanization, 5-30 g / m < 2 > is desirable.

以上のように、本発明の方法に従うことにより、鋼板表面に、最大高さ粗さRzが0.6〜1.1μm(但し、カットオフ値λc:0.01mm)の電気亜鉛めっき層を具えた電気亜鉛めっき鋼板を製造することができる。
また、本発明のクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板の製造方法は、本発明の方法に従い製造された電気亜鉛めっき鋼板に、更に上層として平均厚さ0.05μm以上1.0μm以下のクロメートフリー化成処理皮膜を形成することを特徴とする。これにより、図1に示すようなクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板、すなわち電気亜鉛めっき層表面に形成された亜鉛結晶の凹凸の凸部がクロメートフリー化成処理皮膜から露出したクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板とすることができる。
As described above, by following the method of the present invention, the electrogalvanizing provided with an electrogalvanizing layer having a maximum height roughness Rz of 0.6 to 1.1 μm (however, a cutoff value λc: 0.01 mm) on the steel sheet surface. Steel sheets can be manufactured.
In addition, the method for producing an electrogalvanized steel sheet with a chromate-free chemical conversion coating of the present invention comprises a chromate-free chemical conversion sheet having an average thickness of 0.05 μm or more and 1.0 μm or less as an upper layer on the electrogalvanized steel sheet produced according to the method of the present invention. A treatment film is formed. As a result, an electrogalvanized steel sheet with a chromate-free chemical conversion treatment film as shown in FIG. 1, that is, a chromate-free chemical conversion treatment in which the projections and depressions of the zinc crystals formed on the surface of the electrogalvanization layer are exposed from the chromate-free chemical conversion treatment film. A coated electrogalvanized steel sheet can be obtained.

本発明におけるクロメートフリー化成処理皮膜の平均皮膜厚さは、0.05μm以上1μm以下である必要がある。0.05μm未満では、亜鉛の露出部が増加し、十分な耐食性が得られなくなる。一方、1μmを超えると、亜鉛露出部が少なくなり、十分な導電性が得られなくなる。   The average film thickness of the chromate-free chemical conversion film in the present invention needs to be 0.05 μm or more and 1 μm or less. If it is less than 0.05 μm, the exposed portion of zinc increases and sufficient corrosion resistance cannot be obtained. On the other hand, when the thickness exceeds 1 μm, the exposed zinc portion decreases and sufficient conductivity cannot be obtained.

上記のクロメートフリー化成処理皮膜の平均皮膜厚さは、任意に少なくとも5点で皮膜厚さを測定し、その算術平均を取ることとする。   As for the average film thickness of the above chromate-free chemical conversion film, the film thickness is arbitrarily measured at at least 5 points, and the arithmetic average is taken.

なお、本発明においては、クロメートフリー化成皮膜の平均皮膜厚さが0.05μm以上1μm以下である限り、クロメートフリー化成処理皮膜の構成およびクロメートフリー化成処理条件について特に制限はなく、通常公知の皮膜およびその製造方法が適用可能である。つまり、無機化合物や有機樹脂のマトリクスに、用途に応じて有機顔料ないしは無機顔料を含有させたものであてもよいし、その皮膜は単層でも、複数の層を順次積層したものであってもよい。   In the present invention, as long as the average film thickness of the chromate-free chemical conversion film is 0.05 μm or more and 1 μm or less, there is no particular limitation on the configuration of the chromate-free chemical conversion treatment film and the chromate-free chemical conversion treatment conditions. The manufacturing method is applicable. That is, the matrix of an inorganic compound or an organic resin may contain an organic pigment or an inorganic pigment depending on the application, and the film may be a single layer or a layer in which a plurality of layers are sequentially laminated. Good.

電気亜鉛めっき用原板(厚さ0.7mmの冷延鋼板)に、前処理としてアルカリ電解脱脂を行い、水洗後、硫酸50g/Lを添加した25〜30℃の酸洗液中に5秒間浸漬して酸洗処理し、その後に水洗し、電気亜鉛めっきを施して電気亜鉛めっき鋼板とした。電気亜鉛めっき浴は、硫酸亜鉛水溶液をベースとし、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムおよび硫酸アンモニウムから選ばれる一種または二種を添加し、更に硫酸を添加してpHを調節して硫酸酸性電気亜鉛めっき浴とした。各めっき浴の亜鉛濃度(mol/L)、添加剤(硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸アンモニウム)の種類およびその濃度(mol/L)、pH、めっき浴温度、電気亜鉛めっき処理の電流密度(A/dm2)および電気亜鉛めっき層の片面当たりの付着量(g/m2)は、表1のとおりである。また、電気亜鉛めっきは、めっき浴を流動させた状態で行い、電気亜鉛めっき用原板と電気亜鉛めっき浴の相対流速は1.5m/secとした。 Alkaline electrolytic degreasing is performed as a pretreatment on an electrogalvanized base plate (cold rolled steel plate with a thickness of 0.7 mm), washed with water, and immersed in a pickling solution at 25 to 30 ° C. to which 50 g / L of sulfuric acid has been added for 5 seconds. Then, it was pickled, then washed with water, and electrogalvanized to give an electrogalvanized steel sheet. The electrogalvanizing bath is based on a zinc sulfate aqueous solution, and one or two kinds selected from sodium sulfate, potassium sulfate, magnesium sulfate and ammonium sulfate are added. It was a bath. Zinc concentration (mol / L) of each plating bath, types and concentrations (mol / L) of additives (sodium sulfate, potassium sulfate, magnesium sulfate, ammonium sulfate), pH, plating bath temperature, current density of electrogalvanizing treatment Table 1 shows (A / dm 2 ) and the amount of adhesion (g / m 2 ) per one side of the electrogalvanized layer. Moreover, the electrogalvanization was performed in a state where the plating bath was flowed, and the relative flow rate of the electrogalvanizing original plate and the electrogalvanizing bath was 1.5 m / sec.

以上のようにして得られた電気亜鉛めっき鋼板について、電気亜鉛めっき層の最大高さ粗さRz(カットオフ値λc:0.01mm)を、電子線三次元粗さ解析装置(3D-SEM)の二次電子像により求めた。なお、ここでいう最大高さ粗さRzとは、JIS B 0601(2001)に規定される「最大高さ粗さ」であり、具体的な測定方法は次のとおりである。   For the electrogalvanized steel sheet obtained as described above, the maximum height roughness Rz (cut-off value λc: 0.01 mm) of the electrogalvanized layer was measured using an electron beam three-dimensional roughness analyzer (3D-SEM). Obtained from secondary electron images. Here, the maximum height roughness Rz is “maximum height roughness” defined in JIS B 0601 (2001), and a specific measuring method is as follows.

<最大高さ粗さRz>
3D-SEM(エリオニクス社製ERA=8800FE)を用い、加速電圧:5kV、測定領域:120×90μm、測定間隔:0.2μmで測定を行い、カットオフ波長λc:0.01mmのハイパスフィルタ処理した高さ分布データを求め、最大高さ粗さRzを算出した。
各種電気亜鉛めっき鋼板の最大高さ粗さRzを表1に示す。
<Maximum roughness Rz>
Using 3D-SEM (ERAIONX ERA = 8800FE), acceleration voltage: 5kV, measurement area: 120 × 90μm, measurement interval: 0.2μm, cut-off wavelength λc: 0.01mm high-pass filtered height Distribution data was obtained and the maximum height roughness Rz was calculated.
Table 1 shows the maximum height roughness Rz of various electrogalvanized steel sheets.

また、以上のようにして得られた各種電気亜鉛めっき鋼板に、クロメートフリー化成処理を施し電気亜鉛めっきベースクロメートフリー化成処理鋼板とした。P2O5換算で0.32mol/Lの第一リン酸、SiO2換算で0.50mol/Lのコロイダルシリカおよび0.16mol/LのMnを含有するクロメートフリー化成処理液を、バーコーターで塗布した後、140℃で乾燥させ、クロメートフリー処理皮膜(第一層)を形成した。なお、Mnは第一リン酸塩で供給した。次いで、第一層の上に、エポキシ系樹脂を含有する有機樹脂溶液を塗布し、140℃で焼付け、シリカ含有有機樹脂皮膜(第二層)を形成した。
得られた各種クロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板について、前記した方法(任意に5点で測定)により第一層、第二層の合計平均膜厚を測定した。測定結果を表1に示す。
Further, the various electrogalvanized steel sheets obtained as described above were subjected to chromate-free chemical conversion treatment to obtain electrogalvanized base chromate-free chemical conversion steel sheets. After applying a chromate-free chemical conversion treatment solution containing 0.32 mol / L of primary phosphoric acid in terms of P 2 O 5 , 0.50 mol / L of colloidal silica in terms of SiO 2 and 0.16 mol / L of Mn with a bar coater And dried at 140 ° C. to form a chromate-free treated film (first layer). Mn was supplied as primary phosphate. Next, an organic resin solution containing an epoxy resin was applied on the first layer and baked at 140 ° C. to form a silica-containing organic resin film (second layer).
About the obtained electrogalvanized steel sheet with various chromate-free chemical conversion coatings, the total average film thickness of the first layer and the second layer was measured by the method described above (optionally measured at 5 points). The measurement results are shown in Table 1.

以上のようにして得られたクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板について、耐食性評価および導電性評価を行った。評価方法は以下のとおりである。
<耐食性>
JIS Z 2371(2000)に準拠した塩水噴霧試験を行い、48時間後の白錆発生面積を目視評価した。評価基準は以下のとおりである。
◎:白錆発生なし
○:白錆発生面積率が0%超5%以下
△:白錆発生面積率が5%超20%以下
×:白錆発生面積率が20%超
The electrogalvanized steel sheet with chromate-free chemical conversion coating obtained as described above was evaluated for corrosion resistance and conductivity. The evaluation method is as follows.
<Corrosion resistance>
A salt spray test according to JIS Z 2371 (2000) was conducted, and the white rust generation area after 48 hours was visually evaluated. The evaluation criteria are as follows.
◎: No white rust occurrence ○: White rust occurrence area ratio over 0% to 5% or less △: White rust occurrence area ratio over 5% to 20% or less ×: White rust occurrence area ratio over 20%

<導電性>
JIS K 7194 に準拠し、低抵抗測定装置(三菱化学(株)製「ロレスタGP」)に接続した同社製四探針プローブESPプローブをクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板に押し当てて、表面抵抗値を測定した。測定では、プローブの押し付け荷重を20g/sずつ上昇させながら表面抵抗を測定し、表面抵抗値が10-4Ω以下になった時の押し付け荷重を通電時荷重とした。この操作を各鋼板について10回繰り返して平均通電時荷重を算出し、以下の基準で評価した。
◎:平均通電時荷重が200g以下
○:平均通電時荷重が200g超300g以下
×:平均通電時荷重が300g超
以上の評価結果を表1に示す。
<Conductivity>
In accordance with JIS K 7194, press the company's four-probe probe ESP probe connected to a low resistance measuring device ("Loresta GP" manufactured by Mitsubishi Chemical Corporation) against the electrogalvanized steel sheet with chromate-free chemical conversion coating, The surface resistance value was measured. In the measurement, the surface resistance was measured while increasing the probe pressing load by 20 g / s, and the pressing load when the surface resistance value was 10 −4 Ω or less was defined as the load during energization. This operation was repeated 10 times for each steel plate, the average load during energization was calculated, and evaluated according to the following criteria.
◎: Average energization load is 200 g or less ○: Average energization load is more than 200 g and less than 300 g ×: Evaluation results with average energization load exceeding 300 g or more are shown in Table 1.

Figure 2013079426
Figure 2013079426

表1から明らかであるように、本発明によると、カットオフ値λc:0.01mmで測定された最大高さ粗さRzが0.6〜1.1μmである電気亜鉛めっき層を具えた電気亜鉛めっき鋼板を、電気亜鉛めっき処理時の電流密度220A/dm2以上という高電流密度で製造することができる。また、このようにして得られた電気亜鉛めっき鋼板に所定の平均厚さを有するクロメートフリー化成処理皮膜を形成することにより、耐食性および導電性がともに良好なクロメートフリー化成処理皮膜付き電気亜鉛めっき鋼板が得られる。 As is apparent from Table 1, according to the present invention, an electrogalvanized steel sheet comprising an electrogalvanized layer having a maximum height roughness Rz of 0.6 to 1.1 μm measured at a cutoff value λc: 0.01 mm. In addition, it can be manufactured at a high current density of 220 A / dm 2 or more at the time of electrogalvanizing treatment. In addition, by forming a chromate-free chemical conversion treatment film having a predetermined average thickness on the electrogalvanized steel sheet thus obtained, the electrogalvanized steel sheet with a chromate-free chemical conversion treatment film having both good corrosion resistance and conductivity Is obtained.

1 … 鋼板
2 … 電気亜鉛めっき層
3 … 化成処理皮膜
10 … 金属板
21 … めっき層
22 … クロメート皮膜
30 … 有機複合皮膜
1… steel plate
2… Electrogalvanized layer
3… Chemical conversion coating
10… Metal plate
21… Plating layer
22… Chromate film
30… Organic composite coating

Claims (2)

鋼板表面に電気亜鉛めっき処理を施し電気亜鉛めっき鋼板とする電気亜鉛めっき鋼板の製造方法において、前記電気亜鉛めっき処理が、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウムおよび硫酸マグネシウムから選ばれる一種または二種以上を合計で0.75mol/L以上含有しpHが1.2以上2.5以下である硫酸酸性電気亜鉛めっき浴中で、電流密度を220A/dm2以上500A/dm2以下とする処理であることを特徴とする電気亜鉛めっき鋼板の製造方法。 In the method for producing an electrogalvanized steel sheet by subjecting the steel sheet surface to an electrogalvanized steel sheet, the electrogalvanized steel sheet comprises one or more selected from sodium sulfate, potassium sulfate, ammonium sulfate and magnesium sulfate. Electricity characterized in that the current density is 220 A / dm 2 or more and 500 A / dm 2 or less in a sulfuric acid electrogalvanizing bath containing a total of 0.75 mol / L or more and having a pH of 1.2 to 2.5. Manufacturing method of galvanized steel sheet. 請求項1に記載の方法により製造された電気亜鉛めっき鋼板に、更に上層として平均厚さ0.05μm以上1.0μm以下のクロメートフリー化成処理皮膜を形成することを特徴とする電気亜鉛めっき鋼板の製造方法。
A method for producing an electrogalvanized steel sheet, comprising forming a chromate-free chemical conversion film having an average thickness of 0.05 μm or more and 1.0 μm or less as an upper layer on the electrogalvanized steel sheet produced by the method according to claim 1. .
JP2011219874A 2011-10-04 2011-10-04 Method for producing electrogalvanized steel sheet Active JP5772465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219874A JP5772465B2 (en) 2011-10-04 2011-10-04 Method for producing electrogalvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219874A JP5772465B2 (en) 2011-10-04 2011-10-04 Method for producing electrogalvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2013079426A true JP2013079426A (en) 2013-05-02
JP5772465B2 JP5772465B2 (en) 2015-09-02

Family

ID=48526027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219874A Active JP5772465B2 (en) 2011-10-04 2011-10-04 Method for producing electrogalvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5772465B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127891A (en) * 1984-11-28 1986-06-16 Nippon Steel Corp Manufacture of galvanized steel sheet
JP2001234391A (en) * 1999-03-15 2001-08-31 Kobe Steel Ltd Zn-Mg ELECTROPLATED METALLIC SHEET AND ITS MANUFACTURING METHOD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127891A (en) * 1984-11-28 1986-06-16 Nippon Steel Corp Manufacture of galvanized steel sheet
JP2001234391A (en) * 1999-03-15 2001-08-31 Kobe Steel Ltd Zn-Mg ELECTROPLATED METALLIC SHEET AND ITS MANUFACTURING METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN4001003474; 社団法人表面処理協会: ファインプレーティング N48, P47-53 *

Also Published As

Publication number Publication date
JP5772465B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
US9416460B2 (en) Steel sheet for containers
TWI392767B (en) Galvanized steel sheet having excellent surface electrical conductivity of a primary antirust coating layer and a method for manufacturing the same
WO2009101707A1 (en) Galvanized steel sheet with thin primary corrosion-proof coating layer, excelling in surface conductivity, and process for producing the same
JP4379005B2 (en) Method for producing tin-based plated steel sheet having Si-containing chemical conversion film
KR101956723B1 (en) Zinc plating steel sheet with electronic zinc plating film
JP5772465B2 (en) Method for producing electrogalvanized steel sheet
JP5337760B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JP5703815B2 (en) Surface-treated steel sheet, electromagnetic wave shielding member, and electromagnetic wave shielding housing
US11952675B2 (en) Surface-treated copper foil and method for manufacturing same
JP5332543B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5471129B2 (en) Chemical conversion electrogalvanized steel sheet and method for producing the same
KR101102605B1 (en) Surface treatment composition, and method for coating surface of electrolytic tinplate steel using the same
JP4935099B2 (en) Metal plating material
KR20070037506A (en) Black steel sheet excellent in electromagnetic wave shielding property, electromagnetic wave shielding member and electromagnetic wave shielding case
KR101223879B1 (en) Electroplating solution composition and method for manufacturing coating using the same
JP2892601B2 (en) Bright galvanized products and glossy galvanizing method for electric and electronic parts without whisker
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool
JP5609587B2 (en) Electrogalvanized steel sheet and method for producing the same
JP4571895B2 (en) Surface-treated steel sheet for environment-friendly electronic parts with excellent solder wettability, whisker resistance, and appearance stability over time, and method for producing the same
JPH04318996A (en) Copper foil for printed circuit and manufacture thereof
JP2014208906A (en) Laminated steel sheet excellent in corrosion resistance, processability, scratch resistance and abrasion resistance
JP5458198B2 (en) Metal surface treatment aqueous solution and method for preventing discoloration of metal surface
JPH03223490A (en) Production of steel sheet electroplated with zn alloy excellent in chemical conversion treating property
JPH0421797A (en) Zn-ni-cr alloy-electroplated steel sheet having fine appearance and its production
JPH0452298A (en) Production of steel sheet with one side plated with electrolytic lead-tin alloy and having iron surface to be excellently phosphated

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250