JP2013078963A - Crossing controller for end point and adjustment method thereof - Google Patents

Crossing controller for end point and adjustment method thereof Download PDF

Info

Publication number
JP2013078963A
JP2013078963A JP2011218670A JP2011218670A JP2013078963A JP 2013078963 A JP2013078963 A JP 2013078963A JP 2011218670 A JP2011218670 A JP 2011218670A JP 2011218670 A JP2011218670 A JP 2011218670A JP 2013078963 A JP2013078963 A JP 2013078963A
Authority
JP
Japan
Prior art keywords
crossing
unit
end point
level
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011218670A
Other languages
Japanese (ja)
Other versions
JP5766088B2 (en
Inventor
Yoshinori Harima
義憲 播磨
Yoshio Usami
芳夫 宇佐美
Susumu Ishikawa
将 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2011218670A priority Critical patent/JP5766088B2/en
Publication of JP2013078963A publication Critical patent/JP2013078963A/en
Application granted granted Critical
Publication of JP5766088B2 publication Critical patent/JP5766088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a train at both end points of a crossing only by one crossing controller for an end point.SOLUTION: The open circuit-type crossing controller 50 for the end point includes: a switching circuit unit 56 connected between controller internal lines AA, BB and branch lines aa, bb in an interposed manner, the switching circuit unit switching a transmitting destination of review oscillation signals output from an oscillation detection unit 25 to a first connecting terminal 51 and an up end point beyond it in a first switching state, and switching the transmitting destination of review oscillation signals to a second connecting terminal 52 and a down end point BDC beyond it; and a switching control unit 55 which causes the switching circuit unit 56 to take either one switching state of the first and second switching states according to train operating direction instructions. The controller includes, in addition to a first adjustment unit 25a which adjusts the level of review oscillation signals transmitted through the controller internal lines AA, BB, a second adjustment unit 57 which adjusts the level of review oscillation signals transmitted through the branch lines aa, bb.

Description

この発明は、鉄道の単線区間の踏切に設置される踏切保安装置のうち、無絶縁で使用できる短小軌道回路の一種である開電路形の終止点用踏切制御子に関する。
また、そのような終止点用踏切制御子の調整方法にも関する。
なお、本願に添付した特許請求の範囲および明細書では、「列車の運転方向」を「列車運転方向」と言う。また、「列車運転方向」を示す出力がリレー出力であれリレー以外の信号出力であれ、それを「列車運転方向指示」と言う。
The present invention relates to an open-circuit-type end point crossing controller, which is a kind of short track circuit that can be used without insulation, among railroad crossing safety devices installed at a crossing in a single track section of a railway.
The present invention also relates to a method for adjusting such an end point crossing controller.
In addition, in the claims and specification attached to the present application, the “train operation direction” is referred to as the “train operation direction”. Further, whether the output indicating the “train operation direction” is a relay output or a signal output other than the relay, it is referred to as “train operation direction instruction”.

鉄道の線路の踏切に設置される踏切保安装置は(例えば非特許文献1,2参照)、列車を検知するための踏切制御子と、音響にて警報を発するためのスピーカとせん光にて警報を発するための警報灯を装備した踏切警報機と、第3種の踏切には無いが第1種の踏切では踏切遮断機と、踏切制御子の検知結果に基づいて踏切警報機や踏切遮断機の動作を制御する踏切制御装置とを具えている。そして、踏切の手前の始動点に設置された踏切制御子で列車を検知すると、踏切警報機にて警報を発するとともに、少し時間をおいて第1種の踏切では踏切遮断機を降下させ、踏切通過後の終止点に設置された踏切制御子で列車通過を検知すると、警報等を止めるとともに、第1種の踏切では踏切遮断機を上昇させるようになっている。以下、このような踏切保安装置や踏切制御子の構成等を、図面を引用して説明する。   Railroad crossing safety devices installed at railroad crossings (see Non-Patent Documents 1 and 2, for example) are railroad crossing controllers for detecting trains, speakers for sounding alarms, and alarms by flashing light. A level crossing alarm equipped with a warning light, a level crossing breaker in the first type crossing but not in the type 3 level crossing, and a level crossing alarm or level crossing based on the detection result of the level crossing controller And a crossing control device for controlling the operation of the vehicle. And if a train is detected by the level crossing controller installed at the starting point before the level crossing, the level crossing alarm will give an alarm, and after a while, the level 1 crossing will be lowered and the level crossing barrier will be lowered. When the train crossing controller installed at the end point after the passage detects the passage of the train, the alarm is stopped and the level crossing barrier is raised at the first type of crossing. Hereinafter, the structure of such a crossing safety device and a crossing controller will be described with reference to the drawings.

図6は、(a)が複線区間における踏切制御子21〜24の配置図、(b)が単線区間における踏切制御子21,23,24の配置図、(c)が単線用の踏切制御装置31を含む単線用の踏切保安装置のブロック図、(d)が閉電路形の始動点用踏切制御子21,23の接続図、(e)が開電路形の終止点用踏切制御子22,24の接続図である。また、図7(a)は、終止点用踏切制御子24に発振式のものを採用したときのブロック図であり、同図(b)は、終止点用踏切制御子24に送受信式のH形を採用したときのブロック図である。さらに、図8(a)は、コストを考慮して現在設置されている単線用踏切保安装置に係る概要構成図であり、同図(b)は、コストを無視すれば理想といえる単線用踏切保安装置に係る概要構成図である。   6A is a layout diagram of the level crossing controllers 21 to 24 in the double track section, FIG. 6B is a layout diagram of the level crossing controllers 21, 23, and 24 in the single track section, and FIG. 6C is a level crossing control device for a single track. 31 is a block diagram of a railroad crossing safety device for a single line including 31, (d) is a connection diagram of a start-point crossing controller 21, 23 of a closed circuit type, and (e) is a crossing controller 22 for an end point of an open circuit type, 24 is a connection diagram of 24. FIG. FIG. 7A is a block diagram when an oscillating type is adopted for the end point crossing controller 24, and FIG. It is a block diagram when a shape is adopted. Further, FIG. 8 (a) is a schematic configuration diagram related to a currently installed single-track level crossing safety device in consideration of cost, and FIG. 8 (b) is a single-line level crossing that can be said to be ideal if cost is ignored. It is a schematic block diagram concerning a security device.

複線区間の踏切8に係る踏切保安装置では(図6(a)参照)、下り側の線路10について踏切8の起点側で手前位置の下り始動点ADCに始動点用踏切制御子21が設置されるとともに踏切8の終点側で列車通過後位置の下り終止点BDCに終止点用踏切制御子22が設置されるばかりか、上り側の線路10についても踏切8の終点側で手前位置の上り始動点CDCに始動点用踏切制御子23が設置されるとともに踏切8の起点側で列車通過後位置の上り終止点DDCに終止点用踏切制御子24が設置される。始動点ADC,CDCは、踏切警報を発してから列車が踏切8に到達するまでの時間を確保するために、例えば駅中間の踏切で列車の走行速度が100km/Hの場合には踏切8から700〜 800m程の遠くに設定されるが、終止点BDC,DDCは、踏切横断物等による誤作動を避けつつも列車の通過を早く検出するために、踏切8から例えば20〜30m程の近くに設定されることが多い。   In the crossing safety device relating to the crossing 8 in the double-track section (see FIG. 6A), the starting point crossing controller 21 is installed at the downstream starting point ADC of the front side of the crossing 8 with respect to the down line 10. At the same time, the end point crossing controller 22 is installed at the end point BDC at the end point of the railroad crossing 8 at the end point after passing the train. A starting point crossing controller 23 is installed at the point CDC, and an end point crossing controller 24 is installed at the starting point DDC at the post-train passing position on the starting point side of the crossing 8. Starting points ADC and CDC are used to ensure the time from when a railroad crossing warning is issued until the train reaches railroad crossing 8, for example, when the train travel speed is 100 km / H at the railroad crossing between stations. Although it is set at a distance of about 700 to 800 m, the stop points BDC and DDC are near 20 to 30 m, for example, from the level crossing 8 in order to quickly detect the passage of the train while avoiding malfunctions due to crossings and the like. It is often set to.

これに対し(図6(b)参照)、線路10が一つしかない単線区間に設けられた踏切8に係る踏切保安装置では、同じ線路10に対し、踏切8の両側に分かれて下り始動点ADCと上り始動点CDCとが設定され、下り始動点ADCには始動点用踏切制御子21が設置される一方、上り始動点CDCには始動点用踏切制御子23が設定される。また、同じ線路10に対し、下り終止点BDCと上り終止点DDCとのうち何れか一方だけが上り下り共用の終止点として設定され、その共用終止点には終止点用踏切制御子が設置される。例えば上り終止点DDCが選択されて、それが踏切8と下り始動点ADCとの間に設定された場合(図6(b)の場合)、そこに終止点用踏切制御子24が設置され、下り終止点BDCは設定されないので、終止点用踏切制御子22は設置されない。このように、踏切8に近い終止点については共用化を図ることで、設備費の過大化が抑制される。   On the other hand (see FIG. 6 (b)), in the railroad crossing safety device according to the railroad crossing 8 provided in the single track section having only one track 10, the starting start point is divided on both sides of the railroad crossing 8 with respect to the same track 10. The ADC and the ascending start point CDC are set, and the starting point crossing controller 21 is set at the descending starting point ADC, while the starting point crossing controller 23 is set at the ascending start point CDC. Also, for the same line 10, only one of the down end point BDC and the up end point DDC is set as the up / down common end point, and the end point crossing controller is installed at the common end point. The For example, when the up / down end point DDC is selected and set between the crossing 8 and the down start point ADC (in the case of FIG. 6B), the end point crossing controller 24 is installed there, Since the down end point BDC is not set, the end point crossing controller 22 is not installed. In this way, the end point close to the railroad crossing 8 is shared, thereby suppressing an excessive increase in the facility cost.

そのため(図6(c)参照)、単線区間の踏切8に係る踏切保安装置は、同じ線路10の下り始動点ADC,共用終止点DDC,上り始動点CDCそれぞれに設置された始動点用踏切制御子21,始動点用踏切制御子23,終止点用踏切制御子24と、それらの踏切制御子21,23,24から列車検知結果を入力しそれに基づく論理判定にて列車の踏切への接近および通過と列車運転方向とを認知する踏切制御装置31と、音響にて警報を発するためのスピーカと、せん光にて警報を発するための警報灯32と、第1種の踏切では踏切遮断機33とを具えている。なお、その他、故障表示器や、複線など跨線数が複数の踏切には列車方向指示器なども、設けられているが、その説明は割愛する。   Therefore (see FIG. 6C), the railroad crossing safety device related to the railroad crossing 8 in the single track section is the start-point level crossing control installed at each of the downward start point ADC, the common end point DDC, and the upstream start point CDC on the same line 10. The train detection results are input from the child 21, the starting point crossing controller 23, the end point crossing controller 24, and the crossing controllers 21, 23, and 24, and approaching the train crossing by logical judgment based on the train detection result A railroad crossing control device 31 for recognizing the passage and the train driving direction, a speaker for generating an alarm by sound, an alarm lamp 32 for generating an alarm by flashing, and a railroad crossing breaker 33 at the first type of railroad crossing And has. In addition, although there are a failure indicator, a train direction indicator, etc. provided at a crossing with a plurality of crossing lines such as a double line, the description thereof is omitted.

そして、下り列車が下り始動点ADCと共用終止点DDCとの間に在線しているときには下りSRリレー(下りの列車運転方向指示)が無励磁となるが、それ以外のときには下りSRリレーが励磁される。また、上り列車が上り始動点CDCと共用終止点DDCとの間に在線しているときには上りSRリレー(上りの列車運転方向指示)が無励磁となるが、それ以外のときには上りSRリレーが励磁される。そのような列車運転方向の判別結果として方向別に出力される下りSRと上りSRが組み合わせられて、最終の警報出力となる警報Rリレー回路が構成されている。そして、この警報Rリレーの条件により、警報音制御器、警報灯制御器(断続リレー)、踏切遮断機制御リレーと呼ばれる機器が駆動され、それらの出力がそれぞれ警報音のスピーカ、警報灯32、踏切遮断機33に送出されて、音や光で警報が発せられるとともに、遮断桿で道路交通が遮断される。   When the down train is present between the down start point ADC and the common end point DDC, the down SR relay (down train operation direction instruction) is de-energized. In other cases, the down SR relay is excited. Is done. Further, when the upstream train is present between the upstream starting point CDC and the common end point DDC, the upstream SR relay (upward train operation direction instruction) is de-energized. In other cases, the upstream SR relay is excited. Is done. The alarm R relay circuit which becomes the final alarm output is configured by combining the down SR and the up SR output according to the direction as a result of discriminating the train operation direction. And according to the conditions of this alarm R relay, devices called alarm sound controller, alarm light controller (intermittent relay), crossing circuit breaker control relay are driven, and their outputs are alarm sound speaker, alarm light 32, It is sent to the railroad crossing breaker 33, and an alarm is issued by sound and light, and road traffic is blocked by a barrier.

ここで(図6(d),(e)参照)、踏切制御子について詳述すると、故障時のフェールセーフのため、下り始動点ADCや上り始動点CDCに設置される始動点用踏切制御子21,23には閉電路形の踏切制御子が用いられ(図6(d)参照)、下り終止点BDCや上り終止点DDCに設置される終止点用踏切制御子22,24には開電路形の踏切制御子が用いられる(図6(e)参照)。そのうち、閉電路形踏切制御子21,23は(図6(d)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線の対を二対使用するものであり、線路10における接続線取付箇所の取付間隔は約15mほどになっている。そして、その接続線取付箇所の間のレール11,12を介して常に閉電路が構成されており、列車の非在線時には照査用発振信号が閉電路に一巡伝送されて踏切制御子の出力用の始動Rリレーが励磁されるのに対し、列車が約30m程の列車検知長の区間に存在すると、列車の車軸でレール11,12が短絡されるために、照査用発振信号の伝送が断たれて、始動Rリレーが無励磁となる。   Here (see FIGS. 6 (d) and 6 (e)), the level crossing controller will be described in detail. For the fail-safe at the time of failure, the starting point level crossing controller installed at the down start point ADC or the up start point CDC. Closed circuit type crossing controllers 21 and 23 are used (see FIG. 6 (d)), and the end point crossing controllers 22 and 24 installed at the down end point BDC and the up end point DDC are open circuits. A shape crossing controller is used (see FIG. 6 (e)). Among them, the closed-circuit type railroad crossing controllers 21 and 23 (see FIG. 6 (d)) use two pairs of connection wires each having one end attached to each of the pair of rails 11 and 12 forming the track 10 by welding or the like. The attachment interval of the connection line attachment location in the track 10 is about 15 m. A closed circuit is always configured via the rails 11 and 12 between the connecting line attachment points. When the train is not present, the oscillation signal for checking is transmitted to the closed circuit once for output of the level crossing controller. While the start R relay is excited, if the train is in the section of the train detection length of about 30 m, the rails 11 and 12 are short-circuited on the train axle, so the transmission of the oscillation signal for verification is cut off. Thus, the starting R relay is de-energized.

一方、開電路形踏切制御子22,24は(図6(e)参照)、線路10を成す一対のレール11,12それぞれに一端を溶接等で取り付けられた接続線を一対だけ使用するものであり、その接続線に照査用発振信号を常に送出するようになっているが、レール11,12の間が繋がっていないので常態では開電路が構成されているにとどまるため、その開電路に照査用発振信号が送出されていても、列車の非在線時には照査用発振信号の伝送がレール11,12の間で断たれて、踏切制御子の出力用の終止Rリレー(出力リレー)が無励磁となっている。そして、列車が約30m程の列車検知長の区間に進入して存在すると、列車の車軸でレール11,12が短絡されるために、開電路が一時的に閉電路となって、照査用発振信号が一巡伝送され、終止Rリレー(出力リレー)が励磁される。   On the other hand, the open-circuit type railroad crossing controllers 22 and 24 (see FIG. 6 (e)) use only a pair of connecting wires, one end of which is attached to each of the pair of rails 11 and 12 forming the track 10 by welding or the like. Yes, the oscillation signal for verification is always sent to the connection line, but since the rails 11 and 12 are not connected to each other, the open circuit is normally configured. Even if the oscillating signal is transmitted, the transmission of the oscillating signal for verification is cut off between the rails 11 and 12 when the train is not present, and the end R relay (output relay) for the output of the crossing controller is de-energized It has become. And if a train enters a section with a train detection length of about 30 m and the rails 11 and 12 are short-circuited on the train axle, the open circuit becomes temporarily closed, and the oscillation for verification The signal is transmitted once, and the termination R relay (output relay) is excited.

このような開電路形の終止点用踏切制御子22,24は(図7参照)、内部に、照査用発振信号の接続線への送出を試行して照査用発振信号の一巡伝送の状態を検出する発振有無検出部25と、照査用発振信号の一巡伝送が検出されたときには終止Rリレーを励磁するが照査用発振信号の一巡伝送が検出されないときには終止Rリレーを励磁しないリレー駆動部26とを具えている。発振有無検出部25には、接続線を発振回路の発振ループの一部とする発振式のものと(図7(a)参照)、照査用発振信号を送信部で生成し接続線で伝送させ受信部で検出する送受信式のH形と(図7(b)参照)、2タイプが実用化されているが、後ほど説明する本発明においては終止点用踏切制御子の方式の違いが問題にならないので、その詳細は図示するにとどめ、ここでは終止点用踏切制御子24を具体例にして、接続線A1,B1(第1接続線)との接続状態を詳述する。   Such open-circuit-type end-point crossing controllers 22 and 24 (see FIG. 7) internally try to send the check oscillation signal to the connection line and check the state of the round-trip transmission of the check oscillation signal. An oscillation presence / absence detecting unit 25 to detect, and a relay driving unit 26 that excites the termination R relay when a round transmission of the verification oscillation signal is detected, but does not excite the termination R relay when a round transmission of the verification oscillation signal is not detected. It has. In the oscillation presence / absence detection unit 25, an oscillation type whose connection line is a part of the oscillation loop of the oscillation circuit (see FIG. 7A), an oscillation signal for verification is generated by the transmission unit and transmitted through the connection line. The transmission / reception type H type detected by the receiving unit (see FIG. 7B) and two types have been put to practical use. However, in the present invention described later, the difference in the method of the crossing controller for the end point is a problem. Since the details are not shown, only the details are illustrated, and the connection state with the connection lines A1 and B1 (first connection lines) will be described in detail by taking the end point crossing controller 24 as a specific example.

一対の接続線A1,B1のうち一方の接続線A1は一端がレール11に溶接等で接続され他方の接続線B1は一端がレール12に接続されて(図7参照)、その接続線取付箇所14から何れの接続線A1,B1も終止点用踏切制御子24の方に延びていて、発振有無検出部25に接続されている。なお、必須ではないが大抵は終止点用踏切制御子24が踏切器具箱内に収納されているので、接続線A1,B1は、何れも、発振有無検出部25に直に接続されるのでなく、延長線を介在させて間接的に接続されている。即ち、接続線A1,B1は、それぞれ、他端が配線端子盤28の端子に接続され、そこから踏切器具箱内配線27によって終止点用踏切制御子24の筐体の端子まで延長され、そこから制御子内配線AA,BBによって発振有無検出部25に接続されて、発振有無検出部25から照査用発振信号を伝達されるものとなっている。   One connection line A1 of the pair of connection lines A1 and B1 has one end connected to the rail 11 by welding or the like, and the other connection line B1 has one end connected to the rail 12 (see FIG. 7). 14, any of the connection lines A <b> 1 and B <b> 1 extends toward the end point crossing controller 24 and is connected to the oscillation presence / absence detection unit 25. Although it is not essential, since the end point crossing controller 24 is usually housed in the crossing equipment box, the connection lines A1 and B1 are not directly connected to the oscillation presence / absence detecting unit 25. Indirectly connected via an extension line. That is, each of the connection lines A1 and B1 is connected to the terminal of the wiring terminal board 28, and is extended from there to the terminal of the housing of the end point crossing controller 24 by the rail 27 in the crossing device box. Are connected to the oscillation presence / absence detection unit 25 by the control-internal wires AA and BB, and the oscillation signal for verification is transmitted from the oscillation presence / absence detection unit 25.

また、リレー駆動部26の終止Rリレーの接点はリレー信号の伝達のため踏切器具箱内配線にて踏切制御装置31の入力ユニットに接続されている。
さらに、終止点用踏切制御子24は、発振式であれ(図7(a)参照)、H形であれ(図7(b)参照)、何れのタイプであっても、列車検知長を加減して規定値に合わせるために、制御子内配線AA,BBにて伝送される照査用発振信号のレベルを上げ下げ(加減調整)する調整器25a(第1調整部)を具備している。図示した調整器25aは、発振有無検出部25に内蔵状態で配設されていて、入力レベルを手動操作にて調整するようになっているが、照査用発振信号のレベルを調整してから固定できれば、出力レベルを調整するようになっていても良く、発振有無検出部25に添設状態で配設されていても良く、制御子内配線AA,BBに介挿状態で配設されていても良い。
Further, the contact point of the end R relay of the relay drive unit 26 is connected to the input unit of the level crossing control device 31 by means of wiring in the level crossing equipment box for transmission of a relay signal.
Further, the end point crossing controller 24 may be an oscillation type (see FIG. 7 (a)) or an H type (see FIG. 7 (b)). In order to adjust to the specified value, an adjuster 25a (first adjusting unit) is provided for raising / lowering (adjusting / adjusting) the level of the oscillation signal for verification transmitted through the control-internal wires AA and BB. The illustrated adjuster 25a is provided in the oscillation presence / absence detecting unit 25 so as to adjust the input level by manual operation, but is fixed after adjusting the level of the oscillation signal for verification. If possible, the output level may be adjusted, may be provided in an attached state to the oscillation presence / absence detecting unit 25, or may be provided in the inter-controller wirings AA and BB in an inserted state. Also good.

このように、単線区間の踏切8に係る現状の踏切保安装置では(図8(a)参照)、線路10において踏切8の近くに共用終止点DDCが設定され更にそれより踏切8から遠くに且つ踏切8の両側に分かれて下り始動点ADCと上り始動点CDCが設定され、下り始動点ADCでは閉電路形の始動点用踏切制御子21に至る接続線の一端が線路10に溶接され、共用終止点DDCの接続線取付箇所14には開電路形の終止点用踏切制御子24に至る接続線(第1接続線A1,B1)の一端が線路10に溶接され、上り始動点CDCでは閉電路形の始動点用踏切制御子23に至る接続線の一端が線路10に接続される。そして、踏切制御子21の始動Rリレーと踏切制御子24の終止Rリレーと踏切制御子23の始動Rリレーとの励磁有無状態に応じて、踏切制御装置31が警報灯32の動作を制御し、更に第1種の踏切では踏切制御装置31が踏切遮断機33の動作をも制御し、上り始動点CDCと共用終止点DDCとの間が上りの踏切制御区間となり、下り始動点ADCと共用終止点DDCとの間が下りの踏切制御区間となる。   Thus, in the current level crossing safety device related to the level crossing 8 in the single track section (see FIG. 8A), the common end point DDC is set near the level crossing 8 on the track 10, and further away from the level crossing 8 The down start point ADC and the up start point CDC are set on both sides of the level crossing 8, and at the down start point ADC, one end of the connecting line leading to the closed circuit type start point crossing controller 21 is welded to the line 10 and shared. One end of a connection line (first connection lines A1, B1) reaching the end point crossing controller 24 of the open circuit type is welded to the line 10 at the connection line attachment point 14 of the end point DDC, and closed at the upstream start point CDC. One end of a connection line leading to the electrical path type starting point crossing controller 23 is connected to the line 10. The level crossing control device 31 controls the operation of the warning light 32 according to the excitation presence / absence state of the start R relay of the level crossing controller 21, the end R relay of the level crossing controller 24, and the start R relay of the level crossing controller 23. Furthermore, at the first type of level crossing, the level crossing control device 31 also controls the operation of the level crossing breaker 33, and an area between the ascending start point CDC and the common end point DDC is an ascending level crossing control section, and is shared with the descending start point ADC. A section between the end point DDC and the lower level crossing control section.

すなわち、列車が上り始動点CDCの列車検知長の区間に進入し掛かってから共用終止点DDCの列車検知長の区間を進出し終えるまでは、列車が上りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が上りであることを示す上りSRリレーが常態の励磁から無励磁になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。また、列車が下り始動点ADCの列車検知長の区間に進入し掛かってから共用終止点DDCの列車検知長の区間を進出し終えるまでは、列車が下りの踏切制御区間の中に存在するとの判別がなされ、列車運転方向が下りであることを示す下りSRリレーが常態の励磁から無励磁になって、警報灯32にて警報が発せられるとともに、第1種の踏切では踏切遮断機33にて道路交通が遮断される。さらに、それ以外のときには、上りの踏切制御区間にも下りの踏切制御区間にも列車が在線していないとの判別がなされて、スピーカや警報灯32から警報が発せられることがなく、第1種の踏切8では道路交通が遮断されない。   That is, it is said that the train exists in the ascending level crossing control section until the train has entered the train detection length section of the common starting point DDC after entering the train detection length section of the ascending starting point CDC. A determination is made, and the up SR relay indicating that the train operation direction is up is changed from the normal excitation to the non-excitation, an alarm is issued by the warning light 32, and at the first type of level crossing, the level crossing breaker 33 is Road traffic is blocked. In addition, the train exists in the descending railroad crossing control section from when it enters the train detection length section of the descending start point ADC until it has finished entering the train detection length section of the common end point DDC. A determination is made that the down SR relay indicating that the train operation direction is down is changed from normal excitation to non-excitation, an alarm is issued by the warning light 32, and at the first type of level crossing, the level crossing breaker 33 is activated. Road traffic is blocked. Further, at other times, it is determined that no train is present in the up crossing control section or down crossing control section, and no alarm is issued from the speaker or the warning light 32, so that the first Road traffic is not blocked at the level crossing 8.

鉄道技術者のための信号概論 信号シリーズ1 「鉄道信号一般」社団法人日本鉄道電気技術協会2005年3月18日発行、改訂版p.107〜118Overview of Signals for Railway Engineers Signal Series 1 “General Railway Signals” Japan Railway Electrical Engineering Association, issued on March 18, 2005, revised p. 107-118 鉄道技術者のための電気概論 信号シリーズ8 「踏切保安装置」社団法人日本鉄道電気技術協会2007年10月30日発行、4版p.35〜120Introduction to Electricity for Railway Engineers Signal Series 8 “Level Crossing Security Device” Japan Railway Electrical Engineering Association, issued October 30, 2007, 4th edition, p. 35-120

このように、現状では、単線区間の線路10の踏切8に設置される踏切保安装置において、列車が踏切道を通過したことを検知し、踏切警報を停止させ更に第1種の踏切では踏切遮断機33を上昇させるために使用する開電路形の終止点用踏切制御子は、踏切道を挟んで起点側あるいは終点側のどちら側か一方だけで左右のレール11,12に接続線を介して取付けられるのが一般的である。
これらの場合のうち、終止点用踏切制御子24が踏切8の起点側に取付けられた場合は(図8(a)参照)、踏切8が上りの踏切制御区間に属するので、上り列車に対しては、列車速度の如何に拘わらず、上り列車が完全に踏切道を通過し終わったことを検知でき、通過し終えた時点で警報が停止し、所要の機能がその通りに発揮される。
Thus, at present, in the crossing safety device installed on the crossing 8 of the track 10 in the single track section, it is detected that the train has passed the crossing road, the crossing warning is stopped, and the crossing is interrupted at the first type of crossing. The open-circuit type railroad crossing controller used for raising the machine 33 is connected to the left and right rails 11 and 12 via connection lines only on either the starting side or the end side across the railroad crossing. It is common to be installed.
Among these cases, when the end point crossing controller 24 is attached to the starting point side of the crossing 8 (see FIG. 8A), the crossing 8 belongs to the up crossing control section, so Therefore, regardless of the train speed, it can be detected that the up train has completely passed the railroad crossing, and when it has passed, the alarm stops and the required function is performed as it is.

一方、下り列車に対しては、踏切8が下りの踏切制御区間に属さないので、列車の速度によっては、あるいは踏切道の幅員によっては、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることがあり、そうするとその時点で警報が停止するので所期の目的を果たすことができない。
列車が共用終止点DDCを通過し終えたら直ちに警報等を止めるのでなく、予め設定しておいた遅延時素だけ更に経過するのを待ってその後に警報等を止めるので、踏切8を通過する下り列車の速度が通常より多少遅い程度かそれ以上であれば、下り列車が踏切道を通過中にも拘わらず通過したものと見做されることはないのであるが、列車速度の速度があまりに遅かったり列車が踏切8で停止したようなときには、下り列車が踏切8を通過し終える前に通過したものと見做されることが起こりうる。
On the other hand, for the down train, the level crossing 8 does not belong to the down level crossing control section. Therefore, depending on the speed of the train or the width of the level crossing, the crossing passes even though the down train is passing the level crossing. In that case, the alarm stops at that point, and the intended purpose cannot be achieved.
Rather than stopping the alarm immediately after the train has passed the common end point DDC, it waits for the preset delay time to elapse and then stops the alarm, etc. If the speed of the train is slightly slower than normal, or more than that, it is not considered that the descending train has passed through the railroad crossing, but the train speed is too slow. When the train stops at the railroad crossing 8, it may happen that the descending train has passed before it has passed the railroad crossing 8.

なお、終止点用踏切制御子が踏切8の終点側にだけ取付けられた場合については図示や繰り返しとなる煩雑な説明は割愛するが、この場合も上り下りが入れ替わるだけで同様の不都合が生じうる。
そして、かかる不都合を回避するには、コスト負担を無視することが許される理想的な安全重視の環境下であれば、複線用の踏切保安装置でも惜しげなく単線区間に適用することができるので、単線区間の線路10の踏切8に踏切保安装置を設置する際、踏切道を挟んだ両側それぞれに始動点用踏切制御子と終止点用踏切制御子とを取り付ければ良い。
In addition, when the end point crossing controller is attached only to the end point side of the crossing 8, the illustration and repeated complicated explanations are omitted, but in this case as well, the same inconvenience may be caused simply by switching up and down. .
And, in order to avoid such inconvenience, even under the ideal safety-oriented environment where it is allowed to ignore the cost burden, it can be applied to single line sections without hesitation even with a crossing safety device for double tracks, When installing a railroad crossing safety device at the railroad crossing 8 of the track 10 in the single track section, a start-point crossing controller and a stop-point crossing controller may be attached to both sides across the railroad crossing.

すなわち(図8(b)参照)、踏切8の起点側のレール11,12に対しては遠くの下り始動点ADCに始動点用踏切制御子21を接続線にて接続するとともに近くの上り終止点DDCの接続線取付箇所14には接続線を介して終止点用踏切制御子24を接続し、踏切8の終点側のレール11,12に対しては近くの下り終止点BDCの接続線取付箇所15に接続線を介して終止点用踏切制御子22を接続するとともに遠くの上り始動点CDCには始動点用踏切制御子23を接続線にて接続するのである。これにより、上り始動点CDCから上り終止点DDCに至る上りの踏切制御区間に踏切8が属するばかりでなく、下りの踏切制御区間が下り始動点ADCから下り終止点BDCに至る区間に広がって、踏切8が下りの踏切制御区間にも属することとなるので、上り列車であれ、下り列車であれ、列車速度の如何に拘わらず、さらには踏切道の幅員にも拘わらず、列車が完全に踏切道を通過し終わったことを検知できて、所期の目的が達成される。   That is, (see FIG. 8 (b)), for the rails 11 and 12 on the starting point side of the railroad crossing 8, the starting point railroad crossing controller 21 is connected to the downhill starting point ADC by a connecting line, and the uphill stop nearby. An end point crossing controller 24 is connected to the connection line attachment point 14 of the point DDC via a connection line, and the connection line attachment of the nearby down end point BDC is attached to the rails 11 and 12 on the end point side of the crossing 8. The end point crossing controller 22 is connected to the location 15 via a connecting line, and the starting point crossing controller 23 is connected to the distant starting point CDC by a connecting line. As a result, not only the level crossing 8 belongs to the up crossing control section from the up start point CDC to the up end point DDC, but also the down crossing control section extends to a section from the down start point ADC to the down end point BDC. Since the level crossing 8 also belongs to the down crossing control section, the train is completely crossed regardless of the train speed regardless of the train speed, whether it is an up train or a down train. The intended purpose is achieved by detecting that the road has been passed.

しかしながら、このようなコスト無視の対処策では、開電路形の終止点用踏切制御子を2つも設置しなければならず、終止点用踏切制御子についてはイニシャルコストもランニングコストも倍増する。単線区間は営業収益に乏しい所なので、コストは抑えなければならない。また、近接した範囲に複数・多数の踏切制御子が設置されるので、それらが同じ線路に送出する照査用発振信号に関して相互干渉が発生しやすくなるが、これを回避するためには列車検知用の信号すなわち照査用発振信号の周波数を変える必要がある。既に多くの信号周波数を使用しているなかで、更に周波数を増やすことは、混変調が増えるなどの不都合もある。
そこで、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知できるように改良することが、技術的な課題となる。
However, in such a cost-ignoring countermeasure, it is necessary to install two open-circuit-type end-point crossing controllers, and both the initial cost and the running cost of the end-point crossing controller are doubled. Since the single track section is poor in operating revenue, costs must be kept down. In addition, since multiple and many level crossing controllers are installed in the close range, mutual interference is likely to occur with respect to the oscillation signal for verification sent to the same line. Therefore, it is necessary to change the frequency of the check signal, ie, the oscillation signal for verification. Increasing the frequency further while using many signal frequencies has the disadvantage of increasing cross modulation.
Therefore, it is a technical problem to improve so that a train can be detected at the end points on both sides of the crossing even if there is only one end point crossing controller.

本発明の終止点用踏切制御子は(解決手段1)、このような課題を解決するために創案されたものであり、要するに、単線区間では一の踏切を上り列車と下り列車が同時に通過することが無いということに基づいて、一台の終止点用踏切制御子に時分割で二台分の機能を発揮させることにより、簡便かつ安価に、踏切の両側の終止点で列車を検知できるようになっている。   The end crossing controller for the end point of the present invention (Solution 1) was created to solve such a problem. In short, an up train and a down train pass through one crossing at the same time in a single track section. Based on the fact that there is no such thing, it is possible to detect trains at the end points on both sides of the crossing easily and inexpensively by having one end point crossing controller perform the functions of two cars in a time-sharing manner. It has become.

具体的には、鉄道の単線区間の線路に設けられた踏切の両側のうち何れか一方で前記線路に第1接続線を介して外部接続するための第1接続端子と、前記第1接続端子に接続された制御子内配線を介して照査用発振信号の送出を試行して前記照査用発振信号の一巡伝送の状態を検出する発振有無検出部と、前記照査用発振信号の一巡伝送の検出の有無に応じて選択的に出力リレーを励磁するリレー駆動部とを備えた開電路形の終止点用踏切制御子において、前記踏切の両側のうち何れか他方で前記線路に第2接続線を介して外部接続するための第2接続端子と、前記線路を走行して前記踏切に接近して来た列車の上り下りを判別する列車方向判別手段から送出された列車運転方向指示を伝える第3接続線を外部接続するための第3接続端子と、前記制御子内配線から分岐して前記第2接続端子に接続された分岐配線および前記制御子内配線に割り込む形で介挿接続されていて第1切替状態では前記照査用発振信号の送出先を前記第1接続端子に切り替えるが第2切替状態では前記照査用発振信号の送出先を前記第2接続端子に切り替える切替回路部と、前記列車運転方向指示に応じて前記切替回路部に前記第1切替状態と前記第2切替状態とのうち何れか一方の切替状態をとらせる切替制御部とを設けたことを特徴とする。   Specifically, a first connection terminal for externally connecting to the line via a first connection line on either side of a railroad crossing provided on a track in a single track section of the railway, and the first connection terminal An oscillation presence / absence detecting unit that attempts to send a check oscillation signal through a control internal wire connected to the detection circuit and detects a check of a round transfer of the check oscillation signal; In an open circuit type crossing controller for an end point having a relay driving unit that selectively excites an output relay according to the presence or absence of the second crossing, a second connection line is connected to the line on either side of the crossing. A second connection terminal for external connection via a train and a train operation direction instruction sent from train direction determination means for determining whether the train has traveled on the track and has approached the railroad crossing. A third connection terminal for externally connecting the connection line; A branch line that branches off from the internal wiring of the control element and is connected to the internal wiring of the control element by interposing the branch wiring connected to the second connection terminal. In the first switching state, the transmission destination of the oscillation signal for verification is selected. Switching to the first connection terminal, but in the second switching state, the switching circuit unit that switches the sending destination of the oscillation signal for verification to the second connection terminal, and the switching circuit unit according to the train operation direction instruction, A switching control unit is provided, which switches one of the switching state and the second switching state.

また、本発明の終止点用踏切制御子は(解決手段2)、上記解決手段1の終止点用踏切制御子であって、前記発振有無検出部または前記制御子内配線に配設されていて前記制御子内配線にて伝送される前記照査用発振信号のレベルを加減調整する第1調整部と、前記分岐配線に配設されていて前記分岐配線にて伝送される前記照査用発振信号のレベルを加減調整する第2調整部とを備えたことを特徴とする。   Further, the end point crossing controller of the present invention (solving means 2) is the end point crossing controller of the above solution means 1, and is disposed in the oscillation presence / absence detecting unit or the wiring in the controller. A first adjustment unit that adjusts and adjusts the level of the oscillation signal for verification transmitted through the wiring in the controller; and the oscillation signal for verification that is disposed in the branch wiring and transmitted through the branch wiring. And a second adjustment unit for adjusting the level.

さらに、本発明の終止点用踏切制御子は(解決手段3)、上記解決手段2の終止点用踏切制御子であって、前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路と、前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態をとらせたうえで前記レベル検出回路の検出値を取得しそれを調整済みレベル値として記憶保持しておきそれから前記切替回路部に前記第2切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第2調整部を作動させる調整制御手段とを備えたことを特徴とする。   Further, the end point crossing controller according to the present invention is (the solution means 3), which is the end point crossing controller of the solution means 2, and the level of the oscillation signal for verification output from the oscillation presence / absence detecting unit is determined. Regardless of the level detection circuit to detect and the train operation direction instruction, the switching circuit unit is allowed to take the first switching state, and then the detection value of the level detection circuit is acquired and used as the adjusted level value. Adjustment control for operating the second adjustment unit so that the detection value of the level detection circuit coincides with the adjusted level value after storing and holding the switching circuit unit in the second switching state. Means.

また、本発明の終止点用踏切制御子は(解決手段4)、上記解決手段2の終止点用踏切制御子であって、前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態をとらせたうえで前記第1調整部を作動させて前記照査用発振信号のレベルを単調に漸増または漸減させながら前記リレー駆動部の励磁状態を監視しその励磁状態が変化したら前記第1調整部の作動を停止させる調整制御手段を備えたことを特徴とする。
そして、この終止点用踏切制御子の調整方法は(当初請求項8)、前記線路における前記第1接続線および前記第2接続線の接続部位が属する列車検知長の端のところで前記線路が列車の車軸で短絡された状態を実際に又は模擬的に現出させてから、前記調整制御手段を作動させることにより、前記第1接続線を経由する照査用発振信号と前記第2接続線を経由する照査用発振信号とのレベルを整合させる、というものである。
Further, the end point crossing controller of the present invention (solving means 4) is the end point crossing controller of the above solution means 2, and the switching circuit section is connected to the switching point regardless of the train operation direction instruction. After the switching state is taken, the first adjusting unit is operated to monitor the excitation state of the relay driving unit while gradually increasing or decreasing the level of the oscillation signal for verification. An adjustment control means for stopping the operation of the first adjustment unit is provided.
And this railroad crossing controller for the end point is adjusted (initial claim 8) in that the line is trained at the end of the train detection length to which the connection part of the first connection line and the second connection line belongs. After the actual short-circuited state of the axle is actually or simulated, the adjustment control means is operated to pass the oscillation signal for verification via the first connection line and the second connection line. The level is matched with the oscillation signal for checking.

また、本発明の終止点用踏切制御子は(解決手段5)、上記解決手段2の終止点用踏切制御子であって、前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第2切替状態をとらせたうえで前記第2調整部を作動させて前記照査用発振信号のレベルを単調に漸増または漸減させながら前記リレー駆動部の励磁状態を監視しその励磁状態が変化したら前記第2調整部の作動を停止させる調整制御手段を備えたことを特徴とする。
そして、この終止点用踏切制御子の調整方法は(当初請求項8)、前記線路における前記第1接続線および前記第2接続線の接続部位が属する列車検知長の端のところで前記線路が列車の車軸で短絡された状態を実際に又は模擬的に現出させてから、前記調整制御手段を作動させることにより、前記第1接続線を経由する照査用発振信号と前記第2接続線を経由する照査用発振信号とのレベルを整合させる、というものである。
Further, the end point crossing controller of the present invention (solution means 5) is the end point crossing controller of the solution means 2, and the switching circuit section includes the second control point regardless of the train operation direction instruction. After the two switching states are taken, the second adjustment unit is operated to monitor the excitation state of the relay driving unit while gradually increasing or decreasing the level of the oscillation signal for verification. An adjustment control means for stopping the operation of the second adjustment unit is provided.
And this railroad crossing controller for the end point is adjusted (initial claim 8) in that the line is trained at the end of the train detection length to which the connection part of the first connection line and the second connection line belongs. After the actual short-circuited state of the axle is actually or simulated, the adjustment control means is operated to pass the oscillation signal for verification via the first connection line and the second connection line. The level is matched with the oscillation signal for checking.

また、本発明の終止点用踏切制御子は(解決手段6)、上記解決手段4,5の終止点用踏切制御子であって、前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路を備え、前記調整制御手段が、前記第1調整部および前記第2調整部のうち何れか一方について前記リレー駆動部の励磁状態の変化に基づく調整が済んだら前記レベル検出回路の検出値を取得し、それを調整済みレベル値として記憶保持しておき、それから前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態および前記第2切替状態のうち前記リレー駆動部の励磁状態の変化に基づく調整のときの切替状態と異なる切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第1調整部および前記第2調整部のうち何れか他方を作動させるようになっていることを特徴とする。
なお、この手段には以下の二態様が含まれている。
Further, the end point crossing controller of the present invention is (the solution means 6), which is the end point crossing controller of the above solution means 4 and 5, and the check oscillation signal output from the oscillation presence / absence detecting unit. A level detection circuit for detecting a level, and when the adjustment control unit has finished adjustment based on a change in the excitation state of the relay drive unit for one of the first adjustment unit and the second adjustment unit, the level The detection value of the detection circuit is acquired and stored as an adjusted level value, and then the first switching state and the second switching state are stored in the switching circuit unit regardless of the train operation direction instruction. Among them, the detection value of the level detection circuit matches the adjusted level value after taking a switching state different from the switching state at the time of adjustment based on the change of the excitation state of the relay drive unit. It characterized that it is first adjusting section and actuate the other one of the second adjustment unit.
This means includes the following two aspects.

すなわち、解決手段6に含まれる二態様のうち一方は、上記解決手段4の終止点用踏切制御子であって、前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路を備え、前記調整制御手段が、前記リレー駆動部の励磁状態の変化に基づく前記第1調整部の調整が済んだら前記レベル検出回路の検出値を取得し、それを調整済みレベル値として記憶保持しておき、それから前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第2切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第2調整部を作動させるようになっていることを特徴とする、というものである。   That is, one of the two modes included in the solving means 6 is the end point crossing controller of the solving means 4, which is a level for detecting the level of the oscillation signal for verification output from the oscillation presence / absence detecting unit. A detection circuit, wherein the adjustment control means acquires the detection value of the level detection circuit after the adjustment of the first adjustment unit based on the change in the excitation state of the relay drive unit, and uses it as the adjusted level value The stored value is stored, and the detection value of the level detection circuit is made to coincide with the adjusted level value after the second switching state is taken by the switching circuit unit regardless of the train operation direction instruction. The second adjusting portion is operated.

また、解決手段6に含まれる二態様のうち他方は、上記解決手段5の終止点用踏切制御子であって、前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路を備え、前記調整制御手段が、前記リレー駆動部の励磁状態の変化に基づく前記第2調整部の調整が済んだら前記レベル検出回路の検出値を取得し、それを調整済みレベル値として記憶保持しておき、それから前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第1調整部を作動させるようになっていることを特徴とする、というものである。   Further, the other of the two modes included in the solving means 6 is the end point crossing controller of the solving means 5 that detects the level of the oscillation signal for verification output from the oscillation presence / absence detecting unit. A detection circuit, and the adjustment control means acquires the detection value of the level detection circuit after the adjustment of the second adjustment unit based on the change in the excitation state of the relay drive unit, and uses it as the adjusted level value The stored value is stored, and the detection value of the level detection circuit is made to coincide with the adjusted level value after the first switching state is taken by the switching circuit unit regardless of the train operation direction instruction. The first adjusting unit is actuated in the above-described manner.

また、本発明の終止点用踏切制御子は(解決手段7)、上記解決手段3〜6の終止点用踏切制御子であって、前記調整制御手段が又は前記調整制御手段および前記レベル検出回路が、前記発振有無検出部と前記リレー駆動部と前記切替回路部と前記切替制御部とを内蔵している筐体とは別体の調整治具に納められていることを特徴とする。   Further, the end point crossing controller of the present invention is (the solution means 7), which is the end point crossing controller of the above solution means 3 to 6, wherein the adjustment control means or the adjustment control means and the level detection circuit. However, it is characterized in that it is housed in an adjustment jig separate from the housing containing the oscillation presence / absence detecting unit, the relay driving unit, the switching circuit unit, and the switching control unit.

このような本発明の終止点用踏切制御子にあっては(解決手段1)、始動点用踏切制御子と踏切制御装置と組み合わされて踏切保安装置を構成するが、その際、各装置が次のように接続される。すなわち、始動点用踏切制御子は、複数の閉電路形のものが前記踏切の両側に分かれて前記線路に接続される。また、本発明の終止点用踏切制御子は、前記始動点用踏切制御子のうち何れか一方と前記踏切との間で前記線路に対し前記第1接続線を介して前記第1接続端子が接続され、前記始動点用踏切制御子のうち何れか他方と前記踏切との間で前記線路に対し前記第2接続線を介して前記第2接続端子が接続されるとともに、前記踏切制御装置に組み込まれた又は別体の前記列車方向判別手段に対し前記第3接続線を介して前記第3接続端子が接続される。さらに、踏切制御装置は、前記始動点用踏切制御子での列車検知結果と本発明の終止点用踏切制御子での列車検知結果とに基づいて踏切警報を発するために、複数の前記始動点用踏切制御子および本発明の終止点用踏切制御子それぞれに対して各リレー出力を入力できるように接続される。   In such an end point crossing controller of the present invention (solution 1), a crossing control device for a starting point and a crossing control device are combined to constitute a crossing safety device. Connected as follows. That is, the starting point level crossing controller has a plurality of closed-circuit types separated on both sides of the level crossing and connected to the track. The end point crossing controller according to the present invention may be configured such that the first connection terminal is connected to the track between the one of the start point crossing controllers and the crossing via the first connection line. The second connection terminal is connected to the track via the second connection line between the other of the starting point crossing controllers and the crossing, and connected to the crossing control device. The third connection terminal is connected to the built-in or separate train direction determining means via the third connection line. Further, the railroad crossing control device generates a plurality of the start points in order to issue a railroad crossing warning based on the train detection result by the start point crossing controller and the train detection result by the end point crossing controller of the present invention. Each of the relay outputs is connected to the railroad crossing controller and the end point crossing controller of the present invention.

このように、二台目の終止点用踏切制御子を追加して線路等に接続するのでなく、従来の終止点用踏切制御子に代えて本発明の終止点用踏切制御子を導入し、その第1,2接続端子にて踏切の両側に接続することにより、照査用発振信号の送出先が切替回路部にて両接続先の何れかに切り替えられるようになる。しかも、その信号送出先切替を列車の上り下りに応じて行うようにもしたことにより、簡便な改良でありながらも、一台の終止点用踏切制御子が時分割で二台分の機能を発揮して踏切の両側の終止点で列車を検知することとなる。そのため、踏切が上りの踏切制御区間ばかりか下りの踏切制御区間にも属するようになって、上り列車であれ、下り列車であれ、列車速度の如何に拘わらず、列車が完全に踏切道を通過し終わったことが検知できて、所期の目的が達成される。
したがって、この発明によれば、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知できる踏切保安装置を安価に実現することができる。
In this way, instead of adding a second end point crossing controller and connecting it to the track or the like, instead of the conventional end point crossing controller, the end point crossing controller of the present invention is introduced, By connecting to both sides of the railroad crossing with the first and second connection terminals, the transmission destination of the oscillation signal for verification can be switched to either of the connection destinations in the switching circuit unit. In addition, by switching the signal transmission destination according to the train going up and down, it is a simple improvement, but one end crossing controller has the function of two cars in time division. The train will be detected at the end points on both sides of the railroad crossing. Therefore, the level crossing belongs to not only the level crossing control section but also the level crossing control section, and the train completely passes the level crossing regardless of the train speed, whether it is an up train or a down train. It can be detected that it has finished, and the intended purpose is achieved.
Therefore, according to the present invention, a railroad crossing safety device capable of detecting a train at the stop points on both sides of a crossing can be realized at low cost even if there is only one stop crossing controller for the stop point.

また、本発明の終止点用踏切制御子にあっては(解決手段2)、従来から設けられていた発振有無検出部や制御子内配線に係る第1調整部に加えて、或いは制御子内配線に新たな第1調整部を設けたことに加えて、新設の分岐配線に係る第2調整部も設けたことにより、制御子内配線等に係る照査用発振信号のレベル調整と、分岐配線に係る照査用発振信号のレベル調整とを、分けて行うことができる。
そのため、第1接続線と第2接続線とで長さが相違し、それに起因して切替回路部の切替状態によってインピーダンス特にインダクタンスが異なることになった場合でも、第1,第2調整部をそれぞれ操作することで簡便に且つ切替状態毎に照査用発振信号の発振状態を調整することができる。
In addition, in the crossing controller for the end point according to the present invention (Solution 2), in addition to the conventionally provided oscillation presence / absence detecting unit and the first adjusting unit related to the wiring in the controller, or in the controller In addition to providing a new first adjustment unit for the wiring, a second adjustment unit for the new branch wiring is also provided, so that the level adjustment of the oscillation signal for verification related to the internal wiring of the controller and the branch wiring The level adjustment of the oscillation signal for verification according to can be performed separately.
Therefore, even when the first connection line and the second connection line have different lengths, and the impedance, particularly the inductance, varies depending on the switching state of the switching circuit unit, the first and second adjustment units are By operating each of them, the oscillation state of the oscillation signal for verification can be easily adjusted for each switching state.

これにより、何れの切替状態であっても列車検知条件を終止点用踏切制御子の規格値等に対して的確に整合させることができる。
しかも、第1,第2調整部の操作の前提となる切替回路部の切替状態の選択が、終止点用踏切制御子の筐体に予め設けられている第3接続端子を介して列車運転方向指示の模擬信号を与える等のことで、簡便に行える。
したがって、この発明によれば、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知することができるうえ、調整まで簡便に済ませることができる。
Thereby, in any switching state, the train detection condition can be accurately matched with the standard value of the end point crossing controller.
In addition, the selection of the switching state of the switching circuit unit, which is a precondition for the operation of the first and second adjustment units, is determined by the train operating direction via the third connection terminal provided in advance in the casing of the end point crossing controller. This can be done simply by giving a simulated signal of instructions.
Therefore, according to the present invention, a train can be detected at the stop points on both sides of the railroad crossing even if there is only one railroad crossing controller for the stop point, and the adjustment can be easily performed.

さらに、本発明の終止点用踏切制御子にあっては(解決手段3)、調整に際し、発振有無検出部や制御子内配線に係る第1調整部を例えば従来の遣り方の手動方式で操作して、制御子内配線等に係る照査用発振信号のレベル調整を済ませると、それによって適切な状態になった照査用発振信号のレベルがレベル検出回路によって検出される。そして、調整制御手段を作動させると、適切な信号レベルの検出値が調整済みレベル値として記憶保持され、それから、切替回路部の状態が第1切替状態から第2切替状態に切り替わるとともに、第2調整部が作動して、レベル検出回路の検出値が調整済みレベル値に一致する。これにより、第2調整部が自動調整されて、分岐配線に係る照査用発振信号のレベルが、制御子内配線等に係る照査用発振信号のレベルと同じく適切な状態になる。
したがって、この発明によれば、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知することができるうえ、調整がより簡便になる。
Further, in the crossing controller for the end point according to the present invention (solution 3), during the adjustment, the oscillation presence / absence detecting unit and the first adjusting unit related to the wiring in the controller are operated, for example, by a manual method of the conventional way. Then, when the level adjustment of the oscillation signal for verification related to the wiring in the controller is completed, the level of the oscillation signal for verification that has become an appropriate state is detected by the level detection circuit. When the adjustment control means is operated, the detected value of the appropriate signal level is stored and held as the adjusted level value, and then the state of the switching circuit unit is switched from the first switching state to the second switching state, and the second The adjustment unit operates and the detection value of the level detection circuit matches the adjusted level value. As a result, the second adjustment unit is automatically adjusted so that the level of the oscillation signal for verification related to the branch wiring becomes the same as the level of the oscillation signal for verification related to the wiring inside the controller.
Therefore, according to the present invention, the train can be detected at the stop points on both sides of the railroad crossing even if there is only one railroad crossing controller for the stop point, and the adjustment becomes easier.

また、本発明の終止点用踏切制御子およびその調整方法にあっては(解決手段4,5)、列車検知長の端のところで線路が列車の車軸で短絡された状態を実際に又は模擬的に現出させたうえで調整が行われるが、その際、切替回路部の状態が調整対象側に切り替えられるとともに調整対象の調整部が作動して照査用発振信号のレベルが単調に漸増または漸減し、その単調変化の途中でリレー駆動部の励磁状態が変化するとその時点で調整対象の調整部が作動を停止する。これにより、調整対象の調整部の調整が自動で行われる。
したがって、この発明によれば、終止点用踏切制御子が一台しかなくても踏切の両側の終止点で列車を検知することができるうえ、調整がより簡便になる。
Further, in the crossing controller for the end point and the adjusting method thereof according to the present invention (solution means 4 and 5), the state where the track is short-circuited at the train axle at the end of the train detection length is actually or simulated. In this case, the state of the switching circuit unit is switched to the adjustment target side, and the adjustment target adjustment unit operates to gradually increase or decrease the level of the oscillation signal for verification monotonously. When the excitation state of the relay drive unit changes during the monotonous change, the adjustment unit to be adjusted stops operating at that time. Thereby, the adjustment of the adjustment unit to be adjusted is automatically performed.
Therefore, according to the present invention, the train can be detected at the stop points on both sides of the railroad crossing even if there is only one railroad crossing controller for the stop point, and the adjustment becomes easier.

また、本発明の終止点用踏切制御子にあっては(解決手段6)、第1,第2調整部のうち何れか一方については上記解決手段4,5に準じて自動調整することができ、第1,第2調整部のうち何れか他方については上記解決手段3に準じて自動調整することができるので、調整がより一層簡便になる。   In the crossing point controller for the end point according to the present invention (solving means 6), either one of the first and second adjusting units can be automatically adjusted according to the solving means 4 and 5. Since any one of the first and second adjustment units can be automatically adjusted according to the solving means 3, the adjustment is further simplified.

また、本発明の終止点用踏切制御子にあっては(解決手段7)、調整時に作動すれば足りる調整制御手段等が、常時作動する発振有無検出部等を内蔵した筐体から分離され、別体の調整治具に納められているため、他の終止点用踏切制御子と共用することもできるので、自動調整機能を導入しても、コストアップを回避することができる。   Further, in the end point crossing controller of the present invention (solution 7), the adjustment control means and the like that only need to be operated at the time of adjustment are separated from the housing incorporating the oscillation presence / absence detecting unit that is always operated, Since it is housed in a separate adjustment jig, it can be shared with other end point crossing controllers, so even if an automatic adjustment function is introduced, an increase in cost can be avoided.

本発明の実施例1について、接続線切替機能付き終止点用踏切制御子とそれを導入した踏切保安装置の構造を示し、(a)が踏切保安装置の概要構成図、(b)が終止点用踏切制御子の回路図である。1 shows the structure of a railroad crossing controller with a connection line switching function and a railroad crossing safety device incorporating the same, (a) is a schematic configuration diagram of the railroad crossing safety device, and (b) is a roadblock. It is a circuit diagram of a railroad crossing controller. (a)が終止点用踏切制御子の調整状況を示す概略図、(b)が上り列車到来時の踏切保安装置および終止点用踏切制御子の動作状態を示す概略図、(c)が下り列車到来時の踏切保安装置および終止点用踏切制御子の動作状態を示す概略図である。(A) is a schematic diagram showing the adjustment status of the crossing controller for the end point, (b) is a schematic diagram showing the operation state of the crossing safety device and the crossing controller for the end point when the up train arrives, It is the schematic which shows the operation state of a level crossing safety device at the time of a train arrival, and a crossing controller for an end point. 本発明の実施例2について、(a)が終止点用踏切制御子の回路図、(b)が終止点用踏切制御子の調整状況図である。In the second embodiment of the present invention, (a) is a circuit diagram of the end point crossing controller, and (b) is an adjustment state diagram of the end point crossing controller. 本発明の実施例3について、(a)が終止点用踏切制御子の回路図、(b)が終止点用踏切制御子の調整状況図である。In Embodiment 3 of the present invention, (a) is a circuit diagram of the end point crossing controller, and (b) is an adjustment state diagram of the end point crossing controller. 本発明の実施例4について、(a)が終止点用踏切制御子の回路図、(b)が終止点用踏切制御子の調整状況図である。In Embodiment 4 of the present invention, (a) is a circuit diagram of the end point crossing controller, and (b) is an adjustment situation diagram of the end point crossing controller. 従来の踏切保安装置を示し、(a)が複線区間における踏切制御子の配置図、(b)が単線区間における踏切制御子の配置図、(c)が単線用の踏切保安装置のブロック図、(d)が閉電路形の始動点用踏切制御子の接続図、(e)が開電路形の終止点用踏切制御子の接続図である。A conventional level crossing safety device is shown, (a) is a layout diagram of a level crossing controller in a double track section, (b) is a layout diagram of a level crossing controller in a single track section, (c) is a block diagram of a level crossing safety device for a single line, (D) is a connection diagram of a start-point level crossing controller of a closed circuit type, and (e) is a connection diagram of an open-circuit type level crossing controller for an end point. 現行の終止点用踏切制御子を示し、(a)が発振式のもののブロック図、(b)が送受信式のH形のブロック図である。FIG. 2 shows a current end-point crossing controller, where (a) is a block diagram of an oscillation type, and (b) is a block diagram of a transmission / reception type H-shape. (a)が従来の単線用踏切保安装置の概要構成図、(b)が理想の単線用踏切保安装置の概要構成図である。(A) is a general | schematic block diagram of the conventional level crossing safety apparatus for single wires, (b) is a schematic block diagram of the ideal single line level crossing safety apparatus.

このような本発明の終止点用踏切制御子について、これを実施するための具体的な形態を、以下の実施例1〜3により説明する。
図1〜2に示した実施例1は、上述した解決手段1〜2(出願当初の請求項1〜2)を具現化したものであり、図3に示した実施例2は、上述した解決手段3(出願当初の請求項3)を具現化したものであり、図4に示した実施例3は、上述した解決手段4,5,7(出願当初の請求項4,5,7)を具現化したものであり、図5に示した実施例4は、上述した解決手段6,7(出願当初の請求項6,7)を具現化したものである。
With regard to the end point crossing controller of the present invention as described above, specific modes for carrying out this will be described with reference to the following first to third embodiments.
The embodiment 1 shown in FIGS. 1 and 2 embodies the above-described solving means 1 and 2 (claims 1 and 2 as originally filed), and the embodiment 2 shown in FIG. Means 3 (Claim 3 at the beginning of the application) is embodied, and the third embodiment shown in FIG. 4 is the same as the above-mentioned solving means 4, 5, and 7 (Claims 4, 5, and 7 at the time of filing). The fourth embodiment shown in FIG. 5 embodies the above-described solving means 6 and 7 (claims 6 and 7 at the beginning of the application).

なお、それらの図示に際しては、簡明化等のため、筐体やネジ等の機械的部材や,電気回路・電子回路の回路素子などについては詳細な図示を割愛し、発明の説明に必要なものや関連するものを中心に記号で図示した。
また、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したが、それらについて背景技術の欄で述べたことは以下の実施例についても共通するので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
In the illustration, for the sake of simplicity, mechanical members such as housings and screws, circuit elements of electric circuits and electronic circuits, etc. are omitted in detail and are necessary for explaining the invention. And related items are shown with symbols.
In addition, the same reference numerals are given to the same constituent elements as those in the past in the illustration, but what has been described in the background art section is the same in the following embodiments, and therefore, the same repetitive elements are repeated. The description will be omitted, and the description below will focus on differences from the prior art.

本発明の終止点用踏切制御子の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)が接続線切替機能付き終止点用踏切制御子50を組み込んだ踏切保安装置40の概要構成図、(b)が終止点用踏切制御子50の回路図である。   A specific configuration of the end point crossing controller according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a schematic configuration diagram of a railroad crossing safety device 40 incorporating an end point crossing controller 50 with a connection line switching function, and FIG. 1B is a circuit diagram of the end point crossing controller 50.

この踏切保安装置40は、鉄道の単線区間の線路10に設けられた踏切8に係る踏切警報を行うために設けられたものであり、踏切8の起点側の下り始動点ADCの所で線路10に接続線を介して接続された閉電路形の始動点用踏切制御子21と、踏切8の終点側の上り始動点CDCの所で線路10に接続線を介して接続された閉電路形の始動点用踏切制御子23と、始動点用踏切制御子21の接続先の下り始動点ADCと踏切8との間に設定された上り終止点DDCの所で線路10の接続線取付箇所14に溶接にて一端部を接続された第1接続線A1,B1と、始動点用踏切制御子23の接続先の上り始動点CDCと踏切8との間に設定された下り終止点BDCの所で線路10の接続線取付箇所15に溶接にて一端部を接続された第2接続線A2,B2とを備えている。   The railroad crossing safety device 40 is provided to issue a railroad crossing alarm related to the railroad crossing 8 provided on the track 10 in the single track section of the railway. A closed-circuit type start-point crossing controller 21 connected to the line 10 and an up-starting point CDC on the end point side of the crossing 8 at a closed-circuit type connected to the line 10 via the connection line. The starting point crossing controller 23 and the starting point crossing controller 21 are connected to the connecting line attachment point 14 of the line 10 at the rising end point DDC set between the starting point ADC and the crossing point 8. At the down end point BDC set between the first connecting lines A1 and B1 connected at one end by welding and the up start point CDC to which the start point crossing controller 23 is connected and the crossing 8 A second connection in which one end is connected to the connection line attachment point 15 of the track 10 by welding. And a A2, B2.

また、踏切保安装置40は、線路10に接続線を介して接続されると線路10の接続線取付箇所に係る列車検知を行う開電路形の終止点用踏切制御子50と、始動点用踏切制御子21での列車検知結果を示す始動Rリレーの出力と始動点用踏切制御子23での列車検知結果を示す始動Rリレーの出力と終止点用踏切制御子50での列車検知結果を示す終止Rリレーの出力とを入力してそれらに基づき踏切警報制御を行って列車運転方向を判別するとともに列車運転方向に応じて上りSRリレーで上りSRを出力したり下りSRリレーで下りSRを出力する単線用の踏切制御装置31と、それらを組み合わせた結果である警報Rリレーの出力に応動するスピーカや,警報灯32,踏切遮断機33と、図示しない電源装置も備えている。   Further, the railroad crossing safety device 40 includes an open-circuit-type end-point crossing controller 50 that detects a train related to the connection line attachment point of the line 10 when connected to the line 10 via a connection line, and a start-point level crossing. The output of the start R relay showing the train detection result at the controller 21, the output of the start R relay showing the train detection result at the start point crossing controller 23, and the train detection result at the end point crossing controller 50 are shown. The output of the stop R relay is input and the railroad crossing warning control is performed based on the output to determine the train operation direction, and the uplink SR is output by the uplink SR relay or the downlink SR is output by the downlink SR relay according to the train operation direction. And a speaker that responds to the output of the alarm R relay, which is the result of combining them, a warning light 32, a railroad crossing breaker 33, and a power supply device (not shown).

このような踏切保安装置40は、既述した現状の単線区間の踏切保安装置(図8(a)参照)において、既述の終止点用踏切制御子24(図7参照)に代えて新たな終止点用踏切制御子50を導入したうえで(図1(a)参照)、終止点用踏切制御子50から線路10へ照査用発振信号を送出するための接続として、既述した踏切器具箱内配線27と第1接続線A1,B1とによる終止点用踏切制御子50から線路10の上り終止点DDCの接続線取付箇所14に至る接続を維持するとともに、新たな踏切器具箱内配線42と第2接続線A2,B2とによる終止点用踏切制御子50から線路10の下り終止点BDCの接続線取付箇所15に至る接続を追加したものとなっている(図1(b)参照)。さらに、踏切制御装置31から警報Rと下りSRを取り込むための踏切器具箱内配線43も追加されている。これらのうち、第2接続線A2,B2と終止点用踏切制御子50とそれに係る踏切器具箱内配線42,43は未だ説明していないが、それ以外のものは既に詳述したので、ここでは未説明のものを詳述する。   Such a level crossing safety device 40 is a new level crossing safety device (see FIG. 8A) in the current single line section described above, and is replaced with the above-described end point crossing controller 24 (see FIG. 7). After introducing the end point crossing controller 50 (see FIG. 1 (a)), the crossing device box described above is used as a connection for sending an oscillation signal for verification from the end point crossing controller 50 to the track 10. While maintaining the connection from the end point crossing controller 50 by the inner wiring 27 and the first connection lines A1 and B1 to the connection line attachment point 14 of the ascending end point DDC of the line 10, a new rail crossing device box wiring 42 is provided. And the second connection lines A2 and B2 to which a connection from the end point crossing controller 50 to the connection line attachment point 15 of the descending end point BDC of the line 10 is added (see FIG. 1B). . Further, a railroad crossing equipment box wiring 43 for taking in the alarm R and the descending SR from the railroad crossing control device 31 is also added. Of these, the second connection lines A2 and B2, the end point crossing controller 50, and the rails 42 and 43 in the crossing equipment box have not been described yet, but the other points have already been described in detail, so Then, what is not explained is explained in full detail.

第2接続線A2,B2は、基本的には既存の第1接続線A1,B1と同様の絶縁被覆電線で良いが、終止点用踏切制御子24の収容されていた踏切器具箱内に終止点用踏切制御子50を収納しようとすると第1接続線A1,B1よりも長くなりがちで、例えば第1接続線A1,B1が好ましいとされる15m以下になっていると、必要な列車検知長を確保するには第2接続線A2,B2が70〜100mほどになって、第2接続線A2,B2のインダクタンスが増加することから、第2接続線A2,B2の方にはコンデンサを直列に介挿接続して増加インダクタンスの影響を相殺することにより、第1接続線A1,B1と第2接続線A2,B2のインピーダンス特性をなるべく近づけておくのが望ましい。   The second connection lines A2 and B2 may be basically insulated wires similar to the existing first connection lines A1 and B1, but the second connection lines A2 and B2 are terminated in the railroad crossing equipment box in which the endpoint crossing controller 24 is accommodated. If the point crossing controller 50 is to be stored, it tends to be longer than the first connection lines A1 and B1, and for example, if the first connection lines A1 and B1 are less than 15 m, which is preferable, the necessary train detection In order to ensure the length, the second connection lines A2 and B2 are about 70 to 100 m, and the inductance of the second connection lines A2 and B2 increases. Therefore, a capacitor is provided on the second connection lines A2 and B2. It is desirable that the impedance characteristics of the first connection lines A1 and B1 and the second connection lines A2 and B2 be as close as possible by interposing and connecting in series to cancel the influence of the increased inductance.

具体的には、後で詳述するが、厳しい外部環境に曝される第2接続線A2,B2に対して直にコンデンサが接続される訳でなく、踏切器具箱内の終止点用踏切制御子50の筐体の中に可変容量部57(第2調整部)が設けられている(図1(b)参照)。長さが極端に異なる第1接続線A1,B1と第2接続線A2,B2に対して、調整器25a(第1調整部)のみで照査用発振信号のレベルを調整する構成では、長い接続線に対する出力を1桁ほど増大させる必要があり、現実的ではない。例えば、第1接続線A1,B1が好ましいとされる15m以下になっているのに対し、必要な列車検知長を確保するために第2接続線A2,B2が100mほどになったとすると、照査用発振信号のレベルが、第1接続線については10Wで済むのに対し、第2接続線については100Wほどになる。   Specifically, as will be described in detail later, the capacitor is not directly connected to the second connection lines A2 and B2 exposed to a severe external environment, but the end point crossing control in the crossing device box. A variable capacity portion 57 (second adjusting portion) is provided in the housing of the child 50 (see FIG. 1B). In the configuration in which the level of the oscillation signal for verification is adjusted only by the adjuster 25a (first adjustment unit) for the first connection lines A1 and B1 and the second connection lines A2 and B2 whose lengths are extremely different, The output to the line needs to be increased by an order of magnitude, which is not realistic. For example, if the first connection lines A1 and B1 are 15 m or less, which is preferable, but the second connection lines A2 and B2 are about 100 m in order to secure the necessary train detection length, verification is performed. The level of the oscillation signal for the first connection line is about 10 W while the second connection line is about 100 W.

終止点用踏切制御子50は(図1(b)参照)、例えば金属製箱体からなる筐体にて一ユニットに纏められており、その筐体の内外を貫く第1接続端子51と第2接続端子52と第3接続端子53と接続端子58と、上記筐体に内蔵されている発振有無検出部25とリレー駆動部26と制御子内配線AA,BBと分岐配線aa,bbと切替制御部55と切替回路部56と可変容量部57とを具えている。それらのうち、発振有無検出部25とリレー駆動部26と制御子内配線AA,BBは、既述した終止点用踏切制御子24のものがそのまま引き継がれている。   The end point crossing controller 50 (see FIG. 1B) is grouped as one unit in a housing made of, for example, a metal box, and the first connection terminal 51 and the first through which penetrate the inside and outside of the housing. 2 switching terminal 52, 3rd connecting terminal 53, connecting terminal 58, oscillation presence / absence detecting unit 25, relay driving unit 26, controller internal wirings AA and BB, branch wirings aa and bb built in the casing A control unit 55, a switching circuit unit 56, and a variable capacitance unit 57 are provided. Among them, as for the oscillation presence / absence detecting unit 25, the relay driving unit 26, and the control-internal wires AA and BB, those of the end point crossing controller 24 described above are taken over as they are.

発振有無検出部25に調整器25a(第1調整部)が設けられていることも、照査用発振信号を伝送する制御子内配線AA,BBが一端を発振有無検出部25に接続され他端を第1接続端子51に接続されていることも、リレー駆動部26の終止Rリレーの接点が接続端子58までの制御子内配線および接続端子58からの踏切器具箱内配線にて踏切制御装置31の入力ユニットに接続されていることも、終止点用踏切制御子24から終止点用踏切制御子50にそのまま引き継がれている。   An adjustment unit 25a (first adjustment unit) is provided in the oscillation presence / absence detection unit 25. The controller internal wirings AA and BB for transmitting the oscillation signal for verification are connected to the oscillation presence / absence detection unit 25 at one end. Is connected to the first connection terminal 51, the contact of the termination R relay of the relay drive unit 26 is connected to the connection terminal 58 and the rail in the crossing equipment box from the connection terminal 58. The connection to the input unit 31 is also carried over from the end point crossing controller 24 to the end point crossing controller 50 as it is.

第1接続端子51は、踏切8と下り始動点ADCとの間に設定された上り終止点DDCのところで線路10に第1接続線A1,B1を介して外部接続するための接続端子であり、具体的には踏切器具箱内配線27と配線端子盤28の端子とを介して第1接続線A1,B1の他端が接続されるようになっている。
第2接続端子52は、踏切8と上り始動点CDCとの間に設定された下り終止点BDCのところで線路10に第2接続線A2,B2を介して外部接続するための接続端子であり、具体的には踏切器具箱内配線27でなく他の踏切器具箱内配線42と配線端子盤28の他の端子とを介して第2接続線A2,B2の他端が接続されるようになっている。
The first connection terminal 51 is a connection terminal for externally connecting to the line 10 via the first connection lines A1 and B1 at the up end point DDC set between the railroad crossing 8 and the down start point ADC. Specifically, the other ends of the first connection lines A1 and B1 are connected via the rail 27 in the railroad crossing box and the terminals of the wiring terminal board 28.
The second connection terminal 52 is a connection terminal for externally connecting to the line 10 via the second connection lines A2 and B2 at the down end point BDC set between the railroad crossing 8 and the up start point CDC. Specifically, the other ends of the second connection lines A2 and B2 are connected not via the rail 27 in the railroad crossing box but via the other rails 42 in the railroad crossing box and other terminals of the wiring terminal board 28. ing.

第3接続端子53は、列車運転方向指示を伝える第3接続線を外部接続するための接続端子であり、線路10を走行して踏切8に接近して来た列車の上り下りを判別する列車方向判別手段として既述の踏切制御装置31を活用するとともに踏切制御装置31の出力する警報R及び下りSRを列車運転方向指示として活用するために、踏切制御装置31の警報Rリレー及び下りSRリレーの出力線の分岐線か又は予備の出力線からなる踏切器具箱内配線43が第3接続線として接続されるようになっている。
これらの接続端子51〜53は、例えばネジ止めやロック付きピンジャック等にて、接続確立後は長期に亘って安定な接続状態が維持されるようになっている。
The third connection terminal 53 is a connection terminal for externally connecting a third connection line for transmitting a train operation direction instruction. The third connection terminal 53 is a train that travels on the track 10 and determines whether the train that has approached the railroad crossing 8 is going up or down. In order to use the aforementioned level crossing control device 31 as direction discriminating means and to use the alarm R and the down SR output from the level crossing control device 31 as a train operation direction instruction, the alarm R relay and the down SR relay of the level crossing control device 31 A crossing instrument box wiring 43 consisting of a branch line of the output line or a spare output line is connected as the third connection line.
These connection terminals 51 to 53 are maintained with a stable connection state for a long time after the connection is established, for example, by screwing or a pin jack with a lock.

切替制御部55は、例えば下り終止Rリレーを主体としたリレー回路で具現化されており、踏切制御装置31から入力する既述の下りSRリレー及び警報Rリレーの接点とで構成されている。そして、切替制御部55の主体の下り終止Rリレーは、上り列車と下り列車が何れもそれぞれの踏切警報区間に在線していないとき、及び上り列車が上りの踏切警報区間に在線しているときには、無励磁(落下)状態であり、下り列車が下りの踏切警報区間に進入したときに踏切制御装置31からの下りSRリレー及び警報Rリレーの無励磁(落下)接点が構成することにより励磁(動作)状態となる。下り列車が下りの踏切制御区間を進出した時点で警報Rが励磁(動作)状態となることにより、回路が絶たれ下り終止Rリレーが無励磁(落下)状態となる。   The switching control unit 55 is embodied by, for example, a relay circuit mainly composed of a down end R relay, and is configured with the above described down SR relay and alarm R relay contacts input from the level crossing control device 31. And the down end R relay of the main part of the switching control part 55 is when the up train and the down train are not in the respective level crossing warning sections, and when the up train is in the up level crossing warning section. In the non-excited (falling) state, when the down train enters the down crossing warning section, the non-excited (falling) contact of the down SR relay and the alarm R relay from the level crossing control device 31 constitutes the excitation ( Operation) state. When the down train enters the down railroad crossing control section, the alarm R is in an excited (operating) state, whereby the circuit is disconnected and the down end R relay is in an unexcited (falling) state.

なお、詳細は割愛するが、踏切制御装置31が電子踏切制御装置の場合と、踏切制御論理をリレーロジックで構成した場合とでは、下りSRリレーが励磁(動作)するタイミングが異なり、電子踏切装置の場合には下り終止Rリレーを用いた回路は必須ではなく、下りSRリレーの出力を入力して直ちに又は必要であれば信号波形整形等を行ってからそれを切替回路部56の制御に供することで切替制御部55の機能が実現されるが、電子踏切制御装置の場合と、踏切制御論理をリレーロジックで構成した場合の両方に対応できるようにするために、ここでは下り終止Rリレーを用いた回路を標準として設けた。なお、下りSRリレーは既述したように列車運転方向が下りの場合に踏切制御装置31から無励磁(落下)に出力されるリレーで、下り終止Rリレーは次に述べるように切替回路部56の切替状態を規定するものなので、切替制御部55は、踏切制御装置31の列車運転方向指示に応じて切替回路部56に第1切替状態と第2切替状態とのうち何れか一方の切替状態を択一的にとらせるものとなっている。   Although details are omitted, the timing at which the descending SR relay is excited (operated) differs between the case where the level crossing control device 31 is an electronic level crossing control device and the case where the level crossing control logic is configured by relay logic. In this case, a circuit using the down end R relay is not essential, and the output of the down SR relay is input immediately or, if necessary, signal waveform shaping or the like is performed for the control of the switching circuit unit 56. Thus, the function of the switching control unit 55 is realized, but in order to be able to cope with both the case of the electronic level crossing control device and the case where the level crossing control logic is configured by relay logic, here, the down end R relay is set. The circuit used was provided as a standard. As described above, the down SR relay is a relay that is output from the level crossing control device 31 in a non-excited (falling) state when the train operation direction is down, and the down end R relay is a switching circuit unit 56 as described below. Therefore, the switching control unit 55 causes the switching circuit unit 56 to switch one of the first switching state and the second switching state according to the train operation direction instruction of the railroad crossing control device 31. Is an alternative.

切替回路部56は、これも切替制御部55と同様にリレー回路で具現化されていて、発振有無検出部25と第1接続端子51とを接続する上述の制御子内配線AA,BBと、制御子内配線AA,BBから分岐して第2接続端子52に接続された分岐配線aa,bbと、制御子内配線AA,BBのうち分岐配線aa,bbの分岐点より第1接続端子51に寄っている部分の配線に介挿して直列接続された下り終止Rリレーの無励磁(落下)接点と、分岐配線aa,bbに介挿して直列接続された下り終止Rリレーの励磁(動作)接点と、後者の分岐配線aa,bbに介挿して直列接続された可変容量部57(第2調整部)とを具えている。この例では可変容量部57が分岐配線aaにだけ接続されている。   The switching circuit unit 56 is also embodied as a relay circuit, similar to the switching control unit 55, and the above-described controller internal wirings AA and BB for connecting the oscillation presence / absence detecting unit 25 and the first connection terminal 51; Branch wirings aa and bb branched from the control-internal wirings AA and BB and connected to the second connection terminal 52, and the first connection terminal 51 from the branch point of the branch wirings aa and bb in the control-internal wirings AA and BB. Non-excited (falling) contact of a down-end R relay connected in series via a portion of the wiring close to the wire and excitation (operation) of a down-end R relay connected in series via branch wires aa and bb It has a contact point and a variable capacitance part 57 (second adjustment part) connected in series with the latter branch wirings aa and bb. In this example, the variable capacitor 57 is connected only to the branch line aa.

可変容量部57(第2調整部)は、分岐配線aa,bbの接続先の第2接続線A2,B2が長くなってそのインダクタンスが増加したことによる影響を相殺することができれば、単一のバリアブルコンデンサでも良く、複数のコンデンサの組み合わせ回路からなるものでも良いが、コンデンサの開放故障時のインピーダンスの変化を最小限に抑えるには、複数のコンデンサを並列に接続して回路を構成することが、稼動性の維持・向上につながる。更に並列接続の場合、例えば固定容量のコンデンサと可変容量のコンデンサとを接続して大容量の確保と容量値の安定と可変範囲の適度な限定とを図るのも良い。   If the variable capacitance unit 57 (second adjustment unit) can offset the influence of the increase in inductance due to the length of the second connection lines A2 and B2 to which the branch lines aa and bb are connected, A variable capacitor or a combination of multiple capacitors may be used, but in order to minimize the change in impedance when a capacitor opens, it is necessary to configure a circuit by connecting multiple capacitors in parallel. , Leading to maintenance and improvement of operability. Further, in the case of parallel connection, for example, a fixed capacitor and a variable capacitor may be connected to secure a large capacity, stabilize the capacitance value, and appropriately limit the variable range.

そして、このような切替回路部56は、下り終止Rリレーが励磁されていない第1切替状態では、発振有無検出部25の照査用発振信号の出力端子と第1接続端子51とを接続して、その先の第1接続線A1,B1及び上り終止点DDCの接続線取付箇所14へ照査用発振信号を送出させる一方、発振有無検出部25の照査用発振信号の出力端子と第2接続端子52とを切断して、その先の第2接続線A2,B2及び下り終止点BDCの接続線取付箇所15へは照査用発振信号を送出させないようになっている。   Then, such a switching circuit unit 56 connects the output terminal of the oscillation signal for verification of the oscillation presence / absence detecting unit 25 and the first connection terminal 51 in the first switching state in which the down end R relay is not excited. The oscillation signal for verification is sent to the connection line attachment point 14 of the first connection lines A1 and B1 and the upstream end point DDC, and the output terminal and the second connection terminal of the oscillation signal for verification of the oscillation presence / absence detection unit 25 52 is cut off, so that the oscillation signal for verification is not sent to the connection line attachment point 15 of the second connection lines A2 and B2 and the descending end point BDC.

また、切替回路部56は、下り終止Rリレーが励磁されている第2切替状態では、発振有無検出部25の照査用発振信号の出力端子と第1接続端子51とを切断して、その先の第1接続線A1,B1及び上り終止点DDCの接続線取付箇所14へは照査用発振信号を送出させない一方、発振有無検出部25の照査用発振信号の出力端子と第2接続端子52とを接続して、その先の第2接続線A2,B2及び下り終止点BDCの接続線取付箇所15へ照査用発振信号を送出させるようになっている。   Further, in the second switching state in which the downstream end R relay is excited, the switching circuit unit 56 disconnects the output terminal of the oscillation signal for verification of the oscillation presence / absence detection unit 25 and the first connection terminal 51, and thereafter While the oscillation signal for verification is not sent to the first connection lines A1 and B1 and the connection line attachment point 14 of the rising end point DDC, the output terminal of the oscillation signal for verification and the second connection terminal 52 of the oscillation presence / absence detection unit 25 Are connected, and the oscillation signal for verification is sent out to the connection line attachment point 15 of the second connection lines A2 and B2 and the descending end point BDC.

そのため、第1接続線A1,B1を介して上り終止点DDCで線路10に接続されるとともに第2接続線A2,B2を介して下り終止点BDCで線路10に接続された終止点用踏切制御子50は、列車運転方向指示に応じた切替回路部56の切替状態に依存して第1接続線A1,B1と第2接続線A2,B2とのうち何れか一方に対して択一的に接続が確立され延いては上り終止点DDCの接続線取付箇所14と下り終止点BDCの接続線取付箇所15とのうち何れか一方の所で線路10に対して照査用発振信号が送出されるようになっている。そして、このような接続線切替機能の付いた終止点用踏切制御子50は、上り列車到来時の第1切替状態では下り終止点BDCでの列車検知を行わないで上り終止点DDCで列車検知を行い、下り列車到来時の第2切替状態では上り終止点DDCでの列車検知を行わないで下り終止点BDCで列車検知を行うものとなっている。   Therefore, the crossing control for the end point connected to the line 10 at the up end point DDC via the first connection line A1, B1 and connected to the line 10 at the down end point BDC via the second connection line A2, B2. Depending on the switching state of the switching circuit unit 56 according to the train operation direction instruction, the child 50 is alternatively selected from either the first connection line A1, B1 or the second connection line A2, B2. As the connection is established, an oscillation signal for verification is sent to the line 10 at any one of the connection line attachment point 14 of the upstream end point DDC and the connection line attachment point 15 of the downward end point BDC. It is like that. The end point crossing controller 50 having such a connection line switching function does not detect the train at the descending end point BDC in the first switching state when the ascending train arrives, and detects the train at the ascending end point DDC. In the second switching state when the down train arrives, train detection is performed at the down end point BDC without performing train detection at the up end point DDC.

この実施例1の終止点用踏切制御子50を組み込んだ踏切保安装置40の設置手順を、図面を引用して説明する。図1は、(a)が踏切保安装置40の配線接続状態を示し、(b)が終止点用踏切制御子50の配線接続状態を示している。
終止点用踏切制御子50だけでなくそれを含む踏切保安装置40を総て新設する場合や更新する場合は、構成について上述した通りに、各機器を設置して、機器間接続を行うとともに、各機器と線路10との接続も行う。
The installation procedure of the crossing safety device 40 incorporating the end point crossing controller 50 of the first embodiment will be described with reference to the drawings. 1A shows a wiring connection state of the crossing safety device 40, and FIG. 1B shows a wiring connection state of the end point crossing controller 50. FIG.
When newly installing or updating not only the end crossing controller 50 but also the level crossing safety device 40 including the end point crossing controller 50, as described above for the configuration, each device is installed and connected between the devices. Each device is also connected to the track 10.

これに対し、既存の踏切保安装置(図8(a)参照)について終止点用踏切制御子24(図7参照)を終止点用踏切制御子50(図1参照)で置き換える一部更新によって踏切保安装置40(図1(a)参照)を実現する場合は、上り終止点DDCで線路10に一端部が接続されている踏切器具箱内配線27の他端部を終止点用踏切制御子24から外して終止点用踏切制御子50の第1接続端子51に接続し直すとともに、一端部が踏切制御装置31に繋がっている終止R信号出力線の他端部を終止点用踏切制御子24から外して終止点用踏切制御子50の接続端子58に接続し直す。これにより、先ずは、終止点用踏切制御子50が終止点用踏切制御子24の役目を代行できるようになる。   In contrast, the existing level crossing safety device (see FIG. 8 (a)) is replaced by a partial update by replacing the end point crossing controller 24 (see FIG. 7) with the end point crossing controller 50 (see FIG. 1). When the security device 40 (see FIG. 1A) is realized, the other end of the rail 27 in the railroad crossing equipment box having one end connected to the line 10 at the rising end DDC is connected to the end crossing controller 24 for the end point. To the first connection terminal 51 of the end point crossing controller 50 and to connect the other end of the end R signal output line whose one end is connected to the crossing control device 31 to the end point crossing controller 24. To the connection terminal 58 of the end point crossing controller 50. Thereby, first, the end point crossing controller 50 can perform the role of the end point crossing controller 24.

また、踏切保安装置が既に設置されている線路10に対し、第2接続線A2,B2の一端部を溶接にて接続する(図1(a)参照)。線路10における第2接続線A2,B2の接続線取付箇所15は、始動点用踏切制御子23の接続先の上り始動点CDCと踏切8との間であって、仮に終止点用踏切制御子22が設置されるとすればその接続先となる下り終止点BDCの設定箇所である(図8(b)参照)。第2接続線A2,B2の他端部は、踏切器具箱の配線端子盤28の空き端子に接続し(図1(b)参照)、更にその端子と踏切制御切替装置50の接続端子52とを踏切器具箱内配線42にて接続する。   Moreover, the end part of 2nd connection line A2, B2 is connected by welding with respect to the track | line 10 in which the level crossing security apparatus is already installed (refer Fig.1 (a)). The connection line attachment point 15 of the second connection lines A2 and B2 on the track 10 is between the upstream starting point CDC to which the starting point crossing controller 23 is connected and the level crossing 8, and is supposed to be the end point crossing controller. If 22 is installed, it is the setting point of the downlink end point BDC as the connection destination (see FIG. 8B). The other ends of the second connection lines A2 and B2 are connected to an empty terminal of the wiring terminal board 28 of the railroad crossing equipment box (see FIG. 1B), and the terminal and the connection terminal 52 of the railroad crossing control switching device 50 are connected. Are connected by the wiring 42 in the crossing device box.

これにより、終止点用踏切制御子50が第2接続線A2,B2を介して下り終止点BDCの所で線路10に接続されるので、終止点用踏切制御子50が終止点用踏切制御子22の役目まで果たせるようになる。
さらに、両制御子22,24の役目を同時には果たせないので双方の役目を適切な時分割にて果たすために、踏切制御装置31の警報Rリレー及び下りSRリレー(下りの列車運転方向指示)を伝送する踏切器具箱内配線43(第3接続線)を第3接続端子53に接続する。これで、接続が完了するので、踏切制御切替装置50は踏切器具箱内に格納する。
As a result, the end point crossing controller 50 is connected to the line 10 at the descending end point BDC via the second connection lines A2 and B2, so that the end point crossing controller 50 becomes the end point crossing controller. Can play up to 22 roles.
Furthermore, since the roles of both controllers 22 and 24 cannot be performed simultaneously, the alarm R relay and the descending SR relay (downward train operation direction instruction) of the level crossing control device 31 are performed in order to fulfill both roles in an appropriate time division. Is connected to the third connection terminal 53. Now that the connection is complete, the railroad crossing control switching device 50 is stored in the railroad crossing equipment box.

なお、第2接続線A2,B2の接続作業や踏切器具箱内配線42の接続作業は、踏切保安装置の動作を阻害しないので、列車運行の停止後に行えるのはもちろんのこと、列車運行の合間を縫って行うことも可能である。同時並行的に行っても良く、逆順で行っても良い。これに対し、終止点用踏切制御子24を外す作業や、それに接続されていた配線を終止点用踏切制御子50に接続し直す作業は、踏切保安装置の動作に影響するので、夜間など列車運行の停止を確認してから行う。また、終止点用踏切制御子24から終止点用踏切制御子50への配線接続変更作業と、第2接続線A2,B2及び踏切器具箱内配線42の配線接続追加作業についても、同時並行的に行っても良く、逆順で行っても良い。さらに、接続端子53への踏切器具箱内配線43の接続は後述の調整後まで遅らせても良い。   Note that the connection work of the second connection lines A2 and B2 and the connection work of the rails in the railroad crossing equipment box 42 do not hinder the operation of the railroad crossing safety device. It is also possible to sew. It may be performed in parallel or in reverse order. On the other hand, the operation of removing the crossing controller 24 for the end point and the operation of reconnecting the wiring connected thereto to the crossing controller 50 for the end point affect the operation of the crossing safety device. Confirm after stopping the operation. In addition, the wiring connection changing work from the end point crossing controller 24 to the end point crossing controller 50 and the wiring connection addition work of the second connection lines A2 and B2 and the crossing device box wiring 42 are simultaneously performed in parallel. May be performed in reverse order. Further, the connection of the railroad crossing equipment box wiring 43 to the connection terminal 53 may be delayed until after the adjustment described later.

この実施例1の終止点用踏切制御子50及びそれを組み込んだ踏切保安装置40について、その使用態様及び動作を、図面を引用して説明する。
図2は、(a)が踏切保安装置40に組み込んだ終止点用踏切制御子50の調整状況を示す概略図、(b)が上り列車到来時の踏切保安装置40および終止点用踏切制御子50の動作状態を示す概略図、(c)が下り列車到来時の踏切保安装置40および終止点用踏切制御子50の動作状態を示す概略図である。
The use aspect and operation | movement about the level crossing controller 50 for end points of this Example 1 and the level crossing security apparatus 40 incorporating the same are demonstrated referring drawings.
FIG. 2A is a schematic diagram showing an adjustment state of the end point crossing controller 50 incorporated in the crossing safety device 40, and FIG. 2B is a crossing safety device 40 and the end point crossing controller when the up train arrives. The schematic diagram which shows the operation state of 50, (c) is the schematic diagram which shows the operation state of the level crossing safety device 40 at the time of arrival of the down train and the end point crossing controller 50.

本格運用に先立って列車検知長の調整を行う必要があるが、終止点用踏切制御子50以外は従来装置なので従来通り行えば良い。終止点用踏切制御子50については(図2(a)参照)、終止点用踏切制御子50の筐体の接続端子51〜53のうち踏切制御装置31に対する接続端子53に模擬装置を仮接続し、この模擬装置を操作することで、接続端子53を介して終止点用踏切制御子50の切替制御部55に列車運転方向指示の模擬信号を与える。模擬装置は、警報Rの模擬信号を出すリレーと、下りSRの模擬信号を出すリレーと、それらのリレーの励磁状態を切り替える手動スイッチとを具えた簡便な調整治具で足りる。そして、それで、切替回路部56の切替状態を選択しながら終止点用踏切制御子50による列車検知の動作状態を調整する。   Prior to the full-scale operation, it is necessary to adjust the train detection length. However, since it is a conventional device other than the end point crossing controller 50, it may be performed as usual. For the end point crossing controller 50 (see FIG. 2A), a simulator is temporarily connected to the connection terminal 53 for the crossing control device 31 among the connection terminals 51 to 53 of the housing of the end point crossing controller 50. Then, by operating this simulator, a train operation direction instruction simulation signal is given to the switching control unit 55 of the end point crossing controller 50 via the connection terminal 53. The simulation device may be a simple adjustment jig including a relay that outputs a simulation signal for alarm R, a relay that outputs a simulation signal for down SR, and a manual switch that switches the excitation state of these relays. Then, the operation state of the train detection by the end point crossing controller 50 is adjusted while selecting the switching state of the switching circuit unit 56.

具体的には、先に第1切替状態を選択して発振有無検出部25を制御子内配線AA,BB経由で接続線A1,B1に接続させ、この状態を維持しておいて、線路10の接続線取付箇所14の所でレール11,12を車軸模擬部材にて短絡させて開電路を一時的に閉じさせたり車軸模擬部材を外して開電路を開状態に戻したりしながら、上り終止点DDCで列車検知長が所要の約30mになっていることを確認する。第1接続線A1,B1が既に接続されていた上り終止点DDCでの列車検知長は、終止点用踏切制御子50を導入してもほとんど変化しないが、それでも調整したいときには、発振有無検出部25に内蔵されている調整器25aを利用して既存設備の調整と同様の操作を行って、照査用発振信号の振幅レベルを加減して、上り終止点DDCでの列車検知長を調整する。   Specifically, the first switching state is first selected and the oscillation presence / absence detecting unit 25 is connected to the connection lines A1 and B1 via the controller internal wires AA and BB, and this state is maintained. The rails 11 and 12 are short-circuited by the axle simulation member at the connecting line attachment point 14 to temporarily close the open circuit, or the axle simulation member is removed to return the open circuit to the open state. At point DDC, check that the train detection length is about 30m. The train detection length at the ascending end point DDC to which the first connection lines A1 and B1 are already connected hardly changes even if the end point crossing controller 50 is introduced. 25, the same operation as the adjustment of the existing equipment is performed using the adjuster 25a built in 25, and the amplitude level of the oscillation signal for verification is adjusted to adjust the train detection length at the upstream end point DDC.

次に、再び模擬装置を操作して第2切替状態を選択させて発振有無検出部25を制御子内配線AA,BB及び分岐配線aa,bb経由で第2接続線A2,B2に接続させ、この状態を維持しておいて、線路10の接続線取付箇所15の所でレール11,12を車軸模擬部材にて短絡させて開電路を一時的に閉じさせたり車軸模擬部材を外して開電路を開状態に戻したりしながら、可変容量部57を操作してその容量を変えることで、照査用発振信号の振幅レベルを加減して、下り終止点BDCで列車検知長が所要の約30mになるようにする。こうして調整が済んだら、終止点用踏切制御子50から模擬装置を取り外し、その後は(図1参照)、踏切制御装置31の警報Rリレー及び下りSRリレーの出力を踏切器具箱内配線43にて終止点用踏切制御子50の接続端子53に接続する。   Next, the simulation device is operated again to select the second switching state, and the oscillation presence / absence detection unit 25 is connected to the second connection lines A2 and B2 via the controller internal wirings AA and BB and the branch wirings aa and bb, While maintaining this state, the rails 11 and 12 are short-circuited by the axle simulation member at the connecting line attachment point 15 of the track 10 to temporarily close the open circuit, or the axle simulation member is removed to open the circuit. By changing the capacity by operating the variable capacity unit 57 while returning to the open state, the amplitude level of the oscillation signal for verification is adjusted and the train detection length is reduced to the required about 30 m at the descending end point BDC. To be. After the adjustment, the simulator is removed from the end point crossing controller 50, and thereafter (see FIG. 1), the outputs of the alarm R relay and the descending SR relay of the crossing control device 31 are connected to the rail crossing device box wiring 43. The end point crossing controller 50 is connected to the connection terminal 53.

終止点用踏切制御子50及び踏切保安装置40の調整が済んで列車運行が始まり、踏切保安装置40の設置された線路10を上り列車が終点側から踏切8に向かって走行して来て上り始動点CDCの列車検知長の区間に進入すると(図2(b)参照)、始動点用踏切制御子23が上り列車を検知して、始動点用踏切制御子23の始動Rリレーが無励磁になる。線路10が単線なので上り列車と同時には下り列車が来ないため、この時点では始動点用踏切制御子21も終止点用踏切制御子50も列車を検知せず、始動点用踏切制御子21の始動Rリレーは励磁状態を維持し、終止点用踏切制御子50の終止Rリレーは無励磁状態を維持する。   The train operation starts after the end point crossing controller 50 and the crossing safety device 40 have been adjusted, and the ascending train travels from the end point toward the crossing 8 on the track 10 where the crossing safety device 40 is installed. When entering the train detection length section of the starting point CDC (see FIG. 2B), the starting point crossing controller 23 detects an upward train, and the starting R relay of the starting point crossing controller 23 is de-energized. become. Since the track 10 is a single line, the down train does not come at the same time as the up train. Therefore, at this time, neither the start point crossing controller 21 nor the end point crossing controller 50 detects the train, and the start point crossing controller 21 The start R relay maintains the excited state, and the end R relay of the end point crossing controller 50 maintains the non-excited state.

そして、踏切制御装置31では、それらのリレー状態に基づいて上り列車到来の判定が出され、それに応じて上りSRリレーと警報Rリレーが無励磁になる。一方、下りSRリレーは励磁状態を維持する。この状態では、終止点用踏切制御子50の切替制御部55及び切替回路部56が第1切替状態のままなので、終止点用踏切制御子50の発振有無検出部25は、制御子内配線AA,BBと第1接続線A1,B1とを介して接続線取付箇所14に接続されている。この状態が維持されるので、上りの踏切制御区間は、上り始動点CDCから上り終止点DDCまでを占め、踏切8を区間内に収めたものとなる。   In the railroad crossing control device 31, it is determined whether the upstream train has arrived based on those relay states, and the upstream SR relay and the alarm R relay are de-energized accordingly. On the other hand, the down SR relay maintains the excited state. In this state, since the switching control unit 55 and the switching circuit unit 56 of the end point crossing controller 50 remain in the first switching state, the oscillation presence / absence detecting unit 25 of the end point crossing controller 50 is connected to the controller internal wiring AA. , BB and the first connection lines A1, B1 are connected to the connection line attachment point 14. Since this state is maintained, the ascending level crossing control section occupies from the ascending start point CDC to the ascending end point DDC, and the level crossing 8 is included in the section.

また(図2(c)参照)、踏切保安装置40の設置された線路10を下り列車が起点側から踏切8に向かって走行して来て下り始動点ADCの列車検知長の区間に進入すると、始動点用踏切制御子21が下り列車を検知して、始動点用踏切制御子21の始動Rリレーが無励磁になる。線路10が単線なので下り列車と同時には上り列車が来ないため、この時点では始動点用踏切制御子23も終止点用踏切制御子50も列車を検知せず、始動点用踏切制御子23の始動Rリレーは励磁状態を維持し、終止点用踏切制御子50の終止Rリレーは無励磁状態を維持する。そして、踏切制御装置31では、それらのリレー状態に基づいて下り列車到来の判定が出され、それに応じて下りSRリレーと警報Rリレーが無励磁とされる。   Further, (see FIG. 2 (c)), when the descending train travels from the starting side toward the level crossing 8 on the track 10 where the railroad crossing safety device 40 is installed, and enters the train detection length section of the descending starting point ADC. The starting point crossing controller 21 detects the descending train, and the starting R relay of the starting point crossing controller 21 is de-energized. Since the track 10 is a single line, the up train does not come at the same time as the down train. At this time, neither the start point crossing controller 23 nor the end point crossing controller 50 detects the train, and the start point crossing controller 23 The start R relay maintains the excited state, and the end R relay of the end point crossing controller 50 maintains the non-excited state. The railroad crossing control device 31 determines whether or not the down train has arrived based on those relay states, and the down SR relay and the alarm R relay are de-energized accordingly.

すると、それに応動して終止点用踏切制御子50の切替制御部55及び切替回路部56が第2切替状態になるため、終止点用踏切制御子50の発振有無検出部25は、上り終止点DDCの接続線取付箇所14から切り離されて、制御子内配線AA,BBの一部と分岐配線aa,bbと第2接続線A2,B2とを介して接続線取付箇所15に接続される。接続線取付箇所15が線路10のうち下り終止点BDCの所になっているうえ、そこを下り列車が通過し終えて踏切制御装置31が警報Rリレーを励磁するまで終止点用踏切制御子50が第2切替状態を維持するため、下りの踏切制御区間は、下り始動点ADCから下り終止点BDCまでを占め、やはり踏切8を区間内に収めたものとなる。   Then, in response to this, the switching control unit 55 and the switching circuit unit 56 of the end point crossing controller 50 are switched to the second switching state. It is disconnected from the connection line attachment point 14 of the DDC and connected to the connection line attachment point 15 via a part of the control-internal wires AA and BB, the branch wires aa and bb, and the second connection lines A2 and B2. The connecting line attachment point 15 is located at the down end point BDC of the line 10, and the end point crossing controller 50 until the crossing control device 31 excites the alarm R relay after the down train has passed there. In order to maintain the second switching state, the descending level crossing control section occupies from the descending start point ADC to the descending end point BDC, and the level crossing 8 is also contained in the section.

このように、終止点用踏切制御子50を組み込んだ踏切保安装置40にあっては、上りの踏切制御区間ばかりか下りの踏切制御区間にも踏切8が属することから、既述した理想状態(図8(b)参照)と同様、上り列車であれ、下り列車であれ、列車速度の如何に拘わらず、列車が完全に踏切道を通過し終わったことを検知できるので、所期の目的が達成される。しかも、既述した理想構成(図8(b)参照)では終止点用に二台の踏切制御子22,24を設置するのに対し、終止点用踏切制御子50を採用した踏切保安装置40では、終止点用踏切制御子50を一台だけ設置すれば良い。新規な切替制御部55及び切替回路部56は、終止点用踏切制御子22,24の何れより簡素で安価なものである。   Thus, in the crossing safety device 40 incorporating the end point crossing controller 50, since the crossing 8 belongs to not only the up crossing control section but also the down crossing control section, the ideal state described above ( As in Fig. 8 (b), it can be detected that the train has completely passed the railroad crossing regardless of the train speed, whether it is an ascending train or a descending train. Achieved. Moreover, in the above-described ideal configuration (see FIG. 8B), the two level crossing controllers 22 and 24 are installed for the end point, whereas the level crossing safety device 40 adopting the end point crossing controller 50 is used. Then, only one end crossing controller 50 may be installed. The new switching control unit 55 and switching circuit unit 56 are simpler and less expensive than either of the end point crossing controllers 22 and 24.

本発明の終止点用踏切制御子の実施例2について、その具体的な構成を、図面を引用して説明する。図3は、(a)が終止点用踏切制御子60の回路図、(b)が終止点用踏切制御子60の調整状況を示す図である。   A specific configuration of the end point crossing controller according to the second embodiment of the present invention will be described with reference to the drawings. 3A is a circuit diagram of the end point crossing controller 60, and FIG. 3B is a diagram illustrating an adjustment state of the end point crossing controller 60. FIG.

この終止点用踏切制御子60が上述した実施例1の終止点用踏切制御子50と相違するのは、第2接続線A2,B2の接続線取付箇所15(線路10に設定された下り終止点BDC)の列車検知長に係る可変容量部57(第2調整部)での調整を自動化する手段61〜66が追加されている点である。
すなわち、筐体に操作ピン挿通用の小孔61が貫通形成され、その直ぐ内側で操作ピンの届くところにスイッチ62が配設され、スイッチ62が操作されると自動調整を実行する自動調整回路63〜65と、小型モータや減速ギヤ等からなり可変容量部57を操作してその容量を増加または減少させる容量操作部66とが内蔵されている。
The end point crossing controller 60 is different from the end point crossing controller 50 of the first embodiment described above in that the connection line attachment points 15 of the second connection lines A2 and B2 (down end set in the line 10). The point 61-66 which automates the adjustment in the variable capacity | capacitance part 57 (2nd adjustment part) which concerns on the train detection length of the point BDC) is added.
That is, a small hole 61 for inserting an operation pin is formed through the casing, and a switch 62 is disposed immediately inside the housing to reach the operation pin. When the switch 62 is operated, an automatic adjustment circuit that performs automatic adjustment 63 to 65, and a capacity operation unit 66 that is composed of a small motor, a reduction gear, and the like and operates the variable capacity unit 57 to increase or decrease its capacity are incorporated.

自動調整回路63〜65は、レベル検出回路63とセレクタ64とマイクロプロセッサ65(MPU,調整制御手段)とを具えている。
レベル検出回路63は、例えば包絡線検波回路やローパスフィルタ等からなり、発振有無検出部25から出力された照査用発振信号を制御子内配線AA,BBから入力して照査用発振信号のレベルを検出し、そのレベル検出値をマイクロプロセッサ65に送出するようになっている。
The automatic adjustment circuits 63 to 65 include a level detection circuit 63, a selector 64, and a microprocessor 65 (MPU, adjustment control means).
The level detection circuit 63 is composed of, for example, an envelope detection circuit, a low-pass filter, and the like. The level detection circuit 63 inputs the verification oscillation signal output from the oscillation presence / absence detection unit 25 from the controller internal wirings AA and BB, and determines the level of the verification oscillation signal. The level detection value is detected and sent to the microprocessor 65.

セレクタ64は、2入力1出力のものであるが、第3接続端子53と切替制御部55とを接続する制御子内配線に割り込む形で設けられていて、各入力端子も、出力端子も、警報Rと下りSRとを伝送するために、各端子組に2ライン以上が属している。そして、二組の入力端子のうち一方の入力端子が第3接続端子53に接続され、二組の入力端子のうち他方の入力端子がマイクロプロセッサ65の出力端子に接続され、一組の出力端子が切替制御部55に接続され、制御端子がマイクロプロセッサ65(MPU,調整制御手段)の出力端子に接続されている。   The selector 64 has two inputs and one output, but is provided so as to interrupt the internal wiring of the controller that connects the third connection terminal 53 and the switching control unit 55. Each input terminal, output terminal, In order to transmit the alarm R and the downlink SR, two or more lines belong to each terminal set. One input terminal of the two sets of input terminals is connected to the third connection terminal 53, and the other input terminal of the two sets of input terminals is connected to the output terminal of the microprocessor 65. Is connected to the switching control unit 55, and the control terminal is connected to the output terminal of the microprocessor 65 (MPU, adjustment control means).

マイクロプロセッサ65(MPU,調整制御手段)は、論理演算とデータ記憶ができれば安価なもので良いので、いわゆる1チップマイコンが使い易いが、マルチチップでも良く、フェールセーフコンピュータでも良く、シーケンサやプログラマブルロジックアレイ等で代替できる場合はそうしても良い。スイッチ62のオンオフ状態とレベル検出回路63のレベル検出値とを入力してセレクタ64と容量操作部66とを制御することができるよう、各部62,63,64,66と制御子内配線にて接続されている。   The microprocessor 65 (MPU, adjustment control means) may be inexpensive as long as it can perform logical operations and data storage, so a so-called one-chip microcomputer is easy to use, but it may be a multi-chip, a fail-safe computer, a sequencer or programmable logic. If it can be replaced by an array or the like, it may be so. In order to be able to control the selector 64 and the capacity operation unit 66 by inputting the on / off state of the switch 62 and the level detection value of the level detection circuit 63, each unit 62, 63, 64, 66 and the wiring in the controller are used. It is connected.

そして、スイッチ62が操作されない常態すなわち標準的な動作状態では(図3(a)参照)、セレクタ64を標準の選択状態のままにして、踏切制御装置31から送られてきた警報R及び下りSRが第3接続端子53を介して切替制御部55に伝達されるようにするとともに、容量操作部66も標準の停止状態のままにして、可変容量部57の容量値(第2調整部の調整値)が変わることなく以前の値に維持されるような制御を行う。   In the normal state in which the switch 62 is not operated, that is, in the standard operation state (see FIG. 3A), the alarm R and the down SR transmitted from the level crossing control device 31 with the selector 64 left in the standard selection state. Is transmitted to the switching control unit 55 through the third connection terminal 53, and the capacitance value of the variable capacitance unit 57 (adjustment of the second adjustment unit) is also maintained while the capacity operation unit 66 is kept in the standard stop state. Control is performed so that the value is maintained at the previous value without changing.

これに対し、列車検知長の調整のためにスイッチ62が操作されると(図3(b)参照)、マイクロプロセッサ65(調整制御手段)は、先ずセレクタ64を制御して選択状態を切り替えさせ、第3接続端子53経由の警報R及び下りSRでなくマイクロプロセッサ65の出力する模擬信号が切替制御部55に入力されるようにし、次に模擬信号にて切替制御部55を制御することにより警報R及び下りSR(列車運転方向指示)の如何に拘わらず切替回路部56に第1切替状態をとらせる。これにより、発振有無検出部25から送出された照査用発振信号が制御子内配線AA,BB及び第1接続線A1,B1を介して線路10の接続線取付箇所14に伝送される状態になるので、その状態が安定するのに十分な時間が経過した頃、マイクロプロセッサ65は、レベル検出回路63の検出値を取得し、それをメモリに調整済みレベル値として記憶保持しておくようになっている。   On the other hand, when the switch 62 is operated for adjusting the train detection length (see FIG. 3B), the microprocessor 65 (adjustment control means) first controls the selector 64 to switch the selection state. By making the simulated signal output from the microprocessor 65, not the alarm R and the down SR via the third connection terminal 53, be input to the switching control unit 55, and then controlling the switching control unit 55 with the simulated signal. Regardless of the alarm R and the descending SR (train operation direction instruction), the switching circuit unit 56 is caused to take the first switching state. As a result, the oscillation signal for verification sent from the oscillation presence / absence detecting unit 25 is transmitted to the connection line attachment point 14 of the line 10 via the controller internal wires AA and BB and the first connection lines A1 and B1. Therefore, when a sufficient time has passed for the state to stabilize, the microprocessor 65 acquires the detection value of the level detection circuit 63 and stores it in the memory as an adjusted level value. ing.

それから、更に、マイクロプロセッサ65は、模擬信号にて切替制御部55を再び制御することにより、警報R及び下りSR(列車運転方向指示)の如何に拘わらず、切替回路部56に第2切替状態をとらせる。今度は、発振有無検出部25から送出された照査用発振信号が制御子内配線AA,BBの一部と分岐配線aa,bbと分岐配線aa,bbとを介して線路10の接続線取付箇所15に伝送される状態になるので、その状態が安定するのに十分な時間が経過した頃、マイクロプロセッサ65は、レベル検出回路63の検出値がメモリの調整済みレベル値に一致するように容量操作部66(第2調整部)を作動させるようになっている。   Then, the microprocessor 65 further controls the switching control unit 55 again with the simulation signal, so that the switching circuit unit 56 is in the second switching state regardless of the alarm R and the descending SR (train operation direction instruction). To take. This time, the oscillation signal for verification sent from the oscillation presence / absence detecting unit 25 is connected to the connection line attachment point of the line 10 via a part of the control-internal wires AA and BB, the branch wires aa and bb, and the branch wires aa and bb. 15, when a sufficient time has elapsed for the state to stabilize, the microprocessor 65 sets the capacity so that the detection value of the level detection circuit 63 matches the adjusted level value of the memory. The operation unit 66 (second adjustment unit) is actuated.

具体的には、可変容量部57の容量が小さいために不一致のうちは可変容量部57の容量が増すように容量操作部66の動作制御を行い、可変容量部57の容量が大きいために不一致のうちは可変容量部57の容量が減るように容量操作部66の動作制御を行い、レベル検出回路63の検出値がメモリの調整済みレベル値に一致したら、容量操作部66を停止させて可変容量部57の容量を固定させるとともに、セレクタ64を制御して選択状態を元の標準に戻すよう切り替えさせて、切替制御部55が第3接続端子53経由の警報R及び下りSRを入力する常態すなわち標準的な動作状態に戻すようになっている。   Specifically, since the capacity of the variable capacity section 57 is small, the operation of the capacity operation section 66 is controlled so that the capacity of the variable capacity section 57 increases, and the capacity of the variable capacity section 57 is large. Among them, the operation of the capacity operation section 66 is controlled so that the capacity of the variable capacity section 57 is reduced, and when the detected value of the level detection circuit 63 matches the adjusted level value of the memory, the capacity operation section 66 is stopped and changed. The capacity of the capacity unit 57 is fixed and the selector 64 is controlled to switch the selected state back to the original standard so that the switching control unit 55 inputs the alarm R and the down SR via the third connection terminal 53. That is, the standard operation state is restored.

この場合、スイッチ62が操作されない常態では、自動調整回路63〜65も容量操作部66も他の回路25,26,55,56の動作に何ら影響を及ぼさないので、スイッチ62を操作して自動調整を行うときは別として、終止点用踏切制御子60は、上述した終止点用踏切制御子50と同様に設置され調整され使用され動作する。スイッチ62を操作して自動調整されるのは可変容量部57(第2調整部)だけであり、その自動調整は、調整器25a(第1調整部)の調整結果を可変容量部57(第2調整部)に転写する如き手法で行われるので、例えば実施例1の終止点用踏切制御子50について上述したような手動操作等にて調整器25aの調整が済んでから実行される。   In this case, in a normal state in which the switch 62 is not operated, neither the automatic adjustment circuits 63 to 65 nor the capacity operation unit 66 has any influence on the operation of the other circuits 25, 26, 55, 56. Aside from the adjustment, the end point crossing controller 60 is installed, adjusted, and used in the same manner as the end point crossing controller 50 described above. Only the variable capacitance unit 57 (second adjustment unit) is automatically adjusted by operating the switch 62. The automatic adjustment is performed by changing the adjustment result of the adjuster 25a (first adjustment unit) to the variable capacitance unit 57 (first adjustment unit). For example, the end point crossing controller 50 according to the first embodiment is executed after the adjustment of the adjuster 25a is completed by manual operation as described above.

調整時には上述したように車軸模擬部材16が用いられるが、それについて付言すると、車軸模擬部材16は約0.5Ω程度の抵抗値を示してレール11とレール12とを一時的に短絡するものであるが(図3(b)参照)、上り終止点DDCの列車検知長を設定する調整器25aの調整に際しては、線路10における第1接続線A1,B1の接続線取付箇所14の両側に位置する列車検知長の両端のうち起点側の端に設定したい所に、一個の車軸模擬部材16が置かれる。また、下り終止点BDCの列車検知長を設定する可変容量部57の調整に際しては、線路10における第2接続線A2,B2の接続線取付箇所15の両側に位置する列車検知長の両端のうち終点側の端に設定したい所に、もう一個の車軸模擬部材16が置かれる。   As described above, the axle simulation member 16 is used at the time of adjustment. In addition, the axle simulation member 16 shows a resistance value of about 0.5Ω and temporarily shorts the rail 11 and the rail 12. Although there is (see FIG. 3 (b)), when adjusting the adjuster 25a for setting the train detection length of the ascending end point DDC, it is located on both sides of the connection line attachment points 14 of the first connection lines A1 and B1 on the track 10. One axle simulation member 16 is placed at a position to be set at the start side end of both ends of the train detection length. In addition, when adjusting the variable capacity portion 57 that sets the train detection length of the descending end point BDC, both ends of the train detection length located on both sides of the connection line attachment points 15 of the second connection lines A2 and B2 on the track 10 Another axle simulation member 16 is placed where it is desired to set the end point side end.

そして、上述したような手動操作等にて調整器25aの調整が済んで、切替回路部56が第1切替状態になっているたときの照査用発振信号が適切なレベルになる状態が出来上がったら、後の調整は実施例1の終止点用踏切制御子50について上述したのと異なり、手動で行うのは、小孔61から操作ピンを挿し込んでスイッチ62を操作することだけである。そうすると、後は可変容量部57の調整が自動で行われる。
すなわち、先ず、セレクタ64の選択状態が切り替わって切替制御部55がマイクロプロセッサ65の制御下に入り、マイクロプロセッサ65の制御によって切替回路部56が第1切替状態になり、その状態で調整済みの照査用発振信号のレベルがレベル検出回路63によって検出されてからマイクロプロセッサ65によってメモリに一時記憶される。
When the adjustment of the adjuster 25a is completed by the manual operation as described above and the state where the oscillation signal for verification when the switching circuit unit 56 is in the first switching state is at an appropriate level is completed. The subsequent adjustment is different from that described above with respect to the end point crossing controller 50 according to the first embodiment. The only manual adjustment is to insert the operation pin from the small hole 61 and operate the switch 62. Then, the adjustment of the variable capacity unit 57 is automatically performed thereafter.
That is, first, the selection state of the selector 64 is switched, the switching control unit 55 enters the control of the microprocessor 65, and the switching circuit unit 56 enters the first switching state under the control of the microprocessor 65, and the adjustment has been made in that state. After the level of the oscillation signal for verification is detected by the level detection circuit 63, it is temporarily stored in the memory by the microprocessor 65.

それから、マイクロプロセッサ65の制御によって切替回路部56が第2切替状態になり、その状態では未だ調整されていなかった照査用発振信号のレベルが、レベル検出回路63によって検出されるとともに、マイクロプロセッサ65に入力されて容量操作部66による可変容量部57の操作に供給される。これにより、切替回路部56が第2切替状態になって、照査用発振信号が分岐配線aa,bb及び第2接続線A2,B2を介して線路10の接続線取付箇所15に送出される状態でも、照査用発振信号が適切なレベルになる状態が出来上がる。これで可変容量部57の調整が済む。   Then, the switching circuit unit 56 enters the second switching state under the control of the microprocessor 65, and the level of the oscillation signal for verification that has not been adjusted in that state is detected by the level detection circuit 63, and the microprocessor 65 Is supplied to the operation of the variable capacity unit 57 by the capacity operation unit 66. As a result, the switching circuit unit 56 is in the second switching state, and the oscillation signal for verification is sent to the connection line attachment point 15 of the line 10 via the branch wirings aa and bb and the second connection lines A2 and B2. However, the state where the oscillation signal for verification becomes an appropriate level is completed. This completes the adjustment of the variable capacitor 57.

後は、容量操作部66が動作停止して可変容量部57の容量が固定されるとともに、セレクタ64の選択状態が切り替わって元の標準状態に戻り、切替制御部55が第3接続端子53経由の警報R及び下りSRを入力してそれに応動する常態に戻る。
こうして、終止点用踏切制御子60にあっては、分岐配線aa,bbにて伝送される照査用発振信号のレベルを加減調整する可変容量部57の調整が自動で行われる。
しかも、調整器25a(第1調整部)の加減調整が済んでいれば、模擬装置を用いなくても、踏切器具箱内配線43を第3接続端子53から外さなくても、可変容量部57(第2調整部)の加減調整を行うことができる。
Thereafter, the operation of the capacity operation unit 66 is stopped and the capacity of the variable capacity unit 57 is fixed, the selection state of the selector 64 is switched to return to the original standard state, and the switching control unit 55 is connected via the third connection terminal 53. The alarm R and the descending SR are input, and the normal state corresponding to the alarm R is returned.
Thus, in the end point crossing controller 60, the adjustment of the variable capacitor 57 for adjusting the level of the oscillation signal for verification transmitted through the branch lines aa and bb is automatically performed.
Moreover, as long as the adjustment of the adjuster 25a (first adjustment unit) has been completed, the variable capacitance unit 57 can be used without using the simulator and without removing the rail 43 in the railroad crossing equipment box from the third connection terminal 53. The adjustment of (second adjustment unit) can be performed.

本発明の終止点用踏切制御子の実施例3について、その具体的な構成を、図面を引用して説明する。図4は、(a)が終止点用踏切制御子70の回路図、(b)が調整治具80を用いて終止点用踏切制御子70を調整している状況を示す図である。   A specific configuration of the end point crossing controller according to the third embodiment of the present invention will be described with reference to the drawings. 4A is a circuit diagram of the end point crossing controller 70, and FIG. 4B is a diagram illustrating a situation where the end point crossing controller 70 is adjusted using the adjustment jig 80.

この終止点用踏切制御子70が上述した実施例1の終止点用踏切制御子50と相違するのは、可変容量部71(第1調整部)と係合部74と係合部75とが追加されている点である。また、終止点用踏切制御子70が上述した実施例2の終止点用踏切制御子60と相違するのは、可変容量部57(第2調整部)での調整を自動化する手段61〜66が削除されている点と、その代わりに可変容量部71(第1調整部)と係合部74と係合部75とが追加されている点である。さらに、筐体外面のうち係合部74,75の取り付けられている部位が蓋76で覆われている点と、調整時には、調整治具80が一時的に装着されて、調整治具80の制御下で自動調整が行われるようになった点でも、この終止点用踏切制御子70は終止点用踏切制御子50とも終止点用踏切制御子60とも相違している。   The end point crossing controller 70 differs from the end point crossing controller 50 of the first embodiment described above in that the variable capacity portion 71 (first adjusting portion), the engaging portion 74, and the engaging portion 75 are different. It is a point that has been added. Further, the end point crossing controller 70 is different from the end point crossing controller 60 of the second embodiment described above in that means 61 to 66 for automating adjustment at the variable capacity unit 57 (second adjusting unit). The point which is deleted, and the variable capacity part 71 (1st adjustment part), the engaging part 74, and the engaging part 75 are added instead. Furthermore, the part where the engaging portions 74 and 75 are attached on the outer surface of the housing is covered with the lid 76, and the adjustment jig 80 is temporarily attached at the time of adjustment. The end point crossing controller 70 is different from the end point crossing controller 50 and the end point crossing controller 60 in that automatic adjustment is performed under control.

先ず、終止点用踏切制御子70の新規な部分を説明すると、可変容量部71は、上述した可変容量部57と同じく筐体に内蔵されているが、介挿先が分岐配線aa,bbでなく制御子内配線AA,BBになっており、特に制御子内配線AA,BBのうち分岐配線aa,bbの分岐点と第1接続端子51との間の部分に介挿されている。この例では可変容量部71が制御子内配線AA,BBのうち制御子内配線AAにだけ接続されている。可変容量部71も、可変容量部57と同様、制御子内配線AA,BBの接続先の第1接続線A1,B1のインダクタンスの増減の影響を相殺することができれば、単一のバリアブルコンデンサでも良く、複数のコンデンサを組み合わせた回路からなるものでも良い。   First, a novel part of the end point crossing controller 70 will be described. The variable capacity unit 71 is built in the housing in the same manner as the variable capacity unit 57 described above, but the insertion destinations are branch wires aa and bb. The control-internal wirings AA and BB are provided, and in particular, the control-internal wirings AA and BB are interposed between the branching points of the branch wirings aa and bb and the first connection terminal 51. In this example, the variable capacitance unit 71 is connected only to the control-internal wiring AA among the control-internal wirings AA and BB. Similarly to the variable capacitor unit 57, the variable capacitor unit 71 may be a single variable capacitor as long as the influence of the increase / decrease in the inductance of the first connection lines A1 and B1 to which the controller wirings AA and BB are connected can be offset. It may be a circuit composed of a plurality of capacitors.

この可変容量部71は、調整器25aと同様に制御子内配線AA,BBにて伝送される照査用発振信号のレベルを加減調整する第1調整部として機能するものであるが、調整器25aは分岐点より上流に位置しているため制御子内配線AA,BBにて伝送される照査用発振信号のレベルだけでなく分岐配線aa,bbにて伝送される照査用発振信号のレベルまでも一緒に加減してしまうので、そのような連立性の無い所である分岐点より下流に設けられていて、制御子内配線AA,BBと第1接続端子51と第1接続線A1,B1にて線路10の接続線取付箇所14まで伝送される照査用発振信号のレベルだけを分岐配線aa,bbの照査用発振信号のレベルから独立して調整しうるものとなっている。   The variable capacitance unit 71 functions as a first adjustment unit that adjusts and adjusts the level of the oscillation signal for verification transmitted through the controller wirings AA and BB in the same manner as the adjustment unit 25a. Is located upstream of the branch point, not only the level of the oscillation signal for verification transmitted through the wirings AA and BB in the controller, but also the level of the oscillation signal for verification transmitted through the branch wirings aa and bb. Since they are added and subtracted together, they are provided downstream from the branch point where there is no such simultaneous property, and are connected to the controller internal wirings AA and BB, the first connection terminal 51, and the first connection lines A1 and B1. Thus, only the level of the oscillation signal for verification transmitted to the connection line attachment point 14 of the line 10 can be adjusted independently from the level of the oscillation signal for verification of the branch wires aa and bb.

係合部74,75は、何れも、例えばボスや六角ボルトのような着脱式の受動部材であり、可変容量部71,57に付設して筐体に内蔵されているが、受動部・被駆動部だけは筐体外面に露出しており、外部から例えばスプライン軸や六角レンチのような着脱式の駆動部材にて例えば回転駆動されると、その運動を内部の可変容量部71,57に伝達する伝道部材でもある。係合部74は駆動に応じて可変容量部71に容量を加減させ、係合部75は駆動に応じて可変容量部57に容量を加減させるようになっている。
蓋76は、係合部74,75の保護用のものであり、開閉式か着脱式になっている。
The engaging parts 74 and 75 are detachable passive members such as bosses and hexagon bolts, for example, and are attached to the variable capacity parts 71 and 57 and incorporated in the housing. Only the drive unit is exposed on the outer surface of the housing. When the drive unit is externally driven, for example, by a removable drive member such as a spline shaft or a hexagon wrench, the movement is transferred to the internal variable capacitance units 71 and 57. It is also a mission member to transmit. The engaging part 74 adjusts the capacity of the variable capacity part 71 according to driving, and the engaging part 75 causes the variable capacity part 57 to adjust the capacity according to driving.
The lid 76 is for protecting the engaging portions 74 and 75, and is openable or detachable.

調整治具80は、可変容量部71(第1調整部)での調整に加えて可変容量部57(第2調整部)での調整も自動化する手段81〜83を別体に纏めた着脱式のものであり、調整時だけ、調整対象の終止点用踏切制御子70から蓋76を外して又は蓋76を開けて、そこに調整治具80を一時装着することで、調整治具として動作し使用されるので、複数・多数の終止点用踏切制御子70に共用しうるものとなっている。上記の自動化手段81〜83として容量操作部81と容量操作部82とマイクロプロセッサ83(MPU)とが設けられており、図示しない位置決めピンで位置合わせ等をしながら調整治具80を終止点用踏切制御子70に仮装着して図示しないフック等で一時的に固定させると、終止点用踏切制御子70と調整治具80とが協動して自動調整を行えるよう、係合や接続が随伴して確立するようになっている。   The adjustment jig 80 is a detachable type in which means 81 to 83 for automating the adjustment in the variable capacitance unit 57 (second adjustment unit) in addition to the adjustment in the variable capacitance unit 71 (first adjustment unit) are separately provided. Only during adjustment, the lid 76 is removed from the end point crossing controller 70 to be adjusted, or the lid 76 is opened, and the adjustment jig 80 is temporarily mounted thereon, thereby operating as an adjustment jig. Therefore, it can be shared by a plurality of / multiple end point crossing controllers 70. As the automation means 81 to 83, a capacity operation unit 81, a capacity operation unit 82, and a microprocessor 83 (MPU) are provided, and the adjustment jig 80 is used for the end point while performing alignment with a positioning pin (not shown). When temporarily attached to the crossing controller 70 and temporarily fixed with a hook (not shown), the end point crossing controller 70 and the adjustment jig 80 are engaged and connected so that automatic adjustment can be performed. It is designed to be established accordingly.

具体的には、小型モータや減速ギヤ等に加えて着脱式の駆動部材を具備した容量操作部82とそれに対応した着脱式の受動部材を具備した係合部75とが係合して、上述した容量操作部66のようにマイクロプロセッサ83の制御に従って可変容量部57を操作することで可変容量部57の容量を増加または減少させることができる状態が整うとともに、やはり小型モータや減速ギヤ等に加えて着脱式の駆動部材を具備した容量操作部81とそれに対応した着脱式の受動部材を具備した係合部74とが係合して、上述の容量操作部66のようにマイクロプロセッサ83の制御に従って可変容量部71を操作することで可変容量部71の容量を増加または減少させることができる状態が整うようになっている。   Specifically, in addition to the small motor, the reduction gear, etc., the capacity operation unit 82 provided with a detachable drive member and the engagement portion 75 provided with a corresponding detachable passive member are engaged, and the above-mentioned. The state in which the capacity of the variable capacity section 57 can be increased or decreased by operating the variable capacity section 57 in accordance with the control of the microprocessor 83 as in the capacity operation section 66 is achieved, and also in a small motor, a reduction gear or the like. In addition, the capacity operation unit 81 provided with a detachable drive member and the corresponding engagement part 74 provided with a detachable passive member corresponding thereto are engaged, so that the microprocessor 83 is similar to the capacity operation unit 66 described above. The state in which the capacity of the variable capacitor 71 can be increased or decreased by operating the variable capacitor 71 according to the control is arranged.

また、それに加えて更に、調整治具80では、調整治具80の内部配線のうちマイクロプロセッサ83の信号入力線になっている配線の露出端部が終止点用踏切制御子70の接続端子58に一時接続されて、リレー駆動部26の終止Rリレーの出力が接続端子58を介してマイクロプロセッサ83に伝達されるとともに、調整治具80の内部配線のうちマイクロプロセッサ83の信号出力線になっている配線の露出端部が終止点用踏切制御子70の第3接続端子53に一時接続されて、マイクロプロセッサ83から送出された模擬信号(警報R及び下りSR相当)が第3接続端子53を介して切替制御部55に伝達される状態が整うようにもなっている。   In addition, in the adjustment jig 80, the exposed end of the wiring that is the signal input line of the microprocessor 83 among the internal wiring of the adjustment jig 80 is the connection terminal 58 of the crossing controller 70 for the end point. And the output of the termination R relay of the relay drive unit 26 is transmitted to the microprocessor 83 via the connection terminal 58 and becomes a signal output line of the microprocessor 83 among the internal wiring of the adjustment jig 80. The exposed end of the connected wiring is temporarily connected to the third connection terminal 53 of the end point crossing controller 70, and a simulation signal (equivalent to alarm R and down SR) sent from the microprocessor 83 is transmitted to the third connection terminal 53. The state transmitted to the switching control unit 55 via is also arranged.

マイクロプロセッサ83(MPU,調整制御手段)は、論理演算とデータ記憶ができれば上述したマイクロプロセッサ65と同様なハードウェアで良いが、ソフトウェアは以下のようになっている。すなわち、調整治具80が終止点用踏切制御子70に対して上述のように一時装着されていることと、上述した車軸模擬部材16が線路10の接続線取付箇所14及び接続線取付箇所15の双方の列車検知長の外側限界位置に仮置きされていることを前提として、マイクロプロセッサ83は、容量操作部81を制御して可変容量部71の容量を加減調整することと、容量操作部82を制御して可変容量部57の容量を加減調整することを行うようになっている。両加減調整は独立しているので先後は問わない。   The microprocessor 83 (MPU, adjustment control means) may be hardware similar to the microprocessor 65 described above as long as it can perform logical operations and data storage, but the software is as follows. That is, the adjustment jig 80 is temporarily attached to the end point crossing controller 70 as described above, and the axle simulation member 16 described above is connected to the connection line attachment point 14 and the connection line attachment point 15 of the track 10. The microprocessor 83 controls the capacity operation unit 81 to adjust the capacity of the variable capacity unit 71 and adjusts the capacity of the variable capacity unit 71. 82 is controlled so as to adjust the capacity of the variable capacity section 57. Since both adjustments are independent, there is no question in the future.

容量操作部81を制御して可変容量部71の容量を加減調整する手順を詳述すると、マイクロプロセッサ83(調整制御手段)は、警報R及び下りSRの模擬信号にて切替制御部55を制御することにより本物の警報R及び下りSR(列車運転方向指示)の如何に拘わらず切替回路部56に第1切替状態をとらせる。これにより、発振有無検出部25から送出された照査用発振信号が制御子内配線AA,BB及び第1接続線A1,B1を介して線路10の接続線取付箇所14に伝送される状態になる。また、マイクロプロセッサ83は容量操作部81を制御して可変容量部71(第1調整部)の容量を一旦は最小か最大の何れかにさせ、その状態が安定するのに十分な時間が経過するのを待つ。   The procedure for controlling the capacity operation unit 81 to adjust the capacity of the variable capacity unit 71 will be described in detail. The microprocessor 83 (adjustment control means) controls the switching control unit 55 with simulated signals of alarm R and down SR. By doing this, the switching circuit unit 56 is made to take the first switching state regardless of whether the real alarm R and the descending SR (train operation direction instruction). As a result, the oscillation signal for verification sent from the oscillation presence / absence detecting unit 25 is transmitted to the connection line attachment point 14 of the line 10 via the controller internal wires AA and BB and the first connection lines A1 and B1. . In addition, the microprocessor 83 controls the capacity operation unit 81 to temporarily set the capacity of the variable capacity unit 71 (first adjustment unit) to either the minimum or maximum, and a sufficient time has elapsed for the state to stabilize. Wait to do.

そして、状態が安定した頃、マイクロプロセッサ83は、容量操作部81を制御して可変容量部71の容量を最小から始めたときには最大へ向けて最大から始めたときには最小へ向けてゆっくり単調に変化させることにより、照査用発振信号のレベルを単調に漸増または漸減させるとともに、そうしながらリレー駆動部26の終止Rリレーの励磁状態を監視し続ける。そして、終止Rリレーの励磁状態が励磁から無励磁へ又は無励磁から励磁へと変化したらその時点で容量操作部81を介して可変容量部71の容量を変化させるのを止め可変容量部71の容量を固定させる。そのような制御を可変容量部71の容量の加減調整時に行うようになっているのがマイクロプロセッサ83である。   Then, when the state is stabilized, the microprocessor 83 controls the capacity operation unit 81 so that the capacity of the variable capacity section 71 changes slowly and monotonously toward the maximum when starting from the minimum and toward the minimum when starting from the maximum. By doing so, the level of the oscillation signal for verification is gradually increased or decreased monotonously, while the excitation state of the termination R relay of the relay drive unit 26 is continuously monitored. When the excitation state of the termination R relay changes from excitation to non-excitation or from non-excitation to excitation, the change of the capacity of the variable capacity section 71 is stopped via the capacity operation section 81 at that time. Fix the capacity. It is the microprocessor 83 that performs such control when adjusting the capacity of the variable capacitor 71.

また、繰り返しとなる詳細な説明は割愛するが、マイクロプロセッサ83は、可変容量部57の容量の加減調整も同様に行うものであり、列車運転方向指示の如何に拘わらず切替制御部55を介して切替回路部56に第2切替状態をとらせたうえで、容量操作部82を介して可変容量部57(第2調整部)を作動させて、分岐配線aa,bbを伝送される照査用発振信号のレベルを単調に漸増または漸減させながら発振有無検出部25の終止Rリレーの励磁状態を監視し、その励磁状態が変化したら可変容量部57(第2調整部)の作動を停止させるようになっている。   Although the detailed description which will be repeated is omitted, the microprocessor 83 performs the adjustment of the capacity of the variable capacity unit 57 in the same manner, and the switching control unit 55 is used regardless of the train operation direction instruction. The switching circuit unit 56 is set to the second switching state, and then the variable capacitance unit 57 (second adjustment unit) is operated via the capacitance operation unit 82 to transmit the branch lines aa and bb. The excitation state of the termination R relay of the oscillation presence / absence detection unit 25 is monitored while the level of the oscillation signal is gradually increased or decreased monotonously, and the operation of the variable capacitor unit 57 (second adjustment unit) is stopped when the excitation state changes. It has become.

この場合、終止点用踏切制御子70は、調整治具80が装着されない常態では、係合部74も、係合部75も、蓋76で覆われて、外部から不所望に操作されることが無いように保護されていることから、可変容量部71と可変容量部57の容量が固定されるので、上述した終止点用踏切制御子50,60の常態時と同様に動作し使用される。また、常態になる前に、切替回路部56の切替状態を第1切替状態と第2切替状態に切り替えながら各状態で照査用発振信号のレベルの調整が行われることも、終止点用踏切制御子50,60と同様であるが、何れの調整も調整治具80を用いて自動で行われることが異なる。   In this case, in the normal state where the adjustment jig 80 is not mounted, the end point crossing controller 70 is undesirably operated from the outside because both the engaging portion 74 and the engaging portion 75 are covered with the lid 76. Since the capacities of the variable capacity section 71 and the variable capacity section 57 are fixed, they are operated and used in the same manner as in the normal state of the end point crossing controllers 50 and 60 described above. . Further, before the normal state, the level of the oscillation signal for verification is adjusted in each state while switching the switching state of the switching circuit unit 56 between the first switching state and the second switching state. The adjustment is the same as that of the children 50 and 60 except that any adjustment is automatically performed using the adjustment jig 80.

すなわち、終止点用踏切制御子70では、可変容量部57(第2調整部)だけでなく可変容量部71(第1調整部)も自動調整されるうえ、その順番は何れが先であっても良い。また、第1調整部として可変容量部71が設けられたことから、やはり第1調整部として機能する調整器25aは、必須でなくなっているので、製造時に設計値に設定しておく等のことで足り、現場設置時には調整していけない訳ではないが調整するまでもないものとなっている。さらに、調整前には、上述した調整前準備と同じように二つの車軸模擬部材16が線路10の上に仮置きされ、線路10における第1接続線A1,B1の接続線取付箇所14の両側に位置する上り終止点DDCの列車検知長の両端のうち起点側の端に設定したい所と、線路10における第2接続線A2,B2の接続線取付箇所15の両側に位置する下り終止点BDCの列車検知長の両端のうち終点側の端に設定したい所で、レール11,12が約0.5Ωの車軸模擬部材16によって短絡される。   That is, in the end point crossing controller 70, not only the variable capacity section 57 (second adjustment section) but also the variable capacity section 71 (first adjustment section) is automatically adjusted, and the order of which is first. Also good. In addition, since the variable capacitance unit 71 is provided as the first adjustment unit, the adjuster 25a that also functions as the first adjustment unit is no longer indispensable. However, it is not necessary to adjust at the time of on-site installation, but it is not necessary to adjust. Further, before the adjustment, the two axle simulation members 16 are temporarily placed on the track 10 in the same manner as the preparation before the adjustment described above, and both sides of the connection line attachment portions 14 of the first connection lines A1 and B1 on the track 10 are placed. Between the two ends of the train detection length of the upstream end point DDC located at the start point side and the downstream end points BDC located on both sides of the connection line attachment points 15 of the second connection lines A2 and B2 on the track 10. The rails 11 and 12 are short-circuited by an axle simulation member 16 having a resistance of about 0.5Ω at a point desired to be set at the end of the train detection length.

そのような準備が済むとともに、蓋76に代えて調整治具80が終止点用踏切制御子70に一時装着されると、切替制御部55ひいては切替回路部56の状態切替がマイクロプロセッサ83の制御下に入るとともに、可変容量部71と可変容量部57も容量操作部81,82や係合部74,75を介してマイクロプロセッサ83の制御下に入り、後はマイクロプロセッサ83の制御に従って自動で照査用発振信号のレベルが調整される。
その調整時には、マイクロプロセッサ83の制御によって切替回路部56が第1,第2切替状態の何れかに切り替えられるが、ここでは第1切替状態が先行するとする。
When such a preparation is completed and the adjustment jig 80 is temporarily attached to the end point crossing controller 70 instead of the lid 76, the switching of the switching control unit 55 and thus the switching circuit unit 56 is controlled by the microprocessor 83. The variable capacity section 71 and the variable capacity section 57 are also under the control of the microprocessor 83 via the capacity operation sections 81 and 82 and the engaging sections 74 and 75, and thereafter automatically according to the control of the microprocessor 83. The level of the oscillation signal for verification is adjusted.
At the time of the adjustment, the switching circuit unit 56 is switched to one of the first and second switching states under the control of the microprocessor 83, but here the first switching state is assumed to precede.

切替回路部56が第1切替状態になると、後は制御主体の明記を省くがやはりマイクロプロセッサ83の制御によって、可変容量部71の容量が最小か最大の何れかになるが、ここでは最小になるとする。それから、一旦は最小になった可変容量部71の容量が、後戻りすることなく、最大へ向けてゆっくり増加するが、終止Rリレーの励磁状態が変化すると、その時点で可変容量部71の容量が固定される。こうして、発振有無検出部25から送出されて制御子内配線AA,BB及び第1接続線A1,B1を介して線路10の接続線取付箇所14に伝送される照査用発振信号のレベルが自動調整されて、上り終止点DDCの列車検知長が適正な長さに設定される。   When the switching circuit unit 56 is in the first switching state, the control subject is not specified later, but the capacity of the variable capacitor unit 71 is either minimum or maximum under the control of the microprocessor 83. Suppose. Then, once the capacity of the variable capacity unit 71 that has become the minimum gradually increases toward the maximum without going back, but when the excitation state of the termination R relay changes, the capacity of the variable capacity unit 71 at that point in time increases. Fixed. In this way, the level of the oscillation signal for verification transmitted from the oscillation presence / absence detecting unit 25 and transmitted to the connection line attachment point 14 of the line 10 via the controller internal wires AA and BB and the first connection lines A1 and B1 is automatically adjusted. Thus, the train detection length of the ascending end point DDC is set to an appropriate length.

次に、切替回路部56が第2切替状態に切り替わり、今度は可変容量部57の容量が最小か最大の何れかになるが、ここでも最小になるとする。それから、やはり、一旦は最小になった可変容量部57の容量が、後戻りすることなく、最大へ向けてゆっくり増加するが、終止Rリレーの励磁状態が変化すると、その時点で可変容量部57の容量が固定される。こうして、発振有無検出部25から送出されて制御子内配線AA,BBの一部と分岐配線aa,bbと第2接続線A2,B2とを介して線路10の接続線取付箇所15に伝送される照査用発振信号のレベルが自動調整されて、下り終止点BDCの列車検知長が適正な長さに設定される。   Next, the switching circuit unit 56 is switched to the second switching state, and this time, the capacity of the variable capacitor unit 57 is either minimum or maximum, but it is also assumed that it is minimum here. Then, the capacity of the variable capacity unit 57 once minimized is slowly increased toward the maximum without returning, but when the excitation state of the termination R relay changes, the capacity of the variable capacity unit 57 is changed at that time. The capacity is fixed. Thus, the signal is transmitted from the oscillation presence / absence detection unit 25 and transmitted to the connection line attachment point 15 of the line 10 via a part of the controller internal wirings AA and BB, the branch wirings aa and bb, and the second connection lines A2 and B2. The level of the oscillation signal for checking is automatically adjusted, and the train detection length of the descending end point BDC is set to an appropriate length.

これで、上り終止点DDCの列車検知長に不所望な変動を招く第1接続線A1,B1の長さ等の影響を解消するために可変容量部71(第1調整部)で行われる照査用発振信号レベルの加減調整と、下り終止点BDCの列車検知長に不所望な変動を招く第2接続線A2,B2の長さ等の影響を解消するために可変容量部57(第2調整部)で行われる照査用発振信号レベルの加減調整が、何れも完了するので、後は、調整治具80が終止点用踏切制御子70から外され、終止点用踏切制御子70の蓋76が閉められる。
こうして、終止点用踏切制御子70は、迅速かつ的確に調整が済み、常態での使用に適うものとなる。
In this way, in order to eliminate the influence of the lengths of the first connection lines A1 and B1 that cause undesired fluctuations in the train detection length of the ascending end point DDC, the verification performed in the variable capacity unit 71 (first adjustment unit) In order to eliminate the influence of the adjustment of the oscillation signal level and the length of the second connection lines A2 and B2 causing undesired fluctuations in the train detection length of the descending end point BDC, the variable capacitor 57 (second adjustment) The adjustment jig 80 is removed from the end point crossing controller 70 and the lid 76 of the end point crossing controller 70 is subsequently adjusted. Is closed.
Thus, the end point crossing controller 70 is adjusted quickly and accurately, and is suitable for normal use.

本発明の終止点用踏切制御子の実施例4について、その具体的な構成を、図面を引用して説明する。図5は、(a)が終止点用踏切制御子90の回路図、(b)が調整治具100を用いて終止点用踏切制御子90を調整している状況を示す図である。   A specific configuration of the end point crossing controller according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5A is a circuit diagram of the end point crossing controller 90, and FIG. 5B is a diagram illustrating a situation where the end point crossing controller 90 is adjusted using the adjustment jig 100.

この終止点用踏切制御子90が上述した実施例3の終止点用踏切制御子70と相違するのは、筐体の内外を貫く接続端子91,92が蓋76のカバー範囲内に設けられている点と、制御子内配線AA,BBのうち分岐配線aa,bbの分岐点と発振有無検出部25との間に属する配線部分から分岐した制御子内配線が接続端子91,92に接続されている点と、可変容量部71,57の容量調整が調整治具80でなく調整治具80を改造した調整治具100で行われるようになっている点である。
また、調整治具100が上述した調整治具80と相違するのは、上述したレベル検出回路63が追加されている点と、マイクロプロセッサ83に代わるマイクロプロセッサ101がレベル検出回路63のレベル検出値を入力するように改造されている点である。
This end point crossing controller 90 is different from the end point crossing controller 70 of the third embodiment described above in that connection terminals 91 and 92 penetrating the inside and outside of the housing are provided within the cover range of the lid 76. And the controller internal wiring branched from the wiring portion belonging to the point between the branching points of the branch wirings aa and bb and the oscillation presence / absence detecting unit 25 among the control internal wirings AA and BB are connected to the connection terminals 91 and 92. In addition, the capacity adjustment of the variable capacity portions 71 and 57 is performed not by the adjustment jig 80 but by the adjustment jig 100 obtained by modifying the adjustment jig 80.
The adjustment jig 100 is different from the adjustment jig 80 described above in that the level detection circuit 63 described above is added and the level detection value of the level detection circuit 63 is determined by the microprocessor 101 in place of the microprocessor 83. It is a point that is remodeled to input.

レベル検出回路63は、調整治具100が終止点用踏切制御子90に一時装着されると、接続端子91,92を介して制御子内配線AA,BBから照査用発振信号を入力してそのレベル検出値をマイクロプロセッサ101に送出するようになっている。
マイクロプロセッサ101は、マイクロプロセッサ83と同じ遣り方で先に可変容量部71の容量調整を実行し、その後、マイクロプロセッサ65と同じ遣り方で可変容量部57の容量調整を実行するようになっている。なお、マイクロプロセッサ83,65相当の遣り方の先後が維持されていれば、可変容量部57,71は独立して調整できるので、可変容量部57と可変容量部71の調整順序を入れ替えても良い。
When the adjustment jig 100 is temporarily attached to the end point crossing controller 90, the level detection circuit 63 receives the oscillation signal for verification from the control element wirings AA and BB via the connection terminals 91 and 92, and The level detection value is sent to the microprocessor 101.
The microprocessor 101 first performs the capacity adjustment of the variable capacity unit 71 in the same manner as the microprocessor 83, and then performs the capacity adjustment of the variable capacity unit 57 in the same way as the microprocessor 65. Yes. Note that the variable capacitance units 57 and 71 can be adjusted independently as long as the way of operation corresponding to the microprocessors 83 and 65 is maintained. Therefore, even if the adjustment order of the variable capacitance units 57 and 71 is changed. good.

これにより、調整制御手段としてのマイクロプロセッサ101は、可変容量部71(第1調整部)および可変容量部57(第2調整部)のうち何れか一方71についてリレー駆動部26の終止Rリレーの励磁状態の変化に基づく調整が済んだらレベル検出回路63の検出値を取得し、それを調整済みレベル値として記憶保持しておき、それから列車運転方向指示の如何に拘わらず切替回路部56に第1切替状態および第2切替状態のうちリレー駆動部26の終止Rリレーの励磁状態の変化に基づく調整のときの切替状態(第1切替状態)と異なる切替状態(第2切替状態)をとらせたうえでレベル検出回路63の検出値が一時記憶の調整済みレベル値に一致するように可変容量部71(第1調整部)および可変容量部57(第2調整部)のうち何れか他方57を作動させるものとなっている。   As a result, the microprocessor 101 as the adjustment control means allows the end of the R relay of the relay drive unit 26 for either one of the variable capacity unit 71 (first adjustment unit) and the variable capacity unit 57 (second adjustment unit). When the adjustment based on the change of the excitation state is completed, the detection value of the level detection circuit 63 is acquired and stored as the adjusted level value, and then the switching circuit unit 56 stores the adjustment value regardless of the train operation direction instruction. Of the first switching state and the second switching state, a switching state (second switching state) different from the switching state (first switching state) at the time of adjustment based on a change in the excitation state of the termination R relay of the relay drive unit 26 is taken. In addition, the variable capacitance unit 71 (first adjustment unit) and the variable capacitance unit 57 (second adjustment unit) are arranged so that the detection value of the level detection circuit 63 matches the adjusted level value temporarily stored. It has assumed to operate the other one 57.

この場合、繰り返しとなる詳細な説明は割愛するが、線路10における接続線取付箇所14の所の上り終止点DDCの列車検知長を適正値に設定するために行う可変容量部71(第1調整部)の容量の加減調整は、実施例3の終止点用踏切制御子70と調整治具80との協動について上述したのと同様にして自動実行される。また、線路10における接続線取付箇所15の所の下り終止点BDCの列車検知長を適正値に設定するために行う可変容量部57(第2調整部)の容量の加減調整は、実施例2の終止点用踏切制御子60の動作について上述したのと同様にしてやはり自動実行される。そのため、終止点用踏切制御子90も、迅速かつ的確に調整が済み、速やかに常態での使用に適うものとなる。   In this case, a detailed description that will be repeated is omitted, but the variable capacity unit 71 (first adjustment) is performed to set the train detection length of the upstream end point DDC at the connection line attachment point 14 on the track 10 to an appropriate value. Part) is automatically executed in the same manner as described above for the cooperation of the end point crossing controller 70 and the adjustment jig 80 of the third embodiment. Further, the adjustment of the capacity of the variable capacity unit 57 (second adjustment unit) performed to set the train detection length of the descending end point BDC at the connection line attachment point 15 in the track 10 to an appropriate value is described in the second embodiment. The end point crossing controller 60 is automatically executed in the same manner as described above. Therefore, the end point crossing controller 90 is also adjusted quickly and accurately, and can be quickly used in a normal state.

[その他]
上記実施例では、可変容量部57(第2調整部)や可変容量部71(第1調整部)が機械的操作によって加減調整されるようになっていたが、第1,第2調整部は、オペアンプ等を用いて照査用発振信号を増幅か減衰する電子回路・電気回路で具体化しても良く、その場合、増幅率等の調整結果値が不揮発性メモリ等に記憶保持されることになるので、容量操作部66,81,82がメモリアクセスの電子回路・電気回路で具体化される。
[Others]
In the above embodiment, the variable capacitance unit 57 (second adjustment unit) and the variable capacitance unit 71 (first adjustment unit) are adjusted by a mechanical operation. However, the first and second adjustment units are An electronic circuit / electric circuit that amplifies or attenuates the oscillation signal for verification using an operational amplifier or the like may be used. In such a case, an adjustment result value such as an amplification factor is stored and held in a nonvolatile memory or the like. Therefore, the capacity operation units 66, 81, and 82 are embodied by electronic circuits / electric circuits for memory access.

上記実施例では、下り終止点BDCには終止点用踏切制御子が接続されておらず、上り終止点DDCが共用終止点とされて、そこの接続線取付箇所14に第1接続線A1,B1を介して終止点用踏切制御子24が接続されている踏切保安装置を更新して踏切保安装置40に改良する場合を詳述したが、上り終止点DDCには終止点用踏切制御子が接続されておらず、下り終止点BDCが共用終止点とされて、そこの接続線取付箇所15に接続線A2,B2を介して終止点用踏切制御子が接続されている踏切保安装置を更新して改良する場合も、接続線取付箇所14,15を入れ替えれば、ほぼ同様に行うことができる。   In the above-described embodiment, the end point crossing controller is not connected to the descending end point BDC, and the ascending end point DDC is used as a common end point, and the first connecting line A1, the connecting line attaching point 14 there. The case where the crossing safety device connected to the end point crossing controller 24 via B1 is updated and improved to the crossing safety device 40 has been described in detail. However, the end point crossing controller is provided at the end point DDC. A railroad crossing safety device is updated in which the railroad end point BDC is not connected, and the crossing point controller for the end point is connected to the connection line attachment point 15 via the connection lines A2 and B2 Even in the case of improvement, if the connecting wire attachment points 14 and 15 are exchanged, it can be performed in substantially the same manner.

上記実施例では、可変容量部57が、配線aa側にだけ設けられて、配線bb側には設けられていなかったが、可変容量部57は、配線aa側でなく配線bb側にだけ設けられていても良く、配線aa側と配線bb側との双方に設けられていても良い。コモンモードの雷サージに対する耐力を高めるためには、分岐配線aa,bbの両方に同じ容量のコンデンサーを介挿し回線を平衡させるのがベターである。
可変容量部71も、同様であり、上記実施例では、可変容量部71が、配線AA側にだけ設けられて、配線BB側には設けられていなかったが、可変容量部71は、配線AA側でなく配線BB側にだけ設けられていても良く、配線AA側と配線BB側との双方に設けられていても良い。
In the above embodiment, the variable capacitance unit 57 is provided only on the wiring aa side and not on the wiring bb side. However, the variable capacitance unit 57 is provided only on the wiring bb side, not on the wiring aa side. It may be provided on both the wiring aa side and the wiring bb side. In order to increase the resistance to common mode lightning surges, it is better to equilibrate the line by inserting capacitors of the same capacity in both branch lines aa and bb.
The variable capacitance unit 71 is the same. In the above embodiment, the variable capacitance unit 71 is provided only on the wiring AA side and is not provided on the wiring BB side. It may be provided only on the wiring BB side, not on the side, or may be provided on both the wiring AA side and the wiring BB side.

上記実施例では、第1接続線A1,B1や第2接続線A2,B2を終止点用踏切制御子50の筐体の接続端子51や接続端子52に接続するに際して、第1接続線A1,B1や第2接続線A2,B2を配線端子盤28の端子に一旦接続しておき、その配線端子盤28から終止点用踏切制御子50までは踏切器具箱内配線27,42で延長するようになっていたが、踏切器具箱内への収納は必須でないので、また踏切器具箱内に収納する場合でも配線端子盤28の使用は必須でないので、第1接続線A1,B1や第2接続線A2,B2は接続端子51や接続端子52に直接接続しても良い。   In the above embodiment, when connecting the first connection line A1, B1 or the second connection line A2, B2 to the connection terminal 51 or the connection terminal 52 of the housing of the end point crossing controller 50, the first connection line A1, B1 and the second connection lines A2 and B2 are once connected to the terminals of the wiring terminal board 28, and from the wiring terminal board 28 to the end point crossing controller 50 are extended by the rails 27 and 42 in the railroad crossing equipment box. However, since it is not indispensable to store in the railroad crossing equipment box, and it is not indispensable to use the wiring terminal board 28 even when it is stored in the railroad crossing equipment box, the first connection lines A1, B1 and the second connection are used. The lines A2 and B2 may be directly connected to the connection terminal 51 or the connection terminal 52.

上記実施例では、踏切制御装置31の列車運転方向指示を終止点用踏切制御子50,60,70,90に取り込む際に下りSRリレーの接点出力を取り込むようになっていたが、踏切制御装置31の列車運転方向指示の終止点用踏切制御子50等への取り込みは、上りSRリレーの接点出力を取り込むことで行うようにしても良い。
上記実施例では、踏切8が第1種でそこに踏切遮断機33が設置されていたが、本発明の実施に踏切遮断機33は必須でないので、踏切8が第3種の場合は踏切遮断機33を省いても良い。
In the above embodiment, when the train operation direction instruction of the level crossing control device 31 is taken into the end point crossing controllers 50, 60, 70, 90, the contact output of the descending SR relay is taken. The train operation direction instruction 31 may be taken into the end point crossing controller 50 or the like by taking in the contact output of the up SR relay.
In the above embodiment, the level crossing 8 is the first type and the level crossing breaker 33 is installed there. However, since the level crossing breaker 33 is not essential for the implementation of the present invention, the level crossing is cut off when the level crossing 8 is the third type. The machine 33 may be omitted.

8…踏切、10…線路、11,12…レール、
14,15…接続線取付箇所、16…車軸模擬部材、
21…始動点用踏切制御子(閉電路形踏切制御子)、
22…終止点用踏切制御子(開電路形踏切制御子)、
23…始動点用踏切制御子(閉電路形踏切制御子)、
24…終止点用踏切制御子(開電路形踏切制御子)、
25…発振有無検出部(電路開閉検出部)、25a…調整器(第1調整部)、
26…リレー駆動部、27…踏切器具箱内配線、28…配線端子盤、
31…踏切制御装置(列車方向判別手段)、32…警報灯、33…踏切遮断機、
40…踏切保安装置、
42…踏切器具箱内配線、43…踏切器具箱内配線(第3接続線)、
50…終止点用踏切制御子(接続線切替機能付き開電路形踏切制御子)、
51…第1接続端子、52…第2接続端子、53…第3接続端子、
55…切替制御部、56…切替回路部、
57…可変容量部(第2調整部)、58…接続端子、
60…終止点用踏切制御子(接続線切替機能付き開電路形踏切制御子)、
61…小孔、62…スイッチ(SW)、63…レベル検出回路、
64…セレクタ、65…マイクロプロセッサ(MPU)、66…容量操作部、
70…終止点用踏切制御子(接続線切替機能付き開電路形踏切制御子)、
71…可変容量部(第1調整部)、74,75…係合部、76…蓋、
80…調整治具、81,82…容量操作部、83…マイクロプロセッサ(MPU)、
90…終止点用踏切制御子(接続線切替機能付き開電路形踏切制御子)、
91,92…接続端子、100…調整治具、101…マイクロプロセッサ(MPU)、
AA,BB…制御子内配線、aa,bb…分岐配線、
A1,B1…接続線(第1接続線)、A2,B2…接続線(第2接続線)、
ADC…下り始動点、BDC…下り終止点、CDC…上り始動点、DDC…上り終止点
8 ... Railroad crossing, 10 ... Track, 11, 12 ... Rail,
14, 15 ... connection line attachment location, 16 ... axle simulation member,
21 ... Starting point level crossing controller (closed circuit type level crossing controller),
22 ... Ending point crossing controller (open circuit type crossing controller),
23 ... Starting point crossing controller (closed-circuit type crossing controller),
24 ... Ending point crossing controller (open circuit type crossing controller),
25 ... Oscillation presence / absence detection unit (electric circuit open / close detection unit), 25a ... Adjuster (first adjustment unit),
26 ... relay drive unit, 27 ... wiring in the railroad crossing equipment box, 28 ... wiring terminal board,
31 ... Railroad crossing control device (train direction discriminating means), 32 ... Warning light, 33 ... Railroad crossing breaker,
40 ... Railroad crossing security device,
42 ... Wiring in the crossing device box, 43 ... Wiring in the crossing device box (third connection line),
50 ... Crossing controller for end point (open circuit type railroad crossing controller with connection line switching function),
51 ... 1st connection terminal, 52 ... 2nd connection terminal, 53 ... 3rd connection terminal,
55 ... switching control unit, 56 ... switching circuit unit,
57... Variable capacity part (second adjusting part), 58... Connection terminal,
60 ... Ending point crossing controller (open circuit type crossing controller with connection line switching function),
61 ... Small hole, 62 ... Switch (SW), 63 ... Level detection circuit,
64... Selector, 65... Microprocessor (MPU), 66.
70 ... Ending point crossing controller (open circuit type crossing controller with connection line switching function),
71 ... Variable capacity part (first adjusting part), 74, 75 ... Engagement part, 76 ... Cover,
80: adjustment jig, 81, 82: capacity operation unit, 83: microprocessor (MPU),
90 ... Ending crossing controller for end point (open circuit type crossing controller with connection line switching function),
91, 92 ... connecting terminals, 100 ... adjusting jig, 101 ... microprocessor (MPU),
AA, BB ... Wiring in controller, aa, bb ... Branch wiring,
A1, B1 ... connection line (first connection line), A2, B2 ... connection line (second connection line),
ADC ... Downlink start point, BDC ... Downlink end point, CDC ... Uplink start point, DDC ... Upstream end point

Claims (8)

鉄道の単線区間の線路に設けられた踏切の両側のうち何れか一方で前記線路に第1接続線を介して外部接続するための第1接続端子と、前記第1接続端子に接続された制御子内配線を介して照査用発振信号の送出を試行して前記照査用発振信号の一巡伝送の状態を検出する発振有無検出部と、前記照査用発振信号の一巡伝送の検出の有無に応じて選択的に出力リレーを励磁するリレー駆動部とを備えた開電路形の終止点用踏切制御子において、前記踏切の両側のうち何れか他方で前記線路に第2接続線を介して外部接続するための第2接続端子と、前記線路を走行して前記踏切に接近して来た列車の上り下りを判別する列車方向判別手段から送出された列車運転方向指示を伝える第3接続線を外部接続するための第3接続端子と、前記制御子内配線から分岐して前記第2接続端子に接続された分岐配線および前記制御子内配線に割り込む形で介挿接続されていて第1切替状態では前記照査用発振信号の送出先を前記第1接続端子に切り替えるが第2切替状態では前記照査用発振信号の送出先を前記第2接続端子に切り替える切替回路部と、前記列車運転方向指示に応じて前記切替回路部に前記第1切替状態と前記第2切替状態とのうち何れか一方の切替状態をとらせる切替制御部とを設けたことを特徴とする終止点用踏切制御子。   A first connection terminal for externally connecting to either of the railroad crossings provided on the railway line of the single track section of the railway via the first connection line, and a control connected to the first connection terminal An oscillation presence / absence detecting unit that attempts to send the oscillation signal for verification through an internal wiring and detects the state of one-round transmission of the oscillation signal for verification, and depending on whether or not the circular transmission of the verification oscillation signal is detected In an open circuit type railroad crossing controller having a relay drive unit that selectively excites an output relay, either one of the two sides of the railroad crossing is externally connected to the line via a second connection line And a third connection line for transmitting a train operation direction instruction sent from a train direction discriminating means for discriminating whether a train that has traveled on the track and has approached the railroad crossing is connected externally. A third connection terminal and the controller Branched from the wiring and connected to the branch wiring connected to the second connection terminal and the wiring inside the controller, and in the first switching state, the destination of the oscillation signal for verification is connected to the first connection. In the second switching state, the switching circuit unit switches the destination of the oscillation signal for verification to the second connection terminal, and the switching circuit unit in response to the train operation direction instruction, the first switching state and the switching A railroad crossing controller for an end point, characterized in that a switching control unit is provided for taking any one of the second switching states. 前記発振有無検出部または前記制御子内配線に配設されていて前記制御子内配線にて伝送される前記照査用発振信号のレベルを加減調整する第1調整部と、前記分岐配線に配設されていて前記分岐配線にて伝送される前記照査用発振信号のレベルを加減調整する第2調整部とを備えたことを特徴とする請求項1記載の終止点用踏切制御子。   A first adjustment unit that is arranged in the oscillation presence / absence detection unit or the control-internal wiring and adjusts the level of the oscillation signal for verification transmitted through the control-internal wiring, and is arranged in the branch wiring The end point crossing controller according to claim 1, further comprising a second adjustment unit that adjusts and adjusts the level of the oscillation signal for verification transmitted through the branch wiring. 前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路と、前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態をとらせたうえで前記レベル検出回路の検出値を取得しそれを調整済みレベル値として記憶保持しておきそれから前記切替回路部に前記第2切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第2調整部を作動させる調整制御手段とを備えたことを特徴とする請求項2記載の終止点用踏切制御子。   A level detection circuit for detecting the level of the oscillation signal for verification output from the oscillation presence / absence detection unit, and the switching circuit unit taking the first switching state regardless of the train operation direction instruction. The detection value of the level detection circuit is acquired, stored and held as an adjusted level value, and then the detection value of the level detection circuit is adjusted after the switching circuit unit is set to the second switching state. The end point crossing controller according to claim 2, further comprising adjustment control means for operating the second adjustment unit so as to coincide with a level value. 前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態をとらせたうえで前記第1調整部を作動させて前記照査用発振信号のレベルを単調に漸増または漸減させながら前記リレー駆動部の励磁状態を監視しその励磁状態が変化したら前記第1調整部の作動を停止させる調整制御手段を備えたことを特徴とする請求項2記載の終止点用踏切制御子。   Regardless of the train operation direction instruction, the switching circuit unit is set to the first switching state, and then the first adjustment unit is operated to gradually increase or decrease the level of the oscillation signal for verification monotonously. The end point crossing controller according to claim 2, further comprising adjustment control means for monitoring an excitation state of the relay drive unit and stopping the operation of the first adjustment unit when the excitation state changes. 前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第2切替状態をとらせたうえで前記第2調整部を作動させて前記照査用発振信号のレベルを単調に漸増または漸減させながら前記リレー駆動部の励磁状態を監視しその励磁状態が変化したら前記第2調整部の作動を停止させる調整制御手段を備えたことを特徴とする請求項2記載の終止点用踏切制御子。   Regardless of the train operation direction instruction, the switching circuit unit is set to the second switching state and then the second adjustment unit is operated to gradually increase or decrease the level of the oscillation signal for verification monotonously. The end point crossing controller according to claim 2, further comprising adjustment control means for monitoring an excitation state of the relay drive unit and stopping the operation of the second adjustment unit when the excitation state changes. 前記発振有無検出部から出力された前記照査用発振信号のレベルを検出するレベル検出回路を備え、前記調整制御手段が、前記第1調整部および前記第2調整部のうち何れか一方について前記リレー駆動部の励磁状態の変化に基づく調整が済んだら前記レベル検出回路の検出値を取得し、それを調整済みレベル値として記憶保持しておき、それから前記列車運転方向指示の如何に拘わらず前記切替回路部に前記第1切替状態および前記第2切替状態のうち前記リレー駆動部の励磁状態の変化に基づく調整のときの切替状態と異なる切替状態をとらせたうえで前記レベル検出回路の検出値が前記調整済みレベル値に一致するように前記第1調整部および前記第2調整部のうち何れか他方を作動させるようになっていることを特徴とする請求項4又は請求項5に記載された終止点用踏切制御子。   A level detection circuit for detecting a level of the oscillation signal for verification output from the oscillation presence / absence detection unit, wherein the adjustment control unit is configured to relay the relay with respect to one of the first adjustment unit and the second adjustment unit; When the adjustment based on the change in the excitation state of the drive unit is completed, the detection value of the level detection circuit is acquired and stored as an adjusted level value, and then the switching is performed regardless of the train operation direction instruction. The detection value of the level detection circuit after causing the circuit unit to take a switching state different from the switching state at the time of adjustment based on the change of the excitation state of the relay driving unit among the first switching state and the second switching state 5. The other one of the first adjustment unit and the second adjustment unit is operated so that the value coincides with the adjusted level value. Crossing controller element for the end point of claim 5. 前記調整制御手段が又は前記調整制御手段および前記レベル検出回路が、前記発振有無検出部と前記リレー駆動部と前記切替回路部と前記切替制御部とを内蔵している筐体とは別体の調整治具に納められていることを特徴とする請求項3乃至請求項6の何れか一項に記載された終止点用踏切制御子。   The adjustment control means or the adjustment control means and the level detection circuit are separate from the casing in which the oscillation presence / absence detection unit, the relay driving unit, the switching circuit unit, and the switching control unit are incorporated. The end point crossing controller according to any one of claims 3 to 6, wherein the end point crossing controller is housed in an adjustment jig. 請求項4又は請求項5に記載された終止点用踏切制御子の調整方法であって、前記線路における前記第1接続線および前記第2接続線の接続部位が属する列車検知長の端のところで前記線路が列車の車軸で短絡された状態を実際に又は模擬的に現出させてから、前記調整制御手段を作動させることにより、前記第1接続線を経由する照査用発振信号と前記第2接続線を経由する照査用発振信号とのレベルを整合させることを特徴とする終止点用踏切制御子の調整方法。   It is the adjustment method of the crossing controller for the end point according to claim 4 or 5, wherein at the end of the train detection length to which the connection part of the first connection line and the second connection line belongs in the track. The actual oscillation or the simulation of the state where the track is short-circuited at the axle of the train is activated, and then the adjustment control means is actuated so that the oscillation signal for verification via the first connection line and the second A method for adjusting a crossing controller for an end point, characterized by matching a level with an oscillation signal for verification via a connection line.
JP2011218670A 2011-09-30 2011-09-30 End point crossing controller and adjusting method thereof Active JP5766088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218670A JP5766088B2 (en) 2011-09-30 2011-09-30 End point crossing controller and adjusting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218670A JP5766088B2 (en) 2011-09-30 2011-09-30 End point crossing controller and adjusting method thereof

Publications (2)

Publication Number Publication Date
JP2013078963A true JP2013078963A (en) 2013-05-02
JP5766088B2 JP5766088B2 (en) 2015-08-19

Family

ID=48525730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218670A Active JP5766088B2 (en) 2011-09-30 2011-09-30 End point crossing controller and adjusting method thereof

Country Status (1)

Country Link
JP (1) JP5766088B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098848A (en) * 2017-11-30 2019-06-24 三菱電機株式会社 System to control movable platform fence row
CN114348047A (en) * 2022-01-06 2022-04-15 北京全路通信信号研究设计院集团有限公司 Direction switching attenuation redundant controller and contactless track circuit system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572531A (en) * 2020-12-08 2021-03-30 卡斯柯信号有限公司 Full-electronic turnout safety control system and method for vehicle-to-vehicle communication

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878862A (en) * 1981-11-05 1983-05-12 神戸電気鉄道株式会社 Method of controlling railroad crossing between single track territory
JPH0310963A (en) * 1989-06-08 1991-01-18 Nippon Signal Co Ltd:The Open circuit type train detecting method and circuit thereof
JPH04358960A (en) * 1991-06-03 1992-12-11 Nippon Signal Co Ltd:The Track circuit
JP2003341516A (en) * 2002-05-30 2003-12-03 Nippon Signal Co Ltd:The System for supplying signal for train
US20040181321A1 (en) * 2003-02-13 2004-09-16 General Electric Company Digital train system for automatically detecting trains approaching a crossing
JP2013014204A (en) * 2011-07-02 2013-01-24 Daido Signal Co Ltd Level crossing safety device, and method of updating the same, and level crossing control switching device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878862A (en) * 1981-11-05 1983-05-12 神戸電気鉄道株式会社 Method of controlling railroad crossing between single track territory
JPH0310963A (en) * 1989-06-08 1991-01-18 Nippon Signal Co Ltd:The Open circuit type train detecting method and circuit thereof
JPH04358960A (en) * 1991-06-03 1992-12-11 Nippon Signal Co Ltd:The Track circuit
JP2003341516A (en) * 2002-05-30 2003-12-03 Nippon Signal Co Ltd:The System for supplying signal for train
US20040181321A1 (en) * 2003-02-13 2004-09-16 General Electric Company Digital train system for automatically detecting trains approaching a crossing
JP2013014204A (en) * 2011-07-02 2013-01-24 Daido Signal Co Ltd Level crossing safety device, and method of updating the same, and level crossing control switching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019098848A (en) * 2017-11-30 2019-06-24 三菱電機株式会社 System to control movable platform fence row
CN114348047A (en) * 2022-01-06 2022-04-15 北京全路通信信号研究设计院集团有限公司 Direction switching attenuation redundant controller and contactless track circuit system
CN114348047B (en) * 2022-01-06 2023-06-30 北京全路通信信号研究设计院集团有限公司 Direction switching attenuation redundant controller and contactless track circuit system

Also Published As

Publication number Publication date
JP5766088B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US9862395B2 (en) System and method for testing track circuits
KR101208268B1 (en) Virtual omnimover
JP5766088B2 (en) End point crossing controller and adjusting method thereof
JP4896279B1 (en) Train information management apparatus and train information management method
CN102341288A (en) Door control system for railroad vehicle
KR20090018958A (en) Method and device for detecting the occupied or free status of a section of track
KR100669225B1 (en) AF Track Circuit
WO2014059487A1 (en) Supplementary warning system for level crossing activated by train
JP5822563B2 (en) Railroad crossing safety device, updating method thereof, and railroad crossing control switching device
KR100339943B1 (en) Track circuit device in Railway and Subway
JP2007068383A (en) Automatic train stop device
JP5863387B2 (en) Railroad crossing safety device and railroad crossing control switching device
AU2018429145B2 (en) Lamp assembly, lamp system and method for operating a lamp system
JP2011225192A (en) Rail fracture detection device
JP4717421B2 (en) Automatic train operation system, automatic train operation device, and vehicle information control device
JP2008505798A (en) Automatic inspection device for electronic interlocking system and control method thereof
WO2024108622A1 (en) Motor train unit control system
JP2011195120A (en) Radio type crossing warning system
JP5466058B2 (en) Wireless level crossing warning system
JP6032800B2 (en) Railroad crossing safety device and railroad crossing control switching device
DE102004057459A1 (en) Railway crossing safety system
JP5467914B2 (en) Wireless alarm system
KR101274076B1 (en) System and method for interface inspection of onboard signals for electric railway vehicle
KR20180038931A (en) System and method for monitoring breakage railroad under atp level 3
JP2003002207A (en) Railroad crossing control device and railroad crossing control network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5766088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250