JP2013078804A - Dissimilar metal bonding method - Google Patents

Dissimilar metal bonding method Download PDF

Info

Publication number
JP2013078804A
JP2013078804A JP2012277736A JP2012277736A JP2013078804A JP 2013078804 A JP2013078804 A JP 2013078804A JP 2012277736 A JP2012277736 A JP 2012277736A JP 2012277736 A JP2012277736 A JP 2012277736A JP 2013078804 A JP2013078804 A JP 2013078804A
Authority
JP
Japan
Prior art keywords
temperature
intermetallic compound
dissimilar metal
joining
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012277736A
Other languages
Japanese (ja)
Other versions
JP5553250B2 (en
Inventor
Hiroshi Sakurai
寛 桜井
Nariyuki Nakagawa
成幸 中川
Akira Fukushima
晃 福島
Sadao Yanagida
貞雄 柳田
Chika Sugi
千花 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012277736A priority Critical patent/JP5553250B2/en
Publication of JP2013078804A publication Critical patent/JP2013078804A/en
Application granted granted Critical
Publication of JP5553250B2 publication Critical patent/JP5553250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/24Ferrous alloys and titanium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component

Abstract

PROBLEM TO BE SOLVED: To provide a dissimilar metal bonding method, by which a dissimilar metal-bonded member can be efficiently produced which has high joint strength while being provided with an intermetallic compound layer on the bonding interface.SOLUTION: The method includes: carrying out bonding that has rapid heating and rapid cooling following the rapid heating when a dissimilar metal material is bonded by forming a compound layer in which a diffusion layer in a bonded portion partially contains at least one intermetallic compound; and thereafter carrying out heat treatment at temperature at which a main component metal in a low-melting-point-side metallic material eliminates dislocation loops and voids formed by aggregating atomic vacancies of a rapidly cooled composition in the bonded portion and at temperature equal to or lower than 1/2 of the melting point expressed by absolute temperature of the lowest-melting-point intermetallic compound among intermetallic compounds generated.

Description

本発明は、両材料を加熱して接合しようとする場合に、接合界面に両材料の金属間化合物が生成される異種金属材料同士、例えば鋼材とアルミニウム合金材、鋼材とチタン合金材、アルミニウム合金材とチタン合金材などを容易かつ安価、しかも高強度に接合するための接合技術に係わり、高い接合強度を備えた接合部材を得るための異種金属接合方法に関するものである。   In the present invention, when both materials are heated and joined, different metal materials in which an intermetallic compound of both materials is generated at the joining interface, for example, a steel material and an aluminum alloy material, a steel material and a titanium alloy material, an aluminum alloy The present invention relates to a joining technique for joining materials and titanium alloy materials easily, inexpensively, and with high strength, and relates to a dissimilar metal joining method for obtaining a joining member having high joining strength.

上記したような異種金属の接合に関して、例えば非特許文献1には、鋼とアルミニウム材から成る異種金属接合において、接合界面に生成する金属間化合物反応層中に、Si、Oを適正な濃度で存在させることによって、反応層の過剰成長が抑制されて接合強度が増加することができることが示されており、内部酸化を1.5μmに調節した鋼板を用いることによって、板厚1.6mmのアルミニウム合金板(A6022)とを組合せた電気抵抗スポット溶接において、最大で1.4kNの十字引張り強度が得られることが開示されている。   Regarding the joining of dissimilar metals as described above, for example, Non-Patent Document 1 discloses that in the dissimilar metal joining made of steel and aluminum material, Si and O are contained at appropriate concentrations in the intermetallic compound reaction layer generated at the joining interface. It has been shown that the presence of the present invention can suppress the overgrowth of the reaction layer and increase the bonding strength. By using a steel plate whose internal oxidation is adjusted to 1.5 μm, aluminum having a thickness of 1.6 mm is used. It is disclosed that a cross tensile strength of 1.4 kN at the maximum can be obtained in electrical resistance spot welding combined with an alloy plate (A6022).

また、非特許文献2には、板圧1.2mmの980MPa級合金化溶融亜鉛メッキ鋼板材と板厚1.0mmのアルミニウム合金板(A6022)とを組合せてスポット溶接するに際して、2段階の通電を行って、メッキ層の軟化溶融を促すようにすることによって、反応界面層にくさび状の金属間化合物AlFeを生成させ、これによって1.2kNもの高い十字引張り強度が得られることが記載されている。 In Non-Patent Document 2, when spot welding is performed by combining a 980 MPa class galvannealed steel plate material having a plate pressure of 1.2 mm and an aluminum alloy plate (A6022) having a plate thickness of 1.0 mm, two-stage energization is performed. To promote softening and melting of the plated layer, thereby generating a wedge-shaped intermetallic compound Al 3 Fe 2 in the reaction interface layer, which can provide a cross tensile strength as high as 1.2 kN. Have been described.

「溶接学会全国講演概要」、社団法人日本溶接学会、2005年9月、第77集、p.320−321“Overview of National Welding Society”, Japan Welding Society, September 2005, 77th, p. 320-321 「溶接学会全国講演概要」、社団法人日本溶接学会、2006年4月、第78集、p.162−163“Overview of the National Welding Society of Japan”, Japan Welding Society, April 2006, Vol. 78, p. 162-163

しかしながら、上記非特許文献1に記載の方法の場合、接合界面の化合物の構造を制御するためには合金の成分の調整が必要なため、接合条件範囲が狭く、条件的な制限が厳しいという課題があった。
また、非特許文献2に記載の方法では、2枚重ねのスポット接合において2段階の通電を行う必要があり、通電時間が長くなるという問題がある。
However, in the case of the method described in Non-Patent Document 1, it is necessary to adjust the composition of the alloy in order to control the structure of the compound at the bonding interface, so that the bonding condition range is narrow and the conditional restrictions are severe. was there.
Further, the method described in Non-Patent Document 2 has a problem that energization time becomes long because it is necessary to perform energization in two stages in two-layer spot joining.

このように、拡散を伴う従来の異種金属材料の接合においては、接合強度を高くするために化合物層を薄くするには、工業的に不向きな非能率的な接合条件を採用せざるを得ず、効率的な条件を採用すると、粒径の大きな金属間化合物を含む厚い化合物層となって強度が確保できないという相反する課題があった。   In this way, in joining conventional dissimilar metal materials with diffusion, in order to make the compound layer thin in order to increase the joint strength, industrially unsuitable inefficient joining conditions must be adopted. When the efficient conditions are employed, there is a conflicting problem that the strength cannot be ensured by forming a thick compound layer containing an intermetallic compound having a large particle size.

本発明は、拡散現象を伴う従来の異種金属材料接合における上記課題に鑑みてなされたものであって、その目的とするところは、接合界面に金属間化合物層を有しながら、高い接合強度を備えた異種金属接合部材を効率的に製作することができる異種金属接合方法を提供することにある。   The present invention has been made in view of the above-mentioned problems in conventional dissimilar metal material joining accompanied by a diffusion phenomenon. The object of the present invention is to provide high joining strength while having an intermetallic compound layer at the joining interface. An object of the present invention is to provide a dissimilar metal joining method capable of efficiently producing a dissimilar metal joining member provided.

本発明者らは、上記目的の達成に向けて、鋭意検討を重ねた結果、異種金属材料間の接合界面に生成する金属間化合物層の厚さやその大きさをコントロールすることによって、上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies aimed at achieving the above object, the present inventors have controlled the thickness and size of the intermetallic compound layer formed at the joint interface between different metal materials, thereby achieving the above-mentioned problem. The inventors have found that this can be solved, and have completed the present invention.

本発明は上記知見に基づくものであって、本発明の異種金属接合方法においては、急熱過程とこれに続く急冷過程を有する接合、例えば電気抵抗接合によって、異種金属材料の接合部における拡散層の一部に少なくとも1種の金属間化合物を含む化合物層を形成して接合した後、低融点側金属材料の主成分金属が接合部の急冷組織の原子空孔が集合してできた転位ループやボイドを消失させる温度以上、好ましくは低融点側金属材料の主成分金属の絶対温度で表された融点の1/2以上の温度であって、しかも生成する金属間化合物のうちの融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度、好ましくは当該融点の1/2の温度と析出強化相の消失又は再結晶により低融点側金属材料が軟化する温度のうちのいずれか低い方の温度以下の温度範囲で熱処理を行うことを特徴としている。   The present invention is based on the above knowledge, and in the dissimilar metal joining method of the present invention, a diffusion layer in a joint part of dissimilar metal material by a junction having a rapid heating process and a subsequent quenching process, for example, electrical resistance joining. A dislocation loop formed by forming a compound layer containing at least one intermetallic compound in a part of the metal and bonding the atomic vacancies of the quenching structure of the main component metal of the low melting point metal material More than half the melting point expressed by the absolute temperature of the main component metal of the low melting point metal material, and the melting point of the intermetallic compound to be generated is the highest. The temperature of the melting point expressed by the absolute temperature of the low intermetallic compound is ½ or less, preferably the temperature of ½ of the melting point and the temperature at which the low melting point metal material is softened by the disappearance or recrystallization of the precipitation strengthening phase. Any of them It is characterized by performing the heat treatment at a lower temperature below the temperature range.

本発明によれば、急熱過程とこれに続く急冷過程を有する接合、例えば電気抵抗接合によって接合を実施した後、低融点側金属材料の主成分金属が接合部の急冷組織の原子空孔が集合してできた転位ループやボイドを消失させる温度以上、好ましくは低融点側金属材料の主成分金属の絶対温度で表された融点の1/2以上の温度であって、しかも生成する金属間化合物のうちの融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度、好ましくは当該融点の1/2の温度と析出強化相の消失又は再結晶により低融点側金属材料が軟化する温度のうちのいずれか低い方の温度以下の温度範囲で熱処理を行うようにしているので、異種金属接合部材の接合強度を大幅に向上させることができる。   According to the present invention, after performing bonding by a rapid heating process and a subsequent rapid cooling process, for example, by electrical resistance bonding, the main component metal of the low-melting-point-side metal material is the vacancy of the rapid cooling structure of the bonded portion. More than half the melting point expressed by the absolute temperature of the main component metal of the low melting point metal material, and more than the temperature at which the dislocation loops and voids formed by aggregation disappear. The melting point of the intermetallic compound having the lowest melting point of the compound is not more than ½ of the melting point represented by the absolute temperature. Since the heat treatment is performed in a temperature range equal to or lower than the lower one of the temperatures at which the metal material softens, the bonding strength of the dissimilar metal bonding member can be greatly improved.

鋼とアルミニウム合金の接合界面に形成される金属化合物層の厚さと十字引張強度との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the metal compound layer formed in the joining interface of steel and an aluminum alloy, and cross tensile strength. 本発明の異種金属材料の接合に用いられるスポット溶接装置の全体図である。1 is an overall view of a spot welding apparatus used for joining dissimilar metal materials according to the present invention. 本発明において接合強度の評価に用いた十字引張試験片の形状を示す平面図である。It is a top view which shows the shape of the cross tension test piece used for evaluation of joining strength in this invention. 0.5〜3.2μmの厚さの金属間化合物層のナゲット内における面積比と接合強度の関係を示すグラフである。It is a graph which shows the relationship between the area ratio in the nugget of the intermetallic compound layer of thickness of 0.5-3.2 micrometers, and joining strength. 金属間化合物層の結晶粒径の最大値と接合強度の関係を示すグラフである。It is a graph which shows the relationship between the maximum value of the crystal grain diameter of an intermetallic compound layer, and joining strength. 実施例1によって得られた亜鉛めっき鋼板とアルミニウム合金の接合構造を示す断面図である。It is sectional drawing which shows the joining structure of the galvanized steel plate and aluminum alloy which were obtained by Example 1. FIG. (a)実施例1によって得られた接合組織の熱処理前の状態を示す透過電子顕微鏡写真である。(b)実施例1によって得られた接合組織の熱処理後の状態を示す透過電子顕微鏡写真である。(c)実施例1の十字引張試験による試験片の破断状態を示す外観写真である。(A) It is a transmission electron micrograph which shows the state before heat processing of the joining structure | tissue obtained by Example 1. FIG. (B) It is a transmission electron micrograph which shows the state after heat processing of the joining structure | tissue obtained by Example 1. FIG. (C) It is an external appearance photograph which shows the fracture state of the test piece by the cross tension test of Example 1. FIG. 比較例1により得られた接合組織を示す透過電子顕微鏡写真である。2 is a transmission electron micrograph showing the joint structure obtained in Comparative Example 1. FIG. (a)比較例2の十字引張試験による試験片の破断状態を示す外観写真である。(b)実施例2の十字引張試験による試験片の破断状態を示す外観写真である。(c)実施例3の十字引張試験による試験片の破断状態を示す外観写真である。(d)比較例3の十字引張試験による試験片の破断状態を示す外観写真である。(A) It is an external appearance photograph which shows the fracture state of the test piece by the cross tension test of the comparative example 2. FIG. (B) It is an external appearance photograph which shows the fracture state of the test piece by the cross tension test of Example 2. FIG. (C) It is an external appearance photograph which shows the fracture state of the test piece by the cross tension test of Example 3. FIG. (D) It is an external appearance photograph which shows the fracture state of the test piece by the cross tension test of the comparative example 3. FIG. (a)実施例4による異種金属材料の接合要領をスポット溶接装置と共に示す全体図である。(b)実施例4によって得られた亜鉛めっき鋼板とアルミニウム合金の接合構造を示す断面図である。(c)実施例4により得られた接合組織を示す透過電子顕微鏡写真である。(A) It is a general view which shows the joining procedure of the dissimilar metal material by Example 4 with a spot welding apparatus. (B) It is sectional drawing which shows the joining structure of the galvanized steel plate obtained by Example 4, and aluminum alloy. (C) It is a transmission electron micrograph which shows the joining structure | tissue obtained by Example 4. FIG. 実施例5により得られた接合組織を示す透過電子顕微鏡写真である。6 is a transmission electron micrograph showing the joint structure obtained in Example 5. FIG.

以下に、本発明の異種金属接合接合方法と、これによって得られる異種金属接合部材について、さらに詳細かつ具体的に説明する。   Hereinafter, the dissimilar metal joining method of the present invention and the dissimilar metal joining member obtained thereby will be described in more detail and specifically.

図1は、板厚0.55mmの鋼板と、板厚1.0mmの6000系アルミニウム合金板とを重ね合わせて、図2に示すような交流タイプのスポット溶接装置を用いて、種々の接合条件(電流:20000〜30000A、加圧力150〜600kgf、通電時間:250ミリ秒以下)の下に接合した後、種々変化させた条件で熱処理(処理温度:140〜500℃、処理時間:20分〜7時間)した場合に、接合界面に形成される金属化合物層の厚さと十字引張強度との関係を整理したものである。上記の条件のうち,図1の関係を得るために,溶接後の接合界面に形成される金属間化合物層の厚さがなるべく均一になるよう、90%以上が1μm以内の差に入る条件を選んでプロットを行った。
なお、十字引張試験は、図3に示すような寸法形状の試験片を用いて、JIS Z 3137に規定された方法に準じて行った。
FIG. 1 shows various joining conditions using an AC type spot welding apparatus as shown in FIG. 2 in which a steel plate having a thickness of 0.55 mm and a 6000 series aluminum alloy plate having a thickness of 1.0 mm are overlapped. After joining under (current: 20000-30000A, pressure 150-600 kgf, energization time: 250 milliseconds or less), heat treatment (treatment temperature: 140-500 ° C., treatment time: 20 minutes-under various conditions) 7 hours), the relationship between the thickness of the metal compound layer formed at the bonding interface and the cross tensile strength is arranged. Among the above conditions, in order to obtain the relationship of FIG. 1, the condition that 90% or more falls within a difference of 1 μm or less so that the thickness of the intermetallic compound layer formed at the joint interface after welding is as uniform as possible. Selected and plotted.
In addition, the cross tension test was performed according to the method prescribed | regulated to JISZ3137 using the test piece of a dimension shape as shown in FIG.

図1の結果から明らかなように、高強度の異種金属接合部材を得るためには、一定の面積率で拡散接合によって形成された金属化合物層の厚さを制御することが必要であって、引張り強度210MPaのアルミニウム合金板材の強度を目安にした接合強度、すなわち十字引張強度で0.6kN以上の強度を得るためには、金属間化合物の厚さの管理幅を0.5〜3.2μmの範囲とし、0.9kN以上の十字引張強度を得るためには、0.6〜2.8μmの範囲とし、さらに高強度の1.2kN以上を得るためには、上記金属間化合物層の厚さを0.8〜2.5μmの範囲とすることが必要であることが判る。
すなわち、金属間化合物層の厚さが3.2μmを超えると強度への寄与が低下し、0.5μm未満でも十分な強度が得られない.したがって,金属間化合物層の厚さは、少なくとも0.5μm以上3.2μm以下の範囲とすることが必要となる。
As is apparent from the results of FIG. 1, in order to obtain a high strength dissimilar metal joining member, it is necessary to control the thickness of the metal compound layer formed by diffusion joining at a certain area ratio, In order to obtain a joining strength based on the strength of an aluminum alloy sheet having a tensile strength of 210 MPa, that is, a cross tensile strength of 0.6 kN or more, the control range of the thickness of the intermetallic compound is 0.5 to 3.2 μm. In order to obtain a cross tensile strength of 0.9 kN or more, a range of 0.6 to 2.8 μm, and in order to obtain a high strength of 1.2 kN or more, the thickness of the intermetallic compound layer is It can be seen that the thickness needs to be in the range of 0.8 to 2.5 μm.
That is, when the thickness of the intermetallic compound layer exceeds 3.2 μm, the contribution to the strength decreases, and even when the thickness is less than 0.5 μm, sufficient strength cannot be obtained. Therefore, the thickness of the intermetallic compound layer must be at least 0.5 μm or more and 3.2 μm or less.

スポット溶接装置によって形成された接合ナゲットにおいて、金属間化合物は必ずしもナゲット(接合面)の全域に形成されている訳ではなく、ナゲット内に化合物厚さの分布が認められた。
そこで、金属間化合物層の厚さが上記範囲となる面積率と接合強度の関係を調査した。
In the joint nugget formed by the spot welding apparatus, the intermetallic compound is not necessarily formed in the entire area of the nugget (joint surface), and the distribution of the compound thickness is recognized in the nugget.
Therefore, the relationship between the area ratio and the bonding strength at which the thickness of the intermetallic compound layer falls within the above range was investigated.

すなわち、金属間化合物層が上記厚さに形成されて強固に接合している面積率は、接合部の中心断面を観察して、金属間化合物層が厚さの範囲となる長さを測定し、ナゲット中心からの距離から同心円状にドーナツ状の接合領域が形成されると仮定した面積の和がナゲット面積(接合面積)に対してどれだけの割合であったかを算出して求めた。その結果を図4に示す。   That is, the area ratio at which the intermetallic compound layer is formed to the above thickness and is firmly bonded is measured by observing the central cross section of the bonded portion and measuring the length within which the intermetallic compound layer is in the thickness range. From the distance from the center of the nugget, the ratio of the sum of the areas assumed to form a concentric donut-shaped junction region to the nugget area (joint area) was calculated. The result is shown in FIG.

図4によれば、金属間化合物層が0.8〜2.5μmの厚さに形成されている領域の接合面積に対する面積率が52%以上であれば、ばらつきの下限においても良好な接合強度を示し、当該面積率が70%以上になると接合強度はさらに向上し、0.9kN以上の十字引張強度が得られることが確認された。   According to FIG. 4, when the area ratio with respect to the bonding area of the region in which the intermetallic compound layer is formed to a thickness of 0.8 to 2.5 μm is 52% or more, the bonding strength is good even at the lower limit of variation. It was confirmed that when the area ratio was 70% or more, the joint strength was further improved, and a cross tensile strength of 0.9 kN or more was obtained.

図5は、接合強度に及ぼす金属間化合物の結晶粒径(長径)の最大値の影響を示すものであって、金属間化合物層の厚さが少々厚くなったとしても、結晶粒が細かい場合には、接合強度が若干向上することが分かる。   FIG. 5 shows the influence of the maximum value of the crystal grain size (major axis) of the intermetallic compound on the bonding strength. Even when the intermetallic compound layer is slightly thicker, the crystal grains are fine. It can be seen that the bonding strength is slightly improved.

接合プロセスの後に続く熱処理によって、金属間化合物層の接合界面における結晶粒が細かくなる組織の変化は、急熱過程・急冷過程を伴う接合プロセスにより導入される格子欠陥と結晶の回復が影響しているものと考えられる。
結晶粒が成長あるいは消滅するためには、材料中を原子が移動する、つまり、拡散が生じる必要がある。急熱過程・急冷過程によって形成された組織は、系のエネルギが高い状態になっている。例えば、急冷過程によって、成分の傾斜や多くの空孔や転位が導入されて存在する状態である。
このようなエネルギの高い状態にある金属組織は、熱処理によって、よりエネルギの低い状態に変化する。その代表的な例が、成分傾斜の均一化、結晶粒の成長、消失あるいは、原子空孔が集合してできた転位ループやボイドの消滅、結晶粒界は低いエネルギの粒界に変化するなどの現象である。
The change in the structure where the crystal grains become finer at the joint interface of the intermetallic compound layer due to the heat treatment following the joining process is influenced by the lattice defects introduced by the joining process involving rapid heating and quenching processes and the recovery of crystals. It is thought that there is.
In order for crystal grains to grow or disappear, it is necessary for atoms to move through the material, that is, to cause diffusion. The structure formed by the rapid heating process and the rapid cooling process is in a state where the energy of the system is high. For example, it is a state in which a gradient of components and many vacancies and dislocations are introduced by a rapid cooling process.
Such a metal structure in a high energy state changes to a lower energy state by heat treatment. Typical examples include uniform component gradients, crystal grain growth and disappearance, dislocation loops and voids formed by a collection of atomic vacancies, and crystal grain boundaries changing to low energy grain boundaries. It is a phenomenon.

高温条件下では、格子中には原子空孔が多く含まれるが、このような高温の状態から急冷された場合、冷却された格子中には空孔が高濃度で残存し、このような過飽和の空孔も系のエネルギを高くしている。通常の組織を熱処理する場合では、熱力学的に許容される量しか空孔が存在しないために、熱処理によって生じる拡散もその空孔量と空孔の移動速度によって制限を受けるが、急冷によって過剰な空孔を含んだ組織を熱処理することによって、通常の熱処理では生じない拡散が生じうると考えられる。
つまり、結晶粒の成長、消滅を生じさせるには、十分な空孔量と原子移動量を確保するために、温度を上げ、時間をかけることが必要になるが、空孔の量は十分に結晶格子内に存在するため、比較的低い温度でも十分な拡散、反応は起こりうると考えられる。
Under high temperature conditions, the lattice contains many atomic vacancies, but when quenched from such a high temperature state, vacancy remains in the cooled lattice at a high concentration, and such supersaturation occurs. These vacancies also increase the energy of the system. When heat treating a normal structure, since there are only pores that are thermodynamically acceptable, diffusion caused by the heat treatment is also limited by the amount of holes and the movement speed of the holes. It is considered that diffusion that does not occur in normal heat treatment can occur by heat-treating a structure containing various vacancies.
In other words, in order to cause the growth and disappearance of crystal grains, it is necessary to increase the temperature and take time to secure a sufficient amount of vacancies and atoms, but the amount of vacancies is sufficient. Since it exists in the crystal lattice, it is considered that sufficient diffusion and reaction can occur even at a relatively low temperature.

本発明における組織の変化として特徴的となっている結晶粒の微細化は、結晶核生成の数(頻度)が高く、粒成長速度があまり速くない熱処理条件で生じうる。急冷組織の低温での熱処理は、過剰な空孔が核生成の数(頻度)の増加させ、その後の粒成長で結晶粒の粗大化を招かない条件となると考えられる。
このような条件での熱処理を行うには、結晶粒の粗大化につながるような高い温度での熱処理を避けるべきであり、急熱過程・急冷過程によって導入された空孔を動かすに必要十分な温度を熱処理温度の下限値とすべきであると考えられる。つまり、金属組織の回復として、電気抵抗が回復する温度ではなく、原子空孔が集合してできたボイドの消滅あるいは転位ループの消滅が起こる温度で熱処理を行うべきである。
The refinement of crystal grains, which is characteristic as a change in structure in the present invention, can occur under heat treatment conditions where the number (frequency) of crystal nucleation is high and the grain growth rate is not so fast. The heat treatment at a low temperature of the quenched structure is considered to be a condition in which excessive vacancies increase the number (frequency) of nucleation and subsequent crystal growth does not cause coarsening of crystal grains.
In order to perform heat treatment under such conditions, heat treatment at a high temperature that leads to coarsening of the crystal grains should be avoided, and it is necessary and sufficient to move the vacancies introduced by the rapid heating and quenching processes. It is considered that the temperature should be the lower limit of the heat treatment temperature. That is, as a recovery of the metal structure, the heat treatment should be performed at a temperature at which voids formed by collecting atomic vacancies or dislocation loops disappear, not at a temperature at which electrical resistance recovers.

結晶の回復については、丸善株式会社から出版された日本金属学会編「転位論」の第229〜235頁に詳細な記述が認められる。
金属組織の回復として原子空孔が集合してできたボイドの消失あるいは転位ループの消滅が起こる条件とは、金属組織の回復の第V段階以上の温度での熱処理を行うことであると言える。
Detailed description of the recovery of the crystal can be found on pages 229 to 235 of “Dislocation theory” edited by the Japan Institute of Metals published by Maruzen Co., Ltd.
It can be said that the condition for the disappearance of voids formed by the collection of atomic vacancies or the disappearance of dislocation loops for the recovery of the metal structure is to perform a heat treatment at a temperature equal to or higher than the V stage of the recovery of the metal structure.

融点の異なる金属材料同士における、拡散接合界面中の金属間化合物の結晶粒の成長には、いずれかの母材金属の拡散が十分に生じることが必要となる。低融点側の母材の方が拡散を低温度で生じるため、界面の金属間化合物の粒成長も低融点側の母材の拡散に支配されると考えられる。   In order to grow crystal grains of an intermetallic compound in a diffusion bonding interface between metal materials having different melting points, it is necessary that any one of the base metal metals is sufficiently diffused. Since the base material on the low melting point side causes diffusion at a lower temperature, it is considered that the grain growth of the intermetallic compound at the interface is also governed by the diffusion of the base material on the low melting point side.

例えば、鉄とアルミニウムの接合において、電気抵抗溶接に代表される急熱・急冷組織の熱処理による結晶粒の微細化は、鉄基合金に比べて融点が低い母材であるアルミニウム基合金の回復の第V段階に達したとき、つまり、127℃(400K)以上の温度で生じ始める。これは、母材であるアルミニウム基合金の急冷組織の原子空孔が集合してできた転位ループやボイドを消滅させる温度に一致し、急熱過程・急冷過程で生じた組織が安定的な組織に変化することによって生じると考えられる。   For example, in the joining of iron and aluminum, the refinement of crystal grains by heat treatment of a rapid heating / quenching structure typified by electric resistance welding is the recovery of the aluminum base alloy, which is a base material having a lower melting point than that of the iron base alloy. It begins to occur when the Vth stage is reached, that is, at a temperature of 127 ° C. (400K) or higher. This coincides with the temperature at which the dislocation loops and voids formed by the aggregation of vacancies in the quenching structure of the aluminum-based alloy, which is the base material, disappears, and the structure generated in the rapid heating / quenching process is stable. It is thought to be caused by changing to.

上記に述べたように、低融点側金属母材格子中の空孔が移動することが本発明の熱処理条件になるが、より短い時間で効率よく目的の組織を得るためには、十分な拡散を生じる温度で熱処理することが好ましい。拡散が十分に生じるためには、絶対温度で表された融点の1/2以上の温度を目安とすることができる。
前述のように、低融点側の母材の方が拡散を低温度で生じるため、界面の金属間化合物の粒成長も低融点側の母材の拡散に支配されると考えられるため、低融点側母材の融点を絶対温度で表した値の1/2以上の温度以上とすることによって、十分な効果が期待できる。
As described above, the movement of vacancies in the low-melting-point side metal matrix lattice is the heat treatment condition of the present invention, but sufficient diffusion is required in order to obtain the desired structure efficiently in a shorter time. It is preferable to heat-treat at a temperature that generates In order for the diffusion to occur sufficiently, a temperature of 1/2 or more of the melting point expressed in absolute temperature can be used as a guide.
As described above, since the base material on the low melting point side causes diffusion at a low temperature, it is considered that the grain growth of the intermetallic compound at the interface is also governed by the diffusion of the base material on the low melting point side. A sufficient effect can be expected by setting the melting point of the side base material to a temperature equal to or higher than ½ of the value expressed in absolute temperature.

一方で、低融点側母材の融点を絶対温度で表した値の1/2以上の温度以上で、より高温で熱処理を行うと、例えば、析出強化型の合金ならば、析出相が消失する温度に達することも考えられる。また、加工硬化によって強度を得ているならば、再結晶によって母材の強度が低下することが考えられる。母材強化の主機能を担う析出相が消失してしまっては、接合部の強度が上昇したとしても接合強度そのものは向上させることができない。
したがって、本発明の接合後の熱処理は、母材の強度が構造体にとって必要な強度に維持されなければならない。すなわち、析出強化相の消失又は再結晶によって低融点側金属材料が軟化する温度以下で熱処理を行う必要がある。
On the other hand, when the heat treatment is performed at a temperature higher than half the value of the melting point of the low-melting-point side base material in terms of absolute temperature, for example, in the case of a precipitation strengthening type alloy, the precipitated phase disappears. It is also possible to reach temperature. Further, if strength is obtained by work hardening, the strength of the base material may be reduced by recrystallization. If the precipitated phase that plays the main function of strengthening the base material disappears, the bonding strength itself cannot be improved even if the strength of the bonded portion increases.
Therefore, in the heat treatment after bonding according to the present invention, the strength of the base material must be maintained at a strength required for the structure. That is, it is necessary to perform the heat treatment at a temperature equal to or lower than the temperature at which the low melting point metal material softens due to the disappearance or recrystallization of the precipitation strengthening phase.

その他に、低融点母材金属の拡散は十分に生じさせる必要があるが、金属間化合物粒内での拡散が過度に生じると、金属間化合物の粒の粗大化することによって強度を得られない可能性がある。このような金属間化合物の粒の粗大化を回避するためには、接合部の金属間化合物粒内の拡散が十分に生じる、つまり、金属間化合物内を空孔が容易に移動できる温度の目安として、異種金属接合のために生成させる金属間化合物のうち、融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度で熱処理する必要がある。   In addition, it is necessary to cause sufficient diffusion of the low-melting-point base metal, but if excessive diffusion occurs in the intermetallic compound grains, strength cannot be obtained by coarsening the intermetallic compound grains. there is a possibility. In order to avoid such coarsening of the intermetallic compound grains, sufficient diffusion occurs in the intermetallic compound grains at the joint, that is, a guideline for the temperature at which vacancies can easily move in the intermetallic compound. As described above, it is necessary to perform heat treatment at a temperature equal to or lower than ½ of the melting point represented by the absolute temperature of the intermetallic compound having the lowest melting point among the intermetallic compounds generated for the dissimilar metal bonding.

したがって、好ましい範囲は、低融点側母材格子中の空孔の移動が生じる温度で、金属間化合物粒が粗大化せず、母材の強度を十分に得られる温度範囲ということになり、この温度範囲でなるべく高い温度で熱処理することが工業的に最も効果的であることを見出した。すなわち、本発明の熱処理は、生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2の温度及び析出強化相の消失又は再結晶によって低融点側金属材料が軟化する温度のうちのいずれか低い方の温度以下の温度で行う必要がある。   Therefore, a preferable range is a temperature at which vacancies move in the low melting point side base material lattice, and the temperature range in which the strength of the base material can be sufficiently obtained without intermetallic compound grains being coarsened. It has been found that heat treatment at the highest possible temperature in the temperature range is industrially most effective. That is, the heat treatment of the present invention is a low melting point metal by the temperature of 1/2 of the melting point expressed by the absolute temperature of the intermetallic compound having the lowest melting point among the generated intermetallic compounds and disappearance or recrystallization of the precipitation strengthening phase. It is necessary to carry out at a temperature equal to or lower than the lower one of the temperatures at which the material softens.

一方、Al−Fe系で形成される金属間化合物は、EDXによる分析ではAlとFeの原子比が3:1又は5:2に近い成分比が観測され、その成分比からAlFe、AlFeと判断される。これらの金属間化合物の融点は、アルミニウムの融点660℃よりも高く、AlFe、AlFeの融点はそれぞれ1160℃、1169℃と観測されており、金属間化合物構造の中で空孔が移動するための目安となる温度は絶対温度で表した融点の1/2、つまり、約440℃とすることができる。
本発明に際しての実験から、急熱過程・急冷過程によって形成した組織を金属間化合物を粗大化させることなく、安定的な組織に変化させるには低融点側基材の急冷組織の原子空孔が集合してできた転位ループやボイドを消滅させる温度、より好ましくは、低融点側金属材料の主成分金属の絶対温度で表された融点の1/2以上の温度以上に上昇させることが望ましいことになるが、界面に生成する金属間化合物格子中の空孔が容易に移動できる温度を大きく超えて加熱されると、金属間化合物粒の粗大化が生じてしまうことが判った。
On the other hand, in the intermetallic compound formed in the Al-Fe system, a component ratio close to 3: 1 or 5: 2 is observed in the analysis by EDX, and from the component ratio, Al 3 Fe, Al 5 Fe 2 is determined. The melting points of these intermetallic compounds are higher than the melting point of aluminum 660 ° C., and the melting points of Al 3 Fe and Al 5 Fe 2 are observed to be 1160 ° C. and 1169 ° C., respectively. The temperature that becomes a standard for the movement of γ can be ½ of the melting point expressed in absolute temperature, that is, about 440 ° C.
From experiments in the present invention, it was found that the vacancy of the quenching structure of the low-melting-side substrate was changed to a stable structure without coarsening the intermetallic compound. It is desirable to raise the temperature to eliminate dislocation loops and voids formed by aggregation, more preferably to a temperature of 1/2 or more of the melting point represented by the absolute temperature of the main component metal of the low melting point metal material However, it was found that when the vacancies in the intermetallic compound lattice formed at the interface are heated far beyond the temperature at which the vacancies can easily move, the intermetallic compound grains become coarse.

拡散接合では、金属間化合物の厚さが薄すぎると接合強度を不足させてしまうが、生産性を上げようとしてプロセス温度を上昇させると、生成する金属間化合物粒が粗大化し易くなり、金属間化合物の脆い特性が現れる可能性がある。拡散接合では、一般に拡散速度が十分に大きい温度領域で行われるため、金属間化合物結晶粒が大きくなりやすい。結晶粒を微細に制御しようとすると、長時間のプロセス時間を必要として工業生産に適用するためには非現実的なプロセス時間を要することになる。これに対し、溶融接合では、融点に及ぶ高温に達するために金属間化合物が粗大に成長する場合がほとんどである。   In diffusion bonding, if the thickness of the intermetallic compound is too thin, the bonding strength will be insufficient.However, if the process temperature is increased in order to increase productivity, the intermetallic compound grains that are produced tend to become coarse, and the intermetallic compound The brittle nature of the compound may appear. Since diffusion bonding is generally performed in a temperature range where the diffusion rate is sufficiently high, the intermetallic compound crystal grains tend to be large. In order to finely control crystal grains, a long process time is required, and an unrealistic process time is required to apply to industrial production. On the other hand, in melt bonding, the intermetallic compound grows coarsely in order to reach a high temperature reaching the melting point.

本発明においては、一旦電気抵抗発熱を接合界面に生じさせ、金属伝熱による急冷によって非平衡状態組成の組織を一定厚さで形成し、その後、低融点金属の急冷組織の原子空孔が集合してできた転位ループやボイドを消滅させる温度、より好ましくは低融点側金属材料の主成分金属の絶対温度で表された融点の1/2以上の温度以上で、かつ界面に生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度以下で熱処理を行うことによって、異種金属材料間の接合時に金属間化合物層を一定の厚さで確保し、その上で非平衡組成の化合物組織を微細化することによって、結晶粒径が微細で、しかも一定の厚さを有する強固な金属間化合物層を形成することができる。   In the present invention, once the electrical resistance heat is generated at the bonding interface, the structure of the non-equilibrium composition is formed with a constant thickness by rapid cooling by metal heat transfer, and then the atomic vacancies of the quenched structure of the low melting point metal gather. The temperature at which the dislocation loops and voids formed are extinguished, more preferably at least half the melting point represented by the absolute temperature of the main component metal of the low melting point metal material, and between the metals generated at the interface By performing heat treatment at a temperature equal to or lower than ½ of the melting point represented by the absolute temperature of the intermetallic compound having the lowest melting point among the compounds, the intermetallic compound layer is formed with a constant thickness at the time of bonding between different metal materials. By securing and refining the compound structure of the nonequilibrium composition thereon, a strong intermetallic compound layer having a fine crystal grain size and a constant thickness can be formed.

本発明においては、異種金属材料として、上記したように鉄基合金とアルミニウム基合金の組合せを好適に用いることができる。
ここで言う鉄基合金とは、鉄を主成分とする材料を意味し、具体的には炭素鋼、合金鋼、軟鋼、高張力鋼などの圧延鋼板を好適に用いることができる。
In the present invention, a combination of an iron-based alloy and an aluminum-based alloy can be suitably used as the dissimilar metal material as described above.
The iron-based alloy mentioned here means a material mainly composed of iron, and specifically, rolled steel sheets such as carbon steel, alloy steel, mild steel, and high-tensile steel can be suitably used.

また、アルミニウム基合金とは、アルミニウムを主成分とする合金を意味し、例えば、1000系から7000系のアルミニウム合金を好適に使用することができる。
なお、本発明において「主成分」とは、その合金中に最も多く含まれる金属のことを意味する。
Further, the aluminum-based alloy means an alloy containing aluminum as a main component, and for example, a 1000 series to 7000 series aluminum alloy can be suitably used.
In the present invention, the “main component” means a metal most contained in the alloy.

本発明に用いられる異種金属材料の組合せとしては、上記した電気抵抗接合のように、急熱過程とこれに続く材料による抜熱による急冷過程が利用できるようなプロセスによって、拡散により界面に金属間化合物を形成するような金属を主成分として含む材料同士の組合わせでさえあれば、特に限定はなく、このような金属元素の組合せとして、例えばTi(チタン)とAl(アルミニウム)、TiとFe(鉄)の組合せを挙げることができる。   As a combination of dissimilar metal materials used in the present invention, as in the above-described electrical resistance bonding, a process in which a rapid heating process and a subsequent quenching process by heat removal by the material can be used, and the metal is bonded to the interface by diffusion. There is no particular limitation as long as it is a combination of materials containing a metal that forms a compound as a main component. Examples of combinations of such metal elements include Ti (titanium) and Al (aluminum), and Ti and Fe. The combination of (iron) can be mentioned.

本発明において、異種金属材料の組合せが鉄基合金とアルミニウム基合金の場合には、上記熱処理を低融点側金属材料の主成分金属が接合部における急冷組織の原子空孔が集合してできた転位ループやボイドを消滅させる温度、つまり、127℃以上、及び、金属間化合物の融点の絶対温度の1/2の温度以下から計算される130〜440℃の温度範囲で行うことができる。また、生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度範囲で熱処理を行う観点から、190℃以上とすることが望ましい。また、生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2の温度及び析出強化相の消失又は再結晶によって低融点側金属材料が軟化する温度のうちのいずれか低い方の温度以下の温度範囲で熱処理を行う観点から、410℃以下とすることが望ましい。   In the present invention, when the combination of dissimilar metal materials is an iron-based alloy and an aluminum-based alloy, the main component metal of the low-melting-point side metal material is formed by agglomerating atomic vacancies in the joint at the junction. It can be carried out in the temperature range of 130 to 440 ° C. calculated from the temperature at which the dislocation loops and voids disappear, that is, 127 ° C. or more and less than half the absolute temperature of the melting point of the intermetallic compound. Moreover, it is desirable to set it as 190 degreeC or more from a viewpoint of heat-processing in the temperature range below 1/2 of melting | fusing point represented by the absolute temperature of the intermetallic compound with the lowest melting | fusing point among the produced intermetallic compounds. Moreover, the temperature of the melting point represented by the absolute temperature of the intermetallic compound having the lowest melting point among the intermetallic compounds to be generated and the temperature at which the low melting point side metallic material is softened by the disappearance or recrystallization of the precipitation strengthening phase. From the viewpoint of performing the heat treatment in a temperature range lower than the lower one, it is desirable that the temperature be 410 ° C. or lower.

また、このとき、鉄基合金として、亜鉛めっき鋼板を用いることが好ましく、めっき層を形成する亜鉛とアルミニウムとの間で共晶溶融を生じさせ、加圧することによってアルミニウム基合金の表面に形成されている酸化皮膜を低融点の共晶溶融物と共に接合界面から容易に除去させることができ、亜鉛めっき層及び酸化皮膜が除去された両金属材料の新生面同士の拡散接合が可能になる。   Further, at this time, it is preferable to use a galvanized steel sheet as the iron-based alloy, which is formed on the surface of the aluminum-based alloy by causing eutectic melting between zinc and aluminum forming the plating layer and applying pressure. The oxide film can be easily removed from the bonding interface together with the eutectic melt having a low melting point, and diffusion bonding between the new surfaces of the two metal materials from which the galvanized layer and the oxide film have been removed becomes possible.

本発明の異種金属接合方法において、急熱過程とこれに続く急冷過程を有する接合として、代表的には、図2に示したようなスポット溶接装置を用いた電気抵抗接合を採用することができるが、このような抵抗発熱を利用するばかりでなく、これ以外の加熱手段として、例えばレーザビームを用いることも可能である。
また、ナゲット形成によるスポット接合のみならず、ローラ状の電極を使用することによって、シーム状の接合を行うことも可能である。
In the dissimilar metal bonding method of the present invention, as a bonding having a rapid heating process and a subsequent rapid cooling process, typically, electrical resistance bonding using a spot welding apparatus as shown in FIG. 2 can be employed. However, it is possible not only to use such resistance heat generation, but also to use, for example, a laser beam as other heating means.
Further, not only spot joining by nugget formation but also seam-like joining can be performed by using a roller-like electrode.

また、本発明の異種金属接合方法において、得られた接合部材を塗装する場合には、上記接合に続く熱処理を、塗装工程における塗料の焼付け処理と併せて行うこともでき、これによって熱処理行程を省くことができ、消費エネルギの無駄をなくすことができるようになる。   Further, in the dissimilar metal joining method of the present invention, when the obtained joining member is coated, the heat treatment subsequent to the joining can be performed together with the baking treatment of the paint in the painting process, whereby the heat treatment process can be performed. It can be omitted, and waste of energy consumption can be eliminated.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited at all by these Examples.

(実施例1)
図2に示した交流タイプのスポット溶接装置を用いて、板厚0.55mmの亜鉛めっき鋼板1と、200MPaの引張強度を有する板厚1.0mmの6000系アルミニウム合金板2を重ね合わせ、加圧力300kN、電流24000A、通電時間0.2秒の条件のもとに、抵抗スポット接合を実施した。
接合に際しては、一旦、アルミニウムとめっき層の亜鉛を約400℃の温度で反応させて、共晶溶融を生じさせ、溶接装置の電極による加圧によって、図6に示すように、生成した共晶融体と共にアルミニウム合金板2の表面の酸化皮膜2aを排出物Dとして排出して、アルミニウム合金板2の新生面を生じさせると共に、拡散反応を生じさせ、アルミニウム合金を溶融させることなく、鋼板1とアルミニウム合金板2に拡散層を形成し、拡散層中でFeとAlを反応させて薄い金属間化合物層Lを形成させ、当該金属間化合物層Lを介して両異種金属材料1及び2を接合した。
Example 1
Using an AC type spot welding apparatus shown in FIG. 2, a galvanized steel sheet 1 having a thickness of 0.55 mm and a 6000 series aluminum alloy sheet 2 having a tensile strength of 200 MPa and a thickness of 1.0 mm are superposed and added. Resistance spot bonding was performed under the conditions of a pressure of 300 kN, a current of 24,000 A, and a current application time of 0.2 seconds.
At the time of joining, aluminum and zinc in the plating layer are reacted at a temperature of about 400 ° C. to cause eutectic melting, and the eutectic formed as shown in FIG. The oxide film 2a on the surface of the aluminum alloy plate 2 together with the melt is discharged as a discharge D to form a new surface of the aluminum alloy plate 2 and to cause a diffusion reaction without melting the aluminum alloy. A diffusion layer is formed on the aluminum alloy plate 2, Fe and Al are reacted in the diffusion layer to form a thin intermetallic compound layer L, and both dissimilar metal materials 1 and 2 are joined via the intermetallic compound layer L. did.

この結果、アルミニウム合金板2の表面にあったアルミニウムの酸化皮膜2aは、亜鉛とアルミニウムの反応相つまり、共晶合金と共にナゲット周辺に排出され、接合界面には0.8〜2.5μmの厚さを有する薄い金属間化合物層Lが接合面積(ナゲット面積)の48%の領域に形成されており、この金属間化合物層Lの金属間化合物結晶粒は、長楕円断面を呈し、長径は約0.3μmであった。当該接合部の透過電子顕微鏡写真を図7(a)に示す。   As a result, the aluminum oxide film 2a on the surface of the aluminum alloy plate 2 is discharged to the periphery of the nugget together with the reaction phase of zinc and aluminum, that is, the eutectic alloy, and has a thickness of 0.8 to 2.5 μm at the bonding interface. A thin intermetallic compound layer L having a thickness is formed in a region of 48% of the junction area (nugget area), and the intermetallic compound crystal grains of the intermetallic compound layer L have an elliptical cross section, and the major axis is about It was 0.3 μm. A transmission electron micrograph of the joint is shown in FIG.

次に、このように作成した接合部材に、440℃×1.5時間の熱処理を施すと、金属間化合物層全体の厚さは0.8〜2.5μmとなり、接合面積に対して89%の範囲に生成されていることが確認された。同時に金属間化合物粒は等軸状に変化し、結晶粒径は0.1μm以下に微細化できた。この透過電子顕微鏡写真を図7(b)に示す。   Next, when the bonding member thus prepared is subjected to heat treatment at 440 ° C. for 1.5 hours, the total thickness of the intermetallic compound layer becomes 0.8 to 2.5 μm, which is 89% of the bonding area. It was confirmed that it was generated in the range. At the same time, the intermetallic compound grains changed equiaxially, and the crystal grain size could be reduced to 0.1 μm or less. This transmission electron micrograph is shown in FIG.

そして、440℃×1.5時間の熱処理を施した接合部材の強度を図3に示した要領による十字引張試験によって測定した結果、1.60kNの接合強度が得られ、図7(c)に示すようにアルミニウム合金側で破断することが確認された。
なお、上記金属間化合物層Lについて、EDS及びX線回折によって調査した結果、当該化合物層がFeAl及びFeAlに近いFe−Alの成分比による金属間化合物よって構成され、かつ化合物中にはメッキ層のZnは分析で検知されないほどほとんど含まれていない化合物であることが確認された。
Then, as a result of measuring the strength of the joining member subjected to the heat treatment at 440 ° C. × 1.5 hours by the cross tension test according to the procedure shown in FIG. 3, a joining strength of 1.60 kN was obtained, and FIG. As shown, it was confirmed that the aluminum alloy fractured.
Note that the intermetallic compound layer L, the result of investigation by EDS and X-ray diffraction, the compound layer is formed by an intermetallic compound according to component ratios of FeAl near FeAl 3 and Fe 5 Al 2, and compound It was confirmed that Zn in the plating layer is a compound that is hardly contained so as not to be detected by analysis.

(比較例1)
上記実施例1と同様の条件によって得られた接合部材に500℃×0.5時間の熱処理を施した場合には、金属間化合物層は、3.2μmを超える厚さとなり、その面積率は98%であって、拡散接合層に金属間化合物層を有する界面を有していたが、金属間化合物の厚さが3.2μm以下となる接合層がほとんどなく、接合面積は2%となった。また、その結晶粒が等軸状部分と柱状の2層に変化し、結晶粒径は等軸粒部分で0.1〜0.2μm、柱状部分では接合界面に垂直方向に伸び、最大長径としては1.0μmに近い粒が観察された。この場合の透過電子顕微鏡写真を図8に示す。
また、十字引張試験では、接合界面で破断し、0.09kNの強度しか得られなかった。
(Comparative Example 1)
When the bonded member obtained under the same conditions as in Example 1 was subjected to a heat treatment of 500 ° C. × 0.5 hours, the intermetallic compound layer had a thickness exceeding 3.2 μm, and the area ratio was 98%, which had an interface having an intermetallic compound layer in the diffusion bonding layer, but there was almost no bonding layer having an intermetallic compound thickness of 3.2 μm or less, and the bonding area was 2%. It was. In addition, the crystal grain changes into an equiaxed portion and a columnar two layer, the crystal grain size is 0.1 to 0.2 μm at the equiaxed grain portion, and the columnar portion extends in the direction perpendicular to the bonding interface, and the maximum major axis Were observed to be close to 1.0 μm. A transmission electron micrograph in this case is shown in FIG.
Moreover, in the cross tension test, it fractured | ruptured in the joining interface and only the intensity | strength of 0.09 kN was obtained.

(比較例2)
上記実施例1と同様のスポット溶接装置を用いて、板厚0.55mmの亜鉛めっき鋼板1と、板厚1.0mmの6000系アルミニウム合金板2を重ね合わせ、加圧力300kN、電流は実施例1の場合よりも小さくして21000A、通電時間0.2秒の条件のもとに、抵抗スポット接合を行い、両異種金属材料を拡散接合した。
その結果、金属間化合物層Lが形成し,0.8〜2.5μmの範囲の領域は接合面積の46%に形成されていた。また、当該金属間化合物層Lを構成する金属間化合物の結晶粒の最大長径は、0.06μmであった。
(Comparative Example 2)
Using the same spot welding apparatus as in Example 1 above, a galvanized steel sheet 1 having a plate thickness of 0.55 mm and a 6000 series aluminum alloy plate 2 having a plate thickness of 1.0 mm were superposed, the pressurizing force being 300 kN, and the current being Example. Resistance spot bonding was performed under the conditions of 21000 A and energization time of 0.2 seconds, which was smaller than the case 1, and both dissimilar metal materials were diffusion bonded.
As a result, the intermetallic compound layer L was formed, and the region in the range of 0.8 to 2.5 μm was formed in 46% of the bonding area. The maximum major axis of the intermetallic compound crystal grains constituting the intermetallic compound layer L was 0.06 μm.

図9(a)は、上記により得られた接合部材に熱処理を施すことなく、そのまま十字引張試験を実施した場合の試験片の破断状態を示すものであって、ナゲットの一部が鋼板側に残存するものの、大部分は接合界面から剥離破断し、0.67kNの強度が得られた。   FIG. 9 (a) shows the fracture state of the test piece when the cross tension test is carried out as it is without applying heat treatment to the joining member obtained as described above, and a part of the nugget is on the steel plate side. Although it remained, most of them were peeled and fractured from the bonding interface, and a strength of 0.67 kN was obtained.

(実施例2)
上記比較例2と同様の条件によって作製した接合部材に、440℃×1.5時間の熱処理を施した結果、金属間化合物層Lの0.8〜2.5μmの厚さの面積は、接合面積に対して90%の領域に拡大されていると共に、金属間化合物の結晶粒が等軸状に変化し、その粒径が0.1μmに微細化されていることが確認された。
図9(b)は、上記の熱処理を施した後に、十字引張試験を実施した場合の試験片の破断状態を示すものであって、プラグ破断を生じ、十字引張強度は1.69kNに達した。
(Example 2)
As a result of performing a heat treatment at 440 ° C. for 1.5 hours on the joining member produced under the same conditions as in Comparative Example 2, the area of 0.8 to 2.5 μm thickness of the intermetallic compound layer L is It was confirmed that the area was enlarged to 90% of the area, the crystal grains of the intermetallic compound were changed to be equiaxed, and the grain size was refined to 0.1 μm.
FIG. 9 (b) shows the fracture state of the test piece when the cross tension test was performed after the above heat treatment, and the plug fracture occurred, and the cross tensile strength reached 1.69 kN. .

このように、プラグ破断モードに変化したとしても母材強度に比して高い破断強度が得られたが、これはアルミニウム合金の時効による母材の強度上昇も影響しているものと考えられる。熱処理前には剥離型の破壊であったのに対して、1.69kNの十字引張強度を発生させても、接合界面から破断することなく、母材起点で破断が生じていることから、接合界面の強度が上昇していることを表している。   As described above, even when the mode is changed to the plug rupture mode, a high rupture strength is obtained as compared with the base metal strength, which is considered to be affected by an increase in the strength of the base material due to aging of the aluminum alloy. Although it was a peel-type fracture before heat treatment, even if a 1.69 kN cross tensile strength was generated, the fracture occurred at the starting point of the base material without breaking from the joint interface. It shows that the strength of the interface is increasing.

(実施例3)
上記比較例2と同様の条件によって作製した接合部材に、300℃×7時間の熱処理を施した。その結果、金属間化合物層Lの0.8〜2.5μmの範囲の領域が拡大し,接合面積の82%の領域になっていた。金属間化合物の結晶粒については、等軸状に変化し、その粒径が0.05〜0.1μmに微細化されていることが確認された。
そして、図9(c)は、上記の熱処理を施した後に、十字引張試験を実施した場合の試験片の破断状態を示すものであって、十字引張強度は1.50kNであって、ナゲット破断させることができた。
(Example 3)
A bonded member produced under the same conditions as in Comparative Example 2 was subjected to heat treatment at 300 ° C. for 7 hours. As a result, the region in the range of 0.8 to 2.5 μm of the intermetallic compound layer L was expanded to be 82% of the junction area. About the crystal grain of the intermetallic compound, it changed to the equiaxed form, and it was confirmed that the particle size is refined | miniaturized to 0.05-0.1 micrometer.
FIG. 9C shows the fracture state of the test piece when the cross tension test is performed after the above heat treatment, the cross tensile strength is 1.50 kN, and the nugget fracture I was able to.

(比較例3)
上記比較例2と同様の条件によって作製した接合部材に、500℃×1時間の熱処理を施した結果、金属間化合物層Lは3.2μmを超える厚さに成長し、その面積は、接合面積に対して、ほとんど100%の領域に拡大されていると共に、金属間化合物の結晶粒が等軸状部分と柱状の2層に変化し、結晶粒径は等軸粒部分で0.1〜0.3μm、柱状部分では最大長径が1.8μmとなっていることが観察された。
図9(d)は、500℃×1時間の熱処理を施した後に、十字引張試験を実施した場合の試験片の破断状態を示すものであって、界面破断を生じ、十字引張強度は0.08kNに過ぎなかった。
(Comparative Example 3)
As a result of performing a heat treatment at 500 ° C. for 1 hour on the joining member produced under the same conditions as in Comparative Example 2, the intermetallic compound layer L grows to a thickness exceeding 3.2 μm, and the area is the joining area. In contrast, the crystal grain size of the intermetallic compound is changed into an equiaxed portion and a columnar two-layer, and the crystal grain size is 0.1 to 0 in the equiaxed grain portion. It was observed that the maximum major axis was 1.8 μm in the columnar part.
FIG. 9 (d) shows the fracture state of the test piece when the cross tension test was carried out after heat treatment at 500 ° C. for 1 hour. It was only 08 kN.

このように、金属間化合物層の厚さ及び面積をそれぞれ所定の範囲に制御することによって、十分な強度を発現させることができ、熱処理前の接合工程において十分に薄い金属間化合物層を形成した場合には、これに続く熱処理によって金属間化合物の粒径を微細化できる範囲で化合物層を厚くすることにより強度を上昇させることができ、逆に、接合工程において形成される金属間化合物層が比較的厚くなったときには、結晶粒を微細化する一方、化合物層を厚くしない熱処理条件を選択することによって異種金属接合部の品質を安定化させることができる。
このようにして、電気抵抗接合に代表される急熱・急冷組織を形成する工程と、その後の熱処理工程によって異種金属接合部の高い品質を安定的に得ることができるほか、母材の時効条件等を組合せることによって、異種金属接合の高強度化を図ることができる。
In this way, by controlling the thickness and area of the intermetallic compound layer within a predetermined range, sufficient strength can be expressed, and a sufficiently thin intermetallic compound layer is formed in the bonding step before heat treatment. In some cases, the strength can be increased by increasing the thickness of the compound layer within a range in which the particle size of the intermetallic compound can be reduced by the subsequent heat treatment, and conversely, the intermetallic compound layer formed in the bonding step is When the thickness is relatively large, the quality of the dissimilar metal joint can be stabilized by selecting the heat treatment conditions that make the crystal grains fine while not thickening the compound layer.
In this way, high quality of dissimilar metal joints can be stably obtained through the process of forming a rapid heating / quenching structure typified by electrical resistance bonding and the subsequent heat treatment process, and the aging conditions of the base material By combining the above, it is possible to increase the strength of the dissimilar metal joint.

(実施例4)
図10(a)に示すように、板厚0.55mmの溶融亜鉛めっき鋼板1と、210MPaの引張強度を有する板厚1.0mmの6000系アルミニウム合金板2を電気絶縁性を有する熱硬化性接着剤Sを介して重ね合わせ、加圧力300kN、電流24000A、通電時間0.2秒の条件のもとに、抵抗スポット接合を行い、アルミニウム板材2を溶融させることなく、両異種金属材料を拡散接合した。
このとき、一旦、アルミニウムとめっき層の亜鉛を約400℃の温度で反応させて、共晶溶融を生じさせ、溶接装置の電極による加圧によって、生成した共晶融体と共に、アルミニウム合金板2の酸化皮膜2a及び接着剤を排出物Dとして排出し、アルミニウム合金板2の新生面を生じさせ、鋼板1とアルミニウム合金板2に拡散層を形成し、接合界面に金属間化合物層Lを形成させ、図10(b)に示すように、アルミニウム合金を溶融させることなく金属間化合物層Lを介して両異種金属材料1及び2を接合した。
Example 4
As shown in FIG. 10 (a), a galvanized steel sheet 1 having a thickness of 0.55 mm and a 6000 series aluminum alloy sheet 2 having a tensile strength of 210 MPa and a thickness of 1.0 mm are thermosetting having electrical insulation. Overlaid via adhesive S, resistance spot bonding is performed under the conditions of 300 kN applied pressure, 24000 A current, and 0.2 second energization time, and both dissimilar metal materials are diffused without melting the aluminum plate 2. Joined.
At this time, aluminum and the zinc of the plating layer are once reacted at a temperature of about 400 ° C. to cause eutectic melting, and the aluminum alloy plate 2 together with the eutectic melt produced by pressurization by the electrode of the welding apparatus. The oxide film 2a and the adhesive are discharged as discharged matter D, a new surface of the aluminum alloy plate 2 is generated, a diffusion layer is formed on the steel plate 1 and the aluminum alloy plate 2, and an intermetallic compound layer L is formed on the bonding interface. As shown in FIG. 10B, the dissimilar metal materials 1 and 2 were joined through the intermetallic compound layer L without melting the aluminum alloy.

その後、上記熱硬化性接着剤Sの硬化温度である170℃で熱処理を施すことによって、上記金属間化合物層Lが形成され、0.8〜2.5μmの厚さの範囲は、接合面積の56%の領域であった。その金属間化合物の結晶粒の最大長径が0.05〜0.1μmと微細化されていることが観察された(図10(c)参照)。
そして、同様に十字引張試験を実施した結果、0.94kNの接合強度が得られた。
Then, the said intermetallic compound layer L is formed by heat-processing at 170 degreeC which is the hardening temperature of the said thermosetting adhesive S, The range of the thickness of 0.8-2.5 micrometers is the junction area. The region was 56%. It was observed that the maximum major axis of the crystal grains of the intermetallic compound was refined to 0.05 to 0.1 μm (see FIG. 10C).
As a result of carrying out a cross tension test in the same manner, a bonding strength of 0.94 kN was obtained.

当該実施例においては、一度の熱処理によって、金属間化合物層の微細化と同時に接着剤Sを硬化させて異種金属材料間に絶縁層を形成することができ、工程数やエネルギー投入量を増加させることなく接合強度と耐電食性能の向上が可能になる。
なお、このような手法は、接合後の部材に塗装を施す場合にも同様に適用することができることは言うまでもない。
In this embodiment, the adhesive S can be cured simultaneously with the miniaturization of the intermetallic compound layer and the insulating layer can be formed between the dissimilar metal materials by one heat treatment, thereby increasing the number of processes and the amount of energy input. It is possible to improve the bonding strength and the electric corrosion resistance without any problems.
It goes without saying that such a method can be applied in the same manner even when coating is applied to the joined members.

(実施例5)
図2に示した交流タイプのスポット溶接装置を用いて、鋼板1とアルミニウム合金板2との異種金属接合を行うに際して、アルミニウム合金板2の表面に亜鉛めっき層2bを施したこと以外は、上記実施例1と同様の操作を繰り返すことによって、図11に示したような異種金属接合部材を得た。
この結果、接合界面には、金属間化合物層Lが0.5〜3.5μmの厚さで形成され、0.8〜2.5μmの厚さの範囲が接合面積の56%の領域であった。その金属間化合物粒子の最大長径は0.05μmであることが判った。また、同様に十字引張試験を実施した結果、1.2kNの接合強度が得られた。
(Example 5)
When the dissimilar metal joining of the steel plate 1 and the aluminum alloy plate 2 is performed using the AC type spot welding apparatus shown in FIG. 2, the above except that the surface of the aluminum alloy plate 2 is provided with the galvanized layer 2b. By repeating the same operation as in Example 1, a dissimilar metal joining member as shown in FIG. 11 was obtained.
As a result, the intermetallic compound layer L is formed with a thickness of 0.5 to 3.5 μm at the bonding interface, and the range of the thickness of 0.8 to 2.5 μm is 56% of the bonding area. It was. The maximum major axis of the intermetallic compound particles was found to be 0.05 μm. Similarly, as a result of carrying out a cross tension test, a bonding strength of 1.2 kN was obtained.

通常、アルミニウム合金板2の表面には、強固な高融点酸化皮膜が存在し、拡散接合の際にはその除去が課題となるが、当該実施例においては、アルミニウム合金板2に亜鉛めっきを施す工程において表面の酸化皮膜が除去されており、亜鉛めっき層2bが溶融除去(融点:420℃)されることによって、アルミニウム合金板2の新生面が露出されることから、通電加熱による鋼板との拡散接合が可能になる。   Usually, a strong high melting point oxide film is present on the surface of the aluminum alloy plate 2 and removal thereof becomes a problem during diffusion bonding. In this embodiment, the aluminum alloy plate 2 is galvanized. The oxide film on the surface is removed in the process, and the galvanized layer 2b is melted and removed (melting point: 420 ° C.), so that the new surface of the aluminum alloy plate 2 is exposed. Joining becomes possible.

1 鋼板(異種金属材料)
2 アルミニウム合金板(異種金属材料)
1a 亜鉛めっき層
L 金属間化合物層
1 Steel plate (dissimilar metal material)
2 Aluminum alloy plate (dissimilar metal material)
1a Zinc plating layer L Intermetallic compound layer

Claims (9)

接合部における拡散層の一部に少なくとも1種の金属間化合物を含む化合物層を形成して接合する異種金属材料の接合方法であって、急熱過程とこれに続く急冷過程を有する接合を実施した後、低融点側金属材料の主成分金属が接合部の急冷組織の原子空孔が集合してできた転位ループやボイドを消失させる温度以上、かつ生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2以下の温度範囲で熱処理を行うことを特徴とする異種金属接合方法。   A method of joining dissimilar metal materials in which a compound layer containing at least one intermetallic compound is formed on a part of a diffusion layer in a joint, and performing a joining process including a rapid heating process and a subsequent quenching process. After that, the melting point is the lowest among the intermetallic compounds to be produced, at a temperature higher than the temperature at which dislocation loops and voids formed by the aggregation of the vacancies in the quenching structure of the low melting point metal material. A dissimilar metal joining method, wherein heat treatment is performed in a temperature range of 1/2 or less of a melting point expressed by an absolute temperature of an intermetallic compound. 上記熱処理を低融点側金属材料の主成分金属の絶対温度で表された融点の1/2以上の温度で行うことを特徴とする請求項1に記載の異種金属接合方法。   2. The dissimilar metal bonding method according to claim 1, wherein the heat treatment is performed at a temperature equal to or higher than ½ of a melting point represented by an absolute temperature of a main component metal of the low melting point side metal material. 上記熱処理を、生成する金属間化合物のうち融点が最も低い金属間化合物の絶対温度で表された融点の1/2の温度及び析出強化相の消失又は再結晶によって低融点側金属材料が軟化する温度のうちのいずれか低い方の温度以下の温度で行うことを特徴とする請求項1又は2に記載の異種金属接合方法。   The low-melting-side metal material is softened by the above heat treatment by halving the melting point expressed by the absolute temperature of the intermetallic compound having the lowest melting point among the generated intermetallic compounds and disappearance or recrystallization of the precipitation strengthening phase. 3. The dissimilar metal joining method according to claim 1, wherein the dissimilar metal joining method is performed at a temperature equal to or lower than the lower one of the temperatures. 接合部における拡散層の一部に少なくとも1種のFe−Al系金属間化合物を含む化合物層を形成して接合する鉄基合金とアルミニウム基合金の接合方法であって、急熱過程とこれに続く急冷過程を有する接合を実施した後、130〜440℃の温度範囲で熱処理を行うことを特徴とする異種金属接合方法。   A method for joining an iron-based alloy and an aluminum-based alloy in which a compound layer containing at least one type of Fe-Al intermetallic compound is formed on a part of a diffusion layer in a joint portion, which includes a rapid heating process and A dissimilar metal bonding method comprising performing a heat treatment in a temperature range of 130 to 440 ° C. after performing bonding having a subsequent rapid cooling process. 上記熱処理温度が190℃以上であることを特徴とする請求項4に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 4, wherein the heat treatment temperature is 190 ° C or higher. 上記熱処理温度が410℃以下であることを特徴とする請求項4又は5に記載の異種金属接合方法。   The dissimilar metal joining method according to claim 4 or 5, wherein the heat treatment temperature is 410 ° C or lower. 上記鉄基合金が亜鉛めっき鋼板であって、亜鉛とアルミニウムの間で共晶溶融を生じさせて低融点の溶融物を形成し、加圧によってアルミニウム基合金表面の酸化被膜を溶融物と共に接合界面から除去して、それぞれ亜鉛めっき層及び酸化被膜が除去された両金属材料の新生面同士を接合することを特徴とする請求項4〜6のいずれか1つの項に記載の異種金属接合方法。   The iron-based alloy is a galvanized steel sheet, which causes eutectic melting between zinc and aluminum to form a low-melting melt, and pressurizes the oxide film on the surface of the aluminum-based alloy together with the melt. The dissimilar metal joining method according to any one of claims 4 to 6, wherein the new surfaces of the two metal materials from which the galvanized layer and the oxide film have been removed are joined together. 急熱過程とこれに続く急冷過程を有する上記接合が通電加熱による電気抵抗接合であることを特徴とする請求項1〜7のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 7, wherein the joining having the rapid heating process and the subsequent rapid cooling process is electrical resistance joining by energization heating. 急熱過程とこれに続く急冷過程を有する上記接合に続く熱処理を塗装工程における焼付け処理と併せて行うことを特徴とする請求項1〜8のいずれか1つの項に記載の異種金属接合方法。   The dissimilar metal joining method according to any one of claims 1 to 8, wherein a heat treatment subsequent to the joining having a rapid heating process and a subsequent rapid cooling process is performed in combination with a baking treatment in a painting process.
JP2012277736A 2007-08-10 2012-12-20 Dissimilar metal joining method Active JP5553250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277736A JP5553250B2 (en) 2007-08-10 2012-12-20 Dissimilar metal joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007209742 2007-08-10
JP2007209742 2007-08-10
JP2012277736A JP5553250B2 (en) 2007-08-10 2012-12-20 Dissimilar metal joining method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008108663A Division JP2009061500A (en) 2007-08-10 2008-04-18 Dissimilar metal bonded member, and method of bonding dissimilar metals

Publications (2)

Publication Number Publication Date
JP2013078804A true JP2013078804A (en) 2013-05-02
JP5553250B2 JP5553250B2 (en) 2014-07-16

Family

ID=40556589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277736A Active JP5553250B2 (en) 2007-08-10 2012-12-20 Dissimilar metal joining method

Country Status (1)

Country Link
JP (1) JP5553250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062668A (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Arc stud weld method for jointing different materials, joint auxiliary member, and different materials weld joint
US11772186B2 (en) 2020-10-09 2023-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727095B2 (en) 2016-10-17 2020-07-22 三菱重工業株式会社 Dissimilar metal joining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102586A1 (en) * 2004-04-21 2005-11-03 Kabushiki Kaisha Kobe Seiko Sho Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
JP2006167801A (en) * 2004-11-22 2006-06-29 Kobe Steel Ltd Joined body of dissimilar materials comprising steel material and aluminum material and joining method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102586A1 (en) * 2004-04-21 2005-11-03 Kabushiki Kaisha Kobe Seiko Sho Joined body of dissimilar materials comprising steel material and aluminum material, and joining method therefor
JP2006167801A (en) * 2004-11-22 2006-06-29 Kobe Steel Ltd Joined body of dissimilar materials comprising steel material and aluminum material and joining method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020062668A (en) * 2018-10-18 2020-04-23 株式会社神戸製鋼所 Arc stud weld method for jointing different materials, joint auxiliary member, and different materials weld joint
JP7160625B2 (en) 2018-10-18 2022-10-25 株式会社神戸製鋼所 Arc Stud Welding Method for Joining Dissimilar Materials and Joining Auxiliary Member
US11772186B2 (en) 2020-10-09 2023-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method

Also Published As

Publication number Publication date
JP5553250B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP2009061500A (en) Dissimilar metal bonded member, and method of bonding dissimilar metals
CN106583899B (en) Multistage resistance spot welding method for being laminated with the workpiece of adjacent steel workpiece and aluminium workpiece
WO2018181098A1 (en) HEAT TREATMENT METHOD FOR ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT, METHOD FOR MANUFACTURING ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT, Ni-BASE ALLOY POWDER FOR ADDITIVE MANUFACTURED OBJECT, AND ADDITIVE MANUFACTURED Ni-BASE ALLOY OBJECT
Shen et al. Effects of welding speed on the microstructures and mechanical properties of laser welded AZ61 magnesium alloy joints
Pouquet et al. Dissimilar laser welding of NiTi to stainless steel
KR101332890B1 (en) Aluminium alloy wire for connecting semiconductor apparatuses
JP5339556B2 (en) Brazing sheet for flux-free brazing and method for producing the same
EP1634670A1 (en) Method to improve properties of aluminium alloys processed by solid state joining
JP5553250B2 (en) Dissimilar metal joining method
JP2022050355A (en) Weld filler wire for precipitation hardening type austenite iron-manganese-aluminum-carbon alloy fusion-welding
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JP2018081732A (en) Aluminum alloy substrate for magnetic disk and manufacturing method of the same
JP2005319481A (en) Manufacturing method for steel-aluminum joint structure
Zhou et al. Effect of ultrasonic vibration field on tungsten inert gas welding of magnesium alloy and galvanized steel
JP2003183730A (en) Material with ultrafine granular surface
JP2017001074A (en) Method for forging nickel-based alloy
JP5605546B2 (en) α + β type titanium alloy, method for producing the same, and method for producing titanium alloy material
JP2018168468A (en) Aluminum alloy clad material and manufacturing method therefor
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JP2007051355A (en) MANUFACTURING METHOD OF THIN Co3Ti SHEET, AND THIN Co3Ti SHEET
JP6848991B2 (en) Titanium material for hot rolling
Xu The influence of Al content from filler metals on tungsten inert gas welding-brazing of Mg-Ti
JPH08325636A (en) Production of structural part equipped with element brazed to base material
JP2020164902A (en) Joint body of target material and backing plate, and method of manufacturing joint body of target material and backing plate
WO2017018521A1 (en) Titanium material for hot rolling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140515

R151 Written notification of patent or utility model registration

Ref document number: 5553250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151