JP2013077744A - Semiconductor laser and manufacturing method of the same - Google Patents

Semiconductor laser and manufacturing method of the same Download PDF

Info

Publication number
JP2013077744A
JP2013077744A JP2011217475A JP2011217475A JP2013077744A JP 2013077744 A JP2013077744 A JP 2013077744A JP 2011217475 A JP2011217475 A JP 2011217475A JP 2011217475 A JP2011217475 A JP 2011217475A JP 2013077744 A JP2013077744 A JP 2013077744A
Authority
JP
Japan
Prior art keywords
layer
diffraction grating
semiconductor laser
distributed bragg
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011217475A
Other languages
Japanese (ja)
Other versions
JP5842520B2 (en
Inventor
Naoyuki Shimada
尚往 島田
Hitoshi Tada
仁史 多田
Yoshihei Kawatsu
善平 川津
Kenichi Ono
健一 小野
Takuto Maruyama
拓人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011217475A priority Critical patent/JP5842520B2/en
Publication of JP2013077744A publication Critical patent/JP2013077744A/en
Application granted granted Critical
Publication of JP5842520B2 publication Critical patent/JP5842520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laser having a stable oscillation wavelength and a high output by forming a distributed Bragg reflection region in high accuracy in a distributed Bragg reflection (DBR) semiconductor laser having an AlGaInP-based clad layer and an AlGaAs-based active layer.SOLUTION: A semiconductor laser includes an AlGaAs-based diffraction grating layer in an AlGaInP-based clad layer. The diffraction grating layer in a distributed Bragg reflection region is formed to have unevenness so that the diffraction grating layer remains in a thickness direction, and an uneven part is buried by a thin AlGaAs-based diffraction grating buried layer.

Description

この発明は、光ディスク、光通信、センサ等に用いられる半導体レーザ、特に分布ブラッグ反射型半導体レーザに関する。   The present invention relates to a semiconductor laser used for an optical disc, optical communication, a sensor, etc., and more particularly to a distributed Bragg reflection type semiconductor laser.

半導体レーザ(LD:Laser Diode)は、光ディスクの記録再生用の光源や光通信用として実用化され、その応用範囲は加工用、医療用、ディスプレイ用、センサ用などに拡大している。これらの用途では、Siフォトダイオードの感度が高く、人の目に見えない赤外の波長帯(830nm帯)で発振すること、発振波長が安定であること、高出力で長寿命であることを同時に求められることがある。   2. Description of the Related Art Semiconductor lasers (LD: Laser Diode) have been put into practical use as light sources for optical disc recording / playback and optical communications, and their application range has been expanded to processing, medical, display, and sensor applications. In these applications, the sensitivity of the Si photodiode is high, it oscillates in the infrared wavelength band (830 nm band) invisible to the human eye, the oscillation wavelength is stable, the high output and the long life. It may be required at the same time.

赤外の波長帯で安定な発振波長を有する半導体レーザとして、AlGaAs系の分布反射型レーザが知られている(たとえば、特許文献1)。この例では、一旦、全ての層をエピタキシャル成長した後、分布ブラッグ反射器(DBR:Distributed Bragg Reflector)を形成する領域をエッチングにより露出させ,回折格子を形成した後,再度エピタキシャル成長を行う。   As a semiconductor laser having a stable oscillation wavelength in the infrared wavelength band, an AlGaAs distributed reflection type laser is known (for example, Patent Document 1). In this example, after epitaxially growing all the layers, a region for forming a distributed Bragg reflector (DBR) is exposed by etching, and after forming a diffraction grating, epitaxial growth is performed again.

特開平7−263802号公報(段落0013〜0018、図1)JP-A-7-263802 (paragraphs 0013 to 0018, FIG. 1)

しかし、従来のAlGaAs系半導体レーザでは、新たな用途に対して、十分に高出力で長寿命なデバイスを得ることが難しかった。高出力が得られない原因のひとつは、AlGaAs系活性層からAlGaAs系クラッド層へのオーバーフローである。オーバーフローを抑制するため、AlGaAsよりバンドギャップの大きいAlGaInPをクラッド層に用いることが考えられるが、この材料系を用いた場合に、分布ブラッグ反射領域を精度よく形成することが難しかった。   However, with conventional AlGaAs semiconductor lasers, it has been difficult to obtain devices with sufficiently high output and long life for new applications. One of the reasons why high output cannot be obtained is overflow from the AlGaAs-based active layer to the AlGaAs-based cladding layer. In order to suppress overflow, it is conceivable to use AlGaInP having a band gap larger than that of AlGaAs for the cladding layer. However, when this material system is used, it is difficult to accurately form the distributed Bragg reflection region.

この発明は上述のような問題を解決するもので、AlGaInP系クラッド層とAlGaAs系活性層を有する分布ブラッグ反射型半導体レーザにおいて、分布ブラッグ反射領域を精度よく形成することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems and to form a distributed Bragg reflection region with high accuracy in a distributed Bragg reflection semiconductor laser having an AlGaInP-based cladding layer and an AlGaAs-based active layer.

この発明の半導体レーザは、レーザ発振領域と発振波長を調整する分布ブラッグ反射領域とを備えた半導体レーザであって、レーザ発振領域は、半導体基板の上に形成された第1導電型のAlGaInP系の第1クラッド層と、第1クラッド層の上に形成されたAlGaAs系の活性層と、活性層の上に形成された第2導電型のAlGaInP系の第2クラッド層と、第2クラッド層の上に形成された第2導電型のAlGaAs系の回折格子層と、回折格子層の上に形成された第2導電型のAlGaInP系の第3クラッド層とを有し、分布ブラッグ反射領域は、レーザ発振領域と第1クラッド層、活性層、第2クラッド層、回折格子層を共有し、分布ブラッグ反射領域における回折格子層は、厚み方向に回折格子層が残るように凹凸が形成されるとともに、凹凸部がAlGaAs系の回折格子埋め込み層により埋め込まれ、回折格子埋め込み層の上に、AlGaInP系の第4クラッド層を有する。   The semiconductor laser of the present invention is a semiconductor laser having a laser oscillation region and a distributed Bragg reflection region for adjusting the oscillation wavelength, and the laser oscillation region is a first conductivity type AlGaInP system formed on a semiconductor substrate. A first cladding layer, an AlGaAs-based active layer formed on the first cladding layer, a second conductivity type AlGaInP-based second cladding layer formed on the active layer, and a second cladding layer And a second conductivity type AlGaAs-based diffraction grating layer formed on the diffraction grating layer, and a second conductivity type AlGaInP-based third cladding layer formed on the diffraction grating layer, and the distributed Bragg reflection region is The laser oscillation region and the first cladding layer, the active layer, the second cladding layer, and the diffraction grating layer are shared, and the diffraction grating layer in the distributed Bragg reflection region is uneven so that the diffraction grating layer remains in the thickness direction. With the concavo-convex portion is buried by the diffraction grating buried layer an AlGaAs, on the diffraction grating buried layer, a fourth cladding layer of AlGaInP system.

この発明の半導体レーザにおいては、分布ブラッグ反射領域を精度よく形成できるので、発振波長が安定で、高出力の半導体レーザが得られる。   In the semiconductor laser of the present invention, since the distributed Bragg reflection region can be formed with high accuracy, a semiconductor laser having a stable oscillation wavelength and a high output can be obtained.

この発明の実施の形態1における半導体レーザを示す断面図である。It is sectional drawing which shows the semiconductor laser in Embodiment 1 of this invention. この発明の実施の形態2における半導体レーザを示す断面図である。It is sectional drawing which shows the semiconductor laser in Embodiment 2 of this invention. この発明の実施の形態1における半導体レーザの製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor laser in Embodiment 1 of this invention. この発明の実施の形態1における半導体レーザの上面図である。It is a top view of the semiconductor laser in Embodiment 1 of this invention.

実施の形態1
図1は、この発明実施の形態1における半導体レーザを示す断面図である。図1において、1はn型のGaAs基板、2はn型の(Al0.2Ga0.8)0.51In0.49P−nクラッド層、3はAl0.4Ga0.6As−SCH層(分離閉じ込めヘテロ構造) 、4はGaAs量子井戸(QW)層、5はAl0.4Ga0.6As−SCH層、6はp型の(Al0.25Ga0.75)0.51In0.49P−下側pクラッド層、7はp型のAl0.6Ga0.4As回折格子層、8と22はp型の(Al0.25Ga0.75)0.51In0.49P−上側pクラッド層、9と23はp型のGaAsコンタクト層、21はp型のAl0.4Ga0.6As回折格子埋め込み層である。
Embodiment 1
FIG. 1 is a cross-sectional view showing a semiconductor laser according to Embodiment 1 of the present invention. In FIG. 1, 1 is an n-type GaAs substrate, 2 is an n-type (Al 0.2 Ga 0.8 ) 0.51 In 0.49 P-n cladding layer, 3 is an Al 0.4 Ga 0.6 As-SCH layer (separated confinement heterostructure), 4 Is a GaAs quantum well (QW) layer, 5 is an Al 0.4 Ga 0.6 As-SCH layer, 6 is a p-type (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-lower p-clad layer, and 7 is a p-type Al 0.6 Ga layer. 0.4 As diffraction grating layer, 8 and 22 are p-type (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-upper p-clad layer, 9 and 23 are p-type GaAs contact layers, and 21 is p-type Al 0.4 Ga 0.6 As. It is a diffraction grating buried layer.

半導体レーザ101は、回折格子のないレーザ発振領域102と、回折格子のある分布ブラッグ反射領域103を備える。GaAs基板1の裏面側にはn電極10が形成され、回折格子のないレーザ発振領域102のGaAsコンタクト層9の上にはp電極11が形成される。   The semiconductor laser 101 includes a laser oscillation region 102 without a diffraction grating and a distributed Bragg reflection region 103 with a diffraction grating. An n-electrode 10 is formed on the back side of the GaAs substrate 1, and a p-electrode 11 is formed on the GaAs contact layer 9 in the laser oscillation region 102 without a diffraction grating.

次に、図3を用いて、この発明の一実施の形態の半導体レーザ101の製造方法を説明する。まず、図3(a)に示すようにGaAs基板1上に、nクラッド層2、SCH層3、量子井戸層4、SCH層5、下側pクラッド層6、回折格子層7、上側pクラッド層8、コンタクト層9を、この順にエピタキシャル成長する。   Next, a manufacturing method of the semiconductor laser 101 according to the embodiment of the present invention will be described with reference to FIG. First, as shown in FIG. 3A, an n cladding layer 2, an SCH layer 3, a quantum well layer 4, an SCH layer 5, a lower p cladding layer 6, a diffraction grating layer 7, and an upper p cladding are formed on a GaAs substrate 1. The layer 8 and the contact layer 9 are epitaxially grown in this order.

次に、図3(b)のように分布ブラッグ反射領域103において、回折格子層7の上まで正確にエッチングを行い,回折格子層7を露出させる。本実施の形態では、Al0.6Ga0.4As回折格子層7のV族元素はAsであり、その上の(Al0.25Ga0.75)0.51In0.49P−上側pクラッド層8のV族元素はPである。二つの層のV族元素が異なるため、特別にエッチングストップ層を形成しなくとも、塩酸によるウェットエッチングによってV族がPの上側pクラッド層8のみを選択的にエッチングすることができ、正確かつ平坦に回折格子層7を露出させることができる。 Next, as shown in FIG. 3B, in the distributed Bragg reflection region 103, the diffraction grating layer 7 is exposed by accurately etching the diffraction grating layer 7. In the present embodiment, the group V element of the Al 0.6 Ga 0.4 As diffraction grating layer 7 is As, and the group V element of the (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-upper p-cladding layer 8 is P. is there. Since the V group elements of the two layers are different, only the upper p-cladding layer 8 whose V group is P can be selectively etched by wet etching with hydrochloric acid without forming an etching stop layer. The diffraction grating layer 7 can be exposed flatly.

続いて、図3(c)のように分布ブラッグ反射領域103の回折格子層7に、電子ビーム描画とエッチングにより、回折格子の凹凸を形成する。電子ビーム描画の代わりに干渉露光法を用いて回折格子パターンを形成しても良い。そして,分布ブラッグ反射領域103に図1のように、回折格子埋め込み層21、上側pクラッド層22、コンタクト層23を、エピタキシャル成長する。上記の例では2回目の成長層にpドーピングを施しているが、ドーピングをしなくても良い。   Subsequently, as shown in FIG. 3C, unevenness of the diffraction grating is formed on the diffraction grating layer 7 in the distributed Bragg reflection region 103 by electron beam drawing and etching. A diffraction grating pattern may be formed using an interference exposure method instead of electron beam drawing. Then, as shown in FIG. 1, the diffraction grating buried layer 21, the upper p-cladding layer 22, and the contact layer 23 are epitaxially grown in the distributed Bragg reflection region 103. In the above example, the second growth layer is p-doped, but it is not necessary to dope.

この例では、Al0.6Ga0.4As回折格子層7を、厚み方向に回折格子層が残るようにエッチングして凹凸を形成した。その後、その上を覆うように、薄いAl0.4Ga0.6As回折格子埋め込み層21をエピタキシャル成長し、続いて、厚い(Al0.25Ga0.75)0.51In0.49P−上側pクラッド層22を成長した。
これは、2回目のエピタキシャル成長が、凹凸のある層への埋め込み成長で、表面状態の良い成長が難しいためである。V族がAsの層の上に比較的容易に成長できるV族がAsのAlGaAsを成長することにより、界面の表面状態が向上し、続いて成長する上側pクラッド層22の結晶性が向上し、良好な分布ブラッグ反射領域103を得ることができる。さらに回折格子層7に比べ、回折格子埋め込み層21のAl組成を小さくすることで、界面の表面状態を、より向上させることができる。
In this example, the Al 0.6 Ga 0.4 As diffraction grating layer 7 was etched so that the diffraction grating layer remained in the thickness direction to form irregularities. Thereafter, a thin Al 0.4 Ga 0.6 As diffraction grating buried layer 21 was epitaxially grown so as to cover it, and then a thick (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-upper p-clad layer 22 was grown.
This is because the second epitaxial growth is a buried growth in an uneven layer and it is difficult to grow with a good surface state. Group V can grow relatively easily on the As layer. Group V grows AsGaAs, so that the surface state of the interface is improved, and the crystallinity of the subsequently grown upper p-cladding layer 22 is improved. A favorable distributed Bragg reflection region 103 can be obtained. Furthermore, the surface state of the interface can be further improved by making the Al composition of the diffraction grating buried layer 21 smaller than that of the diffraction grating layer 7.

[比較例]前述の特許文献1では、GaInP層の回折格子層の上に、厚いAlGaAsクラッド層を形成している。この構成を適用した場合、回折格子層7の上に、直接、上側pクラッド層22を厚く形成することになる。この構成に比べ、実施の形態1の構成では、上側pクラッド層22の結晶性が向上し、良好な分布ブラッグ反射領域103を得ることができる。 [Comparative Example] In Patent Document 1 described above, a thick AlGaAs cladding layer is formed on the diffraction grating layer of the GaInP layer. When this configuration is applied, the upper p-cladding layer 22 is directly formed thick on the diffraction grating layer 7. Compared to this configuration, in the configuration of the first embodiment, the crystallinity of the upper p-cladding layer 22 is improved, and a good distributed Bragg reflection region 103 can be obtained.

なお、回折格子に必要な屈折率差は、回折格子層7よりも回折格子埋め込み層21の屈折率を大きくすること、つまりAl組成を下げたAl0.4Ga0.6Asの層を回折格子埋め込み層21として採用することで得た。 The difference in refractive index necessary for the diffraction grating is that the refractive index of the diffraction grating embedded layer 21 is made larger than that of the diffraction grating layer 7, that is, the Al 0.4 Ga 0.6 As layer having a lowered Al composition is used. Obtained by adopting as.

以上のように加工した半導体ウェハの表面側にp側電極11を形成し、続いてウェハが所定の厚さになるよう裏面側を研削・研磨し、n側電極10を形成する。その後、劈開によりウェハからレーザバーを形成し、電子ビーム蒸着により、劈開面にコーティング膜を形成する。図4は、半導体レーザ101を上から見た図である。この例では、分布ブラッグ反射領域103側の劈開面に無反射(AR)コーティング膜104、回折格子のないレーザ発振領域102側に高反射(HR)コーティング膜105を形成した。コーティング膜の作成方法は電子ビーム蒸着でなくとも、例えばスパッタリングでも良い。
その後、レーザストライプ部分をレーザチップとして切り出し、AuSnハンダを用いてAlNサブマウントにダイボンドし、Φ5.6のCANパッケージに実装し、半導体レーザ101を完成させる。
The p-side electrode 11 is formed on the front side of the semiconductor wafer processed as described above, and then the back side is ground and polished so that the wafer has a predetermined thickness, thereby forming the n-side electrode 10. Thereafter, a laser bar is formed from the wafer by cleavage, and a coating film is formed on the cleavage surface by electron beam evaporation. FIG. 4 is a view of the semiconductor laser 101 as viewed from above. In this example, an anti-reflection (AR) coating film 104 is formed on the cleavage surface on the distributed Bragg reflection region 103 side, and a high reflection (HR) coating film 105 is formed on the laser oscillation region 102 side without the diffraction grating. The method for forming the coating film may be sputtering, for example, instead of electron beam evaporation.
Thereafter, the laser stripe portion is cut out as a laser chip, die-bonded to an AlN submount using AuSn solder, and mounted on a Φ5.6 CAN package to complete the semiconductor laser 101.

このようにして作製した半導体レーザ101のp電極11とn電極間10に順方向に電圧を印加し、レーザ発振領域102に電流を流すと、この領域で発光がおこる。光は回折格子のある分布ブラッグ反射領域103で一部が反射され、レーザ発振領域102に戻り増幅され、レーザ発振がおこる。回折格子が反射するのは単一の波長の光だけなので、レーザ光の発振波長は一定になり、無反射コーティング104を施した端面から出射される。   When a voltage is applied in the forward direction between the p-electrode 11 and the n-electrode 10 of the semiconductor laser 101 fabricated as described above and a current is passed through the laser oscillation region 102, light emission occurs in this region. A part of the light is reflected by the distributed Bragg reflection region 103 having a diffraction grating, and is returned to the laser oscillation region 102 to be amplified to cause laser oscillation. Since the diffraction grating reflects only light of a single wavelength, the oscillation wavelength of the laser light is constant and is emitted from the end face on which the antireflection coating 104 is applied.

この実施の形態では、回折格子層のV族元素をAsとし、その上のクラッド層のV族元素をPとすることにより、クラッド層を選択的にエッチングして正確かつ平坦に回折格子層を露出する。露出した回折格子層を厚み方向に回折格子層が残るようにエッチングし、その上を覆うように回折格子埋め込み層を成長し、続いて上側クラッド層を形成する。これにより、AlGaInP系クラッド層とAlGaAs系活性層を有する半導体レーザに、分布ブラッグ反射領域を精度よく形成でき、発振波長が安定で、高出力の半導体レーザが得られる効果がある。   In this embodiment, the group V element of the diffraction grating layer is As, and the group V element of the cladding layer thereon is P, so that the cladding layer is selectively etched to form the diffraction grating layer accurately and flatly. Exposed. The exposed diffraction grating layer is etched so that the diffraction grating layer remains in the thickness direction, and a diffraction grating buried layer is grown so as to cover it, and then an upper cladding layer is formed. Thereby, a distributed Bragg reflection region can be accurately formed in a semiconductor laser having an AlGaInP-based clad layer and an AlGaAs-based active layer, and there is an effect that a semiconductor laser having a stable oscillation wavelength and a high output can be obtained.

実施の形態2
実施の形態1で説明したように、AlGaAsはAl組成が小さいほど屈折率が大きくなる。一方、レーザストライプに沿って伝搬するレーザ発振光は、レーザ発振領域102と分布ブラッグ反射領域103を往復伝搬するため,レーザ発振モードの電界分布が、両領域で同一形状に近いことが望ましい。これにより結合部での反射が無くなり、単一モード発振が安定に得られる。
図2は、レーザ発振領域202と分布ブラッグ反射領域203の電界分布を、同一形状
に近づける半導体レーザの構造を示す図である。レーザ発振領域202において、回折格子層7と上側pクラッド層8の間に、p型の(Al0.25Ga0.75)0.51In0.49Pバッファ層32とp型のGa0.51In0.49P電界整合層33を形成する。 Ga0.51In0.49P電界整合層33は、分布ブラッグ反射領域203とレーザ発振領域202で、レーザ発振モードの電界分布がより整合するように厚さと位置を設定する。その他の構成は、実施の形態1の図1と同一である。
Embodiment 2
As described in Embodiment 1, the refractive index of AlGaAs increases as the Al composition decreases. On the other hand, since the laser oscillation light propagating along the laser stripe propagates back and forth between the laser oscillation region 102 and the distributed Bragg reflection region 103, the electric field distribution in the laser oscillation mode is preferably close to the same shape in both regions. Thereby, reflection at the coupling portion is eliminated, and single mode oscillation is stably obtained.
FIG. 2 is a diagram showing a structure of a semiconductor laser in which the electric field distribution of the laser oscillation region 202 and the distributed Bragg reflection region 203 is brought close to the same shape. In the laser oscillation region 202, a p-type (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P buffer layer 32 and a p-type Ga 0.51 In 0.49 P electric field matching layer 33 are disposed between the diffraction grating layer 7 and the upper p-cladding layer 8. Form. The thickness and position of the Ga 0.51 In 0.49 P electric field matching layer 33 are set so that the electric field distribution in the laser oscillation mode is more matched between the distributed Bragg reflection region 203 and the laser oscillation region 202. Other configurations are the same as those of the first embodiment shown in FIG.

実施の形態2の半導体レーザ201を作製するには、実施の形態1と同様、GaAs基板1上に、nクラッド層2を3500nm、SCH層3を20nm、量子井戸層4を8nm、SCH層5を20nm、下側pクラッド層6を100nm、回折格子層7を50nm、バッファ層32を10nm、電界整合層33を80nm、上側pクラッド層8を1500nm、コンタクト層9を200nm、順にエピタキシャル成長する。   In order to manufacture the semiconductor laser 201 of the second embodiment, the n-cladding layer 2 is 3500 nm, the SCH layer 3 is 20 nm, the quantum well layer 4 is 8 nm, and the SCH layer 5 is formed on the GaAs substrate 1 as in the first embodiment. 20 nm, the lower p-cladding layer 6 is 100 nm, the diffraction grating layer 7 is 50 nm, the buffer layer 32 is 10 nm, the electric field matching layer 33 is 80 nm, the upper p-cladding layer 8 is 1500 nm, and the contact layer 9 is 200 nm in this order.

次に、分布ブラッグ反射領域103において、回折格子層7の上まで正確にエッチングを行い,回折格子層7を露出させる。回折格子層7はAl0.6Ga0.4As、その上のバッファ層32/電界整合層33/上側pクラッド層8は、(Al0.25Ga0.75)0.51In0.49P/Ga0.51In0.49P/(Al0.25Ga0.75)0.51In0.49Pであり、V族がAsの層とV族がPの層の組合せとなるので、実施の形態1と同様、V族がPの層のみを選択的にエッチングして、正確かつ平坦に回折格子層7を露出させることができる。 Next, in the distributed Bragg reflection region 103, etching is performed accurately up to the top of the diffraction grating layer 7 to expose the diffraction grating layer 7. The diffraction grating layer 7 is Al 0.6 Ga 0.4 As, and the buffer layer 32 / electric field matching layer 33 / upper p-cladding layer 8 is (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P / Ga 0.51 In 0.49 P / (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P, and the combination of the V group As layer and the V group P layer is the same as in the first embodiment, and only the V group P layer is selectively etched. The diffraction grating layer 7 can be exposed accurately and flatly.

続いて、分布ブラッグ反射領域103の回折格子層7に、電子ビーム描画とエッチングにより、深さ35nmの回折格子の凹凸を形成する。そして、分布ブラッグ反射領域103に、回折格子埋め込み層21を40nm、上側pクラッド層22を1568nm、コンタクト層23を200nm、エピタキシャル成長する。
その後の工程は、実施の形態1と同様に行い、半導体レーザ201を作製することができる。
Subsequently, unevenness of a diffraction grating having a depth of 35 nm is formed on the diffraction grating layer 7 in the distributed Bragg reflection region 103 by electron beam drawing and etching. Then, in the distributed Bragg reflection region 103, the diffraction grating buried layer 21 is epitaxially grown by 40 nm, the upper p-cladding layer 22 is 1568 nm, and the contact layer 23 is 200 nm.
Subsequent steps are performed in the same manner as in Embodiment Mode 1, and the semiconductor laser 201 can be manufactured.

実施の形態2では、レーザ発振領域202と、分布ブラッグ反射領域203の結合部での反射が低減され、単一モード発振が安定に得られる効果がある。   In the second embodiment, reflection at the coupling portion between the laser oscillation region 202 and the distributed Bragg reflection region 203 is reduced, and there is an effect that single mode oscillation can be stably obtained.

上記の例では、クラッド層、電界整合層を(Al0.2Ga0.8)0.51In0.49P等としたが、AlGaInP系であれば、目的に合わせて組成を選ぶことができる。ここで、AlGaInP系とは、GaAs基板と格子整合する(AlGa1−x)0.51In0.49P(0≦x≦1)を意味する。
また、量子井戸をGaAs、SCH層をAl0.4Ga0.6Asとしたが、AlGaAs系であれば、発振波長や光閉込など、目的に合わせて組成を選ぶことができ、単一井戸でなく多重量子井戸とすることもできる。ここで、AlGaAs系とは、AlGa1−xAs(0≦x≦1)を意味する。
また、回折格子層をAl0.6Ga0.4As、回折格子埋め込み層をAl0.4Ga0.6Asとしたが、AlGaAs系であれば、選択エッチング、選択成長、回折格子としての屈折率等を考慮して、目的に合わせて組成を選ぶことができる。
図1〜3では、回折格子の凹凸として矩形形状のものを示したが、三角形ののこぎり形状や滑らかな波型形状でもよい。
In the above example, the cladding layer and the electric field matching layer are (Al 0.2 Ga 0.8 ) 0.51 In 0.49 P or the like, but if it is an AlGaInP system, the composition can be selected according to the purpose. Here, the AlGaInP system means (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1) lattice-matched with the GaAs substrate.
In addition, although the quantum well is GaAs and the SCH layer is Al 0.4 Ga 0.6 As, if it is an AlGaAs system, the composition can be selected according to the purpose, such as the oscillation wavelength and optical confinement. It can also be a quantum well. Here, the AlGaAs system means Al x Ga 1-x As (0 ≦ x ≦ 1).
Further, although the diffraction grating layer is Al 0.6 Ga 0.4 As and the diffraction grating buried layer is Al 0.4 Ga 0.6 As, in the case of AlGaAs, in consideration of selective etching, selective growth, refractive index as a diffraction grating, etc. The composition can be selected according to the purpose.
In FIGS. 1-3, although the rectangular thing was shown as the unevenness | corrugation of a diffraction grating, the shape of a triangular saw and smooth wave shape may be sufficient.

1 GaAs基板
2 (Al0.2Ga0.8)0.51In0.49P−nクラッド層、
3 Al0.4Ga0.6As−SCH層
4 GaAs量子井戸(QW)層
5 Al0.4Ga0.6As−SCH層
6 (Al0.25Ga0.75)0.51In0.49P−下側pクラッド層、
7 Al0.6Ga0.4As回折格子層、
8、22 (Al0.25Ga0.75)0.51In0.49P−上側pクラッド層、
9、23 GaAsコンタクト層、
10 n電極
21 Al0.4Ga0.6As回折格子埋め込み層
11 p電極
101 半導体レーザ
102 レーザ発振領域
103 分布ブラッグ反射領域
1 GaAs substrate
2 (Al 0.2 Ga 0.8 ) 0.51 In 0.49 P-n cladding layer,
3 Al 0.4 Ga 0.6 As-SCH layer 4 GaAs quantum well (QW) layer 5 Al 0.4 Ga 0.6 As-SCH layer 6 (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-lower p-clad layer,
7 Al 0.6 Ga 0.4 As diffraction grating layer,
8, 22 (Al 0.25 Ga 0.75 ) 0.51 In 0.49 P-upper p-clad layer,
9, 23 GaAs contact layer,
10 n electrode 21 Al 0.4 Ga 0.6 As diffraction grating buried layer
11 p-electrode 101 semiconductor laser 102 laser oscillation region 103 distributed Bragg reflection region

Claims (5)

半導体基板上に、レーザ発振領域と発振波長を調整する分布ブラッグ反射領域と、
を備えた半導体レーザであって、
前記レーザ発振領域は、前記半導体基板の上に形成された第1導電型の
(AlGa1−x)0.51In0.49P(0≦x≦1)の第1クラッド層と、
前記第1クラッド層の上に形成されたAlGa1−xAs(0≦x≦1)の活性層と、
前記活性層の上に形成された第2導電型の
(AlGa1−x)0.51In0.49P(0≦x≦1)の第2クラッド層と、
前記第2クラッド層の上に形成された第2導電型のAlGa1−xAs(0≦x≦1)の回折格子層と、
前記回折格子層の上に形成された第2導電型の
(AlGa1−x)0.51In0.49P(0≦x≦1)の第3クラッド層と、
を有し、
前記分布ブラッグ反射領域は、前記第1クラッド層、前記活性層、前記第2クラッド層、前記回折格子層を共有し、
前記分布ブラッグ反射領域における回折格子層は、厚み方向に回折格子層が残るように凹凸が形成されるとともに、前記凹凸部がAlGa1−xAs(0≦x≦1)の回折格子埋め込み層により埋め込まれ、
前記回折格子埋め込み層の上に、
(AlGa1−x)0.51In0.49P(0≦x≦1)の第4クラッド層を
有する半導体レーザ。
On the semiconductor substrate, a laser oscillation region and a distributed Bragg reflection region for adjusting the oscillation wavelength,
A semiconductor laser comprising:
The laser oscillation region has a first conductivity type formed on the semiconductor substrate.
A first cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1);
An active layer of Al x Ga 1-x As (0 ≦ x ≦ 1) formed on the first cladding layer;
A second conductivity type formed on the active layer;
A second cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1);
A diffraction grating layer of Al x Ga 1-x As (0 ≦ x ≦ 1) of the second conductivity type formed on the second cladding layer;
A second conductivity type formed on the diffraction grating layer;
A third cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1);
Have
The distributed Bragg reflection region shares the first cladding layer, the active layer, the second cladding layer, and the diffraction grating layer,
The diffraction grating layer in the distributed Bragg reflection region is formed with unevenness so that the diffraction grating layer remains in the thickness direction, and the uneven part is embedded in the diffraction grating of Al x Ga 1-x As (0 ≦ x ≦ 1). Embedded by layer,
On the diffraction grating buried layer,
A semiconductor laser having a fourth cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1).
前記回折格子層のAl組成が、前記回折格子埋め込み層のAl組成より大きいことを特徴とする請求項1に記載の半導体レーザ。 2. The semiconductor laser according to claim 1, wherein an Al composition of the diffraction grating layer is larger than an Al composition of the diffraction grating buried layer. 前記レーザ発振領域において、前記回折格子層と前記第3クラッド層の間に、
(AlGa1−x)0.51In0.49P(0≦x≦1)の電界整合層を有する
ことを特徴とする請求項1に記載の半導体レーザ。
In the laser oscillation region, between the diffraction grating layer and the third cladding layer,
The semiconductor laser according to claim 1, further comprising an electric field matching layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1).
半導体基板上に、レーザ発振領域と発振波長を調整する分布ブラッグ反射領域と、
を備えた半導体レーザの製造方法であって、
前記半導体基板の上に、
第1導電型の(AlGa1−x)0.51In0.49P(0≦x≦1)の第1クラッド層、
AlGa1−xAs(0≦x≦1)の活性層、
第2導電型の(AlGa1−x)0.51In0.49P(0≦x≦1)の第2クラッド層、
第2導電型のAlGa1−xAs(0≦x≦1)の回折格子層、
第2導電型の(AlGa1−x)0.51In0.49P(0≦x≦1)の第3クラッド層を、この順番に形成する工程と、
前記分布ブラッグ反射領域における前記第3クラッド層を、
前記回折格子層に達するまでエッチングして除去する工程と、
前記回折格子層を厚み方向に回折格子層が残るようにエッチングして凹凸を形成する工程と、
前記凹凸が形成された回折格子層をAlGa1−xAs(0≦x≦1)の
回折格子埋め込み層により埋め込む工程と、
前記回折格子埋め込み層の上に
(AlGa1−x)0.51In0.49P(0≦x≦1)の第4クラッド層を形成する工程と、
を有する半導体レーザの製造方法。
On the semiconductor substrate, a laser oscillation region and a distributed Bragg reflection region for adjusting the oscillation wavelength,
A method of manufacturing a semiconductor laser comprising:
On the semiconductor substrate,
A first cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1) of the first conductivity type;
An active layer of Al x Ga 1-x As (0 ≦ x ≦ 1),
A second cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1) of the second conductivity type,
A diffraction grating layer of Al x Ga 1-x As (0 ≦ x ≦ 1) of the second conductivity type,
Forming a third clad layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1) of the second conductivity type in this order;
The third cladding layer in the distributed Bragg reflection region;
Etching and removing until reaching the diffraction grating layer;
Etching the diffraction grating layer so that the diffraction grating layer remains in the thickness direction to form irregularities;
A step of embedding the diffraction grating layer in which the irregularities are formed with a diffraction grating embedding layer of Al x Ga 1-x As (0 ≦ x ≦ 1);
On the diffraction grating buried layer
Forming a fourth cladding layer of (Al x Ga 1-x ) 0.51 In 0.49 P (0 ≦ x ≦ 1);
A method for manufacturing a semiconductor laser comprising:
前記回折格子層のAl組成が、前記回折格子埋め込み層のAl組成より大きいことを特徴とする請求項4に記載の半導体レーザ。 5. The semiconductor laser according to claim 4, wherein an Al composition of the diffraction grating layer is larger than an Al composition of the diffraction grating buried layer.
JP2011217475A 2011-09-30 2011-09-30 Semiconductor laser and manufacturing method thereof Active JP5842520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217475A JP5842520B2 (en) 2011-09-30 2011-09-30 Semiconductor laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217475A JP5842520B2 (en) 2011-09-30 2011-09-30 Semiconductor laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013077744A true JP2013077744A (en) 2013-04-25
JP5842520B2 JP5842520B2 (en) 2016-01-13

Family

ID=48480996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217475A Active JP5842520B2 (en) 2011-09-30 2011-09-30 Semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5842520B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722713A (en) * 1993-06-28 1995-01-24 Philips Electron Nv Light emitting semiconductor diode and manufacture thereof
JPH07146456A (en) * 1993-11-22 1995-06-06 Canon Inc Integrated type semiconductor device and optical communication network using it
JPH07263802A (en) * 1994-03-17 1995-10-13 Fuji Photo Film Co Ltd Manufacture of semiconductor light emitting element
JPH0969664A (en) * 1995-08-31 1997-03-11 Sharp Corp Ridge waveguide type distributed feedback semiconductor laser device and manufacture thereof
JP2003017813A (en) * 2000-10-04 2003-01-17 Matsushita Electric Ind Co Ltd Semiconductor laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722713A (en) * 1993-06-28 1995-01-24 Philips Electron Nv Light emitting semiconductor diode and manufacture thereof
JPH07146456A (en) * 1993-11-22 1995-06-06 Canon Inc Integrated type semiconductor device and optical communication network using it
JPH07263802A (en) * 1994-03-17 1995-10-13 Fuji Photo Film Co Ltd Manufacture of semiconductor light emitting element
JPH0969664A (en) * 1995-08-31 1997-03-11 Sharp Corp Ridge waveguide type distributed feedback semiconductor laser device and manufacture thereof
JP2003017813A (en) * 2000-10-04 2003-01-17 Matsushita Electric Ind Co Ltd Semiconductor laser

Also Published As

Publication number Publication date
JP5842520B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US8279906B2 (en) Laser diode and method of manufacturing the same
KR100651705B1 (en) Semiconductor laser apparatus and light pickup appratus using the same
US20090168827A1 (en) Nitride semiconductor laser chip and method of fabricating same
JP5948776B2 (en) Light emitting device and manufacturing method thereof
JP5099948B2 (en) Distributed feedback laser diode
US8569088B2 (en) Semiconductor light-emitting element and manufacturing method thereof
US20090232178A1 (en) Two-wavelength semiconductor laser device
JP2010003883A (en) Semiconductor laser device, optical module, and optical transceiver
JP4935676B2 (en) Semiconductor light emitting device
JPH11506273A (en) Radiation-emitting semiconductor diode with a separate confinement layer of a semiconductor material containing up to 30% of aluminum or a semiconductor material without aluminum
JP3932466B2 (en) Semiconductor laser
JP2980302B2 (en) Semiconductor laser
JP5842520B2 (en) Semiconductor laser and manufacturing method thereof
JP2613975B2 (en) Periodic gain type semiconductor laser device
US8605767B2 (en) Long semiconductor laser cavity in a compact chip
JP2010123726A (en) Semiconductor laser and manufacturing method thereof
JP3802465B2 (en) Vertical cavity surface emitting semiconductor laser
JP3063684B2 (en) Semiconductor laser and manufacturing method thereof
JP2006179565A (en) Semiconductor laser device
JP4163343B2 (en) Light emitting device and light emitting device module
JP3157671B2 (en) Semiconductor laser device and manufacturing method
JP2003174231A (en) GaN SEMICONDUCTOR LASER DEVICE
JP2009141382A (en) Semiconductor laser device, and light pickup device using the same
JP2000183463A (en) Semiconductor laser and its manufacturing method
JP2008004958A (en) Light emitting element and light emitting element module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250