JP2013076511A - Freezing apparatus and defrosting method for the same - Google Patents

Freezing apparatus and defrosting method for the same Download PDF

Info

Publication number
JP2013076511A
JP2013076511A JP2011216638A JP2011216638A JP2013076511A JP 2013076511 A JP2013076511 A JP 2013076511A JP 2011216638 A JP2011216638 A JP 2011216638A JP 2011216638 A JP2011216638 A JP 2011216638A JP 2013076511 A JP2013076511 A JP 2013076511A
Authority
JP
Japan
Prior art keywords
liquid
receiver
air cooler
refrigerant circuit
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011216638A
Other languages
Japanese (ja)
Inventor
Hideyo Asano
英世 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2011216638A priority Critical patent/JP2013076511A/en
Priority to KR1020120096172A priority patent/KR20130035868A/en
Publication of JP2013076511A publication Critical patent/JP2013076511A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost defrosting means capable of suppressing the consumption of excess electric power by utilizing electric power required for reducing a temperature of a load handling room without adopting a sprinkling system or an electric heater system.SOLUTION: An air cooler 26d or the like is arranged in each of load handling rooms 7A to C and a first liquid receiver 42 for circulating a COsolution is arranged in the air cooler 26d or the like. The first liquid receiver 42 is held at a high pressure of a degree of 4.0 MPa capable of storing the COsolution of 5-10°C. During the defrost operation of the air coolers 26a to c installed in freezing rooms 5A to C, interiors of the load handling rooms 7A to C are cooled and the COsolution collecting the retaining heat of the load handling rooms is supplied to the air coolers 26a to c to perform defrosting.

Description

本発明は、荷捌き室を備えた冷凍庫の冷凍装置に係り、荷捌き室の空調で回収した熱を利用して冷凍庫の空気冷却器のデフロストを行うものである。   The present invention relates to a refrigeration apparatus for a freezer provided with a cargo handling room, and defrosts an air cooler of the freezer using heat recovered by air conditioning in the cargo handling room.

地球環境保全の観点から、自然冷媒を用いた冷凍装置が見直されてきている。自然冷媒のうち、NHはオゾン破壊係数ゼロ、及び地球温暖化係数がほぼゼロであり、かつ冷媒としての性能が優れているので、NHを冷媒として用いる冷凍装置が増加している。しかし、NHは毒性があるため、比較的安全であり、熱を運ぶ媒体として優れた特徴をもつCO液を二次冷媒として使用する冷凍装置が多く採用されている。 From the viewpoint of global environmental conservation, refrigeration systems using natural refrigerants have been reviewed. Among natural refrigerants, NH 3 has an ozone depletion coefficient of zero and a global warming coefficient of almost zero, and has excellent performance as a refrigerant. Therefore, the number of refrigeration apparatuses using NH 3 as a refrigerant is increasing. However, since NH 3 is toxic, it is relatively safe and many refrigeration apparatuses using a CO 2 liquid having excellent characteristics as a medium for carrying heat as a secondary refrigerant have been adopted.

特許文献1の図8には、荷捌き室を備え、かつNH/CO冷凍装置を備えた冷凍庫が開示されている。この冷凍庫の構成を図4により説明する。図4において、この冷凍装置100は、屋外ユニットAと冷凍庫Bの内部に設けられたCOブラインによる天吊り型空気冷却器118とから構成されている。屋外ユニットAには、NH循環路(一次冷媒回路)102に、圧縮機104、蒸発式凝縮器(エバコン)106、カスケードコンデンサ108及び膨張弁110が設けられ、冷凍サイクルを形成している。 FIG. 8 of Patent Document 1 discloses a freezer having a cargo handling chamber and an NH 3 / CO 2 refrigeration apparatus. The structure of this freezer will be described with reference to FIG. In FIG. 4, the refrigeration apparatus 100 includes an outdoor unit A and a ceiling-mounted air cooler 118 using CO 2 brine provided inside a freezer B. In the outdoor unit A, an NH 3 circulation path (primary refrigerant circuit) 102 is provided with a compressor 104, an evaporative condenser (evaporator) 106, a cascade condenser 108, and an expansion valve 110 to form a refrigeration cycle.

カスケードコンデンサ108にCO循環路(二次冷媒回路)112が接続されている。CO循環路112には、受液器114、液ポンプ116、及び前記天吊り型空気冷却器118が設けられている。カスケードコンデンサ108で、NHによってCOブラインが冷却され、冷却されたCOブラインは、天吊り型空気冷却器118で冷凍庫B内の空気を冷却する。空気を冷却してガス化したCOブラインは、ブラインクーラ(カスケードコンデンサ)108でNHによって冷却され液化する。このサイクルを繰り返すことで、一次冷媒回路102を循環するNHによって、間接的に冷凍庫B内の空気を冷却している。 A CO 2 circulation path (secondary refrigerant circuit) 112 is connected to the cascade capacitor 108. The CO 2 circulation path 112 is provided with a liquid receiver 114, a liquid pump 116, and the ceiling air cooler 118. In the cascade condenser 108, the CO 2 brine is cooled by NH 3 , and the cooled CO 2 brine cools the air in the freezer B by the ceiling air cooler 118. The CO 2 brine gasified by cooling the air is cooled and liquefied by NH 3 in a brine cooler (cascade condenser) 108. By repeating this cycle, the air in the freezer B is indirectly cooled by NH 3 circulating in the primary refrigerant circuit 102.

冷凍庫に隣接して荷捌き室が設けられている。保管型冷凍庫と比べて、被冷凍品が頻繁に出し入れされる物流型冷凍庫では、頻繁な入出庫作業に対応すると共に、HACCP(食品の危害分析・重要管理点方式)対策や、品温維持等の品質対策から、広い面積の荷捌き室が必要とされてきている。また、荷捌き室は、低温化及び密閉化の傾向にある。特許文献2には、荷捌き室の外気侵入による結露の発生を抑制するため、ドックシェルタと低温密閉化された荷捌き室の開口部との間に、ユニットクーラを備えた除湿室を設けた構成が開示されている。   There is a cargo handling room adjacent to the freezer. Compared to storage-type freezers, logistics-type freezers where goods to be frozen are frequently put in and out respond to frequent loading and unloading operations, HACCP (Food Hazard Analysis / Important Control Point System) measures, product temperature maintenance, etc. Due to the quality measures, a large-sized cargo handling room has been required. Also, the cargo handling room tends to be cold and sealed. In Patent Document 2, a dehumidification chamber provided with a unit cooler is provided between the dock shelter and the opening of the cargo handling chamber that is sealed at a low temperature in order to suppress the occurrence of condensation due to intrusion of outside air into the cargo handling chamber. A configuration is disclosed.

一方、冷凍庫内の空気に含まれる水蒸気は、空気冷却器の中で、低温のCOで冷却される冷却面で凝縮固化し、霜となって蓄積されてくる。この霜が伝熱を阻害し、冷凍装置の熱効率を低下させるので、定期的に除霜する必要がある。COを二次冷媒とする冷凍装置では、一般的に常温水を冷却面に散布する散水式デフロストが行われている。しかし、散水式デフロストは、除霜が確実に行われる点で優れているが、低温雰囲気の冷凍庫内に常温水を導く必要があり、凍結防止など様々な対策を講じる必要がある。また、散布した常温水が霜の形成を助長するという、デフロストと逆行する面をもっている。 On the other hand, the water vapor contained in the air in the freezer condenses and solidifies on the cooling surface cooled by low-temperature CO 2 in the air cooler, and accumulates as frost. Since this frost hinders heat transfer and reduces the thermal efficiency of the refrigeration apparatus, it is necessary to defrost regularly. In a refrigeration apparatus using CO 2 as a secondary refrigerant, water spray type defrost is generally performed in which normal temperature water is sprayed onto a cooling surface. However, sprinkling type defrost is superior in that defrosting is reliably performed, but it is necessary to introduce room temperature water into a freezer in a low temperature atmosphere, and various measures such as prevention of freezing must be taken. In addition, the sprayed room-temperature water promotes the formation of frost and has a surface opposite to defrost.

そこで、散水を行わないデフロスト方法が求められる。水を用いないデフロスト方法として、ひとつは電気ヒーター式がある。この方式は、空気冷却器の内部に電気ヒーターを組み込み、デフロスト時に通電して加熱し、霜を溶かす方法である。別なデフロスト方法は、冷凍装置の圧縮機の吐出ガスの保有熱を利用するホットガス方式がある。特許文献3及び特許文献4には、NH/CO冷凍装置において、圧縮機吐出側の高温のCOガスを空気冷却器に導入して冷却面に付着した霜を溶かすホットガス方式のデフロスト手段が開示されている。 Therefore, a defrost method that does not perform watering is required. One defrosting method that does not use water is an electric heater type. This method is a method in which an electric heater is incorporated in the air cooler and energized and heated during defrosting to melt frost. As another defrost method, there is a hot gas system that uses the retained heat of the discharge gas of the compressor of the refrigeration apparatus. In Patent Document 3 and Patent Document 4, in the NH 3 / CO 2 refrigeration apparatus, a hot gas type defrost that melts frost adhering to the cooling surface by introducing high-temperature CO 2 gas on the compressor discharge side into the air cooler. Means are disclosed.

特開平2005―172416号公報(図8)Japanese Patent Laid-Open No. 2005-172416 (FIG. 8) 特開2002―303477号公報Japanese Patent Laid-Open No. 2002-303477 米国特許第5、400、615号公報US Pat. No. 5,400,615 国際公開WO02/066908(A1)号公報International Publication No. WO02 / 066908 (A1)

散水式デフロストは、除霜が確実に行われる点で優れているが、前述の問題がある。電気ヒーター方式は、電気ヒーターを加熱するために使用する電力は消費電力となり、余分な電力を消費すると共に、空気冷却器を加熱した分だけ冷凍庫の低温保持と逆行し、冷凍装置の熱効率が低下するという問題がある。   Watering type defrost is excellent in that defrosting is performed reliably, but has the above-mentioned problems. In the electric heater method, the electric power used to heat the electric heater becomes power consumption, which consumes extra power, and reverses the low temperature maintenance of the freezer for the amount of heating of the air cooler, reducing the thermal efficiency of the refrigeration equipment There is a problem of doing.

また、圧縮機の吐出ガスを利用するホットガス方式は、吐出ガスがCOである場合、20〜30℃で5.0MPa付近の高圧となる。そのため、高圧のCOガスを流す配管や構造物を高強度にする必要があり、余分なコストがかかる。また、デフロストするために冷凍装置を運転する必要があり、余分な電力を消費する。 Moreover, the hot gas system using the discharge gas of the compressor has a high pressure around 5.0 MPa at 20 to 30 ° C. when the discharge gas is CO 2 . For this reason, it is necessary to increase the strength of piping and structures through which high-pressure CO 2 gas flows, and extra costs are required. In addition, it is necessary to operate the refrigeration apparatus for defrosting, which consumes extra power.

本発明は、かかる従来技術の課題に鑑み、密閉化され低温化された荷捌き室を備えた冷凍庫において、散水式や電気ヒーター式を採用せず、荷捌き室の低温化に要する電力を利用することで、余分な電力を消費しない低コストなデフロスト手段を実現することを目的とする。   In view of the problems of the prior art, the present invention uses electric power required for lowering the temperature of the cargo handling room without using a watering type or an electric heater type in a freezer having a sealed and temperature-lowered cargo handling room. Thus, an object of the present invention is to realize a low-cost defrost unit that does not consume extra power.

かかる目的を達成するため、本発明の冷凍装置のデフロスト方法は、荷捌き室を備えた冷凍庫に設けられ、NHを冷媒とし冷凍サイクルを構成する一次冷媒回路と、該一次冷媒回路と接続されNHによって冷却されたCO液が循環する二次冷媒回路と、該二次冷媒回路に介設され冷凍庫内に設けられた第1の空気冷却器とを備えた冷凍装置のデフロスト方法において、荷捌き室に設けられた第2の空気冷却器と、CO液を0℃を超え常温以下の温度で貯留可能なように圧力調整された第1の受液器との間にCO液を循環させ、荷捌き室を0℃を超え常温以下の温度に冷却する荷捌き室冷却工程と、荷捌き室冷却工程で荷捌き室の保有熱を回収し、CO液を第1の受液器から第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行うデフロスト工程とからなるものである。 In order to achieve this object, a defrosting method for a refrigeration apparatus according to the present invention is provided in a freezer having a cargo handling chamber, and is connected to a primary refrigerant circuit that constitutes a refrigeration cycle using NH 3 as a refrigerant, and the primary refrigerant circuit. In a defrosting method for a refrigeration apparatus comprising a secondary refrigerant circuit in which a CO 2 liquid cooled by NH 3 circulates, and a first air cooler provided in the freezer interposed in the secondary refrigerant circuit, CO 2 fluid between a second air cooler provided in the handling chamber, a first receiver that the CO 2 fluid is pressure adjusted so as to be stored at room temperature below the temperature exceed 0 ℃ The cargo handling room cooling process for cooling the handling room to a temperature exceeding 0 ° C. and below room temperature, and the heat stored in the handling room is recovered in the handling room cooling process, and the CO 2 liquid is first received. Circulate from the liquid to the first air cooler, It is made of the defrost step of carrying out the frost.

本発明方法では、第1の受液器を圧力調整し、0℃を超え常温以下、例えば5〜10℃の飽和温度を有するCO液を溜めておく。このCO液を荷捌き室に設けられた第2の空気冷却器に循環させ、荷捌き室を0℃を超え常温以下、例えば10〜15℃に冷却する。次に、冷凍庫のデフロスト工程時に、荷捌き室の保有熱を回収したデフロスト可能な温度を有するCO液を第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行う。このように、荷捌き室から回収した熱を用いて冷凍庫のデフロストを行うので、余分な電力を消費することなく、低コストで冷凍庫のデフロストが可能になる。 In the method of the present invention, the pressure of the first receiver is adjusted, and a CO 2 liquid having a saturation temperature exceeding 0 ° C. and below normal temperature, for example, 5 to 10 ° C. is stored. This CO 2 liquid is circulated through a second air cooler provided in the handling chamber, and the handling chamber is cooled to a temperature exceeding 0 ° C. and below normal temperature, for example, 10 to 15 ° C. Next, at the time of the defrosting process of the freezer, the CO 2 liquid having a defrostable temperature recovered from the heat stored in the cargo handling chamber is circulated to the first air cooler to defrost the first air cooler. Thus, since the freezer is defrosted using the heat recovered from the cargo handling chamber, the freezer can be defrosted at low cost without consuming excess power.

また、特許文献3及び4のように、COホットガスを用いたデフロストではなく、CO液の顕熱によるデフロストであるので、安定した加熱が可能である。また、CO液を用いているので、高圧とならず、耐圧配管や耐圧機器の配設が不要になる。さらに、COホットガスを用いる場合のように、デフロストのために冷凍装置を運転する必要はなく、第1の受液器に貯留されたCO液を利用だけであるので、余分な電力を消費しないで済む。 In addition, as disclosed in Patent Documents 3 and 4, defrosting is not performed using CO 2 hot gas but sensible heat of the CO 2 liquid, so that stable heating is possible. Moreover, since the CO 2 liquid is used, the pressure does not become high, and the installation of pressure-resistant piping and pressure-resistant equipment becomes unnecessary. Furthermore, unlike the case where CO 2 hot gas is used, it is not necessary to operate the refrigeration apparatus for defrosting, and only the CO 2 liquid stored in the first receiver is used, so that extra power is consumed. No need to consume.

本発明方法において、デフロスト工程は、冷凍庫の通常冷凍運転終了後に、第1の空気冷却器に残留するCO液を第1の受液器に戻す前工程と、第1の空気冷却器のデフロスト終了後に第1の空気冷却器に残留するCO液を第1の受液器に戻す後工程とを伴うものであり、第1の受液器のCO液の液面レベルが設定値を超えたら、第1の受液器のCO液を二次冷媒回路に設けられた第2の受液器に移送し、第1の受液器のCO液面レベルを設定値以下に制御するCO液面制御工程がさらに付加されるとよい。 In the method of the present invention, the defrost process includes a pre-process for returning the CO 2 liquid remaining in the first air cooler to the first receiver after the normal freezing operation of the freezer, and a defrost of the first air cooler. And a post-process for returning the CO 2 liquid remaining in the first air cooler to the first receiver after completion, and the liquid level of the CO 2 liquid in the first receiver is set to the set value. If exceeded, the CO 2 liquid of the first liquid receiver is transferred to the second liquid receiver provided in the secondary refrigerant circuit, and the CO 2 liquid level of the first liquid receiver is controlled below the set value. A CO 2 liquid level control process to be performed may be further added.

0℃を超え常温以下の飽和温度を有するCO液を貯留する第1の受液器は、0℃未満の冷凍温度の飽和温度を有するCO液を貯留する第2の受液器より高圧に保持される。そのため、一旦第2の受液器に貯留されたCO液を第1の受液器に戻すことは困難であり、その逆は容易である。従って、デフロスト工程の開始時及び終了時に第1の空気冷却器に残留しているCO液を常に第1の受液器に戻すことで、第1の受液器に貯留されるCO液量を常に多くしておく。第1の受液器の貯留されたCO液の液面レベルが設定値を超えたら、第2の受液器にCO液を送って第1の受液器の貯留量を適正に保つ。これによって、第1の受液器及び第2の受液器の貯留量を適正に保持できる。 The first liquid receiver that stores the CO 2 liquid having a saturation temperature of more than 0 ° C. and not more than room temperature is higher in pressure than the second liquid receiver that stores the CO 2 liquid having the saturation temperature of the freezing temperature of less than 0 ° C. Retained. Therefore, it is difficult to return the CO 2 liquid once stored in the second receiver to the first receiver, and vice versa. Accordingly, the CO 2 liquid remaining in the first air cooler at the start and end of the defrost process is always returned to the first liquid receiver, so that the CO 2 liquid stored in the first liquid receiver. Keep the amount always high. When the first receiver of pooled CO 2 liquid liquid level exceeds the set value, maintain proper storage amount of the first receiver sends a CO 2 liquid to the second liquid receiver . Thereby, the storage amount of the first liquid receiver and the second liquid receiver can be appropriately maintained.

前記本発明方法の実施に直接使用可能な本発明の冷凍装置は、荷捌き室を備えた冷凍庫に設けられ、NHを冷媒とし冷凍サイクルを構成する一次冷媒回路と、該一次冷媒回路と接続されNHによって冷却されたCO液が循環する二次冷媒回路と、該二次冷媒回路に介設され冷凍庫内に設けられた第1の空気冷却器とを備えた冷凍装置において、荷捌き室に設けられた第2の空気冷却器と、CO液を0℃を超え常温以下の温度で貯留可能なように圧力調整された第1の受液器と、第2の空気冷却器と第1の受液器との間に配設された第1のCO循環路と、からなる荷捌き室冷却部と、第1の受液器と第1の空気冷却器との間に接続された第2のCO循環路とを備え、通常凍結運転時に第1の受液器かのCO液を第2の空気冷却器に循環させ、荷捌き室を冷却すると共に、デフロスト運転時に、第1の受液器のCO液を第2のCO循環路を介して第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行うようにしたものである。 The refrigeration apparatus of the present invention that can be directly used for carrying out the method of the present invention is provided in a freezer having a cargo handling chamber, and a primary refrigerant circuit constituting a refrigeration cycle using NH 3 as a refrigerant, and connected to the primary refrigerant circuit A refrigerating apparatus comprising a secondary refrigerant circuit in which a CO 2 liquid cooled by NH 3 is circulated and a first air cooler provided in the freezer and interposed in the secondary refrigerant circuit. A second air cooler provided in the chamber, a first liquid receiver whose pressure is adjusted so that the CO 2 liquid can be stored at a temperature higher than 0 ° C. and lower than normal temperature, and a second air cooler, A first CO 2 circulation path disposed between the first liquid receiver, a cargo handling room cooling section comprising the first CO 2 circulation path, and a connection between the first liquid receiver and the first air cooler. The second CO 2 circulation path, and the second air cooling of the CO 2 liquid in the first receiver during the normal freezing operation. Circulates in the rejector, cools the cargo handling chamber, and circulates the CO 2 liquid in the first receiver through the second CO 2 circulation path to the first air cooler during the defrost operation, The defrosting of the air cooler No. 1 is performed.

本発明装置では、第1の受液器を圧力調整し、0℃を超え常温以下、例えば5〜10℃の飽和温度を有するCO液を溜めておく。このCO液を第2の空気冷却器に循環させ、荷捌き室を0℃を超え常温以下、例えば10〜15℃に冷却する。次に、冷凍庫のデフロスト工程時に、荷捌き室の保有熱を回収したデフロスト可能な温度を有するCO液を第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行う。このように、荷捌き室から回収した熱を用いて冷凍庫のデフロストを行うので、余分な電力を消費することなく、低コストで冷凍庫のデフロストが可能になる。 In the apparatus of the present invention, the pressure of the first liquid receiver is adjusted, and a CO 2 liquid having a saturation temperature exceeding 0 ° C. and below normal temperature, for example, 5 to 10 ° C. is stored. This CO 2 liquid is circulated through the second air cooler, and the cargo handling chamber is cooled to a temperature exceeding 0 ° C. and below normal temperature, for example, 10 to 15 ° C. Next, at the time of the defrosting process of the freezer, the CO 2 liquid having a defrostable temperature recovered from the heat stored in the cargo handling chamber is circulated to the first air cooler to defrost the first air cooler. Thus, since the freezer is defrosted using the heat recovered from the cargo handling chamber, the freezer can be defrosted at low cost without consuming excess power.

本発明装置において、二次冷媒回路に設けられ、内部圧力が第1の受液器より低圧に保持され、CO液を凍結温度に保持する第2の受液器と、第1の受液器と第2の受液器との間を接続する連通路、及び該連通路に設けられた第1の開閉弁と、第1の受液器に設けられ、CO液の液面レベルを検出するレベル計と、を備え、該レベル計の検出値が設定値を上回ったら、第1の開閉弁を開けて第1の受液器のCO液を第2の受液器に送り、第1の受液器のCO液面レベルを設定値以下に制御するように構成するとよい。 In the device of the present invention, a second receiver that is provided in the secondary refrigerant circuit, the internal pressure is maintained at a lower pressure than the first receiver, and the CO 2 liquid is maintained at the freezing temperature, and the first receiver A communication path connecting between the tank and the second liquid receiver, a first on-off valve provided in the communication path, and a liquid level of the CO 2 liquid provided in the first liquid receiver. A level meter to detect, and when the detected value of the level meter exceeds a set value, the first on-off valve is opened to send the CO 2 liquid of the first receiver to the second receiver, it may be configured to control the CO 2 liquid level of the first liquid receiver below the set value.

0℃を超え常温以下の飽和温度を有するCO液を貯留する第1の受液器は、0℃以下の冷凍温度の飽和温度を有するCO液を貯留する第2の受液器より高圧に保持される。そのため、一旦第2の受液器に貯留されたCO液を第1の受液器に戻すことは困難である。そこで、通常、第1の受液器に貯留されるCO液量を常に多くしておく。第1の受液器の貯留されたCO液の液面レベルが設定値を超えたら、第2の受液器にCO液を送って第1の受液器の貯留量を適正に保つ。これによって、第1の受液器及び第2の受液器の貯留量を適正に保持できる。 The first liquid receiver that stores the CO 2 liquid having a saturation temperature exceeding 0 ° C. and the normal temperature or lower is higher in pressure than the second liquid receiver that stores the CO 2 liquid having the saturation temperature of the freezing temperature of 0 ° C. or lower. Retained. Therefore, it is difficult to return the CO 2 liquid once stored in the second receiver to the first receiver. Therefore, normally, the amount of CO 2 liquid stored in the first receiver is always increased. When the first receiver of pooled CO 2 liquid liquid level exceeds the set value, maintain proper storage amount of the first receiver sends a CO 2 liquid to the second liquid receiver . Thereby, the storage amount of the first liquid receiver and the second liquid receiver can be appropriately maintained.

本発明装置において、第2のCO循環路が、第1の空気冷却器の上流側で分岐して第1の受液器の気相部に接続された分岐路を備え、デフロスト運転開始時及びデフロスト運転終了時に、該分岐路を介して第1の空気冷却器と第1の受液器の気相部とを導通させた状態で第1の空気冷却器に残留したCO液を第1の受液器に戻すようにするとよい。前記分岐路を介して第1の空気冷却器と第1の受液器の気相部とを導通させたことで、第1の空気冷却器に残留したCO液が、第2のCO循環路を通して第1の受液器に戻りやすくなる。 In the device according to the present invention, the second CO 2 circulation path includes a branch path that is branched upstream of the first air cooler and connected to the gas phase part of the first liquid receiver, and when the defrost operation starts. And at the end of the defrosting operation, the CO 2 liquid remaining in the first air cooler in the state where the first air cooler and the gas phase part of the first liquid receiver are conducted through the branch path It is good to return to 1 receiver. The branch passage a first air cooler and that were passed to a vapor phase portion of the first receiver through, CO 2 liquid remaining in the first air cooler, the second CO 2 It becomes easy to return to the first liquid receiver through the circulation path.

こうして、デフロスト運転開始時及びデフロスト運転終了時に、第1の空気冷却器に残留したCO液を第1の受液器に戻すことで、高圧下の第1の受液器のCO液量を、低圧下の第2の受液器のCO液量より常に多くしておくことができる。第1の受液器の貯留量が設定値を超えたら、第2の受液器にCO液を送ることで、第1の受液器及び第2の受液器の貯留量を常に適正値に保持できる。 Thus, at the start of the defrost operation and at the end of the defrost operation, the CO 2 liquid remaining in the first air cooler is returned to the first liquid receiver, so that the amount of CO 2 liquid in the first liquid receiver under high pressure is restored. Can always be larger than the amount of CO 2 liquid in the second receiver under low pressure. When the storage volume of the first liquid receiver exceeds the set value, the storage volume of the first liquid receiver and the second liquid receiver is always appropriate by sending the CO 2 liquid to the second liquid receiver. Can be held in value.

本発明装置において、第1の受液器に接続され、NHを冷媒とし冷凍サイクルを構成する第2の一次冷媒回路を設け、NHによって第1のCO循環路のCOを冷却するように構成するとよい。荷捌き室の冷却負荷が大きく、荷捌き室の冷却で回収した熱量が、デフロスト工程時に使用する熱量より多くなるときは、NHを冷媒とする第2の一次冷媒回路を設け、第1の受液器のCO液を必要な温度に冷却するようにする。これによって、第1の受液器のCO液の温度を荷捌き室の冷却に必要な温度に保持できる。 In the present invention apparatus is connected to the first receiver, the NH 3 is provided a second primary refrigerant circuit constituting the refrigeration cycle as a refrigerant to cool the CO 2 of the first CO 2 circulation path by NH 3 It may be configured as follows. When the cooling load of the handling chamber is large and the amount of heat recovered by cooling the handling chamber is greater than the amount of heat used during the defrosting process, a second primary refrigerant circuit using NH 3 as a refrigerant is provided, Cool the receiver CO 2 liquid to the required temperature. As a result, the temperature of the CO 2 liquid in the first receiver can be maintained at a temperature necessary for cooling the cargo handling chamber.

本発明方法によれば、CO液を0℃を超え常温以下の温度で貯留可能なように圧力調整された第1の受液器から荷捌き室にCO液を循環させ、荷捌き室を冷却すると共に、荷捌き室の保有熱を回収し、デフロスト可能温度であるCO液を第1の受液器から冷凍庫に循環させ、第1の空気冷却器のデフロストを行うようにしたので、散水式や電気ヒーター式のデフロストを行うことなく、そのため、余分な電力を不要とする省エネかつ低コストなデフロストを行うことができる。また、COホットガス方式より安定した加熱が可能であると共に、CO液を用いているので、高圧とならず、耐圧配管や耐圧機器の配設が不要になる。 According to the method of the present invention, the CO 2 liquid is circulated from the first liquid receiver whose pressure is adjusted so that the CO 2 liquid can be stored at a temperature higher than 0 ° C. and below the normal temperature to the cargo handling chamber. Since the heat stored in the cargo handling room is recovered, the CO 2 liquid, which is the defrostable temperature, is circulated from the first receiver to the freezer to defrost the first air cooler. Therefore, energy-saving and low-cost defrosting that does not require extra power can be performed without performing watering type or electric heater type defrosting. In addition, more stable heating than the CO 2 hot gas system is possible, and since the CO 2 liquid is used, the pressure is not increased, and the installation of pressure-resistant piping and pressure-resistant equipment becomes unnecessary.

また、前記本発明装置によれば、通常凍結運転時に第1の受液器のCO液を第1のCO循環路を介して第2の空気冷却器に循環させ、荷捌き室を冷却すると共に、デフロスト運転時に、第1の受液器のCO液を第2のCO循環路を介して第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行うようにしたので、前記本発明方法と同様の作用効果を得ることができる。 Further, according to the apparatus of the present invention, during the normal freezing operation, the CO 2 liquid in the first receiver is circulated to the second air cooler via the first CO 2 circulation path to cool the cargo handling chamber. In addition, during the defrost operation, the CO 2 liquid of the first liquid receiver is circulated to the first air cooler via the second CO 2 circulation path so that the first air cooler is defrosted. Therefore, the same effect as the method of the present invention can be obtained.

本発明方法及び装置の第1実施形態に係る冷凍装置の全体構成図である。1 is an overall configuration diagram of a refrigeration apparatus according to a first embodiment of the method and apparatus of the present invention. 本発明方法及び装置の第2実施形態に係る冷凍装置の全体構成図である。It is a whole block diagram of the freezing apparatus which concerns on 2nd Embodiment of this invention method and apparatus. 本発明方法及び装置の第3実施形態に係る冷凍装置の全体構成図である。It is a whole block diagram of the freezing apparatus which concerns on 3rd Embodiment of this invention method and apparatus. 従来のNH/CO冷凍装置を示す全体構成図である。It is an overall configuration diagram showing a conventional NH 3 / CO 2 refrigeration system.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(実施形態1)
本発明方法及び装置の第1実施形態を図1に基づいて説明する。図1において、地面GLより上方に3階建てのF級冷凍庫1が設けられ、冷凍庫1に隣接して半地下室3が設けられている。冷凍庫1の各階には、冷凍室5A〜Cと、冷凍庫1に隣接した荷捌き室7A〜Cが設けられている。1階の荷捌き室7Aは、他の階の荷捌き室より広い面積を有している。各階の荷捌き室間にエレベータが設けられ、被冷凍品をこのエレベータで各階に移送可能にしている。
(Embodiment 1)
A first embodiment of the method and apparatus of the present invention will be described with reference to FIG. In FIG. 1, a three-story F-class freezer 1 is provided above the ground GL, and a semi-basement 3 is provided adjacent to the freezer 1. On each floor of the freezer 1, freezer rooms 5 </ b> A to C and a cargo handling room 7 </ b> A to C adjacent to the freezer 1 are provided. The first floor cargo handling room 7A has a larger area than the cargo handling rooms on the other floors. An elevator is provided between the cargo handling rooms on each floor, and the article to be frozen can be transferred to each floor by this elevator.

1階の荷捌き室7Aには、搬出入戸口(ドック)が設けられ、輸送車Tの後部が該搬出入戸口に挿入され、被冷凍品の搬出入が行われる。荷捌き室7Aには、該搬出入戸口を覆うドックシェルタ9が設けられ、ドックシェルタ9で建物内の空調空気が外部へ逃げたり、外気、雨風、湿気、塵、害虫等が建物内に進入するのを防止している。冷凍装置10の主要部は半地下室3の内部に設けられている。半地下室3の内部に、アンモニア冷凍機12Aが設けられている。   The unloading room 7A on the first floor is provided with a loading / unloading doorway (dock), and the rear portion of the transport vehicle T is inserted into the loading / unloading doorway to carry in / out the frozen product. In the cargo handling room 7A, a dock shelter 9 is provided to cover the entrance / exit door. Air conditioned air in the building escapes to the outside by the dock shelter 9, and outside air, rain wind, moisture, dust, pests, etc. enter the building. Is prevented. The main part of the refrigeration apparatus 10 is provided inside the semi-basement 3. Inside the semi-basement 3, an ammonia refrigerator 12A is provided.

アンモニア冷凍機12Aは、NHが循環する一次冷媒回路14と、一次冷媒回路14に設けられた圧縮機16、膨張弁18、カスケードコンデンサ20及び蒸発式凝縮器(エバコン)21とで構成されている。エバコン21は半地下室3の屋上に設けられている。カスケードコンデンサ20と第2の受液器24との間にCO循環路22が設けられている。第2の受液器24のCOガスがCO循環路22を介してカスケードコンデンサ20に流入し、カスケードコンデンサ20でNHによって冷却され、液化して第2の受液器24に戻る。 The ammonia refrigerator 12A includes a primary refrigerant circuit 14 through which NH 3 circulates, a compressor 16 provided in the primary refrigerant circuit 14, an expansion valve 18, a cascade condenser 20, and an evaporative condenser (evaporator) 21. Yes. The evacon 21 is provided on the roof of the semi-basement 3. A CO 2 circulation path 22 is provided between the cascade capacitor 20 and the second liquid receiver 24. The CO 2 gas in the second receiver 24 flows into the cascade condenser 20 via the CO 2 circulation path 22, is cooled by NH 3 in the cascade condenser 20, is liquefied, and returns to the second receiver 24.

冷凍室5A〜C及び荷捌き室7Aには、夫々1個又は複数の空気冷却器26a〜dが配設されている。荷捌き室7B及び7Cにも、小型の空気冷却器(図示省略)が設けられている。第2の受液器24と冷凍室5A〜Cに設けられた各空気冷却器26a〜cとの間は、主CO循環路28と分岐CO循環路30,32及び34とによって接続されている。主CO循環路28の往路28aに設けられた液ポンプ29によって、第2の受液器24のCO液が空気冷却器26a〜cに送られ、冷凍室5A〜C内の空気を冷却する。 One or more air coolers 26a to 26d are arranged in the freezing rooms 5A to 5C and the handling room 7A, respectively. The handling chambers 7B and 7C are also provided with small air coolers (not shown). The second liquid receiver 24 and the air coolers 26a to 26c provided in the freezer compartments 5A to C are connected by a main CO 2 circulation path 28 and branch CO 2 circulation paths 30, 32, and 34. ing. The liquid pump 29 provided in the forward path 28a of the main CO 2 circulation path 28 sends the CO 2 liquid in the second liquid receiver 24 to the air coolers 26a to 26c to cool the air in the freezer compartments 5A to 5C. To do.

主CO循環路28の往路28aは第2の受液器24の下部に接続され、復路28bは第2の受液器24の上部に接続されている。往路28aに設けられた液ポンプ29によって、CO液が空気冷却器26a〜cに送られる。分岐CO循環路30,32及び34の往路及び復路には、夫々開閉弁36a、36b、38a、38b、40a及び40bが介設されている。 The forward path 28 a of the main CO 2 circulation path 28 is connected to the lower part of the second liquid receiver 24, and the return path 28 b is connected to the upper part of the second liquid receiver 24. The CO 2 liquid is sent to the air coolers 26a to 26c by the liquid pump 29 provided in the forward path 28a. On-off valves 36a, 36b, 38a, 38b, 40a and 40b are provided in the forward and return paths of the branch CO 2 circulation paths 30, 32 and 34, respectively.

半地下室3の内部には、第2の受液器24に隣接して、第1の受液器42が設けられている。第1の受液器42には、2組のCO循環路が設けられている。ひとつが、第1の受液器42と荷捌き室7A〜Cとの間に設けられたCO循環路44であり、もうひとつが、第1の受液器42と空気冷却器26a〜cとの間に設けられ、往路が、主CO循環路46の往路46a及び分岐CO循環路の往路48a、50a及び52aからなり、復路が、主CO循環路46の復路46b及び分岐CO循環路の復路48b、50b及び52bからなる。前記分岐CO循環路の往路及び復路には、開閉弁54a、54b、56a、56b、58a及び58bが介設されている。 Inside the semi-basement 3, a first liquid receiver 42 is provided adjacent to the second liquid receiver 24. The first liquid receiver 42 is provided with two sets of CO 2 circulation paths. One is the CO 2 circulation path 44 provided between the first liquid receiver 42 and the cargo handling chambers 7A to 7C, and the other is the first liquid receiver 42 and the air coolers 26a to 26c. The forward path is composed of the forward path 46a of the main CO 2 circulation path 46 and the forward paths 48a, 50a and 52a of the branch CO 2 circulation path, and the return path is the return path 46b and the branch CO of the main CO 2 circulation path 46. It consists of two circulation paths 48b, 50b and 52b. On-off valves 54a, 54b, 56a, 56b, 58a and 58b are interposed in the forward and return paths of the branch CO 2 circulation path.

CO循環路44の往路44aには、CO液を空気冷却器26d等に送る液ポンプ60が設けられ、主CO循環路46の往路46aには、CO液を空気冷却器26a〜cに送る液ポンプ62が設けられている。空気冷却器26a〜dには、凝縮水又はデフロスト運転時に溶けた融水を受け止めるドレンパン64が設けられている。各ドレンパン64には排水路66が設けられ、各排水路66は排水本管68に接続されている。空気冷却器26a〜dで発生した凝縮水は、主排水路68を通して、F級冷凍庫1の外部へ排出される。 The forward path 44a of the CO 2 circulation path 44 is provided with a liquid pump 60 for sending the CO 2 liquid to the air cooler 26d and the like, and the forward path 46a of the main CO 2 circulation path 46 is fed with the CO 2 liquid to the air coolers 26a to 26a. A liquid pump 62 for sending to c is provided. The air coolers 26a to 26d are provided with a drain pan 64 that receives condensed water or melted water melted during defrosting operation. Each drain pan 64 is provided with a drainage channel 66, and each drainage channel 66 is connected to a drainage main pipe 68. The condensed water generated in the air coolers 26a to 26d is discharged to the outside of the class F freezer 1 through the main drainage channel 68.

かかる構成において、第2の受液器24に貯留されたCOガスはカスケードコンデンサ20に流れ、一次冷媒回路14を循環するNHによって冷却される。冷却されて液状になったCO液は第2の受液器24に戻る。第2の受液器24の内部圧力は1.2MPa前後に保持され、第2の受液器24内のCO液は、例えば、−32℃に保持される。通常冷凍運転時、開閉弁36a、36b、38a、38b、40a及び40bが開放され、第2の受液器24内の−32℃のCO液は、主CO循環路28の往路28a及び分岐CO循環路30,32及び34の往路を通って、空気冷却器26a〜cに供給される。開閉弁54a、54b、56a、56b、58a及び58bは閉じられている。 In such a configuration, the CO 2 gas stored in the second liquid receiver 24 flows into the cascade capacitor 20 and is cooled by NH 3 circulating in the primary refrigerant circuit 14. The cooled CO 2 liquid returns to the second liquid receiver 24. The internal pressure of the second liquid receiver 24 is maintained at around 1.2 MPa, and the CO 2 liquid in the second liquid receiver 24 is maintained at −32 ° C., for example. During the normal refrigeration operation, the on-off valves 36a, 36b, 38a, 38b, 40a and 40b are opened, and the −32 ° C. CO 2 liquid in the second receiver 24 is transferred to the forward path 28a of the main CO 2 circulation path 28 and The air is supplied to the air coolers 26a to 26c through the outgoing paths of the branch CO 2 circulation paths 30, 32, and 34. The on-off valves 54a, 54b, 56a, 56b, 58a and 58b are closed.

空気冷却器26a〜cにはファン27が設けられて空気流が形成され、庫内空気は、空気冷却器26a〜cの伝熱管を流れるCO液で冷却される。庫内空気は−25℃に保持される。CO液は空気冷却器26a〜cで一部が気化し、一部が気化したCO液は、分岐CO循環路30,32及び34の復路及び主CO循環路28の復路28bを通って第2の受液器24に戻る。 The air coolers 26a to 26c are provided with a fan 27 to form an air flow, and the internal air is cooled by the CO 2 liquid flowing through the heat transfer tubes of the air coolers 26a to 26c. The inside air is kept at -25 ° C. The CO 2 liquid is partially vaporized by the air coolers 26a to 26c, and the partially vaporized CO 2 liquid passes through the return path of the branch CO 2 circulation paths 30, 32 and 34 and the return path 28b of the main CO 2 circulation path 28. Return to the second receiver 24.

第1の受液器42の内部圧力は4.0MPa前後に保持され、第1の受液器42内のCO液は5〜10℃に保持される。通常凍結運転時、第1の受液器42内のCO液は、CO循環路44の往路44aを通り、荷捌き室7A〜Cに設けられた空気冷却器26d等に供給される。空気冷却器26d等にはファン27が設けられ、荷捌き室7A〜C内の空気は空気冷却器26d等によって冷却され、10〜15℃に保持される。空気冷却器26d等で荷捌き室7A〜C内の空気を冷却し、該空気の熱を吸収して一部が気化したCO液は、復路44bを通って第1の受液器42に戻る。 The internal pressure of the first liquid receiver 42 is maintained at around 4.0 MPa, and the CO 2 liquid in the first liquid receiver 42 is maintained at 5 to 10 ° C. During the normal freezing operation, the CO 2 liquid in the first liquid receiver 42 passes through the forward path 44a of the CO 2 circulation path 44 and is supplied to the air cooler 26d provided in the cargo handling chambers 7A to 7C. The air cooler 26d or the like is provided with a fan 27, and the air in the cargo handling chambers 7A to 7C is cooled by the air cooler 26d or the like and maintained at 10 to 15 ° C. The air in the cargo handling chambers 7A to C is cooled by the air cooler 26d, etc., and the CO 2 liquid partially vaporized by absorbing the heat of the air passes through the return path 44b to the first liquid receiver 42. Return.

デフロスト運転時には、開閉弁36a、36b、38a、38b、40a及び40bが閉じられ、開閉弁54a、54b、56a、56b、58a及び58bが開放される。第1の受液器42から5〜10℃のCO液が、主CO循環路46の往路46a及び分岐CO循環路の往路48a、50a及び52aを通り、空気冷却器26a〜c送られる。空気冷却器26a〜cで、CO液は伝熱管を内側から加熱し、伝熱管の外面に付着した霜を溶かし除去する。霜を溶かして熱を放出したCO液は、分岐CO循環路の復路48b、50b及び52b及び主CO循環路46の復路46bを通り、第1の受液器42に戻る。デフロスト運転は、通常、1日に1〜2回行う。 During the defrost operation, the on-off valves 36a, 36b, 38a, 38b, 40a and 40b are closed, and the on-off valves 54a, 54b, 56a, 56b, 58a and 58b are opened. The CO 2 liquid at 5 to 10 ° C. from the first liquid receiver 42 passes through the forward path 46a of the main CO 2 circulation path 46 and the forward paths 48a, 50a and 52a of the branch CO 2 circulation path, and is sent to the air coolers 26a to 26c. It is done. In the air coolers 26a to 26c, the CO 2 liquid heats the heat transfer tube from the inside and melts and removes frost attached to the outer surface of the heat transfer tube. The CO 2 liquid that has melted the frost and released heat returns to the first receiver 42 through the return paths 48b, 50b and 52b of the branch CO 2 circulation path and the return path 46b of the main CO 2 circulation path 46. The defrost operation is usually performed once or twice a day.

本実施形態によれば、第1の受液器42から送られたCO液が荷捌き室7A〜C内の空気を冷却して荷捌き室7A〜Cの保有熱を回収し、その保有熱を利用して、空気冷却器26a〜cのデフロストを行うので、散水式デフロストを用いなくて済み、かつ余分な電力を消費することなく、低コストで空気冷却器26a〜cのデフロストが可能になる。 According to the present embodiment, the CO 2 liquid sent from the first liquid receiver 42 cools the air in the cargo handling chambers 7A to C, recovers the retained heat of the cargo handling chambers 7A to C, and retains it. Since the defrosting of the air coolers 26a to 26c is performed using heat, it is not necessary to use a watering type defrost, and the defrosting of the air coolers 26a to 26c is possible without consuming extra power. become.

また、COホットガスを用いたデフロストではなく、CO液の顕熱によるデフロストであるので、安定した加熱が可能である。また、CO液を用いているので、高圧とならないので、主CO循環路46、分岐CO循環路の往路48a、50a、52a及び復路48b、50b及び52b、及び空気冷却器26a〜cの伝熱部等を耐圧配管や耐圧機器とする必要がない。さらに、COホットガスを用いる場合のように、デフロストのために冷凍装置を運転する必要はなく、第1の受液器42に貯留されたCO液を利用だけであるので、余分な電力を消費しないで済む。 Also, rather than the defrosting using CO 2 hot gas, since it is defrosting by sensible heat of the CO 2 fluid, it is possible to stably heated. Also, since the CO 2 liquid is used, the pressure is not increased, so the main CO 2 circulation path 46, the forward paths 48a, 50a, 52a and the return paths 48b, 50b and 52b of the branch CO 2 circulation path, and the air coolers 26a to 26c. There is no need to use pressure-resistant piping or pressure-resistant equipment for the heat transfer section. Further, unlike the case of using CO 2 hot gas, it is not necessary to operate the refrigeration apparatus for defrosting, and only the CO 2 liquid stored in the first liquid receiver 42 is used. Does not have to consume.

(実施形態2)
次に、本発明方法及び装置の第2実施形態を図2により説明する。図2において、第1の受液器42の下部領域と第2の受液器24の下部領域とを接続する連通路70が設けられ、連通路70に開閉弁72が介設されている。また、第1の受液器42に、CO液の液面レベルを検出するレベル計74が設けられ、該液面レベルが設定値を超えたら、レベル計74からの信号で開閉弁72を開放するように構成されている。また、分岐CO循環路の往路48a、50a及び52aに、開閉弁54a、56a及び58aの下流側で分岐し、主CO循環路46の復路46bに接続する分岐路76a、76b及び76cが設けられている。これら分岐路に開閉弁78a、78b及び78cが介設されている。その他の構成は前記第1実施形態と同一である。
(Embodiment 2)
Next, a second embodiment of the method and apparatus of the present invention will be described with reference to FIG. In FIG. 2, a communication path 70 that connects a lower region of the first liquid receiver 42 and a lower region of the second liquid receiver 24 is provided, and an open / close valve 72 is interposed in the communication path 70. Further, the first liquid receiver 42 is provided with a level meter 74 for detecting the liquid level of the CO 2 liquid. When the liquid level exceeds a set value, the opening / closing valve 72 is controlled by a signal from the level meter 74. It is configured to open. Further, branch paths 76a, 76b, and 76c branch to the downstream paths 48a, 50a, and 52a of the branch CO 2 circulation path on the downstream side of the on-off valves 54a, 56a, and 58a and connect to the return path 46b of the main CO 2 circulation path 46. Is provided. On-off valves 78a, 78b and 78c are interposed in these branch paths. Other configurations are the same as those of the first embodiment.

本実施形態では、冷凍室5A〜C及び荷捌き室7A〜Cの通常凍結運転は、第1実施形態と同様な操作で行う。冷凍室5A〜Cの通常凍結運転時、開閉弁36a、36b、38a、38b、40a及び40bが開放され、開閉弁54a、54b、56a、56b、58a、58b及び78a〜cが閉じられている。通常凍結運転終了後、開閉弁36a、36b、38a、38b、40a及び40bが閉じられ、開閉弁54a、54b、56a、56b、58a、58b及び開閉弁78a〜cが開放される。   In the present embodiment, the normal freezing operation of the freezing rooms 5A to 5C and the cargo handling rooms 7A to 7C is performed by the same operation as in the first embodiment. During the normal freezing operation of the freezer compartments 5A to 5C, the on-off valves 36a, 36b, 38a, 38b, 40a and 40b are opened, and the on-off valves 54a, 54b, 56a, 56b, 58a, 58b and 78a-c are closed. . After the normal freezing operation is completed, the on-off valves 36a, 36b, 38a, 38b, 40a and 40b are closed, and the on-off valves 54a, 54b, 56a, 56b, 58a, 58b and the on-off valves 78a to 78c are opened.

デフロスト運転開始時に、分岐CO循環路の復路48b、50b及び52bを介して、空気冷却器26a〜cに残留したCO液を、第1の受液器42に戻す。この状態でデフロスト運転を続行する。デフロスト運転終了時に、開閉弁54a、56a及び58aを閉じ、開閉弁54b、56b、58b及び開閉弁78a〜cを開放した状態とする。このように、空気冷却器26a〜cの上部と第1の受液器42のガス相が導通することで、空気冷却器26a〜c内のCO液が第1の受液器42に落下しやすくなる。こうして、空気冷却器26a〜cのCO液を復路48b、50b及び52bを介して第1の受液器42に戻すことができる。 At the start of the defrost operation, the CO 2 liquid remaining in the air coolers 26a to 26c is returned to the first liquid receiver 42 via the return paths 48b, 50b and 52b of the branch CO 2 circulation path. In this state, defrost operation is continued. At the end of the defrost operation, the open / close valves 54a, 56a and 58a are closed, and the open / close valves 54b, 56b and 58b and the open / close valves 78a to 78c are opened. In this way, the upper part of the air coolers 26a to 26c and the gas phase of the first liquid receiver 42 are connected, so that the CO 2 liquid in the air coolers 26a to 26c falls into the first liquid receiver 42. It becomes easy to do. Thus, the CO 2 liquid in the air coolers 26a to 26c can be returned to the first liquid receiver 42 via the return paths 48b, 50b, and 52b.

このように、デフロスト運転の開始時及び終了時に、空気冷却器26a〜cに残留したCO液を第1の受液器42に戻すようにしたので、第1の受液器42のCO液面レベルが徐々に上昇する。レベル計74で第1の受液器42のCO液面レベルが設定値を超えたことを検出したら、開閉弁72を開放し、第1の受液器42内のCO液を第2の受液器24に移送する。 Thus, at the beginning and end of the defrosting operation, since the back of the CO 2 liquid remaining in the air cooler 26a~c the first receiver 42, the first receiver 42 CO 2 The liquid level gradually rises. When the level meter 74 detects that the CO 2 liquid level of the first liquid receiver 42 exceeds the set value, the on-off valve 72 is opened, and the CO 2 liquid in the first liquid receiver 42 is discharged to the second liquid. To the receiver 24.

主CO循環路28と主CO循環路46とは、空気冷却器26a〜cを通して間接的に接続されることになる。そのため、第1の受液器42又は第2の受液器24に戻すCO液の戻し量を制御しないと、どちらか一方にCO液が偏在してしまう。第1の受液器42の内部圧力は第2の受液器24の内部圧力より高いので、もし、第2の受液器24にCO液が偏在すると、CO液を第1の受液器42に戻すことが困難になる。本実施形態によれば、第1実施形態で得られる作用効果に加えて、第1の受液器42及び第2の受液器24のCO貯留量を適正に保持できる。 The main CO 2 circulation path 28 and the main CO 2 circulation path 46 are indirectly connected through the air coolers 26a to 26c. Therefore, unless the return amount of the CO 2 liquid returned to the first liquid receiver 42 or the second liquid receiver 24 is not controlled, the CO 2 liquid is unevenly distributed in either one. Since the internal pressure of the first receiver 42 is higher than the internal pressure of the second liquid receiver 24, if the CO 2 fluid is unevenly distributed in the second liquid receiver 24, the first receiving the CO 2 liquid It becomes difficult to return to the liquid container 42. According to the present embodiment, in addition to the operational effects obtained in the first embodiment, the CO 2 storage amount of the first liquid receiver 42 and the second liquid receiver 24 can be appropriately maintained.

また、デフロスト運転の開始時及び終了時に、開閉弁78a〜cを開放し、分岐路76a〜cを介して空気冷却器26a〜cと第1の受液器42の気相部とを導通させたことで、空気冷却器26a〜cに残留したCO液を第1の受液器42に戻しやすくなる。これによって、該残留CO液を分岐CO循環路の復路48b、50b、52b及び主CO循環路46の復路46bを介して、第1の受液器42に速やかに戻すことができる。 Further, at the start and end of the defrost operation, the on-off valves 78a to 78c are opened, and the air coolers 26a to 26c and the gas phase part of the first liquid receiver 42 are made conductive through the branch paths 76a to 76c. As a result, the CO 2 liquid remaining in the air coolers 26 a to 26 c can be easily returned to the first liquid receiver 42. Accordingly, the residual CO 2 liquid can be quickly returned to the first liquid receiver 42 via the return paths 48 b, 50 b, 52 b of the branch CO 2 circulation path and the return path 46 b of the main CO 2 circulation path 46.

(実施形態3)
次に、本発明方法及び装置の第3実施形態を図3により説明する。本実施形態は、アンモニア冷凍機12Bを半地下室3に追設した例である。アンモニア冷凍機12Bは、NH3が循環する一次冷媒回路14に、圧縮機16、膨張弁18、カスケードコンデンサ20及び半地下室3の屋上に配置されたエバコン21が設けられている。さらに、カスケードコンデンサ20と第1の受液器42とを接続するCO循環路80を設けている。その他の構成は第2実施形態と同一である。
(Embodiment 3)
Next, a third embodiment of the method and apparatus of the present invention will be described with reference to FIG. The present embodiment is an example in which an ammonia refrigerator 12B is additionally installed in the semi-basement 3. In the ammonia refrigerator 12B, a primary refrigerant circuit 14 in which NH 3 circulates is provided with a compressor 16, an expansion valve 18, a cascade condenser 20, and an evaporator 21 arranged on the roof of the semi-basement 3. Further, a CO 2 circulation path 80 that connects the cascade capacitor 20 and the first liquid receiver 42 is provided. Other configurations are the same as those of the second embodiment.

荷捌き室7A〜Cに設けられた空気冷却器26d等の冷却負荷が大きい場合、空気冷却器26a〜cのデフロスト運転時に得られる冷熱だけでは、荷捌き室7A〜Cを冷却できない。そのため、本実施形態のように、アンモニア冷凍機12Bを設ける。アンモニア冷凍機12Bによって、第1の受液器42に貯留されたCO液を冷却することで、第1の受液器42内のCO液を設定された温度に保持できる。 When the cooling load such as the air cooler 26d provided in the handling chambers 7A to C is large, the handling chambers 7A to 7C cannot be cooled only by the cold heat obtained during the defrost operation of the air coolers 26a to 26c. Therefore, the ammonia refrigerator 12B is provided as in this embodiment. With ammonia refrigerator 12B, by cooling the first liquid receiver 42 CO 2 liquid stored in, it can be held at a temperature which is set to CO 2 liquid in the first liquid receiver 42.

本発明によれば、荷捌き室を備えた冷凍庫に設けられた冷凍装置において、荷捌き室を冷却して得られる熱量をデフロスト工程に利用することで、余分な電力を消費せず、安定して低コストなデフロスト運転を可能にする。   According to the present invention, in the refrigeration apparatus provided in the freezer having the cargo handling chamber, the amount of heat obtained by cooling the cargo handling chamber is used for the defrosting process, so that excess power is not consumed and stable. And low-cost defrost operation.

1 F級冷凍庫
3 半地下室
5A〜C 冷凍室
7A〜C 荷捌き室
9 ドックシェルタ
10,100 冷凍装置
12A アンモニア冷凍機
12B アンモニア冷凍機(第2の一次冷媒回路)
14,102 一次冷媒回路
16,104 圧縮機
18,110 膨張弁
20,108 カスケードコンデンサ
21,106 蒸発式凝縮器(エバコン)
22、80,112 CO循環路
24 第2の受液器
26a〜c 空気冷却器(第1の空気冷却器)
27d 空気冷却器(第2の空気冷却器)
27 ファン
28 主CO循環路
29、60,62、116 液ポンプ
30,32,34 分岐CO循環路
42 第1の受液器
44 CO循環路(第1のCO循環路)
46 主CO循環路(第2のCO循環路)
48b、50b、52b 復路
54b、56b、58b、72、78a〜c 開閉弁
64 ドレンパン
66 排水路
68 主排水路
70 連通路
72 開閉弁
76a〜c 分岐路
114 受液器
118 天吊り型空気冷却器
A 屋外ユニット
B 冷凍庫
GL 地面
T 輸送車
DESCRIPTION OF SYMBOLS 1 F class freezer 3 Semi-basement 5A-C Freezing room 7A-C Handling room 9 Dock shelter 10,100 Refrigeration equipment 12A Ammonia refrigerator 12B Ammonia refrigerator (2nd primary refrigerant circuit)
14,102 Primary refrigerant circuit 16,104 Compressor 18,110 Expansion valve 20,108 Cascade condenser 21,106 Evaporative condenser (Evacon)
22, 80, 112 CO 2 circulation path 24 Second receiver 26a-c Air cooler (first air cooler)
27d Air cooler (second air cooler)
27 Fan 28 Main CO 2 circuit 29, 60, 62, 116 Liquid pump 30, 32, 34 Branch CO 2 circuit 42 First receiver 44 CO 2 circuit (first CO 2 circuit)
46 Main CO 2 circuit (second CO 2 circuit)
48b, 50b, 52b Return path 54b, 56b, 58b, 72, 78a-c On-off valve 64 Drain pan 66 Drainage path 68 Main drainage path 70 Communication path 72 On-off valve 76a-c Branching path 114 Receiving device 118 Ceiling suspended air cooler A Outdoor unit B Freezer GL Ground T Transport vehicle

Claims (6)

荷捌き室を備えた冷凍庫に設けられ、NHを冷媒とし冷凍サイクルを構成する一次冷媒回路と、該一次冷媒回路と接続されNHによって冷却されたCO液が循環する二次冷媒回路と、該二次冷媒回路に介設され冷凍庫内に設けられた第1の空気冷却器とを備えた冷凍装置のデフロスト方法において、
荷捌き室に設けられた第2の空気冷却器と、CO液を0℃を超え常温以下の温度で貯留可能なように圧力調整された第1の受液器との間にCO液を循環させ、荷捌き室を0℃を超え常温以下の温度に冷却する荷捌き室冷却工程と、
前記荷捌き室冷却工程で荷捌き室の保有熱を回収したCO液を第1の受液器から前記第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行うデフロスト工程とからなることを特徴とする冷凍装置のデフロスト方法。
A primary refrigerant circuit that is provided in a freezer having a cargo handling chamber and that forms a refrigeration cycle using NH 3 as a refrigerant, and a secondary refrigerant circuit that is connected to the primary refrigerant circuit and in which a CO 2 liquid cooled by NH 3 circulates; In a defrosting method for a refrigeration apparatus comprising a first air cooler interposed in the secondary refrigerant circuit and provided in a freezer,
CO 2 fluid between a second air cooler provided in the handling chamber, a first receiver that the CO 2 fluid is pressure adjusted so as to be stored at room temperature below the temperature exceed 0 ℃ , And the handling room cooling process for cooling the handling room to a temperature exceeding 0 ° C. and below normal temperature,
A defrosting step of defrosting the first air cooler by circulating the CO 2 liquid recovered from the heat held in the cargo handling chamber in the cargo handling chamber cooling step from the first liquid receiver to the first air cooler. A method for defrosting a refrigeration apparatus comprising:
前記デフロスト工程は、冷凍庫の通常冷凍運転終了後に、第1の空気冷却器に残留するCO液を第1の受液器に戻す前工程と、第1の空気冷却器のデフロスト終了後に第1の空気冷却器に残留するCO液を第1の受液器に戻す後工程とを伴うものであり、
第1の受液器のCO液の液面レベルが設定値を超えたら、第1の受液器のCO液を前記二次冷媒回路に設けられた第2の受液器に移送し、第1の受液器のCO液面レベルを設定値以下に制御するCO液面制御工程がさらに付加されることを特徴とする請求項1に記載の冷凍装置のデフロスト方法。
The defrost process includes a pre-process for returning the CO 2 liquid remaining in the first air cooler to the first liquid receiver after the normal freezing operation of the freezer is completed, and a first process after the defrost of the first air cooler is completed. And a post process for returning the CO 2 liquid remaining in the air cooler to the first receiver.
When the liquid level of the CO 2 liquid in the first receiver exceeds the set value, the CO 2 liquid in the first receiver is transferred to the second receiver provided in the secondary refrigerant circuit. The defrosting method for a refrigeration apparatus according to claim 1, further comprising a CO 2 liquid level control step of controlling the CO 2 liquid level of the first receiver to a set value or less.
荷捌き室を備えた冷凍庫に設けられ、NHを冷媒とし冷凍サイクルを構成する一次冷媒回路と、該一次冷媒回路と接続されNHによって冷却されたCO液が循環する二次冷媒回路と、該二次冷媒回路に介設され冷凍庫内に設けられた第1の空気冷却器とを備えた冷凍装置において、
荷捌き室に設けられた第2の空気冷却器、CO液を0℃を超え常温以下の温度で貯留可能なように圧力調整された第1の受液器、及び第2の空気冷却器と第1の受液器との間に配設された第1のCO循環路とからなる荷捌き室冷却部と、第1の受液器と前記第1の空気冷却器との間に接続された第2のCO循環路とを備え、
通常凍結運転時に第1の受液器のCO液を第2の空気冷却器に循環させ、荷捌き室を冷却すると共に、デフロスト運転時に、第1の受液器のCO液を第2のCO循環路を介して第1の空気冷却器に循環させ、第1の空気冷却器のデフロストを行うようにしたことを特徴とする冷凍装置。
A primary refrigerant circuit that is provided in a freezer having a cargo handling chamber and that forms a refrigeration cycle using NH 3 as a refrigerant, and a secondary refrigerant circuit that is connected to the primary refrigerant circuit and in which a CO 2 liquid cooled by NH 3 circulates; A refrigeration apparatus comprising a first air cooler interposed in the secondary refrigerant circuit and provided in a freezer,
A second air cooler provided in the cargo handling chamber, a first liquid receiver that is pressure-adjusted so that CO 2 liquid can be stored at a temperature higher than 0 ° C. and lower than room temperature, and a second air cooler And a first CO 2 circulation path disposed between the first liquid receiver and the first CO 2 circulation path, and between the first liquid receiver and the first air cooler. A second CO 2 circuit connected,
Normal CO 2 liquid from the first liquid receiver during freezing operation is circulated through the second air cooler, to cool the cargo handling chamber, during defrosting operation, the CO 2 liquid from the first liquid receiver second A refrigeration apparatus characterized in that the first air cooler is circulated through the CO 2 circulation path to defrost the first air cooler.
前記二次冷媒回路に設けられ、内部圧力が第1の受液器より低圧に保持され、CO液を凍結温度に保持する第2の受液器と、
第1の受液器と第2の受液器との間を接続する開閉弁付き連通路と、
第1の受液器に設けられ、CO液の液面レベルを検出するレベル計とを備え、
該レベル計の検出値が設定値を上回ったら、第1の開閉弁を開けて第1の受液器のCO液を第2の受液器に送り、第1の受液器のCO液面レベルを設定値以下に制御するように構成したことを特徴とする請求項3に記載の冷凍装置。
A second receiver that is provided in the secondary refrigerant circuit, the internal pressure of which is maintained at a lower pressure than that of the first receiver, and the CO 2 liquid is maintained at a freezing temperature;
A communication path with an on-off valve that connects between the first liquid receiver and the second liquid receiver;
A level meter provided in the first receiver for detecting the liquid level of the CO 2 liquid;
When the detected value of the level meter exceeds the set value, the first on-off valve is opened to send the CO 2 liquid of the first receiver to the second receiver, and the CO 2 of the first receiver. The refrigeration apparatus according to claim 3, wherein the liquid level is controlled to be equal to or lower than a set value.
前記第2のCO循環路が、第1の空気冷却器の上流側で分岐して第1の受液器の気相部に接続された分岐路を備え、
デフロスト運転開始時及びデフロスト運転終了時に、前記分岐路を介して第1の空気冷却器と第1の受液器の気相部とを導通させた状態で第1の空気冷却器に残留したCO液を第1の受液器に戻すようにしたことを特徴とする請求項3又は4に記載の冷凍装置。
The second CO 2 circulation path includes a branch path branched upstream of the first air cooler and connected to the gas phase part of the first liquid receiver;
The CO remaining in the first air cooler at the start of the defrost operation and at the end of the defrost operation in a state where the first air cooler and the gas phase portion of the first liquid receiver are connected through the branch path. The refrigeration apparatus according to claim 3 or 4, wherein the two liquids are returned to the first liquid receiver.
前記第1の受液器に接続され、NHを冷媒とし冷凍サイクルを構成する第2の一次冷媒回路を設け、NHによって第1のCO循環路のCOを冷却するように構成したことを特徴とする請求項3に記載の冷凍装置。 Connected to said first receiver, the NH 3 is provided a second primary refrigerant circuit constituting the refrigeration cycle as a refrigerant, and configured to cool the CO 2 of the first CO 2 circulation path by NH 3 The refrigeration apparatus according to claim 3.
JP2011216638A 2011-09-30 2011-09-30 Freezing apparatus and defrosting method for the same Withdrawn JP2013076511A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011216638A JP2013076511A (en) 2011-09-30 2011-09-30 Freezing apparatus and defrosting method for the same
KR1020120096172A KR20130035868A (en) 2011-09-30 2012-08-31 Refrigeration system and defrosting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216638A JP2013076511A (en) 2011-09-30 2011-09-30 Freezing apparatus and defrosting method for the same

Publications (1)

Publication Number Publication Date
JP2013076511A true JP2013076511A (en) 2013-04-25

Family

ID=48437594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216638A Withdrawn JP2013076511A (en) 2011-09-30 2011-09-30 Freezing apparatus and defrosting method for the same

Country Status (2)

Country Link
JP (1) JP2013076511A (en)
KR (1) KR20130035868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098980A (en) * 2013-11-19 2015-05-28 株式会社前川製作所 Air conditioning facility for information processing chamber
CN105283719A (en) * 2013-12-17 2016-01-27 株式会社前川制作所 Defrost system for refrigeration device and cooling unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098980A (en) * 2013-11-19 2015-05-28 株式会社前川製作所 Air conditioning facility for information processing chamber
CN105283719A (en) * 2013-12-17 2016-01-27 株式会社前川制作所 Defrost system for refrigeration device and cooling unit
KR101790462B1 (en) 2013-12-17 2017-10-25 가부시끼가이샤 마에가와 세이사꾸쇼 Defrost system for refrigeration device and cooling unit
KR101790461B1 (en) 2013-12-17 2017-10-25 가부시끼가이샤 마에가와 세이사꾸쇼 Sublimation defrost system for refrigeration devices and sublimation defrost method
KR101823809B1 (en) 2013-12-17 2018-01-30 가부시끼가이샤 마에가와 세이사꾸쇼 Defrost system for refrigeration device and cooling unit

Also Published As

Publication number Publication date
KR20130035868A (en) 2013-04-09

Similar Documents

Publication Publication Date Title
US10302343B2 (en) Defrost system for refrigeration apparatus, and cooling unit
CN102753900B (en) Aircondition
EP2397782B1 (en) Hot water supply device associated with heat pump
CN103090537B (en) Heat pump type hot water supply apparatus and method of operation thereof
CN104813121B (en) Air-conditioning and water-heating complex system
JP4734611B2 (en) Renewal unit of air conditioning equipment and construction method of air conditioning equipment using the same
JP5312075B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
EP1659355A2 (en) Cooling process and cooling apparatus for refrigerated vehicles
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
US11287172B2 (en) Freezer dehumidification system
WO2005057102A1 (en) Cooling box
CN111998569A (en) Refrigerated container refrigeration system capable of preventing freezing of container door
JP2009103453A (en) Air conditioning facility
JP2013076511A (en) Freezing apparatus and defrosting method for the same
RU2708761C1 (en) Refrigerating and/or freezing device
WO2008116723A1 (en) Method and device for refrigerating a cold store and also refrigerating vehicle
CN212320121U (en) Refrigerating equipment for freezing-proof refrigerator container door
KR100862673B1 (en) Refrigerating device for storehouse having reverse circulating thawing structure
KR20160010143A (en) Defrost system for Freezer
JP2012117685A (en) Cooling system and cooling method
JP2016142483A (en) Air cooler
US20220082312A1 (en) Atmospheric water generator with a defrost system
JP5058348B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP6229955B2 (en) Refrigeration apparatus and defrost method for load cooler
JP5482689B2 (en) Defrost equipment in carbon dioxide circulation and cooling system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202