JP2013076362A - Control device for multi-cylinder internal combustion engine - Google Patents

Control device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP2013076362A
JP2013076362A JP2011216406A JP2011216406A JP2013076362A JP 2013076362 A JP2013076362 A JP 2013076362A JP 2011216406 A JP2011216406 A JP 2011216406A JP 2011216406 A JP2011216406 A JP 2011216406A JP 2013076362 A JP2013076362 A JP 2013076362A
Authority
JP
Japan
Prior art keywords
cylinder
camshaft
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011216406A
Other languages
Japanese (ja)
Other versions
JP5663448B2 (en
Inventor
Kazuhiko Kanetoshi
和彦 兼利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011216406A priority Critical patent/JP5663448B2/en
Publication of JP2013076362A publication Critical patent/JP2013076362A/en
Application granted granted Critical
Publication of JP5663448B2 publication Critical patent/JP5663448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To suppress variations in air-fuel ratio between cylinders resulting from the torsion of a cam shaft.SOLUTION: On the cam shaft 23, a distortion sensor 35 is provided for detecting the torsion of the cam shaft 23. A valve timing for each of the cylinders is calculated on the basis of the torsion of the cam shaft 23, an intake air amount for each of the cylinders is calculated on the basis of the calculated valve timing, and an fuel injection amount is corrected with respect to each of the cylinders to set an air-fuel ratio for each of cylinders to be a target air-fuel ratio, on the basis of the intake air amount. The used distortion sensor 35 is a semiconductor type distortion sensor on the semiconductor substrate of which a wheatstone bridge circuit constituted of a plurality of diffused resistors is formed.

Description

本発明は、燃料噴射弁が各気筒毎に設けられた多気筒内燃機関に関し、特に、カムシャフトのねじれに起因する気筒間の空燃比のばらつきを抑制する技術に関する。   The present invention relates to a multi-cylinder internal combustion engine in which a fuel injection valve is provided for each cylinder, and more particularly to a technique for suppressing variation in air-fuel ratio between cylinders caused by camshaft torsion.

内燃機関の動弁系では、一般的に、クランクシャフトの回転動力をカムシャフトの長手方向の一端に伝達し、このカムシャフトに設けられたカムによって、吸気弁もしくは排気弁をバルブスプリング反力や筒内圧に抗して開閉作動させるように構成されている。   In a valve train of an internal combustion engine, generally, rotational power of a crankshaft is transmitted to one end in the longitudinal direction of a camshaft, and a cam provided on the camshaft causes an intake valve or an exhaust valve to react with a valve spring reaction force or It is configured to open and close against the in-cylinder pressure.

一方、特許文献1には、回転体に歪みセンサを貼り付けて、この回転体の歪みやトルクを測定する技術が記載されている。この歪みセンサは、半導体基板に複数の拡散抵抗からなるホイートストンブリッジ回路を形成した半導体型の歪みセンサであり、特定の方向に沿った歪みに対して極めて高い感度を有し、1〜2mm角程度以下の小型,軽量の構成であるという特徴を持つ。   On the other hand, Patent Document 1 describes a technique of attaching a strain sensor to a rotating body and measuring the distortion and torque of the rotating body. This strain sensor is a semiconductor strain sensor in which a Wheatstone bridge circuit composed of a plurality of diffused resistors is formed on a semiconductor substrate, has extremely high sensitivity to strain along a specific direction, and is about 1 to 2 mm square. It is characterized by the following compact and lightweight construction.

特開2006−220574号公報JP 2006-220574 A

内燃機関の回転体であるカムシャフトは、長手方向の一端側でタイミングベルトやチェーンを介して回転駆動されることから、特に高回転高負荷側において、長手方向の一端と他端との間でねじれを生じる。このねじれによる歪み・変形によって、カムシャフトにより駆動される複数の気筒の吸気弁のバルブタイミングが異なるものとなると、気筒間で吸入空気量のばらつきを生じ、ひいては気筒間で空燃比のばらつきを生じて、三元触媒等による所期の排気浄化性能を阻害するおそれがある。   A camshaft, which is a rotating body of an internal combustion engine, is driven to rotate at one end in the longitudinal direction via a timing belt or a chain, and therefore, particularly between the one end and the other end in the longitudinal direction on the high rotation and high load side. Causes a twist. If the valve timings of the intake valves of a plurality of cylinders driven by the camshaft differ due to distortion and deformation due to this twisting, the intake air amount varies among the cylinders, and the air-fuel ratio varies among the cylinders. Therefore, there is a risk that the desired exhaust purification performance by the three-way catalyst or the like may be hindered.

本発明は、このような事情に鑑みてなされたものであり、上述したような歪みセンサを利用して、多気筒内燃機関のカムシャフトのねじれに起因する気筒間の空燃比のばらつきを抑制することを目的としている。   The present invention has been made in view of such circumstances, and uses the strain sensor as described above to suppress variations in air-fuel ratio among cylinders caused by camshaft torsion of a multi-cylinder internal combustion engine. The purpose is that.

そこで本発明では、歪センサをカムシャフトに取り付けて、このカムシャフトのねじれを検出し、このねじれに基づいて、各気筒の空燃比を均一化するように、燃料噴射量を各気筒毎に補正するように構成した。   Therefore, in the present invention, a strain sensor is attached to the camshaft to detect the torsion of the camshaft, and based on this torsion, the fuel injection amount is corrected for each cylinder so as to equalize the air-fuel ratio of each cylinder. Configured to do.

歪センサとしては、半導体基板に拡散抵抗及び増幅回路を形成した半導体型の歪みセンサが好適である。このような半導体型歪みセンサは、非常に高い感度が得られるために、カムシャフトのねじれによる僅かな歪みや変位を高精度に検出することができる。特に、増幅回路を一体化したものでは、耐ノイズ性が高く、内燃機関の動弁系の振動やノイズの影響を受けない。さらに、歪センサは1〜2mm角以下の非常に小型で軽量であることから、カムシャフトに取り付けた場合であっても自身の質量に起因した遠心力が小さく、カムシャフトへの接着や接合も容易に行うことができる。   As the strain sensor, a semiconductor strain sensor in which a diffusion resistor and an amplifier circuit are formed on a semiconductor substrate is suitable. Since such a semiconductor strain sensor can obtain very high sensitivity, it is possible to detect a slight distortion and displacement due to torsion of the camshaft with high accuracy. In particular, an integrated amplifier circuit has high noise resistance and is not affected by vibration or noise of the valve train of the internal combustion engine. In addition, since the strain sensor is very small and lightweight with a size of 1 to 2 mm square or less, even when it is attached to the camshaft, the centrifugal force due to its own mass is small, and adhesion and joining to the camshaft is also possible. It can be done easily.

本発明によれば、多気筒内燃機関のカムシャフトのねじれに起因する気筒間の空燃比のばらつきを抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dispersion | variation in the air fuel ratio between cylinders resulting from the twist of the camshaft of a multicylinder internal combustion engine can be suppressed.

本発明の一実施例に係る直列4気筒式内燃機関の制御装置を示す構成図。The block diagram which shows the control apparatus of the inline 4 cylinder type internal combustion engine which concerns on one Example of this invention. 図1の内燃機関の動弁系を示す斜視図。FIG. 2 is a perspective view showing a valve train of the internal combustion engine of FIG. 1. 上記内燃機関の動弁系の要部を示す斜視図。The perspective view which shows the principal part of the valve operating system of the said internal combustion engine. カムシャフトのねじれに起因する#1気筒と#4気筒のバルブタイミングの相違を示す説明図。Explanatory drawing which shows the difference in valve timing of # 1 cylinder and # 4 cylinder resulting from torsion of a camshaft. エンジンコントロールユニットの制御処理を示す機能ブロック図。The functional block diagram which shows the control processing of an engine control unit. エンジンコントロールユニットの入出力系を示す説明図。Explanatory drawing which shows the input / output system of an engine control unit. 歪みセンサのセンサ出力を用いた各気筒毎の燃料噴射量の補正処理を示すブロック図。The block diagram which shows the correction process of the fuel injection amount for every cylinder using the sensor output of a distortion sensor. 各気筒毎の燃料噴射量の補正制御の流れを示すフローチャート。The flowchart which shows the flow of correction | amendment control of the fuel injection amount for every cylinder. ポート噴射式内燃機関における歪みセンサのセンサ出力の変化を示すタイミングチャートであり、(A)がエンジン回転数が一定で負荷が変化する場合、(B)が負荷が一定でエンジン回転数が変化する場合の説明図。6 is a timing chart showing changes in sensor output of a strain sensor in a port injection internal combustion engine, where (A) shows a case where the engine speed is constant and the load changes, and (B) shows a constant load and the engine speed changes. FIG. 筒内直接噴射式内燃機関のエンジン回転数とトルクとの関係を示す特性図。The characteristic view which shows the relationship between the engine speed and torque of a direct injection type internal combustion engine. 筒内直接噴射式内燃機関における歪みセンサのセンサ出力の変化を示すタイミングチャートであり、(A)がエンジン回転数が一定で負荷が変化する場合、(B)が負荷が一定でエンジン回転数が変化する場合の説明図。6 is a timing chart showing changes in the sensor output of a strain sensor in a direct injection type internal combustion engine, where (A) shows a case where the engine speed is constant and the load changes, and (B) shows a case where the load is constant and the engine speed is constant. Explanatory drawing in the case of changing.

以下、本発明に係る多気筒内燃機関の制御装置の好ましい実施の形態を図面を参照して説明する。   A preferred embodiment of a control apparatus for a multi-cylinder internal combustion engine according to the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例に係る直列4気筒火花点火式内燃機関の制御装置を示す概略構成図である。内燃機関1のシリンダブロック1aには、ピストン3が摺動自在に配置されたシリンダ(ボア)2が形成されており、ピストン3の上方に燃焼室4が画成されている。シリンダヘッド1bに形成されるペントルーフ型の燃焼室4の天井部中央には、燃焼室4内の混合気を火花点火する点火装置としての点火プラグ5が設けられている。また、燃焼室4には、吸気弁6を介して吸気通路7が接続するとともに、排気弁8を介して排気通路9が接続している。吸気通路7には、吸入空気量を調整するスロットル弁10が設けられるとともに、吸気ポートへ向けて燃料を噴射供給する燃料噴射弁17が各気筒毎に設けられている。なお、このようなポート噴射型の構成に限らず、後述するように、各気筒の燃焼室4内に燃料を直接的に噴射する筒内直接噴射型の構成であっても良い。   FIG. 1 is a schematic configuration diagram showing a control device for an in-line four-cylinder spark ignition type internal combustion engine according to an embodiment of the present invention. A cylinder block 1 a of the internal combustion engine 1 is formed with a cylinder (bore) 2 in which a piston 3 is slidably disposed. A combustion chamber 4 is defined above the piston 3. At the center of the ceiling of the pent roof type combustion chamber 4 formed in the cylinder head 1b, an ignition plug 5 is provided as an ignition device for spark-igniting the air-fuel mixture in the combustion chamber 4. In addition, an intake passage 7 is connected to the combustion chamber 4 via an intake valve 6, and an exhaust passage 9 is connected via an exhaust valve 8. The intake passage 7 is provided with a throttle valve 10 for adjusting the amount of intake air, and a fuel injection valve 17 for injecting and supplying fuel toward the intake port for each cylinder. The configuration is not limited to such a port injection type, but may be a direct injection type configuration in which fuel is directly injected into the combustion chamber 4 of each cylinder, as will be described later.

排気通路9には、排気ガスを浄化する三元触媒11が設けられるとともに、この触媒11の上流側と下流側のそれぞれに、排気の空燃比を検出する酸素濃度センサ等の空燃比センサ12,13が設けられており、これらの空燃比センサ12,13の検出信号に応じて空燃比制御が行われる。例えば特定の運転条件下では、排気の空燃比を目標空燃比(理論空燃比)の近傍に維持するように、空燃比センサ12,13により検出される空燃比と目標空燃比との差分に応じて燃料噴射量を調整する、周知の空燃比フィードバック制御が行われる。   The exhaust passage 9 is provided with a three-way catalyst 11 for purifying exhaust gas, and an air-fuel ratio sensor 12 such as an oxygen concentration sensor for detecting the air-fuel ratio of the exhaust on each of the upstream side and the downstream side of the catalyst 11. 13 is provided, and air-fuel ratio control is performed according to the detection signals of these air-fuel ratio sensors 12 and 13. For example, depending on the difference between the air-fuel ratio detected by the air-fuel ratio sensors 12 and 13 and the target air-fuel ratio so that the air-fuel ratio of the exhaust is maintained in the vicinity of the target air-fuel ratio (theoretical air-fuel ratio) under specific operating conditions. The well-known air-fuel ratio feedback control for adjusting the fuel injection amount is performed.

また、内燃機関1には、ウォータジャケット18内の冷却水温を検出する水温センサ14、スロットル弁10の開度を検出するスロットル開度センサ15、後述するカムシャフト23,24の回転角度からカム角を検出するカム角センサ16、クランクシャフト21のひいてはクランク角を検出するクランク角センサ196(図2参照)の他、後述する歪みセンサ35などの各種センサが設けられており、これらの検出信号ないし出力信号が、エンジンコントロールユニット(ECU)20に入力されている。なお、カム角センサとクランク角センサの一方の回転角度からカム角及びクランク角を検出するとを別個に備えた構成としても良い。   Further, the internal combustion engine 1 includes a water temperature sensor 14 for detecting the cooling water temperature in the water jacket 18, a throttle opening sensor 15 for detecting the opening of the throttle valve 10, and a cam angle based on rotation angles of camshafts 23 and 24 described later. In addition to the cam angle sensor 16 for detecting the crankshaft 21 and the crank angle sensor 196 (see FIG. 2) for detecting the crankshaft 21 and the crank angle, various sensors such as a strain sensor 35 to be described later are provided. An output signal is input to the engine control unit (ECU) 20. Note that the cam angle and the crank angle may be separately detected from the rotation angle of one of the cam angle sensor and the crank angle sensor.

図2は、この内燃機関の動弁系を示す斜視図であり、図3は、動弁系の要部を示す概略斜視図である。この内燃機関1は、気筒列方向に沿って機関前側より4つの#1〜#4気筒が直列に配置された直列4気筒式のものである。クランクシャフト21はコネクティングロッド22を介して各気筒のピストン3と接続しており、これらピストン3及びコネクティングロッド22を介して燃焼圧がクランクシャフト21に回転動力として伝達される。一例として、点火順序は#1→#3→#4→#2とされ、爆発間隔が等間隔となるように、各気筒のクランクピンは点火順に180度の位相差をもって配置されている。なお、図2では分かり易くするために4つの気筒のうち機関後端の#4気筒の構成のみを描いている。   FIG. 2 is a perspective view showing a valve operating system of the internal combustion engine, and FIG. 3 is a schematic perspective view showing a main part of the valve operating system. This internal combustion engine 1 is of an in-line 4-cylinder type in which four # 1 to # 4 cylinders are arranged in series from the engine front side along the cylinder row direction. The crankshaft 21 is connected to the piston 3 of each cylinder via a connecting rod 22, and the combustion pressure is transmitted to the crankshaft 21 as rotational power via the piston 3 and the connecting rod 22. As an example, the ignition order is # 1 → # 3 → # 4 → # 2, and the crank pins of each cylinder are arranged with a phase difference of 180 degrees in the order of ignition so that the explosion intervals are equal. In FIG. 2, only the configuration of the # 4 cylinder at the rear end of the engine among the four cylinders is illustrated for easy understanding.

動弁系は、各気筒毎に一対の吸気弁6及び一対の排気弁8が設けられるとともに、吸気弁6の上方に吸気側カムシャフト23、排気弁8の上方に排気側カムシャフト24がクランクシャフト21と平行に設けられた、いわゆるDOHC(ダブルオーバーヘッドカム)機構とされている。なお、動弁系としてはこれに限らず、例えばロッカアームやスイングアームを用いた機構であっても良い。   In the valve operating system, a pair of intake valves 6 and a pair of exhaust valves 8 are provided for each cylinder, an intake side camshaft 23 is located above the intake valves 6, and an exhaust side camshaft 24 is cranked above the exhaust valves 8. A so-called DOHC (double overhead cam) mechanism provided in parallel with the shaft 21 is used. The valve operating system is not limited to this and may be a mechanism using a rocker arm or a swing arm, for example.

クランクシャフト21の回転を1/2に減速してカムシャフト23,24へ伝達する機構として、この例では歯付きベルトであるタイミングベルト25を備えた機構が用いられている。タイミングベルト25は、クランクシャフト21の前端に設けられたクランクプーリ26と、カムシャフト23,24の前端に設けられたカムプーリ27,28と、にわたって巻き掛けられている。また、タイミングベルト25のベルト張力を適切に保ちつつ軌跡・レイアウトを適正化するように、タイミングベルト25には、テンショナ29Aやアイドラプーリ29B等が設けられている。なお、吸・排気弁への動力伝達機構としては、このようなタイミングベルト25を用いたものに限らず、ギヤやチェーンを用いた機構であっても良い。   In this example, a mechanism including a timing belt 25 which is a toothed belt is used as a mechanism for reducing the rotation of the crankshaft 21 to ½ and transmitting it to the camshafts 23 and 24. The timing belt 25 is wound around a crank pulley 26 provided at the front end of the crankshaft 21 and cam pulleys 27 and 28 provided at the front ends of the camshafts 23 and 24. The timing belt 25 is provided with a tensioner 29A, an idler pulley 29B and the like so as to optimize the trajectory / layout while keeping the belt tension of the timing belt 25 appropriately. The power transmission mechanism to the intake / exhaust valves is not limited to the mechanism using the timing belt 25, but may be a mechanism using gears or chains.

図3にも示すように、吸気側カムシャフト23には、各気筒毎に一対のカム30が設けられており、各カム30には、バルブリフト特性に応じた所定のカムプロフィールを有するカムノーズ31が設けられている。カムシャフト23の回転に応じてカムノーズ31がバルブリフタ32を押圧することで、バルブスプリング反力及び筒内圧に抗して吸気弁6がバルブステム33を介して機械的に開閉作動するようになっている。排気側カムシャフト24についても吸気側カムシャフト23と同様の構造である。各気筒の燃焼サイクルに応じて吸気弁や排気弁が適切なタイミングで開閉するように、各気筒のカム30は点火順に90度(クランク角で180度)の位相差をもって配置されている。   As shown in FIG. 3, the intake camshaft 23 is provided with a pair of cams 30 for each cylinder, and each cam 30 has a cam nose 31 having a predetermined cam profile corresponding to the valve lift characteristics. Is provided. When the cam nose 31 presses the valve lifter 32 according to the rotation of the camshaft 23, the intake valve 6 is mechanically opened and closed via the valve stem 33 against the valve spring reaction force and the in-cylinder pressure. Yes. The exhaust side camshaft 24 has the same structure as the intake side camshaft 23. The cams 30 of each cylinder are arranged with a phase difference of 90 degrees (a crank angle of 180 degrees) in the order of ignition so that the intake valve and the exhaust valve open and close at an appropriate timing according to the combustion cycle of each cylinder.

カムシャフト23,24は、カムプーリ27,28が設けられた長手方向の一端側・機関前端側で駆動されるために、エンジン負荷やエンジン回転数(回転速度)に応じて、カムシャフトの前端と後端とで回転位相差を生じ、いわゆるねじれを生じる。このねじれによるカムシャフトのねじれ角(前端のカムプーリ27,28の回転位相に対する回転位相差)は、機関後側に向かうほど大きくなる。このため、例えば図4に示すように、図中の二点鎖線の特性で示す機関前側の#1気筒のバルブタイミングに対し、図中の実線の特性で示す機関後側の#4気筒のバルブタイミングが遅角して、バルブタイミングが気筒間で不均一となる。図示の例では、#1気筒に比して#4気筒の吸気弁のバルブタイミングが遅角することで、吸気弁の開時期が排気上死点TDCから遅れるとともに、吸気弁の閉時期が吸気下死点BDCから更に遅角している。このため、吸入空気量が低下するとともに、燃焼安定性が低下することとなる。このように気筒間でバルブタイミングがばらつくと、気筒毎に吸入空気量がばらつき、ひいては、気筒毎に空燃比が異なる形となって、目標空燃比から乖離して、三元触媒11を利用した所期の排気浄化性能を得ることができない。   Since the camshafts 23 and 24 are driven on one end side and the engine front end side in the longitudinal direction in which the cam pulleys 27 and 28 are provided, the camshafts 23 and 24 A rotational phase difference occurs between the rear end and so-called twist. The twist angle of the camshaft due to this twist (rotational phase difference with respect to the rotational phase of the cam pulleys 27 and 28 at the front end) becomes larger toward the rear side of the engine. For this reason, as shown in FIG. 4, for example, the valve timing of the # 4 cylinder on the rear side of the engine indicated by the characteristic of the solid line in the figure with respect to the valve timing of the # 1 cylinder on the front side of the engine indicated by the characteristic of the two-dot chain line in the figure. The timing is retarded, and the valve timing becomes uneven among the cylinders. In the illustrated example, the valve timing of the intake valve of the # 4 cylinder is retarded compared to the # 1 cylinder, so that the opening timing of the intake valve is delayed from the exhaust top dead center TDC, and the closing timing of the intake valve is the intake timing. It is further delayed from the bottom dead center BDC. For this reason, the amount of intake air decreases and the combustion stability decreases. When the valve timing varies between the cylinders in this way, the intake air amount varies from cylinder to cylinder, and the air-fuel ratio varies from cylinder to cylinder. Thus, the three-way catalyst 11 is used, deviating from the target air-fuel ratio. The desired exhaust purification performance cannot be obtained.

そこで本実施例では、カムシャフト23のねじれを検出する歪みセンサ35を設けている。そして、後述するように、このカムシャフト23のねじれに基づいて、燃料噴射量を各気筒毎に補正することで、各気筒の空燃比を均一化するように構成している。なお、ここでは、吸入空気量に対する影響の大きい吸気側カムシャフト23に歪みセンサ35を設けた例について説明しているが、排気側カムシャフト24にも同様に歪みセンサ35を設け、このセンサ出力を後述する吸入空気量の算出等に反映させるようにしても良い。   Therefore, in this embodiment, a strain sensor 35 that detects torsion of the camshaft 23 is provided. As will be described later, the fuel injection amount is corrected for each cylinder based on the twist of the camshaft 23, so that the air-fuel ratio of each cylinder is made uniform. Although an example in which the strain sensor 35 is provided on the intake side camshaft 23 having a large influence on the intake air amount is described here, the strain sensor 35 is also provided on the exhaust side camshaft 24 in the same manner. May be reflected in the calculation of the intake air amount described later.

歪みセンサ35は、例えば接着剤を用いてカムシャフト23の外周面に接着され、あるいは接合もしくは嵌合される。この歪みセンサ35により検出されるカムシャフト23の歪みに対応するセンサ出力に基づいて、各気筒におけるカムシャフト23のねじれ角(前端位置に対する回転位相差)が求められる。カムシャフト23のねじれ角は後端側へ向かうに従って累積する形で大きくなることから、各気筒のねじれ角は、例えばカムシャフト23の前端位置からの所定区間毎のねじれ角を積算することにより求められる。   The strain sensor 35 is bonded to, or joined or fitted to, the outer peripheral surface of the camshaft 23 using, for example, an adhesive. Based on the sensor output corresponding to the distortion of the camshaft 23 detected by the distortion sensor 35, the torsion angle (rotational phase difference with respect to the front end position) of the camshaft 23 in each cylinder is obtained. Since the torsion angle of the camshaft 23 increases in a cumulative manner toward the rear end side, the torsion angle of each cylinder is obtained, for example, by integrating the torsion angles for each predetermined section from the front end position of the camshaft 23. It is done.

この実施例では、図3に示すように、歪みセンサ35が、カムシャフト23における外周面の三箇所、詳しくは、前端に設けられたカムプーリ27と#1気筒のカム30との間の前端位置35A、#2気筒のカム30と#3気筒のカム30との間の中央位置35B、及び#4気筒のカム30の後方の後端位置35C、の三箇所に設けられている。この場合、カムシャフト23を長手方向で前側部分,中央部分,及び後側部分の3つの区間に分けて各区間毎にねじれ角を測定することが可能となるために、カムシャフト23の長手方向位置によって変形量が異なる場合であっても、個々の気筒のねじれ角を高精度に検出することが可能となる。   In this embodiment, as shown in FIG. 3, the strain sensor 35 has three positions on the outer peripheral surface of the camshaft 23, more specifically, the front end position between the cam pulley 27 provided at the front end and the cam 30 of the # 1 cylinder. 35A, provided at three positions: a central position 35B between the cam 30 of the # 2 cylinder and the cam 30 of the # 3 cylinder, and a rear end position 35C of the rear of the cam 30 of the # 4 cylinder. In this case, the camshaft 23 can be divided into three sections, ie, a front part, a center part, and a rear part, in the longitudinal direction, and the twist angle can be measured for each section. Even when the amount of deformation varies depending on the position, the torsion angle of each cylinder can be detected with high accuracy.

なお、歪みセンサ35の設置位置や個数はこれに限られず、検出精度やコスト等を勘案して適宜に設定することができ、例えば、前端位置35Aと後端位置35Cの二箇所、あるいは中央位置35Bの一箇所のみとしても良い。   The installation position and number of strain sensors 35 are not limited to this, and can be appropriately set in consideration of detection accuracy, cost, etc. For example, two positions of the front end position 35A and the rear end position 35C, or the center position It is good also as one place of 35B.

歪みセンサ35の具体的な構造については、上記の特開2006−220574号公報に記載されているように公知であるために、詳細な説明は省略するが、基本的には、半導体基板に複数の拡散抵抗からなるホイートストンブリッジ回路を形成するとともに、増幅回路を同じ基板上に形成した半導体型歪みセンサから構成されている。原理としては、カムシャフト23にねじれによる歪みが生じると、せん断応力が発生し、このせん断応力をシリコン基板のピエゾ抵抗効果を利用して検出することにより、カムシャフト23のねじれを計測するものである。   The specific structure of the strain sensor 35 is publicly known as described in the above Japanese Patent Application Laid-Open No. 2006-220574, and a detailed description thereof will be omitted. And a semiconductor strain sensor in which an amplifier circuit is formed on the same substrate. In principle, when distortion due to torsion occurs in the camshaft 23, shearing stress is generated, and the torsion of the camshaft 23 is measured by detecting this shearing stress using the piezoresistance effect of the silicon substrate. is there.

このような半導体型歪みセンサ35は、特定の方向(一般的には互いに直交する2方向)に沿った歪みに対して高い感度を有している。従って、この歪み検出方向がカムシャフト23のねじれを精度良く検出可能なように歪みセンサ35が配置される。一例として、図示するように、この歪みセンサ35の歪み検出方向である矩形状のチップの対角線の方向が、カムシャフト23の周方向及び軸方向に沿うように配置される。   Such a semiconductor strain sensor 35 has high sensitivity to strain along a specific direction (generally, two directions orthogonal to each other). Accordingly, the strain sensor 35 is arranged so that the strain detection direction can accurately detect the torsion of the camshaft 23. As an example, as illustrated, the diagonal direction of the rectangular chip, which is the strain detection direction of the strain sensor 35, is arranged along the circumferential direction and the axial direction of the camshaft 23.

半導体型歪みセンサ35の感度は非常に高く、カムシャフト23の極僅かな歪みやねじれを高精度に測定することができる。また、1〜2mm角程度の小型・軽量の構成であるために、カムシャフト23に取り付けた場合であっても自身の質量に起因した遠心力が小さく、接合も容易である。特に、増幅回路を一体化した半導体型歪みセンサ35にあっては、耐ノイズ性が高く、振動等のノイズ源の多い動弁系のカムシャフト23に適用しても、ノイズの影響を受けることがない。この歪みセンサ35は、ワイヤレスで給電ならびにエンジンコントロールユニット20へ出力信号の送信が可能な構成となっている。   The sensitivity of the semiconductor strain sensor 35 is very high, and the slight distortion and twist of the camshaft 23 can be measured with high accuracy. Moreover, since it is a small and lightweight structure about 1-2 mm square, even if it is a case where it attaches to the camshaft 23, the centrifugal force resulting from own mass is small, and joining is also easy. In particular, the semiconductor strain sensor 35 with an integrated amplifier circuit has high noise resistance and is affected by noise even when applied to the camshaft 23 of a valve train that has many noise sources such as vibration. There is no. The strain sensor 35 is configured to be able to supply power and transmit an output signal to the engine control unit 20 wirelessly.

図5に示すように、エンジンコントロールユニット20は、周知のように、各種制御処理を演算・実行するCPU101、記憶装置としてのROM102,RAM103及びEEPROM(外部記憶部)120の他、入力側に、IG(イグニッション)スイッチ41からの信号が入力されるデジタル入力回路104、カム角センサ16及びクランク角センサ196からのパルス信号が入力されるパルス入力回路105、吸入空気量を検出するエアフローセンサ42、水温センサ14、空燃比センサ12,13及び歪みセンサ35等からの信号が入力されるアナログ入力回路106が備えられ、出力側に、リレー制御43用のデジタル出力回路111が設けられるとともに、燃料噴射弁17,点火プラグ5,及びスロットル弁10用のタイマー設定出力回路112が設けられ、更に、スキャンツール44用の通信回路113等が備えられている。   As shown in FIG. 5, the engine control unit 20 includes a CPU 101 that calculates and executes various control processes, a ROM 102 as a storage device, a RAM 103, and an EEPROM (external storage unit) 120, as well as an input side. A digital input circuit 104 to which a signal from an IG (ignition) switch 41 is input, a pulse input circuit 105 to which pulse signals from a cam angle sensor 16 and a crank angle sensor 196 are input, an airflow sensor 42 to detect an intake air amount, An analog input circuit 106 to which signals from the water temperature sensor 14, the air-fuel ratio sensors 12 and 13, the strain sensor 35, and the like are input is provided. A digital output circuit 111 for the relay control 43 is provided on the output side, and fuel injection is performed. Timer for valve 17, spark plug 5, and throttle valve 10 Constant output circuit 112 is provided, further, a communication circuit 113 or the like for scanning tool 44 is provided.

図6に示すように、エンジンコントロールユニット20のCPU101には、エアフローセンサ42、吸気温度を検出する吸気温センサ45、水温センサ14、クランク角センサ16、スロットル開度センサ15、空燃比センサ12,13、イグニッションスイッチ41の他、3つの歪みセンサ35A〜35Cからの入力信号を入力する入出力インターフェース302が設けられる。また、4つの気筒の燃料噴射弁17と、4つの気筒の点火プラグ5には、ドライバ310を介して制御信号が出力される。この制御信号に応じて、燃料噴射量,燃料噴射時期及び点火時期が各気筒毎に制御される。   As shown in FIG. 6, the CPU 101 of the engine control unit 20 includes an air flow sensor 42, an intake air temperature sensor 45 that detects intake air temperature, a water temperature sensor 14, a crank angle sensor 16, a throttle opening sensor 15, an air-fuel ratio sensor 12, 13. In addition to the ignition switch 41, an input / output interface 302 for inputting input signals from the three strain sensors 35A to 35C is provided. Control signals are output to the fuel injection valves 17 of the four cylinders and the spark plugs 5 of the four cylinders via the driver 310. In accordance with this control signal, the fuel injection amount, fuel injection timing, and ignition timing are controlled for each cylinder.

図7は、エンジンコントロールユニット20により実現される制御処理を機能ブロック図として示している。エンジン運転状態検出手段51は、エアフローセンサ42,カム角センサ16、クランク角センサ196及び水温センサ14等の各種センサからの信号により、吸入空気量,エンジン回転数及び冷却水温等のエンジン運転状態を検出する。バルブタイミング算出手段52は、歪みセンサ35により検出されるカムシャフト23のねじれ角に基づいて、各気筒の実際のバルブタイミングを算出する。上述したように、後端寄りの気筒ほど、カムシャフト23のねじれ角が大きくなるために、実際のバルブタイミングは遅角する。吸入空気量算出手段53は、算出した実際のバルブタイミングに基づいて、各気筒の実際の吸入空気量を算出する。燃料噴射量補正手段54は、算出した実際の吸入空気量に基づいて、目標空燃比が得られるように、各気筒毎に燃料噴射量の補正量を算出する。燃料噴射量算出手段55は、各気筒毎の燃料噴射量の補正量と、上記のエンジン運転状態検出手段51により検出されるエンジン運転状態と、に基づいて、最終的な燃料噴射量を各気筒毎に算出する。この最終的な燃料噴射量に応じて各気筒の燃料噴射弁17が駆動制御される。なお、この例では、先ずクランクシャフトのねじれを考慮した燃料噴射量の補正量を求め、その後、エンジン運転状態を考慮して最終的な燃料噴射量を算出しているが、演算ロジックとしてはこれに限らず、エンジン運転状態に応じて基本燃料噴射量を求めた後、クランクシャフトのねじれを考慮して個々の気筒の燃料噴射量を補正するようにしても良い。   FIG. 7 shows a control process realized by the engine control unit 20 as a functional block diagram. The engine operation state detection means 51 detects the engine operation state such as the intake air amount, the engine speed, and the cooling water temperature based on signals from various sensors such as the air flow sensor 42, the cam angle sensor 16, the crank angle sensor 196, and the water temperature sensor 14. To detect. The valve timing calculation unit 52 calculates the actual valve timing of each cylinder based on the twist angle of the camshaft 23 detected by the strain sensor 35. As described above, since the twist angle of the camshaft 23 increases as the cylinder is closer to the rear end, the actual valve timing is retarded. The intake air amount calculation means 53 calculates the actual intake air amount of each cylinder based on the calculated actual valve timing. The fuel injection amount correction means 54 calculates a fuel injection amount correction amount for each cylinder based on the calculated actual intake air amount so as to obtain the target air-fuel ratio. The fuel injection amount calculating means 55 calculates the final fuel injection amount for each cylinder based on the correction amount of the fuel injection amount for each cylinder and the engine operating state detected by the engine operating state detecting means 51. Calculate every time. The fuel injection valve 17 of each cylinder is driven and controlled in accordance with this final fuel injection amount. In this example, first, the correction amount of the fuel injection amount considering the twist of the crankshaft is obtained, and then the final fuel injection amount is calculated in consideration of the engine operating state. Not limited to this, after obtaining the basic fuel injection amount according to the engine operating state, the fuel injection amount of each cylinder may be corrected in consideration of the twist of the crankshaft.

図8は、歪みセンサ35を利用した燃料噴射量及び点火時期の補正制御の流れを示すフローチャートである。本ルーチンは、エンジンコントロールユニット20により各気筒毎に所定期間毎(例えば、10ms毎)に繰り返し実行され、これにより各気筒毎に燃料噴射量や点火時期が個別に設定される。   FIG. 8 is a flowchart showing a flow of correction control of the fuel injection amount and ignition timing using the strain sensor 35. This routine is repeatedly executed by the engine control unit 20 for each cylinder every predetermined period (for example, every 10 ms), whereby the fuel injection amount and the ignition timing are individually set for each cylinder.

ステップS11では、カムシャフトのねじれ角に対応する歪みセンサ35のセンサ出力を取り込む。ステップS12では、この歪みセンサ35のセンサ出力に基づいて、各気筒の実際のバルブタイミングを算出する。ステップS13では、実際のバルブタイミングに基づいて、気筒間の空燃比のばらつきを抑制するための燃料噴射量の補正が必要であるか否かを判断する。例えば、気筒間のバルブタイミングのばらつきが大きい場合には補正が必要であると判断して、ステップS14以降へ進む。一方、気筒間のバルブタイミングのばらつきが小さい場合には補正が不要であると判断して本ルーチンを終了する。   In step S11, the sensor output of the strain sensor 35 corresponding to the torsion angle of the camshaft is captured. In step S12, the actual valve timing of each cylinder is calculated based on the sensor output of the strain sensor 35. In step S13, based on the actual valve timing, it is determined whether or not correction of the fuel injection amount for suppressing variation in the air-fuel ratio between the cylinders is necessary. For example, when the variation in valve timing between cylinders is large, it is determined that correction is necessary, and the process proceeds to step S14 and subsequent steps. On the other hand, if the variation in the valve timing between the cylinders is small, it is determined that no correction is necessary, and this routine is terminated.

ステップS14では、算出した実際のバルブタイミングに基づいて、各気筒の実際の吸入空気量を算出する。一例としては、バルブタイミングと吸入空気量との関係を予めテーブルやマップとして設定・記憶しておき、これを参照して吸入空気量を求めることができる。エンジン回転数や負荷等のエンジン運転状態にもよるが、基本的には上述したように、バルブタイミングが遅角するほど、実際の吸入空気量は低下することとなる。   In step S14, the actual intake air amount of each cylinder is calculated based on the calculated actual valve timing. As an example, the relationship between the valve timing and the intake air amount can be set and stored in advance as a table or map, and the intake air amount can be obtained by referring to this. Although it depends on the engine operating state such as the engine speed and load, basically, as described above, the actual intake air amount decreases as the valve timing is retarded.

ステップS15では、各気筒の空燃比を目標空燃比に均一化して、気筒間の空燃比のばらつきを抑制するように、各気筒毎に算出した吸入空気量に基づいて燃料噴射量を各気筒毎に補正・算出する。つまり、目標空燃比が得られるように、各気筒毎に算出した吸入空気量に応じて燃料噴射量を各気筒毎に算出する。ステップS16では、算出した燃料噴射量に基づいて該当する気筒の燃料噴射弁17を駆動制御して、燃料噴射を実行する。このように気筒間の空燃比のばらつきを抑制して、各気筒の空燃比を目標空燃比に揃えることで、三元触媒11による所期の排気浄化性能を安定して維持することが可能となる。   In step S15, the fuel injection amount is set for each cylinder based on the intake air amount calculated for each cylinder so as to equalize the air-fuel ratio of each cylinder to the target air-fuel ratio and suppress variations in the air-fuel ratio among the cylinders. Correct and calculate. That is, the fuel injection amount is calculated for each cylinder in accordance with the intake air amount calculated for each cylinder so that the target air-fuel ratio can be obtained. In step S16, the fuel injection valve 17 of the corresponding cylinder is driven and controlled based on the calculated fuel injection amount, and fuel injection is executed. In this way, by suppressing the variation in the air-fuel ratio between the cylinders and making the air-fuel ratio of each cylinder the target air-fuel ratio, it is possible to stably maintain the desired exhaust purification performance by the three-way catalyst 11. Become.

一方、このように燃料噴射量を各気筒毎に調整した場合、各気筒で発生するトルクが異なるものとなり、このような気筒間のトルクのばらつきによって振動を生じ、車両搭乗者に不快感を与えるおそれがある。従って、気筒間の発生トルクのばらつきがエンジン運転上問題となるような場合には、ステップS17において、点火時期の補正制御を各気筒毎に行う。つまり、各気筒の発生トルクを均一化するように、補正後の燃料噴射量に応じて、点火時期を各気筒毎に補正する。一例として、燃料噴射量が多く発生トルクが大きい気筒では、最適点火時期MBTに対する点火時期のリタード量を大きくして、発生トルクが最も小さい気筒のトルクに各気筒のトルクを揃えることで、各気筒の発生トルクを均一にすることができる。通常、カムシャフト後端の気筒(実施例では#4気筒)が、ねじれの影響が大となって発生トルクが最も小さくなり、逆に、カムシャフト前端の#1気筒ではねじれの影響が最も小さいために、発生トルクが大きく、点火時期のリタード量が最も大きく設定される。このように燃料噴射量の補正とあわせて点火時期の補正を各気筒毎に行うことで、各気筒の空燃比を目標空燃比に揃えた上で、更に各気筒の発生トルクを均一化することができる。   On the other hand, when the fuel injection amount is adjusted for each cylinder in this way, the torque generated in each cylinder will be different, causing vibrations due to such variations in torque between the cylinders, and making the vehicle occupant feel uncomfortable. There is a fear. Therefore, when the variation in the generated torque between the cylinders becomes a problem in engine operation, the ignition timing correction control is performed for each cylinder in step S17. That is, the ignition timing is corrected for each cylinder in accordance with the corrected fuel injection amount so that the generated torque of each cylinder is made uniform. As an example, in a cylinder with a large fuel injection amount and a large generated torque, the retard amount of the ignition timing with respect to the optimal ignition timing MBT is increased, and the torque of each cylinder is aligned with the torque of the cylinder with the smallest generated torque. The generated torque can be made uniform. Normally, the cylinder at the rear end of the camshaft (# 4 cylinder in the embodiment) has the greatest effect of torsion and generates the smallest torque, and conversely, the # 1 cylinder at the front end of the camshaft has the least influence of torsion. Therefore, the generated torque is large and the retard amount of the ignition timing is set to be the largest. In this way, by correcting the ignition timing for each cylinder together with correcting the fuel injection amount, the air-fuel ratio of each cylinder is made equal to the target air-fuel ratio, and the generated torque of each cylinder is further made uniform. Can do.

図9を参照して、エンジン回転数が一定でスロットル開度の増加に伴い負荷が増加する場合(A)と、負荷が一定でエンジン回転数が増加する場合(B)とを比較すると、負荷が増加する場合(A)の方が、エンジン回転数が増加する場合(B)に比して、筒内圧の増加等の影響により、歪みセンサ35のセンサ出力の増加分R1が大きく(R1>R2)、つまりカムシャフトのねじれが大きい。従って、負荷が増加する加速時にはカムシャフトのねじれが大きくなって、空燃比のばらつきが大きくなる傾向にあり、本発明の適用が特に有効である。   Referring to FIG. 9, when the engine speed is constant and the load increases as the throttle opening increases (A), the load is constant and the engine speed increases (B). When the engine speed increases (A), the increase R1 in the sensor output of the strain sensor 35 is larger (R1>) due to the influence of an increase in the in-cylinder pressure or the like than when the engine speed increases (B). R2), that is, the torsion of the camshaft is large. Therefore, at the time of acceleration when the load increases, the camshaft torsion tends to increase and the variation of the air-fuel ratio tends to increase, and the application of the present invention is particularly effective.

図10及び図11を参照して、上記実施例のようなポート噴射式の内燃機関とは異なり、気筒内に直接燃料を噴射する筒内直接噴射式の内燃機関に本発明を適用した場合について説明する。このような筒内直接噴射式の内燃機関にあっては、図10に示すように、高い筒内圧の燃焼室内に燃料を直接噴射する必要があるために、20MPa以上の高い燃圧が要求され、特に、高負荷側では30MPa程度といった非常に高い燃圧が必要とされる。このため、燃料タンク内の燃料を低圧燃料配管に送給するフィードポンプとは別に、高い燃圧が得られるように燃料を昇圧する高圧燃料ポンプが用いられる。この高圧燃料ポンプは、周知のように、一般的には、カムシャフトの後端部に取り付けられ、このカムシャフトの後端部に設けられた専用のカムによりプランジャを機械的に往復駆動させて燃料を昇圧するものである。   Referring to FIGS. 10 and 11, the present invention is applied to an in-cylinder direct injection internal combustion engine in which fuel is directly injected into a cylinder, unlike the port injection internal combustion engine as in the above embodiment. explain. In such an in-cylinder direct injection internal combustion engine, as shown in FIG. 10, since it is necessary to inject fuel directly into a combustion chamber having a high in-cylinder pressure, a high fuel pressure of 20 MPa or more is required, In particular, a very high fuel pressure of about 30 MPa is required on the high load side. For this reason, apart from the feed pump that feeds the fuel in the fuel tank to the low-pressure fuel pipe, a high-pressure fuel pump that boosts the fuel so as to obtain a high fuel pressure is used. As is well known, this high-pressure fuel pump is generally attached to the rear end portion of a camshaft, and a plunger is mechanically reciprocated by a dedicated cam provided at the rear end portion of the camshaft. Boosts fuel.

この場合、カムシャフトには、カムプーリが設けられた前端部に回転動力が伝達される一方、高圧燃料ポンプが設けられた後端部に大きな負荷が作用するために、カムシャフトのねじれが大きくなる傾向にある。具体的には図11に示すように、筒内直接噴射式内燃機関では、上記実施例のようなポート噴射式内燃機関に比して、負荷の増加に伴う歪みセンサのセンサ出力の増加分R3が大きくなるとともに(R3>R1)、エンジン回転数の増加に伴う歪みセンサのセンサ出力の増加分R4も大きくなる(R4>R2)。このように筒内直接噴射式内燃機関では、負荷や回転数の増加に伴うカムシャフトのねじれが更に大きくなり、気筒間の空燃比のばらつきも大きくなることから、特に、本発明の適用が極めて有効なものとなる。   In this case, the rotational power is transmitted to the camshaft at the front end provided with the cam pulley, while a large load acts on the rear end provided with the high-pressure fuel pump, so that the camshaft is greatly twisted. There is a tendency. Specifically, as shown in FIG. 11, in the direct injection internal combustion engine, the increase R3 in the sensor output of the strain sensor accompanying the increase in load is greater than in the port injection internal combustion engine as in the above embodiment. Increases (R3> R1), and the increase R4 of the sensor output of the strain sensor accompanying the increase in engine speed also increases (R4> R2). In this way, in a direct injection internal combustion engine, the camshaft torsion is further increased as the load and the rotational speed are increased, and the variation in the air-fuel ratio between the cylinders is also increased. It becomes effective.

1…内燃機関
5…点火プラグ
6…吸気弁
8…排気弁
17…燃料噴射弁
20…エンジンコントロールユニット
23,24…カムシャフト
30…カム
35(35A,35B,35C)…歪みセンサ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 5 ... Spark plug 6 ... Intake valve 8 ... Exhaust valve 17 ... Fuel injection valve 20 ... Engine control unit 23, 24 ... Cam shaft 30 ... Cam 35 (35A, 35B, 35C) ... Strain sensor

Claims (5)

各気筒毎に燃料噴射弁が設けられるとともに、長手方向の一部に伝達される回転動力により回転駆動されるカムシャフトに、複数の気筒の吸気弁もしくは排気弁を開閉作動させる複数のカムが設けられた多気筒内燃機関の制御装置において、
上記カムシャフトに取り付けられ、このカムシャフトのねじれを検出する歪みセンサと、
各気筒の空燃比を均一化するように、上記カムシャフトのねじれに基づいて、燃料噴射量を各気筒毎に補正する燃料噴射量補正手段と、
を有することを特徴とする多気筒内燃機関の制御装置。
A fuel injection valve is provided for each cylinder, and a plurality of cams for opening and closing intake valves or exhaust valves of a plurality of cylinders are provided on a camshaft that is rotationally driven by rotational power transmitted to a part of the longitudinal direction. In the control apparatus for a multi-cylinder internal combustion engine,
A strain sensor that is attached to the camshaft and detects torsion of the camshaft;
Fuel injection amount correction means for correcting the fuel injection amount for each cylinder based on the torsion of the camshaft so as to equalize the air-fuel ratio of each cylinder;
A control device for a multi-cylinder internal combustion engine.
上記燃料噴射量補正手段は、
上記カムシャフトのねじれに基づいて、上記吸気弁もしくは排気弁のバルブタイミングを各気筒毎に算出し、
このバルブタイミングに基づいて、吸入空気量を各気筒毎に算出し、
この吸入空気量に基づいて、燃料噴射量を各気筒毎に補正することを特徴とする請求項1に記載の多気筒内燃機関の制御装置。
The fuel injection amount correcting means includes
Based on the torsion of the camshaft, the valve timing of the intake valve or exhaust valve is calculated for each cylinder,
Based on this valve timing, the intake air amount is calculated for each cylinder,
2. The control apparatus for a multi-cylinder internal combustion engine according to claim 1, wherein the fuel injection amount is corrected for each cylinder based on the intake air amount.
燃焼室内の混合気を火花点火する点火装置が各気筒毎に設けられ、
各気筒の発生トルクを均一化するように、上記燃料噴射量補正手段による補正後の燃料噴射量に応じて、点火時期を各気筒毎に補正する点火時期補正手段を有することを特徴とする請求項1又は2に記載の多気筒内燃機関の制御装置。
An ignition device for spark ignition of the air-fuel mixture in the combustion chamber is provided for each cylinder,
An ignition timing correction unit that corrects the ignition timing for each cylinder in accordance with the fuel injection amount corrected by the fuel injection amount correction unit so as to equalize the generated torque of each cylinder. Item 3. The control device for a multi-cylinder internal combustion engine according to Item 1 or 2.
上記歪みセンサは、カムシャフトの長手方向の複数箇所前端位置、後端位置及び中央位置の三箇所に設けられていることを特徴とする請求項1〜3のいずれかに記載の多気筒内燃機関の制御装置。   The multi-cylinder internal combustion engine according to any one of claims 1 to 3, wherein the strain sensors are provided at three positions of a front end position, a rear end position, and a center position in a plurality of positions in the longitudinal direction of the camshaft. Control device. 上記歪みセンサは、半導体基板に複数の拡散抵抗からなるホイートストンブリッジ回路を形成した半導体型歪みセンサであることを特徴とする請求項1〜4のいずれかに記載の多気筒内燃機関の制御装置。   The control device for a multi-cylinder internal combustion engine according to any one of claims 1 to 4, wherein the strain sensor is a semiconductor strain sensor in which a Wheatstone bridge circuit including a plurality of diffusion resistors is formed on a semiconductor substrate.
JP2011216406A 2011-09-30 2011-09-30 Control device for multi-cylinder internal combustion engine Active JP5663448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216406A JP5663448B2 (en) 2011-09-30 2011-09-30 Control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216406A JP5663448B2 (en) 2011-09-30 2011-09-30 Control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013076362A true JP2013076362A (en) 2013-04-25
JP5663448B2 JP5663448B2 (en) 2015-02-04

Family

ID=48479997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216406A Active JP5663448B2 (en) 2011-09-30 2011-09-30 Control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP5663448B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217560B3 (en) * 2014-09-03 2015-11-12 Continental Automotive Gmbh Method and device for improving the combustion processes taking place in the cylinders of an internal combustion engine
KR20160035872A (en) * 2014-09-24 2016-04-01 (주)다이나텍 Wireless power supply system for multi-rotator
US10598111B2 (en) 2017-11-30 2020-03-24 Toyota Jidosha Kabushiki Kaisha Fuel injection controller and controlling method for engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120820A (en) * 1986-11-10 1988-05-25 Toyota Motor Corp Control device for internal combustion engine
JPH02308909A (en) * 1989-05-22 1990-12-21 Mitsubishi Electric Corp Valve opening/closing control device for engine
JPH03141844A (en) * 1989-10-27 1991-06-17 Nippondenso Co Ltd Fuel injection device
JP2002155779A (en) * 2000-11-17 2002-05-31 Toyota Motor Corp Multi-cylinder internal combustion engine equipped with variable valve system
JP2005016952A (en) * 2003-06-23 2005-01-20 Tokyo Electric Power Co Inc:The Apparatus for measuring torque
JP2006220574A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system
JP2006336581A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Controller for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120820A (en) * 1986-11-10 1988-05-25 Toyota Motor Corp Control device for internal combustion engine
JPH02308909A (en) * 1989-05-22 1990-12-21 Mitsubishi Electric Corp Valve opening/closing control device for engine
JPH03141844A (en) * 1989-10-27 1991-06-17 Nippondenso Co Ltd Fuel injection device
JP2002155779A (en) * 2000-11-17 2002-05-31 Toyota Motor Corp Multi-cylinder internal combustion engine equipped with variable valve system
JP2005016952A (en) * 2003-06-23 2005-01-20 Tokyo Electric Power Co Inc:The Apparatus for measuring torque
JP2006220574A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system
JP2006336581A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Controller for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217560B3 (en) * 2014-09-03 2015-11-12 Continental Automotive Gmbh Method and device for improving the combustion processes taking place in the cylinders of an internal combustion engine
US10132253B2 (en) 2014-09-03 2018-11-20 Continental Automotive Gmbh Controlling combustion processes in an internal combustion engine
KR20160035872A (en) * 2014-09-24 2016-04-01 (주)다이나텍 Wireless power supply system for multi-rotator
KR101702993B1 (en) * 2014-09-24 2017-02-22 (주)다이나텍 Wireless power supply system for multi-rotator
US10598111B2 (en) 2017-11-30 2020-03-24 Toyota Jidosha Kabushiki Kaisha Fuel injection controller and controlling method for engine

Also Published As

Publication number Publication date
JP5663448B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
CN102057146B (en) Apparatus for engine control
US10001071B2 (en) Control system and control method for internal combustion engine
US8122869B2 (en) Air-fuel ratio control system of a multi-cylinder internal combustion engine
JP2010112244A (en) Control device and control method
JP4211296B2 (en) Knock control device for internal combustion engine
JP5787042B2 (en) Control device and control method for internal combustion engine
JP5663448B2 (en) Control device for multi-cylinder internal combustion engine
JP2013076363A (en) Combustion state detecting device of internal combustion engine
JP5900701B2 (en) Control device and control method for internal combustion engine
JP2011157903A (en) Parameter detecting device for internal combustion engine, and control device
JP5362595B2 (en) Intake air amount parameter calculation device and control device for internal combustion engine
JP4583354B2 (en) Internal EGR control device for internal combustion engine
JP6295518B2 (en) Control device and control method for internal combustion engine
JP2017014917A (en) Control mechanism for engine
JP3721996B2 (en) Ignition timing control device for internal combustion engine
JP2014224494A (en) Control device and control method for internal combustion engine
JP2012255398A (en) Internal combustion engine control device
JP2007009835A (en) Control device for internal combustion engine
JP4687578B2 (en) Misfire detection device for internal combustion engine
JP2009215948A (en) Control device for internal combustion engine
JP4792952B2 (en) Control device for internal combustion engine
JP4207879B2 (en) Abnormality judgment device for variable valve mechanism
JP5083569B2 (en) Multi-cylinder engine air-fuel ratio control device
JP6232758B2 (en) Control device and control method for internal combustion engine
JP5310395B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350