JP2013076192A - Polyolefin composite fiber and nonwoven fabric made thereof - Google Patents

Polyolefin composite fiber and nonwoven fabric made thereof Download PDF

Info

Publication number
JP2013076192A
JP2013076192A JP2011217651A JP2011217651A JP2013076192A JP 2013076192 A JP2013076192 A JP 2013076192A JP 2011217651 A JP2011217651 A JP 2011217651A JP 2011217651 A JP2011217651 A JP 2011217651A JP 2013076192 A JP2013076192 A JP 2013076192A
Authority
JP
Japan
Prior art keywords
carbon
composite fiber
fiber
polyolefin
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011217651A
Other languages
Japanese (ja)
Other versions
JP5851787B2 (en
Inventor
Noritaka Ban
紀孝 伴
Kazumasa Shimada
和将 嶋田
Hironori Aida
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2011217651A priority Critical patent/JP5851787B2/en
Publication of JP2013076192A publication Critical patent/JP2013076192A/en
Application granted granted Critical
Publication of JP5851787B2 publication Critical patent/JP5851787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyolefin composite fiber derived from a biomass-originated material as a raw material with performance equivalent to the conventional one, thereby suppressing the consumption of petroleum resources and suppressing the net increase of carbon dioxide after disposal, and to provide a nonwoven fabric made thereof.SOLUTION: A polyolefin composite fiber comprises two polyolefins with different melting temperatures, which are derived from a biomass-originated component as a raw material comprising radioactive carbon (carbon 14) by means of the accelerator mass spectrometer (AMS). In the two polyolefins, a polyolefin with lower melting temperature composes at least a part of an outer circumference of the cross section of a fiber while a polyolefin with higher melting temperature composes the other part of the cross section of the fiber.

Description

本発明は、バイオマス由来の複合短繊維およびそれを用いた不織布に関する。   The present invention relates to a composite short fiber derived from biomass and a nonwoven fabric using the same.

ポリエチレンやポリプロピレンのようなポリオレフィンを原料とした複合繊維からなる不織布は、優れた機械的特性、化学的安定性を有し、それらからなる不織布は、おむつやナプキンのような衛生材料、お茶パック、ワイパーのような生活資材、電池セパレーターやフィルターのような産業資材用途まで幅広く利用されている。   Nonwoven fabrics made of composite fibers made from polyolefins such as polyethylene and polypropylene have excellent mechanical properties and chemical stability. Nonwoven fabrics made of these are sanitary materials such as diapers and napkins, tea packs, It is widely used for household materials such as wipers and industrial materials such as battery separators and filters.

ところで、ポリオレフィンは従来、石油などの限りある貴重な化石資源を原材料としている。さらに、焼却廃棄された場合、本来化石資源中に封じ込められていた炭素が二酸化炭素となって空気中に放出されるため、新たに発生する二酸化炭素により温室効果が増長されることとなり、地球温暖化の一因となっている。   By the way, polyolefins are conventionally made from valuable fossil resources such as petroleum. In addition, when discarded by incineration, carbon originally contained in fossil resources is released into the air as carbon dioxide, so the newly generated carbon dioxide increases the greenhouse effect, resulting in global warming. It is one of the causes.

これに対し、バイオマスの起源である植物は、太陽エネルギーと二酸化炭素および水から光合成により澱粉やセルロースなどのバイオマスを作ることができる(例えば、特許文献1、2参照。)。合成繊維およびそれからなる不織布もこういったバイオマスを出発原料として活用すれば石油資源の使用量を抑制することができる。また、使用後、焼却処理して二酸化炭素が排出されたとしても、それらはもともと環境中の二酸化炭素が植物によって、吸収・固定化されたものであり、大気中の二酸化炭素の収支に影響を与えない(あるいは、二酸化炭素の正味の増大を抑制する)、いわゆる、カーボンニュートラルと考えることができる。   On the other hand, the plant which is the origin of biomass can make biomass, such as starch and cellulose, by photosynthesis from solar energy, carbon dioxide, and water (for example, refer patent documents 1 and 2). Synthetic fibers and non-woven fabrics made thereof can also reduce the amount of petroleum resources used if such biomass is used as a starting material. In addition, even if carbon dioxide is emitted after incineration, carbon dioxide in the environment is originally absorbed and fixed by plants, which affects the balance of carbon dioxide in the atmosphere. It can be considered as carbon neutral, which is not given (or suppresses the net increase of carbon dioxide).

そこで例えば、繊維横断面の一部にバイオマス由来のポリオレフィンを使用した複合繊維が提案されている(例えば、特許文献3参照。)。バイオマス由来ポリオレフィン以外の構成成分には、芳香族ポリエステルを使用しているが、芳香族ポリエステルは、現行の商業的な技術の範囲では、少なくとも一部に化石資源由来の原料を使用せざるを得ず、上記のカーボンニュートラルの観点からは、不十分である。また、芯にバイオマス由来のポリ乳酸、鞘にバイオマス由来のポリオレフィンを使用した複合繊維も提案されている(例えば、特許文献4参照。)。当該技術によれば、複合繊維中のバイオマス由来物質の含有率は高くすることが可能であるが、機械的特性や耐久性等、性能面で満足できるものは得難いのが現状である。   Therefore, for example, a composite fiber using a biomass-derived polyolefin in a part of the fiber cross section has been proposed (see, for example, Patent Document 3). Aromatic polyesters are used as constituents other than biomass-derived polyolefins, but in the current commercial technology, aromatic polyesters must use at least part of raw materials derived from fossil resources. However, it is insufficient from the viewpoint of the carbon neutral. A composite fiber using biomass-derived polylactic acid for the core and biomass-derived polyolefin for the sheath has also been proposed (see, for example, Patent Document 4). According to this technique, the content of the biomass-derived substance in the composite fiber can be increased, but it is difficult to obtain a material that satisfies the performance such as mechanical characteristics and durability.

特開2009−091694号公報JP 2009-091694 A 特開2008−150759号公報JP 2008-150759 A 特開2011−038207号公報JP 2011-038207 A 特開2010−065342号公報JP 2010-066532 A

本発明は上記従来技術を背景になされたものであり、その目的は、バイオマス由来物質を高い含有率で含む複合繊維を使用することで、従来ポリオレフィン複合繊維と同等の特長を保持しながら、石油資源の消費を抑え、かつ、焼却・廃棄に伴う大気中における二酸化炭素の正味の増大を抑制することである。   The present invention has been made against the background of the above prior art, and its purpose is to use a composite fiber containing a biomass-derived substance at a high content rate, while maintaining the same features as a conventional polyolefin composite fiber. It is to suppress the consumption of resources and to suppress the net increase of carbon dioxide in the atmosphere accompanying incineration and disposal.

上記課題を解決するために検討を行った結果、いずれもバイオマス由来原料からなる、融点の異なる2種のポリオレフィンを使用した複合繊維およびそれを用いた不織布によって、上記目的が達成される。即ち、繊維横断面の少なくとも一部が低融点のオレフィンからなり、繊維横断面のそれ以外の部分が、該ポリオレフィンより融点の高いポリオレフィンよりなる複合繊維であって、該複合繊維中に加速機質量分光計(AMS)を用いた測定による放射性炭素(炭素14)測定によるところのバイオマス由来炭素を含むことで達成される。   As a result of investigations to solve the above problems, the above object is achieved by a composite fiber using two kinds of polyolefins each having a different melting point and a nonwoven fabric using the same, both of which are made of biomass-derived raw materials. That is, at least a part of the fiber cross section is made of a low melting point olefin, and the other part of the fiber cross section is a composite fiber made of a polyolefin having a melting point higher than that of the polyolefin, the accelerator mass in the composite fiber This is achieved by including biomass-derived carbon as measured by radioactive carbon (carbon 14) measurement using a spectrometer (AMS).

すなわち本願発明は、放射性炭素(炭素14)を含むバイオマス由来の成分を原料とし互いに融点の異なる2種のポリオレフィンを含んでなる複合繊維であって、該2種のポリオレフィン中、相対的に低融点のポリオレフィンが繊維横断面の外周の少なくとも一部を構成することを特徴とする複合繊維およびそれからなる不織布であり、本発明により上記課題を解決することができる。   That is, the present invention is a composite fiber comprising two types of polyolefins having different melting points from a biomass-derived component containing radioactive carbon (carbon 14), and having a relatively low melting point in the two types of polyolefins. This is a composite fiber characterized in that the polyolefin constitutes at least a part of the outer periphery of the fiber cross section, and a nonwoven fabric comprising the same, and the present invention can solve the above problems.

本発明の複合繊維は、ポリオレフィンからなる複合繊維であり、加速機質量分光計(AMS)を用いた測定による放射性炭素(炭素14)を含む。好ましくは該ポリオレフィンが加速機質量分光計(AMS)を用いた測定による1950年時点の循環炭素中の放射性炭素(炭素14、14C)濃度を基準(100%)としたバイオマス由来の炭素14の比率が70%以上である。本発明に複合繊維およびそれを用いた不織布は、汎用資材として使用するにあたって、石油資源の枯渇の抑制に寄与するところが大きく、また、焼却廃棄に際しても、地球温暖化の原因物質である二酸化炭素の大気中での増加を大幅に抑制することができる。 The conjugate fiber of the present invention is a conjugate fiber made of polyolefin, and contains radioactive carbon (carbon 14) measured by an accelerator mass spectrometer (AMS). Preferably, the polyolefin is a biomass-derived carbon 14 based on the concentration (100%) of radioactive carbon (carbon 14, 14 C) in the circulating carbon as of 1950 as measured using an accelerator mass spectrometer (AMS). The ratio is 70% or more. The composite fiber and the non-woven fabric using the composite fiber according to the present invention greatly contribute to the suppression of the depletion of petroleum resources when used as a general-purpose material. The increase in the atmosphere can be greatly suppressed.

以下、本願発明について詳細に説明する。本発明は融点の異なる2種のポリオレフィンからなる複合繊維であり、2種のポリオレフィンのうち、低融点のポリオレフィンが、繊維横断面の外周の少なくとも一部を構成し、上記低融点ポリオレフィンより融点の高いポリオレフィンが繊維横断面のその他の部分を構成する複合繊維であって、複合繊維中に、後述する加速機質量分光計(AMS)を用いた放射性炭素(炭素14)測定によるところのバイオマス由来炭素を含むものである。本発明に使用されるポリオレフィンは高密度ポリエチレン(HDPE)、中密度ポリエチレン、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、アタクチックポリプロピレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、エチレン・プロピレン共重合体、ポリブタジエン、ポリスチレン、ポリアクリロニトリル、ポリビニアルコール、ポリ酢酸ビニル、ポリ塩化ビニル、ポリアクリル酸、ポリアクリル酸エステル(メチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ヘキシルエステル等)、ポリメタクリル酸、ポリメタクリル酸(メチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ヘキシルエステル等)を挙げることができる。これらの成分には全体のポリオレフィンの特性を損なわない範囲内で上記の他の種類のポリオレフィン、ポリエチレンテレフタレートもしくはポリブチレンテレフタレート等のポリエステル、ナイロン6,6等のポリアミド、ポリエーテル、ポリエーテルエステル、ポリエーテルエステルアミド、ポリメチレンオキサイド、ポリフェニレンエーテルもしくはポリエーテルイミド等のポリマーまたは必要に応じて他の各種の添加剤、例えば、熱安定剤、親水剤、消泡剤、整色剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、静電気発生防止剤、制電防止剤、抗菌剤、蛍光増白剤、可塑剤もしくは耐衝撃剤等の添加剤を共重合、または混合してもよい。さらに換言すると、これらの目的で、アルカリ金属化合物、アルカリ土類金属化合物、アルミニウム化合物、カーボンブラックもしくはカーボンナノチューブ等の炭素化合物、ゲルマニウム化合物、チタン化合物、クロム化合物、マンガン化合物、鉄化合物、コバルト化合物、ニッケル化合物、銅化合物、亜鉛化合物、パラジウム化合物、銀化合物、スズ化合物、ホウ素化合物、シリコーン化合物、硫黄化合物、ハロゲン化合物、リン系化合物、アンチモン化合物等の無機化合物や、脂肪族炭化水素化合物、脂環族炭化水素化合物、芳香族炭化水素化合物、脂肪族アミノ化合物、芳香族アミノ化合物、ニトロ化合物、ニトロソ化合物、アゾ化合物、尿素化合物、ウレタン化合物、アミド化合物、エーテル化合物、チオエーテル化合物、エポキシ化合物、カルボン酸化合物、エステル化合物等の有機化合物の1種または2種以上をポリオレフィンの重量に対して0.01ppm〜10.0重量%の範囲で、混合・配合させても良い。   Hereinafter, the present invention will be described in detail. The present invention is a composite fiber composed of two types of polyolefins having different melting points. Among the two types of polyolefins, the low melting point polyolefin constitutes at least a part of the outer periphery of the fiber cross section, and has a melting point higher than that of the low melting point polyolefin. High-polyolefin is a composite fiber that constitutes the other part of the fiber cross section, and the biomass-derived carbon in the composite fiber is measured by radioactive carbon (carbon 14) measurement using an accelerator mass spectrometer (AMS) described later. Is included. Polyolefins used in the present invention are high density polyethylene (HDPE), medium density polyethylene, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), atactic polypropylene, isotactic polypropylene, syndiotactic polypropylene, Ethylene / propylene copolymer, polybutadiene, polystyrene, polyacrylonitrile, polyvinyl alcohol, polyvinyl acetate, polyvinyl chloride, polyacrylic acid, polyacrylic acid ester (methyl ester, ethyl ester, propyl ester, butyl ester, hexyl ester, etc. ), Polymethacrylic acid, polymethacrylic acid (methyl ester, ethyl ester, propyl ester, butyl ester, hexyl ester, etc.). These components include the above-mentioned other types of polyolefins, polyesters such as polyethylene terephthalate or polybutylene terephthalate, polyamides such as nylon 6,6, polyethers, polyether esters, Polymers such as ether ester amide, polymethylene oxide, polyphenylene ether or polyether imide or various other additives as required, for example, heat stabilizer, hydrophilic agent, antifoaming agent, color adjuster, antioxidant, Additives such as ultraviolet absorbers, infrared absorbers, antistatic agents, antistatic agents, antibacterial agents, fluorescent whitening agents, plasticizers or impact resistance agents may be copolymerized or mixed. In other words, for these purposes, alkali metal compounds, alkaline earth metal compounds, aluminum compounds, carbon compounds such as carbon black or carbon nanotubes, germanium compounds, titanium compounds, chromium compounds, manganese compounds, iron compounds, cobalt compounds, Inorganic compounds such as nickel compounds, copper compounds, zinc compounds, palladium compounds, silver compounds, tin compounds, boron compounds, silicone compounds, sulfur compounds, halogen compounds, phosphorus compounds, antimony compounds, aliphatic hydrocarbon compounds, alicyclic rings Aromatic hydrocarbon compound, aromatic hydrocarbon compound, aliphatic amino compound, aromatic amino compound, nitro compound, nitroso compound, azo compound, urea compound, urethane compound, amide compound, ether compound, thioether compound, epoxy Compounds, carboxylic acid compounds, in a range of 0.01ppm~10.0% by weight of one or two or more relative to the weight of the polyolefin of ester compounds such as organic compounds, may be mixed and blended.

これらの化合物の中でアルカリ金属化合物の例としては、フッ化リチウム、塩化リチウム、臭化リチウム、水酸化リチウム、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、ステアリン酸リチウム、クエン酸三リチウム、クエン酸水素二リチウム、クエン酸二水素リチウム、グルコン酸リチウム、コハク酸リチウム、シュウ酸二リチウム、シュウ酸水素リチウム、マロン酸リチウム、グルタル酸リチウム、アジピン酸リチウム、スベリン酸リチウム、アゼライン酸リチウム、セバシン酸リチウム、フタル酸リチウム、フタル酸水素リチウム、イソフタル酸リチウム、イソフタル酸水素リチウム、テレフタル酸リチウム、テレフタル酸水素リチウム、メタリン酸リチウム、リンゴ酸リチウム、リン酸三リチウム、リン酸水素二リチウム、リン酸二水素リチウム、亜硝酸リチウム、安息香酸リチウム、酒石酸水素リチウム、重シュウ酸リチウム、重フタル酸リチウム、重酒石酸リチウム、重硫酸リチウム、硝酸リチウム、炭酸リチウム、炭酸水素リチウム、乳酸リチウム、硫酸リチウム、硫酸水素リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、水酸化ナトリウム、ギ酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、酪酸ナトリウム、ステアリン酸ナトリウム、クエン酸三ナトリウム、クエン酸水素二ナトリウム、クエン酸二水素ナトリウム、グルコン酸ナトリウム、コハク酸ナトリウム、シュウ酸二ナトリウム、シュウ酸水素ナトリウム、マロン酸ナトリウム、グルタル酸ナトリウム、アジピン酸ナトリウム、スベリン酸ナトリウム、アゼライン酸ナトリウム、セバシン酸ナトリウム、フタル酸ナトリウム、フタル酸水素ナトリウム、イソフタル酸ナトリウム、イソフタル酸水素ナトリウム、テレフタル酸ナトリウム、テレフタル酸水素ナトリウム、メタリン酸ナトリウム、リンゴ酸ナトリウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、亜硝酸ナトリウム、安息香酸ナトリウム、酒石酸水素ナトリウム、重シュウ酸ナトリウム、重フタル酸ナトリウム、重酒石酸ナトリウム、重硫酸ナトリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、乳酸ナトリウム、硫酸ナトリウム、硫酸水素ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、カリウムミョウバン、水酸化カリウム、ギ酸カリウム、酢酸カリウム、プロピオン酸カリウム、酪酸カリウム、ステアリン酸カリウム、クエン酸三カリウム、クエン酸水素二カリウム、クエン酸二水素カリウム、グルコン酸カリウム、コハク酸カリウム、シュウ酸二カリウム、シュウ酸水素カリウム、マロン酸カリウム、グルタル酸カリウム、アジピン酸カリウム、スベリン酸カリウム、アゼライン酸カリウム、セバシン酸カリウム、フタル酸カリウム、フタル酸水素カリウム、イソフタル酸カリウム、イソフタル酸水素カリウム、テレフタル酸カリウム、テレフタル酸水素カリウム、メタリン酸カリウム、リンゴ酸カリウム、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、亜硝酸カリウム、安息香酸カリウム、酒石酸水素カリウム、重シュウ酸カリウム、重フタル酸カリウム、重酒石酸カリウム、重硫酸カリウム、硝酸カリウム、炭酸カリウム、炭酸カリウムナトリウム、炭酸水素カリウム、乳酸カリウム、硫酸カリウム、硫酸水素カリウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、水酸化ルビジウム、ギ酸ルビジウム、酢酸ルビジウム、プロピオン酸ルビジウム、ステアリン酸ルビジウム、クエン酸三ルビジウム、クエン酸水素二ルビジウム、クエン酸二水素ルビジウム、グルコン酸ルビジウム、コハク酸ルビジウム、シュウ酸二ルビジウム、シュウ酸水素ルビジウム、フタル酸ルビジウム、イソフタル酸ルビジウム、テレフタル酸ルビジウム、リン酸三ルビジウム、リン酸水素二ルビジウム、リン酸二水素ルビジウム、亜硝酸ルビジウム、安息香酸ルビジウム、硝酸ルビジウム、炭酸ルビジウム、炭酸水素ルビジウム、乳酸ルビジウム、硫酸ルビジウム、硫酸水素ルビジウム、塩化セシウム、水酸化セシウム、酢酸セシウム、炭酸セシウム、安息香酸セシウム、硝酸セシウム、硫酸セシウムまたは乳酸セシウム等を例示することができる。これらの化合物群からは、単一の種類の化合物を用いても又は複数の種類の化合物を併用してもかまわない。   Among these compounds, examples of alkali metal compounds include lithium fluoride, lithium chloride, lithium bromide, lithium hydroxide, lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium stearate, and trilithium citrate. , Dilithium hydrogen citrate, lithium dicitrate, lithium gluconate, lithium succinate, dilithium oxalate, lithium hydrogen oxalate, lithium malonate, lithium glutarate, lithium adipate, lithium suberate, lithium azelate , Lithium sebacate, lithium phthalate, lithium hydrogen phthalate, lithium isophthalate, lithium hydrogen isophthalate, lithium terephthalate, lithium terephthalate, lithium metaphosphate, lithium malate, trilithium phosphate, phosphoric acid water Dilithium, lithium dihydrogen phosphate, lithium nitrite, lithium benzoate, lithium hydrogen tartrate, lithium heavy oxalate, lithium biphthalate, lithium bitartrate, lithium bisulfate, lithium nitrate, lithium carbonate, lithium hydrogen carbonate, lactic acid Lithium, lithium sulfate, lithium hydrogen sulfate, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium hydroxide, sodium formate, sodium acetate, sodium propionate, sodium butyrate, sodium stearate, trisodium citrate, Disodium hydrogen citrate, sodium dihydrogen citrate, sodium gluconate, sodium succinate, disodium oxalate, sodium hydrogen oxalate, sodium malonate, sodium glutarate, sodium adipate, sodium Sodium phosphate, sodium azelate, sodium sebacate, sodium phthalate, sodium hydrogen phthalate, sodium isophthalate, sodium hydrogen isophthalate, sodium terephthalate, sodium hydrogen terephthalate, sodium metaphosphate, sodium malate, triphosphate Sodium, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium nitrite, sodium benzoate, sodium hydrogen tartrate, sodium bioxalate, sodium biphthalate, sodium bitartrate, sodium bisulfate, sodium nitrate, sodium carbonate, Sodium hydrogen carbonate, sodium lactate, sodium sulfate, sodium hydrogen sulfate, potassium fluoride, potassium chloride, potassium bromide, potassium iodide, potassium alum, potassium hydroxide, gi Potassium acetate, potassium acetate, potassium propionate, potassium butyrate, potassium stearate, tripotassium citrate, dipotassium hydrogen citrate, potassium dihydrogen citrate, potassium gluconate, potassium succinate, dipotassium oxalate, hydrogen oxalate Potassium, potassium malonate, potassium glutarate, potassium adipate, potassium suberate, potassium azelate, potassium sebacate, potassium phthalate, potassium hydrogen phthalate, potassium isophthalate, potassium hydrogen isophthalate, potassium terephthalate, terephthalic acid Potassium hydrogen, potassium metaphosphate, potassium malate, tripotassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, potassium nitrite, potassium benzoate, potassium hydrogen tartrate, potassium heavy oxalate, heavy hydrogen Potassium rurate, potassium bitartrate, potassium bisulfate, potassium nitrate, potassium carbonate, sodium potassium carbonate, potassium bicarbonate, potassium lactate, potassium sulfate, potassium hydrogen sulfate, rubidium chloride, rubidium chloride, rubidium bromide, rubidium hydroxide, Rubidium formate, rubidium acetate, rubidium propionate, rubidium stearate, tribidium citrate, dirubidium citrate, rubidium dicitrate, rubidium gluconate, rubidium succinate, dirubidium oxalate, rubidium hydrogen oxalate, phthalate Rubidium phosphate, rubidium isophthalate, rubidium terephthalate, trirubium phosphate, dirubidium hydrogen phosphate, rubidium dihydrogen phosphate, rubidium nitrite, rubidium benzoate, rubidium nitrate, Acid rubidium bicarbonate, rubidium, lactic rubidium, rubidium sulfate, hydrogen rubidium sulfate, cesium chloride, cesium hydroxide, cesium acetate, cesium carbonate, cesium benzoate, cesium nitrate, can be exemplified cesium sulfate or lactate cesium. From these compound groups, a single type of compound may be used, or a plurality of types of compounds may be used in combination.

アルカリ土類金属化合物の例としては、上述する観点と同様な観点から選択できる範囲内であれば特に制限されるものではないが、具体的には塩化カルシウム、ギ酸カルシウム、コハク酸カルシウム、酪酸カルシウム、シュウ酸カルシウム、リン酸カルシウム、硝酸カルシウム、酢酸カルシウム、乳酸カルシウム、塩化マグネシウム、ギ酸マグネシウム、コハク酸マグネシウム、酪酸マグネシウム、シュウ酸マグネシウム、リン酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム、乳酸マグネシウム又は硫酸マグネシウム等を例示することができる。これらは単一の種類の化合物を用いても又は複数の種類の化合物を併用してもかまわない。その中でも、好ましくはナトリウム原子またはカリウム原子を含む化合物、より詳細にはナトリウム塩またはカリウム塩を用いることである。一方アニオン種側から見ると、これらの中で酢酸塩及び/又は炭酸塩が好ましい。またアルカリ金属塩とアルカリ土類金属塩を併用しても構わない。   Examples of the alkaline earth metal compound are not particularly limited as long as they are within a range that can be selected from the same viewpoint as described above, but specifically, calcium chloride, calcium formate, calcium succinate, calcium butyrate Calcium oxalate, calcium phosphate, calcium nitrate, calcium acetate, calcium lactate, magnesium chloride, magnesium formate, magnesium succinate, magnesium butyrate, magnesium oxalate, magnesium phosphate, magnesium nitrate, magnesium acetate, magnesium lactate or magnesium sulfate, etc. It can be illustrated. These may be a single type of compound or a combination of a plurality of types of compounds. Among them, it is preferable to use a compound containing a sodium atom or a potassium atom, more specifically a sodium salt or a potassium salt. On the other hand, when viewed from the anion species side, among these, acetates and / or carbonates are preferred. Further, an alkali metal salt and an alkaline earth metal salt may be used in combination.

詳細には、本発明において使用されるポリオレフィンはポリプロピレン、高密度ポリエチレン、エチレン・プロピレンランダム共重合体、無水マレイン酸をブロック共重合またはグラフト共重合させたポリエチレンおよび無水マレイン酸をブロック共重合またはグラフト共重合されたポリプロピレンよりなる群から少なくとも1種選択されたポリオレフィンであることが好ましい。さらに詳細には本発明で用いる低融点のポリオレフィン系ポリマーとしては高密度ポリエチレン、エチレン・プロピレンランダム共重合ポリオレフィン、第三成分をブロックもしくはグラフト共重合させたポリエチレン、第三成分をブロックもしくはグラフト共重合させたポリプロピレンであることが好ましい。この場合における第三成分とは酢酸ビニル、塩化ビニル、スチレン、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、メチルメタアクリレート、エチルメタアクリレート、イソプロピルメタアクリレート、アクリル酸、メタクリル酸、無水マレイン酸を挙げることができる。これらのなかでも、特に、高密度ポリエチレン、エチレン・プロピレンランダム共重合体、無水マレイン酸をブロック共重合またはグラフト共重合させたポリエチレンおよび無水マレイン酸をブロック共重合されたポリプロピレンよりなる群から選択されたポリオレフィンであることが好ましい。また、上述のポリオレフィン系ポリマーから複数を選択して、混合して用いても差し支えない。該低融点ポリマーよりも融点の高いポリオレフィンとしては、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレンが好ましく例示される。   Specifically, the polyolefin used in the present invention is polypropylene, high-density polyethylene, ethylene / propylene random copolymer, polyethylene obtained by block copolymerization or graft copolymerization of maleic anhydride and block copolymerization or grafting of maleic anhydride. Preferably, the polyolefin is at least one selected from the group consisting of copolymerized polypropylene. More specifically, the low melting point polyolefin polymer used in the present invention includes high-density polyethylene, ethylene / propylene random copolymer polyolefin, polyethylene obtained by block or graft copolymerization of the third component, and block or graft copolymerization of the third component. Preference is given to polypropylene. The third component in this case includes vinyl acetate, vinyl chloride, styrene, methyl acrylate, ethyl acrylate, isopropyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, acrylic acid, methacrylic acid, and maleic anhydride. it can. Among these, particularly selected from the group consisting of high-density polyethylene, ethylene / propylene random copolymer, polyethylene obtained by block copolymerization or graft copolymerization of maleic anhydride, and polypropylene obtained by block copolymerization of maleic anhydride. Polyolefins are preferred. In addition, a plurality of the above-mentioned polyolefin polymers may be selected and mixed for use. Preferred examples of the polyolefin having a higher melting point than the low melting point polymer include isotactic polypropylene and syndiotactic polypropylene.

本発明におけるバイオマス由来のポリオレフィンの製造方法としては、例えばポリエチレンの場合、トウモロコシ、サトウキビ、サツマイモなどから得られる澱粉や糖分などのバイオマス由来の成分(バイオマス資源)を微生物で発酵させてバイオエタノールを製造し、これを脱水反応させることでエチレンを製造し、さらに重合させることでバイオマス由来100%のポリエチレンを得ることができる。また、ポリプロピレンの場合は、上記のバイオエチレンを出発原料として、メタセシス反応によって、プロピレンを製造し、さらに重合させることでバイオマスポリプロピレンを得る方法が挙げられる。また別のポリプロピレンの製造方法としては、上記のバイオマス資源に対し、発酵条件を変更する事で1,3−プロピレングリコールを製造し、これを脱水反応させる事でプロピレンとし、さらに公知の重合方法により重合させる事でバイオマス資源由来のポリプロピレンを得ることができる。この1,3−プロピレングリコールの製造方法については特表平10−507082号公報、特表平11−502718号公報、特表2001−504338号公報、特表2002−514426号公報、特表2003−507022号公報、特表2006−512907号公報、特表2007−501324号公報、特表2007−502325号公報等に記載されていることが知られている。さらにポリプロピレンとポリエチレンの共重合体としては、上記のようにして得られたプロピレンとエチレンの所定量の混合体を公知の方法により重合させる事で得ることができる。   As a method for producing a biomass-derived polyolefin in the present invention, for example, in the case of polyethylene, bioethanol is produced by fermenting biomass-derived components (biomass resources) such as starch and sugar obtained from corn, sugarcane, sweet potato, etc. with microorganisms. Then, this is dehydrated to produce ethylene, and further polymerized to obtain 100% biomass-derived polyethylene. In the case of polypropylene, a method of producing biomass polypropylene by producing propylene by a metathesis reaction using the above bioethylene as a starting material and further polymerizing it can be mentioned. Another method for producing polypropylene is to produce 1,3-propylene glycol by changing the fermentation conditions for the above biomass resources, to obtain propylene by dehydrating it, and by a known polymerization method. By polymerizing, biomass-derived polypropylene can be obtained. About the manufacturing method of this 1, 3- propylene glycol, Japanese translations of PCT publication No. 10-507082 gazette, Japanese translations of PCT publication No. 11-502718 gazette, Japanese translation gazette 2001-504338 gazette, Japanese translation gazette 2002-514426 gazette It is known that it is described in JP 507022, JP-T 2006-512907, JP-T 2007-501324, JP-T 2007-502325, and the like. Further, a copolymer of polypropylene and polyethylene can be obtained by polymerizing a predetermined amount of a mixture of propylene and ethylene obtained as described above by a known method.

また、本発明に用いるポリオレフィンは、上記バイオポリオレフィンに対して、無水マレイン酸等の変性基をグラフト共重合することで、高いバイオマス由来炭素比率を維持しながら、その機能を向上させることができる。例えば、無水マレイン酸グラフト共重合ポリオレフィンは、無水マレイン酸100重量部に対して、ラジカル開始剤0.1〜5重量部を加え、単数または複数の重合反応器あるいは単軸押出機および/または二軸押出機等を用いて、溶融混練または溶媒中で変性させることにより得ることができる。   Moreover, the polyolefin used for this invention can improve the function, maintaining a high biomass origin carbon ratio by carrying out graft copolymerization of modified groups, such as maleic anhydride, with respect to the said biopolyolefin. For example, the maleic anhydride graft copolymerized polyolefin is added with 0.1 to 5 parts by weight of a radical initiator with respect to 100 parts by weight of maleic anhydride, and one or more polymerization reactors or single screw extruders and / or two It can be obtained by melt kneading or modifying in a solvent using a screw extruder or the like.

なお、本発明における複合繊維中の放射性炭素(炭素14)測定によるところのバイオマス由来炭素の存在割合は70%以上であることが好ましい。70%未満であると、従来の石油系資源からなる素材をバイオマス由来の素材に置き換えることで、合成繊維全体としてのカーボンニュートラルを達成するという本発明の主旨にそぐわないものとなり好ましくない。また、バイオマス由来炭素の存在割合が、70%以上100%未満のポリオレフィンの製造方法としては、バイオマス由来のオレフィンと石油系素材のみからなるオレフィンを重合させることで製造してもよいし、また、バイオマス由来のポリオレフィンチップと石油系素材のみからなるポリオレフィンチップをブレンドすることで製造してもよい。上記のポリオレフィン系ポリマーには、本発明の効果を損なわない範囲で、添加剤、蛍光増白剤、安定剤、難燃剤、難燃助剤、紫外線吸収剤、抗酸化剤、着色のための各種顔料などが含有されていてもよい。これらの各種の添加剤はポリオレフィンの製造時や複合繊維を紡糸する直前に添加しても良い。   In addition, it is preferable that the abundance ratio of biomass origin carbon by the measurement of the radioactive carbon (carbon 14) in the composite fiber in this invention is 70% or more. If it is less than 70%, it is not preferable because it replaces the conventional material composed of petroleum-based resources with a material derived from biomass, which does not meet the gist of the present invention to achieve carbon neutrality as a synthetic fiber as a whole. In addition, as a method for producing a polyolefin having a biomass-derived carbon content of 70% or more and less than 100%, it may be produced by polymerizing an olefin consisting only of a biomass-derived olefin and a petroleum-based material, You may manufacture by blending the polyolefin chip | tip which consists only of a biomass-derived polyolefin chip | tip and a petroleum-type raw material. In the above polyolefin polymer, various additives for additives, fluorescent brighteners, stabilizers, flame retardants, flame retardant aids, ultraviolet absorbers, antioxidants, and coloring are used as long as the effects of the present invention are not impaired. A pigment or the like may be contained. These various additives may be added at the time of producing the polyolefin or immediately before spinning the composite fiber.

またこれらのポリオレフィンの分子量については特段の制限はなく、複合繊維を紡糸するに足り十分な強度伸度を呈することができる分子量の範囲であれば、制限なく採用することができる。同様にこれらのポリオレフィンのMFRについても特段の制限を設けることなく使用することができる。   Moreover, there is no special restriction | limiting about the molecular weight of these polyolefin, If it is the range of the molecular weight which can exhibit intensity | strength elongation sufficient to spin a composite fiber, it can employ | adopt without a restriction | limiting. Similarly, the MFR of these polyolefins can be used without any particular limitation.

ここで、本発明におけるバイオマス由来成分の含有割合を特定するにあたって、放射性炭素(炭素14)の測定を行うことの意味について、以下に説明する。バイオマス由来成分とはその発生形態から廃棄物系、未利用系、資源作物系の3種に分類される。バイオマス資源は具体的には、セルロース系作物(パルプ、ケナフ、麦わら、稲わら、古紙、製紙残渣など)、リグニン、木炭、堆肥、天然ゴム、綿花、サトウキビ、油脂(菜種油、綿実油、大豆油、ココナッツ油など)、グリセロール、炭水化物系作物(トウモロコシ、イモ類、小麦、米、キャッサバなど)、バガス、テルペン系化合物、パルプ黒液、生ごみ、排水汚泥などが挙げられる。また、バイオマス資源からグリコール化合物を製造する方法は、特に限定はされないが、菌類や細菌などの微生物などの働きを利用した生物学的処理方法、酸、アルカリ、触媒、熱エネルギーもしくは光エネルギーなどを利用した化学的処理方法、または微細化、圧縮、マイクロ波処理もしくは電磁波処理など物理的処理方法など既知の方法が挙げられる。   Here, in specifying the content ratio of the biomass-derived component in the present invention, the meaning of performing measurement of radioactive carbon (carbon 14) will be described below. Biomass-derived components are classified into three types: waste, unused, and resource crops, depending on the form of generation. Specifically, biomass resources include cellulosic crops (pulp, kenaf, wheat straw, rice straw, waste paper, papermaking residue, etc.), lignin, charcoal, compost, natural rubber, cotton, sugarcane, oil (rapeseed oil, cottonseed oil, soybean oil, Coconut oil, etc.), glycerol, carbohydrate crops (corn, potatoes, wheat, rice, cassava, etc.), bagasse, terpene compounds, pulp black liquor, garbage, wastewater sludge and the like. In addition, a method for producing a glycol compound from biomass resources is not particularly limited, but a biological treatment method utilizing the action of microorganisms such as fungi and bacteria, acid, alkali, catalyst, thermal energy or light energy, etc. Known methods such as a chemical treatment method used, or a physical treatment method such as miniaturization, compression, microwave treatment or electromagnetic wave treatment can be used.

本発明において、ポリオレフィン複合繊維中の放射性炭素(C14)の含有率とは、ポリオレフィンを構成する全炭素原子中、放射性炭素である14C濃度を基準(この値を100%と設定する)とした場合の14C濃度の重量比率を表す。その放射性炭素である14Cとは1950年時点の循環炭素中の14C濃度を基準とすることが好ましい。その放射性炭素である14Cの濃度は以下の測定方法(放射性炭素濃度測定)により測定する事ができる。すなわち14Cの濃度測定は、タンデム加速器と質量分析計を組み合わせた加速器質量分析法(AMS:Accelerator Mass Spectrometry)によって、分析する試料に含まれる炭素の同位体(具体的には12C、13C、14Cが挙げられる。)を加速器により原子の重量差を利用して物理的に分離し、同位体の原子一つ一つの存在量を計測する方法である。 In the present invention, the content of radioactive carbon (C14) in the polyolefin composite fiber is defined as the standard (the value is set to 100%) of 14 C, which is radioactive carbon, in all the carbon atoms constituting the polyolefin. In this case, the weight ratio of 14 C concentration is shown. The radioactive carbon 14 C is preferably based on the concentration of 14 C in the circulating carbon as of 1950. The concentration of 14 C which is the radioactive carbon can be measured by the following measurement method (radiocarbon concentration measurement). That is, the concentration measurement of 14 C is carried out by an accelerator mass spectrometry (AMS) combining a tandem accelerator and a mass spectrometer (specifically, 12 C, 13 C) contained in a sample to be analyzed. , 14 C.) is physically separated using an atomic weight difference by an accelerator, and the abundance of each isotope atom is measured.

炭素原子1モル(6.02×1023個)中には、通常の炭素原子の約一兆分の一である約6.02×1011個の14Cが存在する。14Cは放射性同位体と呼ばれ、その半減期は5730年で規則的に減少している。これらが全て崩壊するには22.6万年を要する。従って大気中の二酸化炭素等が植物等に取り込まれて固定化された後、22.6万年以上が経過したと考えられる石炭、石油、天然ガスなどの化石燃料においては、固定化当初はこれらの中にも含まれていた14C元素は全てが崩壊している。故に21世紀である現在は石炭、石油、天然ガスなどの化石燃料においては14C元素は全く含まれていない。故にこれらの化石燃料を原料として生産された化学物質にも14C元素は全く含まれていない。一方、14Cは宇宙線が大気中で原子核反応を行い、絶え間なく生成され、放射壊変による減少とバランスし、地球の大気環境中では、14Cの量は一定量となっている。 In 1 mole of carbon atoms (6.02 × 10 23 ) there are about 6.02 × 10 11 14 C, which is about one trillionth of a normal carbon atom. 14 C is called a radioisotope and its half-life regularly decreases at 5730 years. It takes 26,000 years for all of these to collapse. Therefore, fossil fuels such as coal, oil, and natural gas, which are considered to have passed over 26,000 years after carbon dioxide in the atmosphere has been taken into plants and immobilized, are initially fixed. All of the 14 C elements that were also included in the are collapsed. Therefore, in the 21st century, 14C elements are not contained at all in fossil fuels such as coal, oil and natural gas. Therefore, chemical substances produced using these fossil fuels as a raw material do not contain any 14 C element. On the other hand, 14 C is a cosmic ray that undergoes a nuclear reaction in the atmosphere, is constantly generated, and balances with the decrease due to radiation decay. The amount of 14 C is constant in the earth's atmospheric environment.

一方、大気中の二酸化炭素が植物やそれを食する動物などに取り込まれて固定化された場合には、その取り込まれた状態では14Cは新たに補充されることなく、14Cの半減期に従って時間の経過とともに14C濃度は一定の割合で低下する。このため、グリコール化合物中の14C濃度を分析することにより、化石燃料などの化石資源を原料としたものか、或いはバイオマス資源を原料にしたグリコール化合物か簡易に判別することが可能となる。またこの14C濃度は1950年時点の自然界における循環炭素中の14C濃度をmodern standard referenceとし、この14C濃度を100%とする基準を用いる事が通常行われる。現在のこのようにして測定される14C濃度は約107pMC(percent Modern Carbon)前後の値であり、仮に試料として用いられているプラスチック等が100%天然系(生物系)由来の物質で製造されたものであれば、107pMC程度の値を示すことが知られている。この値が上述で言うバイオ化率100%に相当する。一方石油等の化石燃料由来の化学物質を用いてこの14C濃度を測定した場合、ほぼ0pMCを示すことも知られている。この値が上述で言うバイオ化率0%に相当する。これらの値を利用して天然資源由来の化合物(バイオマス資源由来の化合物)−化石資源由来の化合物の混合比を算出する事が出来る様になる。更にこの14C濃度の基準となるmodern standard referenceとしてはNIST(National Institute of Standards and Technology:米国国立標準・技術研究所)が発行した蓚酸標準体を用いる事が好ましく採用する事が出来る。この蓚酸中の炭素の比放射能(炭素1g当たりの14Cの放射能強度)を炭素同位体毎に分別し、13Cについて一定値に補正して、西暦1950年から測定日までの減衰補正を施した値を標準の14C濃度濃度の値として用いている。 On the other hand, when carbon dioxide in the atmosphere is taken in and immobilized by plants or animals that eat it, 14 C is not replenished in the taken-in state, and the half-life of 14 C Accordingly, the 14 C concentration decreases at a constant rate with time. Therefore, by analyzing the 14 C concentration in the glycol compound, it is possible to easily determine whether the raw material is a fossil resource such as a fossil fuel or a glycol compound that uses a biomass resource as a raw material. Also this 14 C concentration was 14 C-concentration in the circulating carbon in natural time 1950 with modern standard reference, it is common practice to use the criteria for the 14 C concentration is 100%. The current 14 C concentration measured in this way is about 107 pMC (percent modern carbon), and the plastic used as a sample is made of a 100% natural (biological) material. In other words, it is known to show a value of about 107 pMC. This value corresponds to the bio-ization rate 100% mentioned above. On the other hand, it is also known that when this 14 C concentration is measured using chemical substances derived from fossil fuels such as petroleum, it shows almost 0 pMC. This value corresponds to the bio-ization rate 0% mentioned above. By using these values, it becomes possible to calculate a mixing ratio of a compound derived from a natural resource (a compound derived from a biomass resource)-a compound derived from a fossil resource. Furthermore, it is preferable to use an oxalic acid standard issued by NIST (National Institute of Standards and Technology) as the standard standard reference for the 14 C concentration. The specific radioactivity of carbon in this oxalic acid ( 14 C radioactivity intensity per gram of carbon) is separated for each carbon isotope, corrected to a constant value for 13 C, and corrected for attenuation from 1950 AD to the measurement date The value subjected to is used as the standard 14 C concentration value.

更に14C原子について追加する。大気中の高層部においては、窒素原子に宇宙線(中性子)が衝突して炭素14原子が生成される反応が継続して起こっており、これが大気中全体へと循環しているため、大気中のニ酸化炭素には、炭素14が一定割合[平均値として107pMC(percent modern carbon)]で含まれていることが測定されている。一方、地中に閉じ込まれた炭素14原子は、上記の循環からは乖離されているため、放射線を出しながら半減期5,370年で窒素原子に戻っていく反応のみが起こり、現在の石油などの化石原料中には炭素14原子が殆ど残っていない。したがって、対象となる試料中における炭素14の濃度を測定し、気中の炭素14の含有割合[107pMC]を指標として逆算することで、試料中に含まれる炭素のうちのバイオマス由来炭素の割合を求めることができる。本発明の複合繊維においては、このバイオマス由来炭素の割合(比率)が70%≧であることが好ましいことを規定する。 Further, 14 C atoms are added. In the upper part of the atmosphere, the reaction in which cosmic rays (neutrons) collide with nitrogen atoms to generate 14 carbon atoms continues, and since this circulates throughout the atmosphere, In the carbon dioxide, it is measured that carbon 14 is contained at a constant ratio [average value 107 pMC (percent modern carbon)]. On the other hand, the 14 carbon atoms confined in the ground are deviated from the above-mentioned circulation. Therefore, only the reaction of returning to the nitrogen atom occurs with a half-life of 5,370 years while emitting radiation. Almost no 14 carbon atoms remain in the fossil raw materials. Therefore, by measuring the concentration of carbon 14 in the target sample and performing a reverse calculation using the content ratio of carbon 14 in the air [107 pMC] as an index, the ratio of biomass-derived carbon in the carbon contained in the sample is calculated. Can be sought. In the conjugate fiber of the present invention, it is defined that the ratio (ratio) of the biomass-derived carbon is preferably 70% ≧.

それぞれの有機化合物中の14C濃度の詳細な分析方法は、まずその有機化合物の前処理が必要となる。具体的には有機化合物に含まれる炭素を酸化処理し、すべて二酸化炭素へと変換する。更に、得られた二酸化炭素を水や窒素と分離し、二酸化炭素を還元処理し、固形炭素であるグラファイトへと変換する。この得られたグラファイトにCsなどの陽イオンを照射して炭素の負イオンを生成させる。引き続いて、タンデム加速器を用いてその炭素イオンを加速し、負イオンから陽イオンへ荷電変換させ、質量分析電磁石により123+133+143+の進行する軌道を分離し、分離した143+を静電分析器により測定を行う。 The detailed analysis method of the 14 C concentration in each organic compound first requires pretreatment of the organic compound. Specifically, the carbon contained in the organic compound is oxidized and converted into carbon dioxide. Further, the obtained carbon dioxide is separated from water and nitrogen, and the carbon dioxide is subjected to a reduction treatment and converted into graphite which is solid carbon. The obtained graphite is irradiated with a cation such as Cs + to generate carbon negative ions. Subsequently, the carbon ion was accelerated using a tandem accelerator, the charge was converted from a negative ion to a positive ion, and the orbits of 12 C 3+ , 13 C 3+ , and 14 C 3+ were separated and separated by a mass spectrometry electromagnet. 14 C 3+ is measured with an electrostatic analyzer.

本発明の複合繊維は、上記した低融点のポリオレフィンが繊維横断面の外周の少なくとも一部を構成し、前記繊維横断面におけるその他の一部が、前記低融点ポリオレフィンよりも融点の高いポリオレフィンからなる形態を有する複合繊維であることが必要である。具体的には、芯鞘型、同心芯鞘型、偏心芯鞘型、海島型、サイドバイサイド型等が例示され、特に、同心芯鞘型、偏心芯鞘型が不織布としての柔軟な風合い、均一な地合を出すために好ましい。また、繊維断面形状も丸断面に限定されることはなく、楕円断面、3〜8葉断面等の多葉断面、3〜8角形等の多角形断面など異形断面、さらには丸型、楕円型もしくは三角以上の多角形型の中空を有する断面形状でもよい。特に十字断面やY字断面では、不織布の目付けダウンや嵩アップの点で好ましい。単糸繊度は目的に応じて選択すればよく、特に限定されないが、一般的に0.01〜500dtex程度の範囲で用いられることが好ましい。   In the conjugate fiber of the present invention, the low melting point polyolefin described above constitutes at least a part of the outer periphery of the fiber cross section, and the other part of the fiber cross section is made of a polyolefin having a higher melting point than the low melting point polyolefin. It is necessary to be a composite fiber having a form. Specifically, the core-sheath type, the concentric core-sheath type, the eccentric core-sheath type, the sea-island type, the side-by-side type, etc. are exemplified. It is preferable for making a formation. Also, the fiber cross-sectional shape is not limited to a round cross section, an elliptical cross section, a multi-leaf cross section such as a 3-8 leaf cross section, a deformed cross section such as a polygonal cross section such as a 3-8 octagon, and a round shape, an elliptical shape Alternatively, it may be a cross-sectional shape having a polygonal hollow of a triangle or more. In particular, the cross section and the Y-shaped section are preferable in terms of weight reduction and bulk increase of the nonwoven fabric. The single yarn fineness may be selected according to the purpose and is not particularly limited, but is generally preferably used in a range of about 0.01 to 500 dtex.

以上に述べた本発明の複合繊維は、例えば次の方法により製造することができる。バイオPP、バイオPEポリマーを公知の紡糸設備を用いて別々に複合紡糸口金より吐出して、冷却風で空冷しながら速度100〜2000m/分で引き取り、未延伸糸を得る。引き続いて得られた未延伸糸の延伸を70〜100℃の温水中あるいは100〜125℃のスチーム中で行い、必要に応じて捲縮を付与し、用途、目的に応じた油剤を付与し、乾燥および弛緩熱処理を行った後、所定の繊維長にカットして、本発明の短繊維を得る。この際、油剤には本発明の目的を達成する障害とならない量の、または障害とならない種類のシリコーン系化合物が含まれていてもかまわない。   The composite fiber of the present invention described above can be produced, for example, by the following method. Bio PP and bio PE polymers are separately discharged from a composite spinneret using a known spinning equipment and taken up at a speed of 100 to 2000 m / min while being cooled with cooling air to obtain an undrawn yarn. Subsequently, the undrawn yarn obtained is stretched in warm water at 70 to 100 ° C. or in steam at 100 to 125 ° C., crimped as necessary, and an oil agent according to the purpose and purpose is imparted. After performing the drying and relaxation heat treatment, it is cut into a predetermined fiber length to obtain the short fiber of the present invention. In this case, the oil agent may contain an amount that does not hinder the achievement of the object of the present invention, or a silicone compound that does not hinder the type.

本発明における複合繊維を工業的に安価に高生産性で製造する事ができ、乾式不織布や電池用セパレータ等の湿式不織布などの用途に適するものとする場合には、以下のような構成を採用することが好ましい場合もある。すなわち本発明の複合繊維を芯鞘型の複合繊維の形態を採用し、クロマトグラフで測定される芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を、前述の範囲とするためには、芯成分の重量平均分子量を小さくし、鞘成分の重量平均分子量を大きくする事が好ましい。また、芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下であるという条件のもとで、芯成分の重量平均分子量が10万〜16万、鞘成分の重量平均分子量が4万〜8万の範囲である事が好ましく、更に好ましいのは、芯成分の重量平均分子量が12万〜15万、鞘成分の重量平均分子量が5万〜7万の範囲とすることである。   The composite fiber according to the present invention can be manufactured industrially at low cost with high productivity, and is suitable for applications such as dry nonwoven fabrics and wet nonwoven fabrics such as battery separators. It may be preferable to do this. That is, the composite fiber of the present invention adopts a core-sheath type composite fiber form, and the ratio of the weight average molecular weight of the core component to the weight average molecular weight of the sheath component measured by chromatography (core component weight average molecular weight / sheath component weight). In order to set the average molecular weight in the above-described range, it is preferable to reduce the weight average molecular weight of the core component and increase the weight average molecular weight of the sheath component. The weight average molecular weight of the core component is 100,000 to 160,000, and the weight average molecular weight of the sheath component is 40,000 to 40,000, provided that the core component weight average molecular weight / sheath component weight average molecular weight is 2.5 or less. A range of 80,000 is preferable, and a weight average molecular weight of the core component is preferably 120,000 to 150,000, and a weight average molecular weight of the sheath component is preferably 50,000 to 70,000.

本発明の複合繊維の、クロマトグラフで測定される芯成分の重量平均分子量と鞘成分の重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を前述の範囲とする方法としては、例えば以下の方法を挙げることができる。これらの方法を適宜組み合わせることにより、上記重量平均分子量比を本発明の特定の範囲に調整することができる。本発明の複合繊維のクロマトグラフによって測定される、鞘芯両成分の重量平均分子量は、例えば、紡糸口金から吐出された芯成分樹脂および鞘成分樹脂のメルトフローレート(MFR)の値と相関する数値であり、重量平均分子量が大きい場合にはMFRは小さく、重量平均分子量が小さい場合にはMFRは大きい。従って、芯成分の重量平均分子量を小さく、鞘成分の重量平均分子量を大きくする事が好ましい。言い換えると、芯成分のMFRを大きく、鞘成分のMFRを小さくする事が好ましい。また、MFRが比較的小さい樹脂原料を用いた場合でも、紡糸時の押出温度を変更する事によって分子量降下の程度を調整し、ノズルから吐出される樹脂のMFRを大きくする事が可能である。従って、鞘芯両成分の樹脂原料のMFRと紡糸押出条件を適宜選択する事などによって、本発明の上記重量平均分子量の比(芯成分重量平均分子量/鞘成分重量平均分子量)を2.5以下とする事ができる。用いる樹脂原料のMFRは特に制限されるものではないが、芯成分の樹脂原料の230℃におけるMFRは5〜60g/10minである事が好ましく、より好ましくは8〜40g/10minである。また、紡糸時の押出温度は特に制限されるものではないが、200〜350℃の範囲が好ましく、より好ましくは260〜330℃である。同様に、鞘成分の樹脂原料の190℃におけるMFRは3〜30g/10minである事が好ましく、より好ましくは8〜18g/10minである。また、紡糸時の押出温度は特に制限されるものではないが、180〜300℃の範囲が好ましく、より好ましくは220〜260℃である。   As a method of setting the ratio of the weight average molecular weight of the core component and the weight average molecular weight of the sheath component (core component weight average molecular weight / sheath component weight average molecular weight) of the conjugate fiber of the present invention to be within the above-mentioned range. For example, the following methods can be mentioned. By appropriately combining these methods, the weight average molecular weight ratio can be adjusted to a specific range of the present invention. The weight average molecular weight of both sheath core components measured by the chromatograph of the composite fiber of the present invention correlates with the melt flow rate (MFR) values of the core component resin and sheath component resin discharged from the spinneret, for example. When the weight average molecular weight is large, the MFR is small, and when the weight average molecular weight is small, the MFR is large. Therefore, it is preferable to decrease the weight average molecular weight of the core component and increase the weight average molecular weight of the sheath component. In other words, it is preferable to increase the MFR of the core component and decrease the MFR of the sheath component. Even when a resin material having a relatively low MFR is used, it is possible to increase the MFR of the resin discharged from the nozzle by adjusting the degree of molecular weight drop by changing the extrusion temperature during spinning. Therefore, the ratio of the above weight average molecular weight of the present invention (core component weight average molecular weight / sheath component weight average molecular weight) is 2.5 or less by appropriately selecting the MFR of the resin raw material for both sheath core components and the spinning extrusion conditions. Can be. The MFR of the resin raw material to be used is not particularly limited, but the MFR at 230 ° C. of the resin raw material of the core component is preferably 5 to 60 g / 10 min, and more preferably 8 to 40 g / 10 min. The extrusion temperature during spinning is not particularly limited, but is preferably in the range of 200 to 350 ° C, more preferably 260 to 330 ° C. Similarly, the MFR at 190 ° C. of the resin raw material for the sheath component is preferably 3 to 30 g / 10 min, more preferably 8 to 18 g / 10 min. The extrusion temperature during spinning is not particularly limited, but is preferably in the range of 180 to 300 ° C, more preferably 220 to 260 ° C.

一般的に、溶融紡糸によって得られた未延伸糸の延伸性は、それが紡糸過程において受けた応力の影響を強く受ける。これは紡糸線に作用する応力によって、分子鎖が繊維軸に沿って配向するからであり、高い紡糸線応力によって分子鎖が高度に配向した未延伸糸は、伸度が低く、高倍率で延伸する事ができない。ここで、複合繊維の場合には両成分の固化温度について考慮する必要がある。例えば、鞘芯型複合繊維の場合、紡糸過程においてどちらか1成分が固化温度まで冷却された時点で、複合繊維としての変形能を失い、よってもう一方の成分も変形できなくなる。つまり、より低温で固化する成分は、複合繊維としての細化が生じない状態で固化する事となり、この場合には大きな応力が働かず、よって該成分の分子鎖の配向は低く抑えられる。高分子材料の固化はガラス転移、もしくは結晶化によって生じるが、ポリレフィン系樹脂の場合には、そのガラス転移温度は一般的に室温以下であり、よって結晶化によって固化が生じる。そして、結晶化温度は融点の大小と相関する傾向にあり、高融点のポリオレフィン系樹脂の方が、結晶化温度も高いと言える。即ち、本発明の鞘芯型複合繊維の場合には、芯に高融点の成分を配し、鞘にそれよりも低融点の成分を配している事から、高融点である芯成分の固化によって複合繊維の細化は完了し、その後に低融点である鞘成分の固化が生じる。つまり、芯成分は高配向、鞘成分は低配向の未延伸糸構造となる。   Generally, the drawability of an undrawn yarn obtained by melt spinning is strongly influenced by the stress that it receives during the spinning process. This is because the molecular chain is oriented along the fiber axis due to the stress acting on the spinning line, and the unstretched yarn in which the molecular chain is highly oriented by the high spinning line stress is low in elongation and stretched at a high magnification. I can't do it. Here, in the case of a composite fiber, it is necessary to consider the solidification temperature of both components. For example, in the case of a sheath-core type composite fiber, when one of the components is cooled to the solidification temperature in the spinning process, the deformability as the composite fiber is lost, and thus the other component cannot be deformed. That is, the component that solidifies at a lower temperature is solidified in a state where the composite fiber is not thinned, and in this case, a large stress does not act, and thus the molecular chain orientation of the component is kept low. Solidification of the polymer material is caused by glass transition or crystallization, but in the case of a polyolefin-based resin, the glass transition temperature is generally not more than room temperature, and thus solidification is caused by crystallization. The crystallization temperature tends to correlate with the melting point, and it can be said that the high melting point polyolefin resin has a higher crystallization temperature. That is, in the case of the sheath-core type composite fiber of the present invention, the high melting point component is arranged in the core and the lower melting point component is arranged in the sheath, so that the high melting point core component is solidified. Thus, the thinning of the composite fiber is completed, and then the sheath component having a low melting point is solidified. That is, the core component has a highly oriented unstretched yarn structure and the sheath component has a low orientation.

こうして得られた未延伸糸を延伸処理した場合、高配向である芯成分の延伸性が律速となり、延伸倍率が制限される。つまり、低配向である鞘成分の延伸性には、まだ余裕のある状態の延伸倍率でしか延伸できず、即ち、鞘成分の強度発現は十分でないと言える。ここで、複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量を2.5以下とする事が重要になってくる。この事は、芯成分の重量平均分子量を小さく、鞘成分の重量平均分子量を大きくする事、つまり紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくする事を意味する。これによって、紡糸工程で得られる未延伸糸の芯成分の配向と鞘成分の配向の度合いを、延伸工程において繊維強度を発現しやすいように制御する事ができる。こういった樹脂構成、および押出条件にて溶融紡糸を行った場合、芯成分には大きな紡糸線応力が作用しなくなるので分子配向が抑制され、逆に、鞘成分には大きな紡糸線応力が作用するようになるので分子配向が促進される。   When the undrawn yarn obtained in this way is drawn, the drawability of the core component that is highly oriented becomes rate-limiting, and the draw ratio is limited. In other words, it can be said that the stretchability of the sheath component that is low-oriented can be stretched only at a stretch ratio with a sufficient margin, that is, the strength expression of the sheath component is not sufficient. Here, it is important that the core component weight average molecular weight / sheath component weight average molecular weight of the composite fiber is 2.5 or less. This means that the weight average molecular weight of the core component is decreased and the weight average molecular weight of the sheath component is increased, that is, the MFR of the core component after nozzle discharge in the spinning process is increased and the MFR of the sheath component is decreased. . This makes it possible to control the degree of orientation of the core component and the sheath component of the undrawn yarn obtained in the spinning process so that the fiber strength is easily developed in the drawing process. When melt spinning is performed under such a resin composition and extrusion conditions, a large spinning line stress does not act on the core component, so molecular orientation is suppressed, and conversely, a large spinning line stress acts on the sheath component. As a result, molecular orientation is promoted.

複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくする事は、紡糸安定性の向上にも繋がる。前述したように、高倍率で延伸可能な未延伸糸を得るためには、一般的には吐出樹脂温度を高くする、吐出樹脂の分子量を小さくする(MFRを大きくする)といった方法が採られるが、著しく吐出樹脂温度を高くしたり、著しく吐出樹脂の分子量を小さくした場合には、ノズル直下における張力の低下を招いて糸揺れを引き起こし、紡糸性の悪化につながる事もある。しかし本発明の、熱融着性複合繊維の芯成分重量平均分子量/鞘成分重量平均分子量が2.5以下となるように、紡糸工程におけるノズル吐出後の芯成分のMFRを大きく、鞘成分のMFRを小さくした樹脂構成、および押出条件を採用する事で、芯成分の請け負う紡糸線張力は小さいが、鞘成分が請け負う紡糸線張力は大きくなる。この鞘成分に作用する大きな張力は複合繊維全体の張力を高める事に繋がり、これによって雰囲気の乱れ、冷却風の風速変動などによる糸揺れが抑制され、紡糸性の悪化を最小限に留める事ができ、かつ延伸性に優れる未延伸糸を得る事ができる。   When the core component weight average molecular weight / sheath component weight average molecular weight of the composite fiber is 2.5 or less, it is possible to increase the MFR of the core component after nozzle discharge in the spinning process and to decrease the MFR of the sheath component. It leads to improvement of sex. As described above, in order to obtain an undrawn yarn that can be drawn at a high magnification, generally, a method of increasing the temperature of the discharged resin or decreasing the molecular weight of the discharged resin (increasing MFR) is employed. If the discharge resin temperature is remarkably increased or the molecular weight of the discharge resin is remarkably reduced, the tension is lowered directly under the nozzle, causing yarn swinging, which may lead to deterioration of spinnability. However, the MFR of the core component after nozzle discharge in the spinning process is increased so that the core component weight average molecular weight / sheath component weight average molecular weight of the heat-fusible conjugate fiber of the present invention is 2.5 or less. By adopting a resin configuration with a reduced MFR and extrusion conditions, the spinning line tension contracted by the core component is small, but the spinning line tension contracted by the sheath component is increased. This large tension acting on the sheath component leads to an increase in the overall tension of the composite fiber, which suppresses yarn fluctuations due to turbulence in the atmosphere and fluctuations in the speed of the cooling air, and minimizes deterioration of spinnability. And an undrawn yarn having excellent drawability can be obtained.

この、芯成分の配向抑制、鞘成分の配向促進を意図した樹脂構成、および押出条件は、高強度の延伸繊維を得るための未延伸糸として好適である。なぜなら、延伸性を支配する芯成分の配向を抑制する事で高倍率延伸を可能とし、更には未延伸糸における鞘成分の配向を促進することで、延伸処理による強度発現性を高める事ができるからである。芯成分と鞘成分の断面複合比は特に限定されるものではないが、芯/鞘=40/60〜70/30vol%の範囲である事が好ましい。芯成分の比率が高くなった場合には、延伸性が僅かに低下する傾向にあるが、延伸倍率に対する強度発現性は逆に高くなるので、最終的に得られる延伸繊維の強度は同程度となる。また、延伸繊維の熱収縮抑制を重視するのであれば、芯成分の比率を高める事が有効である。また、繊維断面形状は円及び楕円の丸型、三角及び四角の角型、鍵型及び八葉型などの異型、または中空型のいずれをも用いることができる。   This resin composition intended to suppress the orientation of the core component and promote the orientation of the sheath component, and the extrusion conditions are suitable as an undrawn yarn for obtaining a high-strength drawn fiber. This is because it is possible to stretch at a high magnification by suppressing the orientation of the core component that governs stretchability, and further, by enhancing the orientation of the sheath component in the unstretched yarn, it is possible to increase the strength expression by the stretching treatment. Because. The cross-sectional composite ratio of the core component and the sheath component is not particularly limited, but is preferably in the range of core / sheath = 40/60 to 70/30 vol%. When the ratio of the core component is high, the stretchability tends to slightly decrease, but the strength expression with respect to the draw ratio is increased, so the strength of the stretched fiber finally obtained is about the same. Become. Further, if importance is attached to suppression of thermal shrinkage of the drawn fiber, it is effective to increase the ratio of the core component. The fiber cross-sectional shape may be any of circular and elliptical round shapes, triangular and square square shapes, key shapes and different types such as an eight-leaf shape, and hollow shapes.

次に本発明の複合繊維を用いた不織布について説明する。本発明の複合繊維、好ましくは短繊維を不織布とするには、ウェブの製造に応じて次のような繊維長とし捲縮を付与することが好ましい。例えば、エアレイド法でウェブを成型する場合、繊維長は2〜30mmが好ましい。繊維長を2mm以上とすることにより工業的に安定して短繊維を得ることができる。また、繊維長を30mm以下(もしくは30mm未満)とすることにより、繊維の開繊性がさらに良くなり、ウェブ塊が発生し難くなる。より好ましい繊維長は3〜20mmである。また、捲縮は不織布の目的に応じて、付与しても付与しなくてもよい。つまり、不織布に嵩高性を与えたい場合は捲縮を付与すればよいし、その必要がなく空気開繊性および吐出能力をより向上させたい場合は捲縮を付与しなくてもよい(無捲縮)。捲縮の形態としては平面ジグザグ型、オメガ型、スパイラル型を挙げることができる。すなわち捲縮数は0〜13山/25mm、捲縮率は0〜15%が好ましい。更に詳細には捲縮を付与する場合は、捲縮数を3〜13山/25mm、捲縮率を3〜15%とすることが好ましい。捲縮数を13山/25mm以下、捲縮率を15%以下とすることで空気開繊性がより良好なものとなる。本発明の短繊維は従来のものに比べて捲縮数および捲縮率が小さくなる傾向にあり、より上記範囲にコントロールしやすい。また、嵩高性を得るためには、捲縮数を3山/25mm以上、捲縮率を3%以上とするのが好ましい。また、捲縮の形態は、平面内に包含される平面ジグザグ型あるいはオメガ型の捲縮が、スパイラル状の3次元捲縮よりも開繊性の点でより好ましい。これらの構成を満たすことによって、エアレイド法で成型されたウェブ中の未開繊成分を5重量%以下とすることができる。このようにして得られたウェブを加熱し前記低融点のポリオレフィンの少なくとも一部を溶融させ、他の繊維と熱接着させることにより不織布を製造することができる。加熱の際にはヤンキードライヤー、エンボスロール、カレンダーロールを用いることもできる。また用いる不織布の用途等に応じて、ウェブの成形前後のいずれかの段階で繊維に対して接着剤を付着させその接着剤により繊維間を接着させたり、ニードルパンチ法、ウオーターニードルなどにより繊維同士を絡合させて不織布を製造しても良い。   Next, the nonwoven fabric using the conjugate fiber of the present invention will be described. In order to make the conjugate fiber of the present invention, preferably the short fiber, into a non-woven fabric, it is preferable to set the following fiber length according to the production of the web and impart crimp. For example, when the web is molded by the airlaid method, the fiber length is preferably 2 to 30 mm. By setting the fiber length to 2 mm or more, short fibers can be obtained industrially stably. Further, by setting the fiber length to 30 mm or less (or less than 30 mm), the fiber opening property is further improved and the web lump is hardly generated. A more preferable fiber length is 3 to 20 mm. Further, crimping may or may not be applied depending on the purpose of the nonwoven fabric. In other words, crimping may be imparted if the nonwoven fabric is desired to be bulky, and crimping may not be imparted if there is no need to improve the air opening property and discharge capacity. Shrink). Examples of crimp forms include a planar zigzag type, an omega type, and a spiral type. That is, the number of crimps is preferably 0 to 13/25 mm, and the crimp rate is preferably 0 to 15%. More specifically, when crimping is applied, it is preferable that the number of crimps is 3 to 13/25 mm, and the crimp rate is 3 to 15%. When the number of crimps is 13 peaks / 25 mm or less and the crimp rate is 15% or less, the air opening property is further improved. The short fibers of the present invention tend to have a smaller number of crimps and a lower crimp rate than conventional fibers, and are more easily controlled within the above range. In order to obtain bulkiness, it is preferable that the number of crimps is 3 peaks / 25 mm or more and the crimp rate is 3% or more. Further, the crimped form is more preferably a flat zigzag crimp or omega crimp included in a plane in terms of spreadability than a spiral three-dimensional crimp. By satisfying these configurations, the unopened component in the web molded by the airlaid method can be 5% by weight or less. A nonwoven fabric can be produced by heating the web thus obtained to melt at least a portion of the low-melting polyolefin and thermally bonding it to other fibers. When heating, a Yankee dryer, an embossing roll, or a calendar roll can be used. Also, depending on the use of the nonwoven fabric used, the adhesive may be attached to the fibers at any stage before or after the web molding, and the fibers may be bonded with the adhesive, or the fibers may be bonded by the needle punch method, water needle, etc. May be entangled to produce a nonwoven fabric.

また、湿式抄造法でウェブを形成する場合も、上記と同様の理由により繊維長は2〜30mmが好ましく、より好ましくは3〜20mmである。捲縮は不織布の目的に応じて、付与しても付与しなくてもよい。湿式不織布に嵩高性を与えたい場合は捲縮を付与してもよいが、湿式抄造時の水中分散性の点からは捲縮を付与しない方が好ましい。ウェブ成形後は上記の手法に準じて繊維間を熱接着させるなどの操作により湿式抄造法による不織布を製造することができる。   Moreover, also when forming a web by a wet papermaking method, 2-30 mm is preferable for the fiber length for the same reason as the above, More preferably, it is 3-20 mm. Crimping may or may not be applied depending on the purpose of the nonwoven fabric. When it is desired to give bulkiness to the wet nonwoven fabric, crimps may be imparted, but from the viewpoint of dispersibility in water during wet papermaking, it is preferable not to impart crimps. After the web molding, a nonwoven fabric by a wet papermaking method can be produced by an operation such as heat bonding between fibers according to the above method.

さらに、カード法でウェブを形成する場合、繊維長を30〜200mmとすることが好ましい。繊維長を30mm以上とすることにより、繊維間の絡合不良によるウェブ切れが発生し難くなる。また、繊維長を200mm以下とすることにより、カード上での開繊性がよくなり、ウェブの地合い斑がより生じ難くなる。繊維長は35〜150mmがより好ましく、さらには40〜100mmの範囲がより好適である。カードを通過させるためには短繊維に捲縮の付与されていることが好ましいが、その際、捲縮数は5〜30山/25mm、捲縮率は3〜30%であることが好ましい。捲縮数を30山/25mm以下、捲縮率を30%以下とすることにより、カード上での開繊性が良好となり、ウェブの地合い斑がより生じ難くなる。また、捲縮数を5山/25mm以上、捲縮率を3%以上とすることにより、繊維間の絡合不良によるウェブ切れが発生し難くなる。捲縮の形態は、平面ジグザグ型あるいはオメガ型、スパイラル状などの3次元捲縮といった従来知られている捲縮形態をとることができる。   Furthermore, when forming a web by a card method, it is preferable that fiber length shall be 30-200 mm. By setting the fiber length to 30 mm or more, it becomes difficult for the web to break due to poor entanglement between the fibers. Further, by setting the fiber length to 200 mm or less, the spreadability on the card is improved, and the texture of the web is less likely to occur. The fiber length is more preferably 35 to 150 mm, and even more preferably in the range of 40 to 100 mm. In order to allow the card to pass through, it is preferable that crimps are imparted to the short fibers. In this case, the number of crimps is preferably 5 to 30 crests / 25 mm, and the crimp rate is preferably 3 to 30%. By setting the number of crimps to 30 crests / 25 mm or less and the crimping ratio to 30% or less, the spreadability on the card is improved, and the texture of the web is less likely to occur. Further, by setting the number of crimps to 5 crests / 25 mm or more and the crimping ratio to 3% or more, it is difficult to cause web breakage due to intertwining between fibers. The crimped form may be a conventionally known crimped form such as a three-dimensional crimp such as a planar zigzag type, an omega type, or a spiral shape.

また本発明の複合繊維は、長繊維として用いてもよいし、該長繊維を熱接着処理に付することによりスパンボンド不織布として用いてもよい。また、数千〜数百万本を集合させた繊維束として切断し繊維長5〜150mm程度の短繊維としてから、紡績工程に付することにより紡績糸として用いてもよいし、該短繊維を乾式法などにより形成した不織布として用いてもよい。また、本発明の複合繊維は単独で用いてもよいが、他の繊維と混合して用いる用途にも適している。従って、混紡、交撚、精紡交撚を行ってもよく、さらに交織、交編して用いてもよいし、混合不織布として用いてもよい。本発明の複合繊維に混合される他の繊維としては、ポリエステル、ナイロン、アクリル、アラミド等の合成繊維;ビスコースレーヨン、キュプラ、ポリノジック等のセルロース系繊維;リヨセル等の溶剤紡糸セルロース系繊維;絹、綿、麻、羊毛その他の獣毛繊維などが挙げられる。   The composite fiber of the present invention may be used as a long fiber, or may be used as a spunbonded nonwoven fabric by subjecting the long fiber to a heat bonding treatment. Further, it may be used as a spun yarn by cutting it into a short fiber having a fiber length of about 5 to 150 mm by cutting it as a fiber bundle in which several thousand to several millions are assembled, You may use as a nonwoven fabric formed by the dry method etc. Moreover, although the composite fiber of this invention may be used independently, it is suitable also for the use used by mixing with another fiber. Accordingly, mixed spinning, twisting, fine spinning and twisting may be performed, and further, weaving and knitting may be used, or a mixed nonwoven fabric may be used. Other fibers mixed with the composite fiber of the present invention include synthetic fibers such as polyester, nylon, acrylic and aramid; cellulose fibers such as viscose rayon, cupra and polynosic; solvent-spun cellulose fibers such as lyocell; silk Cotton, hemp, wool and other animal fiber.

本発明の複合繊維は、上記のような手法により不織布にすることによりまたは複合繊維の状態で様々な用途に使用する事ができ、その用途に合わせて種々の繊維形態とする事ができる。例えば、カード不織布用繊維の場合には、捲縮を付与したステープルの繊維形態が好ましい。本発明の複合繊維は、高い繊維強度と熱融着力を有しており、不織布の嵩高化や高強力化、カード生産性の向上を図る事ができるので、特に好適であると考えられる。繊度、捲縮数、繊維長は特に制限されるものではなく、適宜選択する事ができる。織布フィルター用繊維やワインディングフィルター用繊維、織布シート用繊維、編み加工ネット用繊維などの場合には、フィラメントの繊維形態が好ましい。繊度は特に限定されるものではなく、適宜選択する事ができる。エアレイド不織布用繊維の場合には、ショートカットチョップの形態が好ましい。繊度は特に限定されるものではなく、更には、捲縮を付与したものであってもよく、捲縮を付与していないものでもよい。また繊維長については加工機のタイプ、要求物性、生産性などを考慮して、適宜選択する事ができる。コンクリート補強用繊維や抄紙不織布用繊維の場合には、ショートカットチョップの繊維形態が好ましい。捲縮を付与したものであってもよく、捲縮を付与していないものでもよく、また繊維長については加工方法、要求物性、生産性などを考慮して、適宜選択する事ができる。繊度についても特に限定されるものではないが、例えば電池用セパレータ等の湿式不織布の場合には、繊度は小さい方が好適であり、好ましくは2.2dtex以下であり、より好ましくは1.5dtex以下であり、更に好ましくは1.0dtex以下である。本発明の鞘芯型熱融着性複合繊維を用いて電池用セパレータ湿式不織布を作製した場合、高い繊維強度を有しており、また熱処理によって不織布化した際の熱融着力も高い事から、金属などの鋭利な硬質物が不織布を貫通する事を抑止する効果が高く、特に好適である。   The composite fiber of the present invention can be used for various applications by making it into a nonwoven fabric by the above-described technique or in the state of the composite fiber, and can be made into various fiber forms according to the application. For example, in the case of the fiber for card nonwoven fabric, the fiber form of the staple which gave the crimp is preferable. The composite fiber of the present invention has high fiber strength and heat-sealing power, and is considered particularly suitable because it can increase the bulk and strength of the nonwoven fabric and improve card productivity. The fineness, the number of crimps, and the fiber length are not particularly limited and can be appropriately selected. In the case of fibers for woven fabric filters, fibers for winding filters, fibers for woven fabric sheets, fibers for knitted nets, etc., the fiber form of filaments is preferred. The fineness is not particularly limited and can be appropriately selected. In the case of an airlaid nonwoven fabric, a shortcut chop is preferred. The fineness is not particularly limited, and may be crimped or may not be crimped. The fiber length can be appropriately selected in consideration of the type of processing machine, required physical properties, productivity, and the like. In the case of a fiber for concrete reinforcement or a fiber for papermaking nonwoven fabric, the fiber form of a shortcut chop is preferable. It may be crimped or may not be crimped, and the fiber length can be appropriately selected in consideration of processing methods, required physical properties, productivity, and the like. Although the fineness is not particularly limited, for example, in the case of a wet nonwoven fabric such as a battery separator, it is preferable that the fineness is small, preferably 2.2 dtex or less, more preferably 1.5 dtex or less. More preferably, it is 1.0 dtex or less. When a battery separator wet nonwoven fabric is produced using the sheath-core type heat-fusible conjugate fiber of the present invention, it has a high fiber strength, and also has a high heat-sealing power when made into a nonwoven fabric by heat treatment, This is particularly suitable because it has a high effect of preventing sharp hard objects such as metals from penetrating the nonwoven fabric.

以下、実施例により、本発明をさらに具体的に説明する。なお、実施例、比較例におけるポリマー物性、力学的特性(一般物性)は下記の方法に測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. The polymer physical properties and mechanical properties (general physical properties) in Examples and Comparative Examples were measured by the following methods.

(a)融点(Tm)
TAインスツルメント・ジャパン(株)社製のサーマル・アナリスト2200を使用し、昇温速度20℃/分で測定した。
(A) Melting point (Tm)
A thermal analyst 2200 manufactured by TA Instrument Japan Co., Ltd. was used, and the temperature was measured at a temperature rising rate of 20 ° C./min.

(b)繊度
JIS L 1015 7.5.1 A法に記載の方法により測定した。
(B) Fineness Measured by the method described in JIS L 1015 7.5.1 Method A.

(c)乾強度・乾伸度(不織布)
JIS L 1015:2005 8.7.1法に記載の方法により測定した。
(C) Dry strength and dry elongation (nonwoven fabric)
It was measured by the method described in JIS L 1015: 2005 8.7.1 method.

(d)120℃乾熱収縮率
JIS L 1015:2005 8.15 b)法に記載の方法により、120℃で測定した。
(D) 120 degreeC dry heat shrinkage rate It measured at 120 degreeC by the method as described in JISL1015: 2005 8.15 b) method.

(e)捲縮数、捲縮率
JIS L 1015 7.12に記載の方法により測定した。
(E) Number of crimps and crimp rate Measured by the method described in JIS L 1015 7.12.

(f)不織布地合い
成型したウェブの外観を観察し、以下の基準で評価する。
レベル1:未開繊塊や目付斑(濃淡)が見られず、均一な地合いである。
レベル2:未開繊塊は目立たないが、目付斑(濃淡)が目視で確認できる。
レベル3:未開繊塊と目付斑(濃淡)が目立ち、不均一な地合いである。
(F) Nonwoven fabric appearance The appearance of the molded web is observed and evaluated according to the following criteria.
Level 1: Unopened lumps and spotted spots (shading) are not seen, and the texture is uniform.
Level 2: Unopened lumps are not conspicuous, but spotted spots (shading) can be visually confirmed.
Level 3: Unopened lumps and spotted spots (shading) are conspicuous and the texture is uneven.

(g)放射性炭素(炭素14)の測定によるバイオマス由来炭素の混合割合試料を加速機質量分光計(AMS)(タンデム加速器と質量分析計を組合せたもの)にかけて炭素14の含有量を測定した。なお、大気中のニ酸化炭素には炭素14が一定割合含有される(これは高層大気中で窒素に中性子が衝突して炭素14生成されるため。)が、石油などの化石原料には炭素14が殆ど含まれない(炭素14は地中では放射線を出しながら半減期5,370年で窒素に変わっていくため。)。一方、現在の大気中における炭素14の存在比率は、特定値[平均値として107pMC(percent modern carbon)]であることが測定されており、光合成を行う現存の植物にはこの比率で炭素14が取り込まれていることが知られている。従って、試料中の全炭素と炭素14の含有量を測定することにより、試料中に含まれる炭素のうちのバイオマス由来炭素の割合を求めることができる。(下記式参照)バイオマス由来炭素の含有割合(%)=(試料中のバイオマス由来の炭素量/試料中の全炭素量)×100
なお、以下、この炭素14を含むエチレン、プロピレン、ポリエチレン、ポリプロピレンをバイオエチレン、バイオプロピレン、バイオポリエチレン[バイオPE]、バイオポリプロピレン[バイオPP]と称し、従来の石油由来の原料から製造され、炭素14を含まないエチレン、プロピレン、ポリエチレン、ポリプロピレンを石油由来エチレン、石油由来プロピレン、石油由来ポリエチレン[石油由来PE]、石油由来ポリプロピレン[石油由来PP]と称する。
(G) The mixing ratio sample of the biomass origin carbon by measurement of radioactive carbon (carbon 14) was subjected to an accelerator mass spectrometer (AMS) (a combination of a tandem accelerator and a mass spectrometer), and the content of carbon 14 was measured. Carbon dioxide in the atmosphere contains a certain amount of carbon 14 (because neutrons collide with nitrogen in the upper atmosphere to generate carbon 14), but fossil raw materials such as petroleum contain carbon 14. 14 (although carbon 14 emits radiation in the ground and changes to nitrogen with a half-life of 5,370 years). On the other hand, the abundance ratio of carbon 14 in the current atmosphere is measured to be a specific value [107 pMC (percent modern carbon) as an average value], and existing plants that carry out photosynthesis have carbon 14 at this ratio. It is known that it has been incorporated. Therefore, the ratio of biomass-derived carbon in the carbon contained in the sample can be determined by measuring the total carbon and carbon 14 content in the sample. (See formula below) Biomass-derived carbon content (%) = (Amount of carbon derived from biomass in sample / total amount of carbon in sample) × 100
Hereinafter, ethylene, propylene, polyethylene, and polypropylene containing carbon 14 are referred to as bioethylene, biopropylene, biopolyethylene [bioPE], and biopolypropylene [bioPP], and are produced from conventional petroleum-derived raw materials. Ethylene, propylene, polyethylene, and polypropylene not containing 14 are referred to as petroleum-derived ethylene, petroleum-derived propylene, petroleum-derived polyethylene [petroleum-derived PE], and petroleum-derived polypropylene [petroleum-derived PP].

[実施例1]
バイオPEポリマー(融点:130℃)を鞘、バイオPPポリマー(融点:160℃)を芯となるよう50/50の重量比率で別々に公知の同芯芯鞘型の複合紡糸口金に供給し、0.3mmの丸穴キャピラリーを1032H孔を有する口金から700g/分の吐出量で押し出した。これを30℃の冷却風で空冷し、1150m/分で巻き取って未延伸糸を得た。この未延伸糸を、2段延伸を行い、ポリエーテル・ポリエステル共重合体/アルキルホスフェートカリウム塩=95/5(重量比率)からなる油剤を0.25重量%付与し、さらに105℃の温風で乾燥した後、5mmの繊維長にカットした。得られた短繊維の繊度は、2.2デシテックスであった。
熊谷理機工業株式会社製の角型シートマシンを用い、上記方法で得られた短繊維と、木材パルプとを80:20の重量割合で水中に投入し、よく撹拌・混合して分散させ、大きさが約25cm×約25cmで、目付が27g/mのシートを作成した。次に、該シートを室温中で一昼夜以上乾燥させた後、140℃の熱風循環式乾燥機の中で5分間の熱処理を行い、湿式不織布を得た。不織布地合いはレベル1であり、バイオマス由来ポリオレフィンを含有する。結果を表1に示した。
[Example 1]
A bio-PE polymer (melting point: 130 ° C.) is fed to a known concentric core-sheath type composite spinneret separately at a weight ratio of 50/50 so that the bio-PP polymer (melting point: 160 ° C.) becomes a core, A 0.3 mm round hole capillary was extruded from a die having 1032H holes at a discharge rate of 700 g / min. This was air-cooled with cooling air at 30 ° C. and wound at 1150 m / min to obtain an undrawn yarn. This undrawn yarn was subjected to two-stage drawing, and 0.25% by weight of an oil agent composed of polyether / polyester copolymer / alkyl phosphate potassium salt = 95/5 (weight ratio) was added, and hot air at 105 ° C. After drying, the fiber length was cut to 5 mm. The fineness of the obtained short fiber was 2.2 dtex.
Using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd., the short fibers obtained by the above method and wood pulp are poured into water at a weight ratio of 80:20, and thoroughly stirred and mixed to disperse. A sheet having a size of about 25 cm × about 25 cm and a basis weight of 27 g / m 2 was prepared. Next, the sheet was dried at room temperature for a whole day and night, and then heat treated for 5 minutes in a hot air circulating dryer at 140 ° C. to obtain a wet nonwoven fabric. The nonwoven fabric texture is level 1 and contains biomass-derived polyolefin. The results are shown in Table 1.

[実施例2]
鞘成分に、無水マレイン酸1重量%グラフト共重合したバイオPE(融点127℃)を使用する以外は、実施例1と同様にして芯鞘型短繊維および不織布を得た。評価結果は表1に示す。不織布地合いはレベル1であり、バイオマス由来ポリオレフィンを含有する。結果を表1に示した。
[Example 2]
A core-sheath short fiber and a nonwoven fabric were obtained in the same manner as in Example 1 except that bio-PE (melting point: 127 ° C.) obtained by graft copolymerization with 1% by weight of maleic anhydride was used as the sheath component. The evaluation results are shown in Table 1. The nonwoven fabric texture is level 1 and contains biomass-derived polyolefin. The results are shown in Table 1.

[実施例3]
鞘成分に、バイオエチレン、バイオプロピレンより構成されるエチレン・プロピレンランダム共重合ポリオレフィン(融点:130℃)を使用する以外は、実施例1と同様にして芯鞘型短繊維および不織布を得た。不織布地合いはレベル1であり、バイオマス由来ポリオレフィンを含有する。結果を表1に示した。
[Example 3]
A core-sheath short fiber and a nonwoven fabric were obtained in the same manner as in Example 1 except that an ethylene / propylene random copolymer polyolefin (melting point: 130 ° C.) composed of bioethylene and biopropylene was used as the sheath component. The nonwoven fabric texture is level 1 and contains biomass-derived polyolefin. The results are shown in Table 1.

[比較例1]
鞘成分として石油由来PE(融点:130℃)、芯成分として石油由来PPを使用する以外は、実施例1と同様にして短繊維および不織布を得た。評価結果は表1に示す。不織布地合いはレベル1であるが、バイオマス由来ポリオレフィンを含有しない。結果を表1に示した。
[Comparative Example 1]
Short fibers and nonwoven fabric were obtained in the same manner as in Example 1 except that petroleum-derived PE (melting point: 130 ° C.) was used as the sheath component and petroleum-derived PP was used as the core component. The evaluation results are shown in Table 1. The nonwoven fabric texture is level 1, but does not contain biomass-derived polyolefin. The results are shown in Table 1.

Figure 2013076192
Figure 2013076192

本発明によれば、従来ポリオレフィン複合繊維およびそれからなる不織布と同等の特長を保持しながら、従来ポリオレフィン複合繊維よりも、石油資源の消費を抑え、かつ、焼却・廃棄に伴う、大気中における二酸化炭素の増大を抑制することのできる複合繊維および不織布を与えることができる。本発明により得られる繊維および不織布は、おむつやナプキンのような衛生材料、お茶パック、ワイパーのような生活資材、電池セパレーターやフィルターのような産業資材用途のような幅広い用途に好適に用いることができる。   According to the present invention, while maintaining the same features as the conventional polyolefin conjugate fiber and the nonwoven fabric composed thereof, the consumption of petroleum resources is suppressed as compared with the conventional polyolefin conjugate fiber, and carbon dioxide in the atmosphere accompanying incineration and disposal It is possible to provide a composite fiber and a non-woven fabric that can suppress an increase in the number of fibers. The fibers and non-woven fabrics obtained by the present invention can be suitably used in a wide range of applications such as sanitary materials such as diapers and napkins, living materials such as tea packs and wipers, and industrial materials such as battery separators and filters. it can.

Claims (6)

放射性炭素(炭素14)を含むバイオマス由来の成分を原料とし互いに融点の異なる2種のポリオレフィンを含んでなる複合繊維であって、該2種のポリオレフィン中、相対的に低融点のポリオレフィンが繊維横断面の外周の少なくとも一部を構成することを特徴とする複合繊維。   A composite fiber comprising two types of polyolefins having different melting points from a biomass-derived component containing radioactive carbon (carbon 14), and a relatively low melting point polyolefin crossing the fibers in the two types of polyolefins A composite fiber comprising at least a part of the outer periphery of the surface. ポリオレフィンがポリプロピレン、高密度ポリエチレン、エチレン・プロピレンランダム共重合体、無水マレイン酸をブロック共重合またはグラフト共重合させたポリエチレンおよび無水マレイン酸をブロック共重合またはグラフト共重合されたポリプロピレンよりなる群から少なくとも1種選択されたポリオレフィンである請求項1記載の複合繊維。   The polyolefin is at least selected from the group consisting of polypropylene, high-density polyethylene, ethylene / propylene random copolymer, polyethylene obtained by block copolymerization or graft copolymerization of maleic anhydride, and polypropylene obtained by block copolymerization or graft copolymerization of maleic anhydride. The composite fiber according to claim 1, which is a polyolefin selected from one kind. 複合繊維中の全炭素原子中、1950年時点の循環炭素中の放射性炭素(炭素14、14C)濃度を基準(100%)とした炭素14の比率が70重量%以上である、請求項1〜2のいずれかに記載の複合繊維。 The ratio of carbon 14 based on the concentration (100%) of the radioactive carbon (carbon 14, 14 C) in the circulating carbon as of 1950 in all carbon atoms in the composite fiber is 70% by weight or more. The composite fiber in any one of -2. 請求項1〜3のいずれかに記載の複合繊維からなりエアレイド法によりウェブが成型されていることを特徴とする不織布。   A nonwoven fabric comprising the conjugate fiber according to any one of claims 1 to 3, wherein a web is molded by an airlaid method. 請求項1〜3のいずれかに記載の複合繊維からなり湿式抄造法によりウェブが成型されていることを特徴とする不織布。   A nonwoven fabric comprising the composite fiber according to any one of claims 1 to 3, wherein a web is molded by a wet papermaking method. 請求項1〜3のいずれかに記載の複合繊維からなりカード法によりウェブが成型されていることを特徴とする不織布。   A nonwoven fabric comprising the composite fiber according to any one of claims 1 to 3, wherein a web is molded by a card method.
JP2011217651A 2011-09-30 2011-09-30 Polyolefin composite fiber and nonwoven fabric Active JP5851787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217651A JP5851787B2 (en) 2011-09-30 2011-09-30 Polyolefin composite fiber and nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217651A JP5851787B2 (en) 2011-09-30 2011-09-30 Polyolefin composite fiber and nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2013076192A true JP2013076192A (en) 2013-04-25
JP5851787B2 JP5851787B2 (en) 2016-02-03

Family

ID=48479843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217651A Active JP5851787B2 (en) 2011-09-30 2011-09-30 Polyolefin composite fiber and nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5851787B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227646A (en) * 2013-05-21 2014-12-08 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Conjugate filament nonwoven fabric and method for producing the same
JP2022520918A (en) * 2018-12-10 2022-04-04 ダウ グローバル テクノロジーズ エルエルシー Airlaid substrate with at least one binary fiber
JP2023505174A (en) * 2019-12-18 2023-02-08 東レ先端素材株式会社 Eco-friendly composite fiber spong-bond nonwoven fabric containing plant-derived polyethylene and method for producing the same
CN115996962A (en) * 2020-06-30 2023-04-21 株式会社可乐丽 Vinyl acetate, vinyl acetate polymer and vinyl alcohol polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386836A (en) * 1976-12-29 1978-07-31 Chisso Corp Crimpless, hot melt conjugate fiber and its production
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Dividable fiber and fabric using the same
JP2010065342A (en) * 2008-09-10 2010-03-25 Nippon Ester Co Ltd Conjugate fiber
JP2011038207A (en) * 2009-08-11 2011-02-24 Unitika Ltd Composite fiber
WO2011088117A1 (en) * 2010-01-12 2011-07-21 Fiberweb, Inc. Bonded web and manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386836A (en) * 1976-12-29 1978-07-31 Chisso Corp Crimpless, hot melt conjugate fiber and its production
JP2002088580A (en) * 2000-09-14 2002-03-27 Chisso Corp Dividable fiber and fabric using the same
JP2010065342A (en) * 2008-09-10 2010-03-25 Nippon Ester Co Ltd Conjugate fiber
JP2011038207A (en) * 2009-08-11 2011-02-24 Unitika Ltd Composite fiber
WO2011088117A1 (en) * 2010-01-12 2011-07-21 Fiberweb, Inc. Bonded web and manufacturing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015016835; 村田 和久: 'バイオアルコールを原料としたプロピレン等の製造技術' 繊維学会誌 Vol.66, No.5, 20100510, P154-158, 社団法人 繊維学会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227646A (en) * 2013-05-21 2014-12-08 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Conjugate filament nonwoven fabric and method for producing the same
JP2022520918A (en) * 2018-12-10 2022-04-04 ダウ グローバル テクノロジーズ エルエルシー Airlaid substrate with at least one binary fiber
US11821141B2 (en) 2018-12-10 2023-11-21 Dow Global Technologies Llc Airlaid substrates having at least one bicomponent fiber
JP7432603B2 (en) 2018-12-10 2024-02-16 ダウ グローバル テクノロジーズ エルエルシー Airlaid substrate with at least one bicomponent fiber
JP2023505174A (en) * 2019-12-18 2023-02-08 東レ先端素材株式会社 Eco-friendly composite fiber spong-bond nonwoven fabric containing plant-derived polyethylene and method for producing the same
CN115996962A (en) * 2020-06-30 2023-04-21 株式会社可乐丽 Vinyl acetate, vinyl acetate polymer and vinyl alcohol polymer

Also Published As

Publication number Publication date
JP5851787B2 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5851787B2 (en) Polyolefin composite fiber and nonwoven fabric
CN100473769C (en) Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
CA3005917C (en) Modified fiber and preparation method therefor
CN102066634B (en) Fabric and method and system for producing fabric
CN103069058B (en) The acid fiber by polylactic of modification
JP2011038207A (en) Composite fiber
US4269888A (en) Heat-adhesive composite fibers and process for producing same
CN106367836B (en) A kind of manufacturing method of hollow biomass graphene polyester fiber
JP4498001B2 (en) Polyester composite fiber
US7887672B2 (en) Method for making natural cellulosic fiber bundles from cellulosic sources
CN105733093B (en) A kind of high-flowability polypropylene fiber is resin dedicated and preparation method thereof
CN104160077B (en) Modified acid fiber by polylactic
CN1401019A (en) Process for making poly (trimethylene terephthalate) staple fibers, and poly ltrimethylene terephthalats staple fibers yarns and fabrics
KR20080096815A (en) Heat-bondable conjugated fiber and process for production thereof
JP2017508082A (en) Meltblown nonwoven web comprising recycled polypropylene component and recycled sustainable polymer component and method of making the same
JP5702155B2 (en) Core-sheath type composite fiber made of polyester and polyethylene
CN106133216A (en) Polyester binder fiber
JP5129068B2 (en) Composite fiber
CN109706545B (en) Microporous hollow graphene sea-island fiber and manufacturing method thereof
JP2012077388A (en) Nonwoven fabric and method for producing the same
JP2004162246A (en) Nonwoven fabric containing cellulosic fiber
RU2465381C2 (en) Bicomponent fibers, textile sheets and their use
JP6447190B2 (en) Polyethylene fiber-containing composite yarn and woven / knitted fabric
JP2008237257A (en) Polyester conjugated fiber aggregate for hygienic material
JP2002088630A (en) Weather-resistant filament nonwoven fabric

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5851787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250