JP2013076168A - Aluminum alloy wire, aluminum alloy stranded wire, coated wire, and wire harness - Google Patents

Aluminum alloy wire, aluminum alloy stranded wire, coated wire, and wire harness Download PDF

Info

Publication number
JP2013076168A
JP2013076168A JP2012264096A JP2012264096A JP2013076168A JP 2013076168 A JP2013076168 A JP 2013076168A JP 2012264096 A JP2012264096 A JP 2012264096A JP 2012264096 A JP2012264096 A JP 2012264096A JP 2013076168 A JP2013076168 A JP 2013076168A
Authority
JP
Japan
Prior art keywords
wire
alloy
aluminum alloy
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012264096A
Other languages
Japanese (ja)
Other versions
JP5839237B2 (en
Inventor
Noriyuki Kobayashi
啓之 小林
Yoshihiro Nakai
由弘 中井
Taichiro Nishikawa
太一郎 西川
Yoshiyuki Takagi
義幸 高木
Misato Kusakari
美里 草刈
Yasuyuki Otsuka
保之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012264096A priority Critical patent/JP5839237B2/en
Publication of JP2013076168A publication Critical patent/JP2013076168A/en
Application granted granted Critical
Publication of JP5839237B2 publication Critical patent/JP5839237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an extra fine aluminum (Al) alloy wire having high strength and high conductivity and excellent in elongation; an Al alloy stranded wire; a covered electric wire comprising the Al alloy wire; and a wire harness.SOLUTION: The extra fine aluminum alloy wire has a wire diameter of 0.5 mm or less, contains, by mass, 0.03%-1.5% Mg, 0.02%-2.0% Si, 0.1%-1.0% in total of one or more elements selected from Cu, Fe, Cr, Mn and Zr, and the remainder comprising Al and impurities, and has a conductivity of 40% IACS or more, a tensile strength of 150 MPa or more, and an elongation of 5% or more. The aluminum alloy wire comprises the Al alloy having a specific composition containing Zr, Mn and the like, and has a structure having the maximum crystal grain diameter of 50 μm or less, so that, even if it is an extra fine wire, the Al alloy wire is excellent in elongation. The Al alloy wire has a tensile strength of 150 MPa or more after being held for 1,000 hours at arbitrary temperature selected from 80 to 150°C, and the Al alloy wire is excellent in heat resistance.

Description

本発明は、電線の導体に用いられるアルミニウム合金線及びアルミニウム合金撚り線、この合金線や撚り線を導体とする被覆電線、この被覆電線を具えるワイヤーハーネスに関するものである。特に、極細であって、高強度・高導電率を有しながら伸びにも優れるアルミニウム合金線に関するものである。   The present invention relates to an aluminum alloy wire and an aluminum alloy stranded wire used for a conductor of an electric wire, a covered electric wire using the alloy wire or a stranded wire as a conductor, and a wire harness including the covered electric wire. In particular, the present invention relates to an aluminum alloy wire that is extremely thin and has excellent strength and high electrical conductivity.

従来、自動車などの搬送機器、産業用ロボットなどの制御機器といった電気機器の配線構造には、端子を有する複数の電線を束ねたワイヤーハーネスと呼ばれる形態が利用されている。ワイヤーハーネスの電線用導体の構成材料は、電気伝導性に優れる銅や銅合金といった銅系材料が主流である。   2. Description of the Related Art Conventionally, a form called a wire harness in which a plurality of electric wires having terminals are bundled is used for a wiring structure of an electric device such as a transport device such as an automobile or a control device such as an industrial robot. Copper-based materials such as copper and copper alloys, which are excellent in electrical conductivity, are mainly used as constituent materials for electric conductors for wire harnesses.

昨今、自動車の高性能化や高機能化が急速に進められてきており、車載される各種の電気機器、制御機器などの増加に伴い、これらの機器に使用される電線も増加傾向にある。一方、近年、環境対応のために自動車などの搬送機器の燃費を向上するべく、軽量化が強く望まれている。   In recent years, the performance and functionality of automobiles have been rapidly increased, and with the increase in various on-vehicle electric devices and control devices, the number of electric wires used for these devices is also increasing. On the other hand, in recent years, there has been a strong demand for weight reduction in order to improve the fuel efficiency of transportation devices such as automobiles in order to cope with the environment.

電線の軽量化のために、比重が銅の約1/3であるアルミニウムを導体に用いたアルミニウム電線が検討されている。しかし、純アルミニウムは、銅系材料よりも耐衝撃性や屈曲特性、耐熱性に劣る。そのため、例えば、ドア部のような開閉動作を行う箇所、エンジン周りといった振動が加えられる箇所など、屈曲や振動が加えられる動的な箇所、更に、高温となるエンジン周りなどの高温箇所に純アルミニウム電線を適用すると早期に断線する恐れがある。従って、純アルミニウム電線の適用は、車内のアクセサリー用配線といった、設置後に実質的に動かされない静的な箇所や、室温からせいぜい50℃程度の低温箇所に限られる。   In order to reduce the weight of electric wires, aluminum electric wires using aluminum, whose specific gravity is about 1/3 that of copper, are being studied. However, pure aluminum is inferior in impact resistance, bending characteristics, and heat resistance to copper-based materials. For this reason, for example, pure aluminum is used in places that perform opening and closing operations such as door parts, places that are subject to vibration such as around the engine, such as dynamic places where bending or vibration is applied, and high-temperature places such as around the engine that becomes hot. If an electric wire is applied, there is a risk of early disconnection. Therefore, the application of the pure aluminum electric wire is limited to a static location that is not substantially moved after installation, such as a wiring for an accessory in a vehicle, or a low-temperature location from room temperature to about 50 ° C. at most.

一方、特許文献1は、伸線後に軟化処理を施すことで、高強度・高導電率を有し、かつ耐衝撃性に優れるアルミニウム合金線が得られること、この高強度・高靭性のアルミニウム合金線を車載ワイヤーハーネス用電線の導体に利用することを開示している。このアルミニウム合金線は、耐衝撃性に優れることから、上述の動的な箇所にも適用できる。   On the other hand, Patent Document 1 discloses that an aluminum alloy wire having high strength and high electrical conductivity and excellent impact resistance can be obtained by performing a softening treatment after drawing, and this high strength and high toughness aluminum alloy. It discloses that a wire is used as a conductor of an in-vehicle wire harness electric wire. Since this aluminum alloy wire is excellent in impact resistance, it can also be applied to the above-mentioned dynamic locations.

特許第4646998号公報Japanese Patent No. 4646998

電線の更なる軽量化が望まれている。従って、線径0.5mm以下といった極細線であって、高強度・高導電率を有し、かつ優れた耐衝撃性や屈曲特性を有するために、十分な伸びを有するアルミニウム合金線の開発が望まれる。また、エンジン周りのような高温箇所での使用においても高温特性に優れること、具体的には、高い強度を有すること(高温強度に優れること)、高温に長時間曝されるような使用においても高い強度を維持できること(長期に亘り耐熱性に優れること)が望まれる。   Further weight reduction of electric wires is desired. Therefore, it is desirable to develop an aluminum alloy wire with a sufficient elongation in order to have a very thin wire with a wire diameter of 0.5 mm or less, high strength and high conductivity, and excellent impact resistance and bending characteristics. It is. Also, it is excellent in high temperature characteristics even when used in high temperature places such as around the engine, specifically, it has high strength (excellent high temperature strength), and even in use where it is exposed to high temperatures for a long time. It is desired that high strength can be maintained (excellent heat resistance over a long period of time).

高強度なアルミニウム合金として、6000系合金(Al-Mg-Si系合金)が知られている。6000系合金は、一般に、溶体化処理及び時効処理により、高強度化を図ることができる。そこで、本発明者らは、6000系合金で線径0.5mm以下といった極細線を製造した。しかし、得られた線材は、溶体化処理及び時効処理を施すことで、高強度であるものの、十分な伸びを有していなかった。   As a high-strength aluminum alloy, a 6000 series alloy (Al-Mg-Si series alloy) is known. In general, 6000 series alloys can be strengthened by solution treatment and aging treatment. Therefore, the present inventors manufactured an ultrafine wire having a wire diameter of 0.5 mm or less with a 6000 series alloy. However, although the obtained wire was subjected to solution treatment and aging treatment, it was high strength but did not have sufficient elongation.

また、従来、高温強度や耐熱性にも優れる極細のアルミニウム合金線が得られていない。   Further, conventionally, an ultrafine aluminum alloy wire excellent in high temperature strength and heat resistance has not been obtained.

そこで、本発明の目的の一つは、極細線であって、高強度・高導電率を有しながら、伸びにも優れるアルミニウム合金線、及びアルミニウム合金撚り線を提供することにある。また、本発明の他の目的は、更に、高温強度や耐熱性にも優れる極細のアルミニウム合金線、及びアルミニウム合金撚り線を提供することにある。   Accordingly, one of the objects of the present invention is to provide an aluminum alloy wire and an aluminum alloy twisted wire that are very fine wires, have high strength and high conductivity, and are excellent in elongation. Another object of the present invention is to provide an ultrafine aluminum alloy wire excellent in high temperature strength and heat resistance, and an aluminum alloy stranded wire.

更に、本発明の他の目的は、極細線であって、高強度・高導電率を有しながら、伸びにも優れる導体を具える被覆電線、及びこの被覆電線を具えるワイヤーハーネスを提供することにある。また、本発明の他の目的は、更に、極細で、軽量であって、高温強度や耐熱性にも優れる導体を具える被覆電線、及びこの被覆電線を具えるワイヤーハーネスを提供することにある。   Furthermore, another object of the present invention is to provide a coated electric wire having a conductor that is an ultrafine wire and has high strength and high electrical conductivity and excellent in elongation, and a wire harness including the coated electric wire. There is. Another object of the present invention is to provide a coated electric wire including a conductor that is extremely thin and lightweight, and has excellent high-temperature strength and heat resistance, and a wire harness including the coated electric wire. .

本発明者らがAl-Mg-Si系合金からなる極細線を調べたところ、100μm超、更に300μm程度といった非常に粗大な結晶粒が存在していた。この極細線の線径は0.5mm以下であるため、当該線材の線径に対する上述の粗大粒の割合は10%超となる。このような粗大粒が破断の起点となって伸びが小さくなった、と考えられる。従って、極細線では、破断の起点となるような粗大粒を低減し、好ましくは実質的に粗大粒が存在しない組織から構成されることが好ましい、と言える。   When the present inventors examined an ultrafine wire made of an Al—Mg—Si alloy, very coarse crystal grains of over 100 μm and about 300 μm were present. Since the wire diameter of this ultrafine wire is 0.5 mm or less, the ratio of the above-mentioned coarse particles to the wire diameter of the wire is more than 10%. It is considered that such coarse grains became the starting point of breakage and the elongation was reduced. Therefore, it can be said that the ultrafine wire is preferably composed of a structure in which coarse grains that are the starting point of breakage are reduced, and preferably substantially free of coarse grains.

粗大な結晶を低減するために、鋳造時の結晶組織の微細化に効果があるTiやBを添加することが考えられる。しかし、上記のような極細線に対しては、TiやBの添加だけでは、後述する試験例に示すように十分な伸びが得られなかった。そこで、本発明者らは、Al-Mg-Si系合金をベースとして、更に、種々の元素を添加したアルミニウム合金により極細線を製造した結果、特定の元素を特定の範囲で含有することで、最大結晶粒径が小さい組織を有し、伸びに優れるアルミニウム合金線が得られる、との知見を得た。また、特定の元素を特定の範囲で含有することで、高温強度や耐熱性にも優れるアルミニウム合金線が得られる、との知見を得た。本発明は、上記知見に基づくものである。   In order to reduce coarse crystals, it is conceivable to add Ti or B, which is effective for refinement of the crystal structure during casting. However, sufficient elongation was not obtained with the addition of Ti and B, as shown in the test examples described later, for the ultrafine wires as described above. Therefore, the present inventors, based on the Al-Mg-Si based alloy, further produced an ultrafine wire from an aluminum alloy to which various elements were added, and as a result, containing a specific element in a specific range, It has been found that an aluminum alloy wire having a structure with a small maximum crystal grain size and excellent elongation can be obtained. Moreover, the knowledge that the aluminum alloy wire which is excellent also in high temperature intensity | strength and heat resistance is obtained by containing a specific element in a specific range was acquired. The present invention is based on the above findings.

本発明のアルミニウム合金線(以下、Al合金線と呼ぶ)は、導体に利用されるものであり、線径が0.5mm以下の極細線である。このAl合金線は、質量%で、Mgを0.03%以上1.5%以下、Siを0.02%以上2.0%以下、Cu,Fe,Cr,Mn及びZrから選択される少なくとも一種の元素を合計で0.1%以上1.0%以下含有し、残部がAl及び不純物からなるAl合金から構成される。そして、このAl合金線は、導電率が40%IACS以上、引張強さが150MPa以上、伸びが5%以上を満たし、かつ、最大結晶粒径が50μm以下である。   The aluminum alloy wire of the present invention (hereinafter referred to as an Al alloy wire) is used for a conductor and is a very fine wire having a wire diameter of 0.5 mm or less. This Al alloy wire has a mass% of Mg of 0.03% to 1.5%, Si of 0.02% to 2.0%, and at least one element selected from Cu, Fe, Cr, Mn, and Zr in a total of 0.1%. More than 1.0% is contained, and the balance is made of an Al alloy composed of Al and impurities. The Al alloy wire has a conductivity of 40% IACS or more, a tensile strength of 150 MPa or more, an elongation of 5% or more, and a maximum crystal grain size of 50 μm or less.

上記本発明Al合金線は、Al-Mg-Si系合金からなることで高強度であり、かつ、添加元素が特定の範囲であることで導電率も高い。そして、本発明Al合金線は、ZrやMnなどの特定の元素を特定の範囲で含有することで、上述のように最大結晶粒径が小さい組織、いわば微細組織であり、伸びに優れる。このように本発明Al合金線は、特定の微細組織からなる極細線であって、高強度・高導電率を有し、かつ伸びも十分に具えることから、耐衝撃性や屈曲特性が求められる電線の導体素材に好適に利用することができる。また、本発明Al合金線は、後述する試験例に示すように高温でも強度が高かったり、高温に長時間保持された後にも高い強度を維持することができ、高温強度や耐熱性にも優れることから、高温箇所に配置される電線の導体素材にも好適に利用することができる。   The Al alloy wire of the present invention has high strength because it is made of an Al—Mg—Si based alloy, and has high conductivity because the additive element is in a specific range. The Al alloy wire of the present invention contains a specific element such as Zr or Mn in a specific range, and thus has a structure with a small maximum crystal grain size, that is, a fine structure as described above, and is excellent in elongation. As described above, the Al alloy wire of the present invention is an extra fine wire having a specific microstructure, has high strength and high conductivity, and has sufficient elongation. Therefore, impact resistance and bending characteristics are required. It can utilize suitably for the conductor raw material of the electric wire obtained. In addition, the Al alloy wire of the present invention has high strength even at high temperatures as shown in the test examples described later, and can maintain high strength even after being held at high temperatures for a long time, and is excellent in high temperature strength and heat resistance. For this reason, it can be suitably used for a conductor material of an electric wire arranged at a high temperature location.

本発明Al合金線の一形態として、Zrを0.01質量%以上含有する形態が挙げられる。   As one form of the Al alloy wire of the present invention, a form containing 0.01% by mass or more of Zr can be mentioned.

本発明者らが調べたところ、Zrは、非常に微量でも伸びの向上効果が大きい、との知見を得た。従って、上記形態は、伸びがより高い。また、Zrは、非常に微量でも高温特性の向上に効果があり、上記形態は、高温強度や耐熱性にも優れる。   As a result of investigation by the present inventors, it was found that Zr has a large effect of improving elongation even in a very small amount. Therefore, the said form has higher elongation. Moreover, Zr is effective in improving the high temperature characteristics even in a very small amount, and the above form is excellent in high temperature strength and heat resistance.

本発明Al合金線の一形態として、Mnを0.01質量%以上含有する形態が挙げられる。   One form of the Al alloy wire of the present invention includes a form containing 0.01% by mass or more of Mn.

本発明者らが調べたところ、Mnは、非常に微量でも伸びの向上効果が大きい、との知見を得た。従って、上記形態は、伸びがより高い。また、Mnは、非常に微量でも高温特性の向上に効果があり、上記形態は、高温強度や耐熱性にも優れる。   As a result of investigation by the present inventors, it was found that Mn has a large effect of improving elongation even in a very small amount. Therefore, the said form has higher elongation. Mn is effective in improving the high temperature characteristics even in a very small amount, and the above form is excellent in high temperature strength and heat resistance.

本発明Al合金線の一形態として、80℃以上150℃以下の温度範囲から選択される任意の温度に1,000時間保持した後における引張強さが150MPa以上である形態が挙げられる。   As one form of the Al alloy wire of the present invention, there is a form in which the tensile strength after holding for 1,000 hours at an arbitrary temperature selected from a temperature range of 80 ° C. or higher and 150 ° C. or lower is 150 MPa or more.

上記形態は、長期に亘り高温に曝される使用環境であっても、高い強度を維持でき、耐熱性に優れることから、高温箇所に配置される電線の導体素材に好適に利用できる。   Even if it is the use environment exposed to high temperature over a long period of time, the said form can maintain high intensity | strength and is excellent in heat resistance, Therefore It can utilize suitably for the conductor material of the electric wire arrange | positioned at a high temperature location.

本発明Al合金線の一形態として、80℃以上150℃以下の温度範囲から選択される任意の温度における引張強さが150MPa以上である形態が挙げられる。   As one form of the Al alloy wire of the present invention, a form in which the tensile strength at an arbitrary temperature selected from a temperature range of 80 ° C. or more and 150 ° C. or less is 150 MPa or more can be mentioned.

上記形態は、高温でも高い強度を有することから、高温になり得る箇所に配置される電線の導体素材に好適に利用できる。   Since the said form has high intensity | strength also at high temperature, it can utilize suitably for the conductor raw material of the electric wire arrange | positioned in the location which can become high temperature.

本発明Al合金線の一形態として、質量割合で、Tiを0.08%(800ppm)以下、及びBを0.016%(160ppm)以下の少なくとも一方の元素を含有する形態が挙げられる。   As one form of the Al alloy wire of the present invention, there is a form containing at least one element of Ti of 0.08% (800 ppm) or less and B of 0.016% (160 ppm) or less by mass ratio.

TiやBは、微細化効果がある元素である。従って、ZrやMnなどの元素に加えてTiやBをも含有する上記形態は、微細化効果が高く、伸びがより高い。   Ti and B are elements that have a miniaturization effect. Therefore, the above-mentioned form containing Ti and B in addition to elements such as Zr and Mn has a high refining effect and higher elongation.

上記本発明Al合金線は、単線でも利用できるが、撚り線の素線とすることができる。例えば、本発明のアルミニウム合金撚り線として、上記本発明Al合金線を複数撚り合せたものが挙げられる。   The Al alloy wire of the present invention can be used as a single wire, but can be a strand wire. For example, as the aluminum alloy stranded wire of the present invention, one obtained by twisting a plurality of the above-described Al alloy wires of the present invention can be mentioned.

本発明Al合金撚り線は、素線を構成する本発明Al合金線の構造(最大結晶粒径が小さい組織)、特性(引張強さ、導電率、伸び、高温特性)を実質的に維持しており、高強度・高導電率を有し、伸びや高温強度、耐熱性にも優れる。加えて、複数の本発明Al合金線を撚り合わせることで撚り線全体としての耐衝撃性、屈曲特性といった機械的特性を単線の場合よりも向上することができる。   The Al alloy stranded wire of the present invention substantially maintains the structure (structure with a small maximum grain size) and properties (tensile strength, conductivity, elongation, high temperature characteristics) of the Al alloy wire of the present invention constituting the strand. It has high strength and high electrical conductivity, and is excellent in elongation, high temperature strength, and heat resistance. In addition, by twisting together a plurality of Al alloy wires of the present invention, mechanical properties such as impact resistance and bending properties as a whole stranded wire can be improved as compared with the case of a single wire.

上記本発明Al合金線や本発明Al合金撚り線は、電線の導体に好適に利用することができる。例えば、本発明の被覆電線として、上記本発明Al合金線、上記本発明Al合金線を複数撚り合せたアルミニウム合金撚り線(本発明Al合金撚り線)、又はこの撚り線を圧縮成形した圧縮線材のいずれかを導体とし、その外周に絶縁被覆層を具えるものが挙げられる。   The above-described Al alloy wire of the present invention and the Al alloy twisted wire of the present invention can be suitably used for conductors of electric wires. For example, as the coated electric wire of the present invention, the Al alloy wire of the present invention, an aluminum alloy stranded wire obtained by twisting a plurality of the Al alloy wires of the present invention (the Al alloy stranded wire of the present invention), or a compressed wire material obtained by compression molding this stranded wire Any of the above may be used as a conductor and an insulating coating layer may be provided on the outer periphery thereof.

上記形態は、上述のように高強度・高導電率であって伸びにも優れる本発明Al合金線や本発明Al合金撚り線、この撚り線を成形した圧縮線材を導体に具えることで、高強度・高導電率であり、伸びにも優れ、優れた耐衝撃性や屈曲特性を有する。また、上述のように本発明Al合金線などは、高温強度や耐熱性にも優れることから、上記形態は、高温強度や耐熱性にも優れる。   As described above, the present invention has high strength and high electrical conductivity as described above, the present invention Al alloy wire and the present invention Al alloy stranded wire, by providing the conductor with a compressed wire formed from this stranded wire, It has high strength and high electrical conductivity, is excellent in elongation, and has excellent impact resistance and bending properties. Moreover, since the Al alloy wire of the present invention is excellent in high temperature strength and heat resistance as described above, the above form is also excellent in high temperature strength and heat resistance.

上記本発明被覆電線は、ワイヤーハーネスの電線に好適に利用することができる。例えば、本発明のワイヤーハーネスとして、上記本発明被覆電線と、この電線の端部に装着された端子部とを具えるものが挙げられる。   The said covered electric wire of this invention can be utilized suitably for the electric wire of a wire harness. For example, as the wire harness of the present invention, one comprising the above-described coated electric wire of the present invention and a terminal portion attached to the end of the electric wire can be mentioned.

上記形態は、上述のように高強度・高導電率・高靭性である本発明被覆電線を具えることで、高強度・高導電率であり、伸びにも優れ、優れた耐衝撃性や屈曲特性を有する。また、上記形態は、高温強度や耐熱性にも優れる。   The above-mentioned form is provided with the coated wire of the present invention having high strength, high electrical conductivity, and high toughness as described above, so that it has high strength, high electrical conductivity, excellent elongation, and excellent impact resistance and bending. Has characteristics. Moreover, the said form is excellent also in high temperature strength and heat resistance.

本発明Al合金線、本発明Al合金撚り線、本発明被覆電線、及び本発明ワイヤーハーネスは、高強度・高導電率であり、伸びにも優れる。   The Al alloy wire of the present invention, the twisted Al alloy wire of the present invention, the covered electric wire of the present invention, and the wire harness of the present invention have high strength and high electrical conductivity, and are excellent in elongation.

(A)は、試料No.1の顕微鏡写真、(B)は、試料No.11の顕微鏡写真、(C)は、試料No.16の顕微鏡写真、(D)は、試料No.102の顕微鏡写真である。(A) is a photomicrograph of sample No.1, (B) is a photomicrograph of sample No.11, (C) is a photomicrograph of sample No.16, (D) is a microscope of sample No.102 It is a photograph.

以下、本発明をより詳細に説明する。なお、元素の含有量は、質量%を示す。
[Al合金線]
《組成》
本発明Al合金線を構成するAl合金は、Mg:0.03%〜1.5%、Si:0.02%〜2.0%を必須元素とするAl-Mg-Si系合金であり、結晶の微細化のための元素として、Cu,Fe,Cr,Mn及びZrから選択される少なくとも一種の元素を含有する。MgやSiは、Alに固溶又は析出して存在することで、本発明Al合金線は、強度に優れる。Mg,Siの含有量が高いほどAl合金線の強度が高まるが、導電率や伸びといった靭性が低下する上に、伸線加工時などでも断線が生じ易くなるため、Mg:1.5%以下、Si:2.0%以下とする。
Hereinafter, the present invention will be described in more detail. In addition, content of an element shows the mass%.
[Al alloy wire]
"composition"
The Al alloy constituting the Al alloy wire of the present invention is an Al—Mg—Si based alloy containing Mg: 0.03% to 1.5% and Si: 0.02% to 2.0% as essential elements, and is an element for crystal refinement. As an element, at least one element selected from Cu, Fe, Cr, Mn and Zr is contained. Since Mg and Si are present in a solid solution or precipitated in Al, the Al alloy wire of the present invention is excellent in strength. The higher the content of Mg and Si, the higher the strength of the Al alloy wire. However, since the toughness such as conductivity and elongation decreases, wire breakage is likely to occur even during wire drawing, so Mg: 1.5% or less, Si : 2.0% or less.

Mgは、強度の向上効果が高い元素であり、特に、Siと同時に特定の範囲で含有することで、時効硬化による強度の向上を効果的に図ることができる。Mg,Siの含有量は、Mg:0.2%以上1.5%以下、Si:0.1%以上1.5%以下が好ましく、Mg:0.3%以上0.9%以下、Si:0.3%以上0.8%以下がより好ましい。   Mg is an element having a high strength improvement effect. In particular, when Mg is contained in a specific range together with Si, the strength can be effectively improved by age hardening. The Mg and Si contents are preferably Mg: 0.2% to 1.5%, Si: 0.1% to 1.5%, more preferably Mg: 0.3% to 0.9%, and Si: 0.3% to 0.8%.

Cu,Fe,Cr,Mn及びZrから選択される1種以上の元素を合計で0.1%以上含有することで、最大結晶粒径が50μm以下の組織となり、伸びに優れる極細線が得られる。上記元素の合計含有量が多いほど、結晶粒が微細になり易く、伸びの向上効果が大きい傾向にあるが、多過ぎると導電率の低下を招く。従って、上記元素の合計含有量は、1.0%以下とする。   By containing at least 0.1% of one or more elements selected from Cu, Fe, Cr, Mn and Zr in total, the maximum crystal grain size becomes a structure of 50 μm or less, and an ultrafine wire excellent in elongation can be obtained. As the total content of the above elements increases, the crystal grains tend to become finer and the effect of improving the elongation tends to be larger. However, if the amount is too large, the conductivity is lowered. Therefore, the total content of the above elements is 1.0% or less.

Cu,Fe,Cr,Mn及びZrのうち、特にZrやMnは、微細化効果や伸びの向上効果が大きく、0.01%といった微量でも伸びを向上することができる。ZrやMnを含有する場合、後述するように連続鋳造圧延して得られる素材(連続鋳造圧延材)の結晶組織を十分に微細にすることができ、連続鋳造圧延の後、最終線径になるまでの間の製造工程において中間熱処理や溶体化処理、時効処理などにより熱履歴を受けても、結晶粒が成長し難く、結晶粒が微細な状態を維持し易い。その結果、最大結晶粒径が小さい組織からなる極細線を得易い。ZrやMnが多いほど、微細化による伸びの向上効果が大きい上に、強度の向上も図ることができる。また、ZrやMnを含有する場合、後述する試験例に示すように、80℃以上といった高温でも高い強度を有する、更に、80℃以上といった高温に長時間保持した後にも高い強度を維持できる、との知見を得た。つまり、製造時の熱履歴だけではなく、使用時の熱履歴においても、高強度である、との知見を得た。従って、高強度・高導電率・高靭性に加えて、高温強度や耐熱性といった高温特性にも優れることが望まれる用途には、ZrやMnを含有する形態が好ましい。Zrを含有する場合、特に、その含有量を0.02%以上0.40%以下とすると、Zrの含有量の増大による導電率の低下や鋳造時の割れなどといった不具合を抑制することができて、より好ましい。Mnを含有する場合、特に、その含有量を0.05%以上0.40%以下とすると、Mnの含有量の増大による導電率の低下や伸線時の断線、溶解時のスラグの発生などといった不具合を抑制することができて、より好ましい。   Among Cu, Fe, Cr, Mn, and Zr, especially Zr and Mn have a large effect of miniaturization and an effect of improving the elongation, and the elongation can be improved even with a small amount of 0.01%. When containing Zr and Mn, the crystal structure of the material (continuous cast rolled material) obtained by continuous casting and rolling can be made sufficiently fine as described later, and the final wire diameter is obtained after continuous casting and rolling. Even if a thermal history is received by intermediate heat treatment, solution treatment, aging treatment, or the like in the manufacturing process up to this point, the crystal grains are difficult to grow and the crystal grains are easily maintained in a fine state. As a result, it is easy to obtain an ultrafine wire composed of a structure having a small maximum crystal grain size. As the amount of Zr or Mn increases, the effect of improving the elongation due to miniaturization is greater and the strength can be improved. In addition, when containing Zr and Mn, as shown in the test examples described later, it has high strength even at a high temperature of 80 ° C. or higher, and can maintain high strength even after being held at a high temperature of 80 ° C. or higher for a long time. And gained knowledge. That is, not only the heat history at the time of manufacture but also the heat history at the time of use was found to be high strength. Therefore, for applications where high temperature characteristics such as high temperature strength and heat resistance are desired in addition to high strength, high conductivity, and high toughness, a form containing Zr or Mn is preferable. In the case of containing Zr, in particular, if the content is 0.02% or more and 0.40% or less, it is possible to suppress problems such as a decrease in conductivity due to an increase in the content of Zr and cracking during casting, which is more preferable. . When containing Mn, especially when the content is 0.05% or more and 0.40% or less, problems such as a decrease in conductivity due to an increase in the Mn content, disconnection during wire drawing, and generation of slag during melting are suppressed. This is more preferable.

Cu,Fe,Crはいずれも、含有量が多いほど微細化による伸びの向上効果が大きい傾向にあり、各元素一つ当たりの含有量は、0.05%以上が好ましい。また、Cu,Fe,Crは、強度の向上にも効果がある。上記各元素の含有量が、Cu:0.05%以上0.40%以下、Fe:0.1%以上0.6%以下、Cr:0.05%以上0.40%以下である場合、これらの元素の含有量の増大による導電率の低下や、伸線時の断線、溶解時のスラグの発生などといった不具合を抑制することができて、より好ましい。また、Feを上記範囲で含有する場合も、高温強度や耐熱性に優れる。   Cu, Fe, and Cr all tend to have a greater effect of improving elongation due to miniaturization as the content increases, and the content per element is preferably 0.05% or more. Cu, Fe and Cr are also effective in improving the strength. When the content of each of the above elements is Cu: 0.05% or more and 0.40% or less, Fe: 0.1% or more and 0.6% or less, and Cr: 0.05% or more and 0.40% or less, the conductivity is increased by increasing the content of these elements. It is more preferable because problems such as a drop, disconnection at the time of wire drawing, and generation of slag at the time of melting can be suppressed. Moreover, when it contains Fe in the said range, it is excellent in high temperature strength and heat resistance.

Cu,Fe,Cr,Mn,Zrのうち、いずれか1種の元素のみを含有してもよいが、複数種の元素を含有すると、微細化効果の他、上述のように強度の向上をも図ることができる。特に、Cu,Fe及びCrのいずれか1種(好ましくはFe)と、Mn及びZrの少なくとも1種とを含有すると、高温強度や耐熱性に優れる。   It may contain only one element of Cu, Fe, Cr, Mn, and Zr. However, when multiple elements are contained, in addition to the refinement effect, the strength can be improved as described above. Can be planned. In particular, when one of Cu, Fe and Cr (preferably Fe) and at least one of Mn and Zr are contained, the high temperature strength and heat resistance are excellent.

その他、TiやBは、鋳造時のAl合金の結晶組織を微細にする効果があることから、上記Al合金は、Ti及びBの少なくとも一方を含有することが好ましい。上記ZrやMnなどの微細化効果のある元素を含有すると共に、TiやBをも含有することで、鋳造後に得られた素材(好ましくは連続鋳造材、又は連続鋳造圧延材)の結晶粒が微細であり、かつ、鋳造以降の製造工程において結晶粒が微細な状態をより維持し易い(結晶粒の成長をより抑制し易い)。従って、TiやBをも含む組成であると、最終線径において最大結晶粒径が小さい結晶組織を有する極細線とすることができる。B単独の含有でもよいが、Ti単独の含有の方が微細化効果が得られ易く、TiとBとの双方を含有する方が、微細化効果が更に向上する。しかし、TiやBが多過ぎると、導電率の低下を招くことから、Ti:0.08%(800ppm(質量割合。以下、同様))以下、B:0.016%(160ppm)以下が好ましく、微細化効果を十分に得るには、Ti:0.005%(50ppm)以上、B:0.0005%(5ppm)以上が好ましい。   In addition, since Ti and B have an effect of making the crystal structure of the Al alloy at the time of casting fine, the Al alloy preferably contains at least one of Ti and B. In addition to containing elements having the effect of miniaturization such as Zr and Mn, and also containing Ti and B, the crystal grains of the material obtained after casting (preferably continuous cast material or continuous cast rolled material) It is fine, and it is easier to maintain a fine state of crystal grains in the manufacturing process after casting (easier to suppress the growth of crystal grains). Therefore, if the composition also contains Ti and B, it is possible to obtain an ultrafine wire having a crystal structure with a small maximum crystal grain size in the final wire diameter. Although the content of B alone may be sufficient, the effect of miniaturization is more easily obtained when Ti is contained alone, and the effect of refinement is further improved when both Ti and B are contained. However, too much Ti or B leads to a decrease in electrical conductivity, so Ti: 0.08% (800 ppm (mass ratio; the same applies hereinafter)) or less, B: 0.016% (160 ppm) or less is preferable, and the effect of miniaturization To sufficiently obtain Ti, it is preferable that Ti: 0.005% (50 ppm) or more and B: 0.0005% (5 ppm) or more.

《組織》
上記特定の組成からなるAl合金は、最大結晶粒径が50μm以下であることを最大の特徴とする。最大結晶粒径が小さいほど、合金全体の組織が微細になり易く、破断の起点となるような粗大粒が存在し難くなり、伸びに優れると考えられる。また、上記特定の組成からなるAl合金は、高温に長時間曝された場合にも結晶粒が微細な状態を維持し易く、破断の起点となるような粗大粒が存在し難くなる、つまり、最大結晶粒径が50μm以下である組織を維持することができ、耐熱性に優れる。従って、最大結晶粒径の下限は特に設けないが、線径に対する最大結晶粒径の割合が10%未満を満たすことが好ましい。組成や製造条件にもよるが、最大結晶粒径が40μm以下、更に30μm以下といった形態とすることができる。一方、上記特定の組成からなるAl合金は、最大結晶粒径が50μm以下を満たす範囲で結晶粒がある程度大きいことで、高温での変形において支配的である粒界すべりを抑制して、高温強度に優れる。例えば、最大結晶粒径が25μm〜40μm程度である組織とすると、高温強度や耐熱性に優れる傾向にある。最大結晶粒径の測定方法は後述する。
《Organization》
The Al alloy having the above specific composition is characterized in that the maximum crystal grain size is 50 μm or less. It is considered that the smaller the maximum crystal grain size, the finer the structure of the whole alloy becomes, and it becomes difficult for coarse grains to be the starting point of fracture to exist, and the elongation is excellent. In addition, the Al alloy having the above specific composition is easy to maintain a fine state of crystal grains even when exposed to a high temperature for a long time, and it is difficult for coarse grains to be the starting point of fracture, that is, A structure having a maximum crystal grain size of 50 μm or less can be maintained, and the heat resistance is excellent. Therefore, although the lower limit of the maximum crystal grain size is not particularly set, it is preferable that the ratio of the maximum crystal grain size to the wire diameter satisfies less than 10%. Depending on the composition and production conditions, the maximum crystal grain size may be 40 μm or less, and further 30 μm or less. On the other hand, the Al alloy having the above specific composition has a large crystal grain size within a range satisfying the maximum crystal grain size of 50 μm or less, thereby suppressing grain boundary sliding, which is dominant in deformation at high temperature, and high temperature strength. Excellent. For example, when the structure has a maximum crystal grain size of about 25 μm to 40 μm, it tends to be excellent in high temperature strength and heat resistance. A method for measuring the maximum crystal grain size will be described later.

《室温特性》
上記特定の組成及び組織のAl合金からなる本発明Al合金線は、高強度である上に導電率も高く、引張強さ(室温):150MPa以上、導電率(室温):40%IACS以上を満たす。引張強さ及び導電率は、添加元素の種類、含有量、製造条件(伸線加工度、熱処理(例えば、時効処理)の温度など)により変化させることができる。例えば、添加元素を多くしたり、伸線加工度を高めたり(線径を細くしたり)すると、引張強さが高く、導電率が小さくなる傾向にある。また、時効処理を施す場合、時効温度を低めにすると、引張強さ(室温):240MPa以上、かつ導電率(室温):45%IACS以上を満たす高強度である形態、時効温度を高めにすると、引張強さ(室温):200MPa以上、かつ導電率(室温):50%IACS以上を満たす高導電率である形態を得ることができる。引張強さ及び導電率は、高いほど好ましいが、伸びといった靭性と強度とのバランスを考慮すると、引張強さの上限は400MPa程度であり、添加元素の時効析出による導電率の増加の限界を考慮すると、導電率の上限は60%IACS程度である。
《Room temperature characteristics》
The Al alloy wire of the present invention made of an Al alloy having the above specific composition and structure has high strength and high electrical conductivity. Tensile strength (room temperature): 150 MPa or more, electrical conductivity (room temperature): 40% IACS or more Fulfill. The tensile strength and the electrical conductivity can be changed depending on the kind and content of the additive element and the manufacturing conditions (the degree of wire drawing, the temperature of heat treatment (for example, aging treatment), etc.). For example, if the amount of additive elements is increased or the degree of wire drawing is increased (thinning the wire diameter), the tensile strength tends to increase and the conductivity tends to decrease. In addition, when aging treatment is performed, if the aging temperature is lowered, the tensile strength (room temperature): 240MPa or more and the conductivity (room temperature): 45% IACS or more is a high strength form, and the aging temperature is increased. Further, it is possible to obtain a form having high conductivity satisfying tensile strength (room temperature): 200 MPa or more and conductivity (room temperature): 50% IACS or more. Higher tensile strength and electrical conductivity are preferable, but considering the balance between toughness such as elongation and strength, the upper limit of tensile strength is about 400 MPa, taking into account the limit of increase in electrical conductivity due to aging precipitation of additive elements Then, the upper limit of conductivity is about 60% IACS.

かつ、本発明Al合金線は、上記特定の元素:Cu,Fe,Cr,Mn,Zrを特定の範囲で含有し、最大結晶粒径が50μm以下という特定の組織のAl合金からなることで、伸びにも優れ、伸び(室温):5%以上を満たす。伸びが高いほど、耐衝撃性や屈曲特性に優れることから、特に上限を設けない。後述するように時効処理を施さず、溶体化処理のみとすると伸びが高く、10%以上とすることができ、時効処理を施すと、伸びが低下する傾向にあるものの、Cu,Fe,Cr,Mn,Zrを特定の範囲で含有することで5%以上を満たすことができる。   And, the Al alloy wire of the present invention contains the above specific element: Cu, Fe, Cr, Mn, Zr in a specific range, and is made of an Al alloy having a specific structure with a maximum crystal grain size of 50 μm or less, Excellent elongation and elongation (room temperature): 5% or more. Since the higher the elongation, the better the impact resistance and the bending properties, there is no particular upper limit. As will be described later, when the aging treatment is not performed and only the solution treatment is performed, the elongation is high and can be 10% or more, and when the aging treatment is performed, the elongation tends to decrease, but Cu, Fe, Cr, By containing Mn and Zr in a specific range, 5% or more can be satisfied.

《高温特性》
上記特定の組成及び組織のAl合金からなる本発明Al合金線として、室温での機械的特性に優れるだけでなく、高温での強度にも優れる形態が挙げられる。具体的には、80℃以上150℃以下の温度範囲から選択される任意の温度(例えば、80℃、85℃、100℃、120℃、125℃、150℃など)における引張強さ(以下、高温強度と呼ぶ)が150MPa以上を満たす形態が挙げられる。組成によっては、高温強度が160MPa以上、更に180MPa以上、190MPa以上を有する。代表的には、上記温度範囲において80℃に近いほど高温強度が高く、150℃に近いほど高温強度が低くなる傾向にあるものの、上述のように150MPa以上を満たし、高い高温強度を有する。例えば、80℃における引張強さが220MPa以上を満たす形態、100℃における引張強さが215MPa以上を満たす形態、120℃における引張強さが210MPa以上を満たす形態、150℃における引張強さが195MPa以上を満たす形態が挙げられる。この形態は、使用温度が80℃〜150℃から選択される任意の温度になり得る用途に好適に利用できると期待される。このような優れた高温強度を有する形態は、Mn及びZrの少なくとも一方を0.01%以上含有するAl合金や、Feを0.1%以上含有するAl合金から構成される形態が挙げられる。
<< High temperature characteristics >>
Examples of the Al alloy wire of the present invention made of an Al alloy having the above specific composition and structure include not only excellent mechanical properties at room temperature but also excellent strength at high temperatures. Specifically, the tensile strength (hereinafter, 80 ° C., 85 ° C., 100 ° C., 120 ° C., 125 ° C., 150 ° C., etc.) selected from a temperature range of 80 ° C. or higher and 150 ° C. or lower. A form that satisfies a high temperature strength of 150 MPa or more. Depending on the composition, the high-temperature strength is 160 MPa or more, further 180 MPa or more, 190 MPa or more. Typically, in the above temperature range, the higher the temperature strength is, the higher the temperature strength is, and the higher the temperature strength is, the closer the temperature temperature is to 150 ° C, the lower the high temperature strength. For example, a form where the tensile strength at 80 ° C satisfies 220 MPa or more, a form where the tensile strength at 100 ° C satisfies 215 MPa or more, a form where the tensile strength at 120 ° C satisfies 210 MPa or more, and a tensile strength at 150 ° C of 195 MPa or more The form which satisfy | fills is mentioned. It is expected that this form can be suitably used for applications in which the use temperature can be any temperature selected from 80 ° C to 150 ° C. Examples of the form having such an excellent high-temperature strength include forms composed of an Al alloy containing 0.01% or more of at least one of Mn and Zr and an Al alloy containing 0.1% or more of Fe.

上記特定の組成及び組織のAl合金からなる本発明Al合金線として、室温での機械的特性に優れるだけでなく、高温に長時間保持された後にも強度に優れる形態が挙げられる。具体的には、80℃以上150℃以下の温度範囲から選択される任意の温度(例えば、80℃、85℃、100℃、120℃、125℃、150℃など)に1,000時間保持した後の引張強さ(以下、高温保持後の強度と呼ぶ)が150MPa以上を満たす形態が挙げられる。組成によっては、高温保持後の強度が、180MPa以上、更に190MPa以上、特に200MPa以上、更には220MPa以上、240MPa以上を有する。また、組成によっては、高温保持後の強度が、室温での引張強さと同等、或いはそれ以上である形態が挙げられる。代表的には、上記温度範囲において80℃に近いほど高温保持後の強度が高く、150℃に近いほど高温保持後の強度が低くなる傾向にあるものの、上述のように150MPa以上を満たし、高温保持後の強度が高い。例えば、80℃に1,000時間保持した後の引張強さが250MPa以上を満たす形態、100℃に1,000時間保持した後の引張強さが245MPa以上を満たす形態、120℃に1,000時間保持した後の引張強さが240MPa以上を満たす形態、150℃に1,000時間保持した後の引張強さが200MPa以上満たす形態が挙げられる。この形態は、80℃〜150℃から選択される任意の温度に長時間曝され得る用途に好適に利用できると期待される。また、使用時に、強度の向上が望めることもある。このような高温保持後の強度に優れる形態は、Mn及びZrの少なくとも一方を0.01%以上含有するAl合金や、Feを0.1%以上含有するAl合金から構成される形態が挙げられる。   Examples of the Al alloy wire of the present invention comprising the Al alloy having the above specific composition and structure include not only excellent mechanical properties at room temperature but also excellent strength after being held at a high temperature for a long time. Specifically, after holding at an arbitrary temperature selected from a temperature range of 80 ° C. or higher and 150 ° C. or lower (for example, 80 ° C., 85 ° C., 100 ° C., 120 ° C., 125 ° C., 150 ° C., etc.) for 1,000 hours. Examples include a form in which the tensile strength (hereinafter referred to as strength after holding at high temperature) satisfies 150 MPa or more. Depending on the composition, the strength after holding at high temperature is 180 MPa or more, further 190 MPa or more, particularly 200 MPa or more, more preferably 220 MPa or more, 240 MPa or more. Further, depending on the composition, there is a form in which the strength after holding at high temperature is equal to or higher than the tensile strength at room temperature. Typically, the strength after holding at high temperature is higher as it is closer to 80 ° C in the above temperature range, and the strength after holding at high temperature tends to be lower as it is closer to 150 ° C. High strength after holding. For example, a form in which the tensile strength after holding at 80 ° C. for 1,000 hours satisfies 250 MPa or more, a form in which the tensile strength after holding at 100 ° C. for 1,000 hours satisfies 245 MPa or more, and a tensile after holding at 120 ° C. for 1,000 hours Examples include a form satisfying a strength of 240 MPa or higher, and a form satisfying a tensile strength of 200 MPa or higher after holding at 150 ° C. for 1,000 hours. It is expected that this form can be suitably used for applications that can be exposed to an arbitrary temperature selected from 80 ° C. to 150 ° C. for a long time. In addition, an improvement in strength may be expected during use. Examples of such a form excellent in strength after being held at high temperature include an Al alloy containing 0.01% or more of at least one of Mn and Zr, and an Al alloy containing 0.1% or more of Fe.

《線径》
本発明Al合金線は、線径0.5mm以下の極細線とする。伸線加工時の加工度(断面減少率)を適宜調整することで、線径を変化させることができる。例えば、車載ワイヤーハーネスの電線用導体に利用する場合、線径は0.1mm以上0.4mm以下が挙げられる。
"Wire diameter"
The Al alloy wire of the present invention is an extra fine wire having a wire diameter of 0.5 mm or less. The wire diameter can be changed by appropriately adjusting the degree of processing (cross-sectional reduction rate) during wire drawing. For example, when used as a conductor for an electric wire of an in-vehicle wire harness, the wire diameter is 0.1 mm or more and 0.4 mm or less.

《断面形状》
本発明Al合金線は、伸線加工時のダイス形状によって種々の横断面形状を有することができる。横断面が円形状である丸線が代表的である。その他、横断面形状は、楕円形状、矩形や六角形といった多角形状などの種々の形状が挙げられる。上記楕円形状や多角形状といった異形状の場合、線径は、横断面における最大長さ(楕円:長径、矩形や六角形:対角線)とする。
"Cross-sectional shape"
The Al alloy wire of the present invention can have various cross-sectional shapes depending on the die shape during wire drawing. A round line having a circular cross section is typical. In addition, the cross-sectional shape includes various shapes such as an elliptical shape, a polygonal shape such as a rectangle or a hexagon. In the case of an irregular shape such as the above elliptical shape or polygonal shape, the wire diameter is the maximum length in the cross section (ellipse: long diameter, rectangle or hexagon: diagonal).

[Al合金撚り線]
上記本発明Al合金線は、極細線であるため、複数本を撚り合わせた撚り線(本発明Al合金撚り線)とすることで、耐衝撃性や屈曲特性に更に優れる導体が得られる。撚り合わせ本数は、特に問わない。例えば、7,11,19,37,49,133本が挙げられる。本発明Al合金撚り線を圧縮成形して圧縮線材とすると、撚り合わせた状態よりも線径を小さくすることができ、導体の小径化に寄与することができる。
[Al alloy stranded wire]
Since the Al alloy wire of the present invention is a very fine wire, a conductor having further excellent impact resistance and bending characteristics can be obtained by twisting a plurality of the Al alloy wires (present Al alloy twisted wire). The number of twists is not particularly limited. For example, 7,11,19,37,49,133 are mentioned. When the Al alloy stranded wire of the present invention is compression-molded to obtain a compressed wire, the wire diameter can be made smaller than the twisted state, and the conductor diameter can be reduced.

[被覆電線]
上記本発明Al合金線や本発明Al合金撚り線、上述した圧縮線材は、このままでも電線の導体に利用できる。上述のようにこの導体の外周に絶縁被覆層を具える本発明被覆電線として使用することもできる。上記絶縁被覆層を構成する絶縁材料は、例えば、ポリ塩化ビニル(PVC)やノンハロゲン樹脂、難燃性に優れる材料などが挙げられる。絶縁被覆層の厚さは、所望の絶縁強度を考慮して適宜選択することができ、特に限定されない。
[Coated wire]
The Al alloy wire of the present invention, the twisted Al alloy wire of the present invention, and the above-described compressed wire can be used as conductors of electric wires as they are. As described above, it can also be used as a covered electric wire of the present invention having an insulating coating layer on the outer periphery of the conductor. Examples of the insulating material constituting the insulating coating layer include polyvinyl chloride (PVC), a non-halogen resin, and a material excellent in flame retardancy. The thickness of the insulating coating layer can be appropriately selected in consideration of desired insulation strength, and is not particularly limited.

[ワイヤーハーネス]
上記被覆電線は、本発明ワイヤーハーネスの構成部材に好適に利用することができる。本発明ワイヤーハーネスは、代表的には、本発明被覆電線を1本以上含む複数の電線を具え、各電線の端部に端子部が取り付けられている。上記各電線は、上記端子部を介して電気機器などの接続対象に接続される。本発明ワイヤーハーネスは、電線ごとに一つの端子部がそれぞれ設けられた形態の他、複数の電線が一つの端子部にまとめて取り付けられた電線群を含む形態でもよい。上記端子部は、雄型、雌型、圧着型、溶接型などの種々の形態が挙げられ、特に限定されない。ワイヤーハーネスに具える複数の電線は、結束具などにより一纏まりに束ねると、ハンドリング性に優れる。
[Wire Harness]
The said covered electric wire can be utilized suitably for the structural member of this invention wire harness. The wire harness of the present invention typically includes a plurality of electric wires including one or more of the covered electric wires of the present invention, and a terminal portion is attached to the end of each electric wire. Each said electric wire is connected to connection objects, such as an electric equipment, via the said terminal part. The wire harness of the present invention may include a wire group in which a plurality of wires are attached to one terminal portion in addition to a shape in which one terminal portion is provided for each wire. Examples of the terminal portion include various types such as a male type, a female type, a crimping type, and a welding type, and are not particularly limited. When a plurality of electric wires provided in the wire harness are bundled together by a binding tool or the like, the handling property is excellent.

[製造方法]
本発明Al合金線は、代表的には、以下の製造方法により製造することができる。この製造方法は、導体に利用されるアルミニウム合金線の製造方法であって、以下の連続鋳造圧延工程、伸線工程、溶体化工程を具える。
連続鋳造圧延工程:質量%で、Mgを0.03%以上1.5%以下、Siを0.02%以上2.0%以下、Cu,Fe,Cr,Mn及びZrから選択される少なくとも一種の元素を合計で0.1%以上1.0%以下含有し、残部がAlからなるAl合金の溶湯を連続鋳造した後、連続して圧延を行い、連続鋳造圧延材を形成する工程。
伸線工程:上記連続鋳造圧延材に伸線加工を施し、線径が0.5mm以下の伸線材を形成する工程。
溶体化工程:上記伸線材に溶体化処理を施し、固溶線材を形成する工程。
特に、上記溶体化処理は、加熱温度を450℃以上とし、加熱後の冷却工程において、冷却速度を100℃/min以上とする。
[Production method]
The Al alloy wire of the present invention can typically be produced by the following production method. This manufacturing method is a manufacturing method of an aluminum alloy wire used for a conductor, and includes the following continuous casting and rolling step, wire drawing step, and solution treatment step.
Continuous casting and rolling process: In mass%, Mg is 0.03% or more and 1.5% or less, Si is 0.02% or more and 2.0% or less, and at least one element selected from Cu, Fe, Cr, Mn and Zr is 0.1% or more in total. A process of continuously casting a molten alloy of Al alloy containing 1.0% or less and the balance being Al, and then continuously rolling to form a continuously cast rolled material.
Wire drawing step: A step of drawing the continuous cast rolled material to form a wire drawn material having a wire diameter of 0.5 mm or less.
Solution forming step: A step of forming a solid solution wire by subjecting the wire drawing material to a solution treatment.
Particularly, in the solution treatment, the heating temperature is set to 450 ° C. or higher, and the cooling rate is set to 100 ° C./min or higher in the cooling step after heating.

上記製造方法として、更に、上記固溶線材に時効処理を施し、時効線材を形成する工程(時効工程)を具える形態とすることができる。この時効処理は、加熱温度を100℃以上300℃以下、保持時間を4時間以上とする。   The manufacturing method may further include a step of applying an aging treatment to the solid solution wire to form an aging wire (aging step). In this aging treatment, the heating temperature is 100 ° C. or more and 300 ° C. or less, and the holding time is 4 hours or more.

上記製造方法として、更に、上記連続鋳造圧延材に均質化処理を施し、均質材を形成する工程(均質化工程)を具え、上記伸線加工は、上記均質材に施す形態とすることができる。この均質化処理は、加熱温度を450℃以上、保持時間を1時間以上とし、加熱後の冷却工程において、冷却速度を1℃/min以下(徐冷)とする。   The manufacturing method further includes a step of homogenizing the continuous cast rolled material to form a homogeneous material (homogenizing step), and the wire drawing can be performed on the homogeneous material. . In this homogenization treatment, the heating temperature is 450 ° C. or more, the holding time is 1 hour or more, and the cooling rate is 1 ° C./min or less (slow cooling) in the cooling step after heating.

《連続鋳造圧延工程》
極細線であって、かつ最大結晶粒径が小さい結晶組織を有するAl合金線を製造するためには、製造工程の上流工程においても微細な結晶組織を有するものを製造することが好ましい、との知見を得た。そこで、本発明Al合金線の製造に当たり、連続鋳造圧延を利用することを提案する。連続鋳造は、溶湯を急冷凝固できるため、微細な結晶組織を有する鋳造材が得られる。鋳造時の冷却速度は、適宜選択することができるが、固液共存温度域である600℃〜700℃において5℃/sec以上が好ましい。例えば、水冷銅鋳型や強制水冷機構などを有する連続鋳造装置を用いると、上述のような冷却速度による急冷凝固を容易に実現できる。連続鋳造は、ベルトアンドホイール法などの可動鋳型を用いる形態や枠状の固定鋳型を用いる形態が挙げられる。
《Continuous casting and rolling process》
In order to produce an Al alloy wire having an ultrafine wire and a crystal structure having a small maximum crystal grain size, it is preferable to produce a wire having a fine crystal structure even in an upstream process of the production process. Obtained knowledge. Therefore, it is proposed to use continuous casting and rolling in the production of the Al alloy wire of the present invention. In continuous casting, since the molten metal can be rapidly solidified, a cast material having a fine crystal structure can be obtained. Although the cooling rate at the time of casting can be selected suitably, 5 degreeC / sec or more is preferable in 600 to 700 degreeC which is a solid-liquid coexistence temperature range. For example, when a continuous casting apparatus having a water-cooled copper mold, a forced water cooling mechanism, or the like is used, rapid solidification at the cooling rate as described above can be easily realized. The continuous casting includes a form using a movable mold such as a belt-and-wheel method and a form using a frame-shaped fixed mold.

上記連続鋳造により得られた鋳造材に、鋳造に引き続いて圧延を施す。こうすることで、鋳造材に蓄積される熱を利用して熱間圧延を容易に行えてエネルギー効率がよい上に、微細な結晶組織を有する鋳造材に圧延を直ちに施すことで、得られた圧延材(連続鋳造圧延材)も、微細な結晶組織とすることができる。   The cast material obtained by the above continuous casting is subjected to rolling subsequent to casting. In this way, the heat accumulated in the cast material can be easily used for hot rolling, energy efficiency is good, and the cast material having a fine crystal structure is immediately subjected to rolling. The rolled material (continuously cast rolled material) can also have a fine crystal structure.

TiやBを添加する場合、溶湯を鋳型に注湯する直前に添加すると、Tiなどの局所的な沈降を抑制して、Tiなどが均等に混合された鋳造材を製造することができて好ましい。   When adding Ti or B, adding just before pouring the molten metal into the mold is preferable because it suppresses local sedimentation of Ti and the like and can produce a cast material in which Ti and the like are evenly mixed. .

《均質化工程》
上述のように伸線後に溶体化処理、更には、適宜時効処理を施すことで、最大結晶粒径が小さい組織からなり、伸びに優れるAl合金線が得られるが、伸線前の素材(連続鋳造圧延材)に均質化処理を施しておくと、伸びに優れるAl合金線が得られ易い、との知見を得た。この理由は、伸線前において、鋳造時に形成された粗大な化合物(代表的にはMgとSiとの化合物)を均一的に微細分散させておくことで、伸線後の溶体化工程において当該元素を十分に、かつ均一的に固溶できるため、と考えられる。また、微細化効果を有する元素:Cu,Fe,Cr,Mn,Zrを添加していることで、均質化処理時に結晶粒の粗大化を抑制することができる上に、後述する伸線工程での中間熱処理時や、伸線後の溶体化処理時、時効処理時にも結晶の成長を防止して、最大結晶粒径が小さい組織を維持できる。
《Homogenization process》
As described above, solution treatment after wire drawing, and further aging treatment as appropriate, a structure with a small maximum crystal grain size, and an Al alloy wire excellent in elongation can be obtained. It was found that when the homogenization treatment was performed on the cast rolled material, an Al alloy wire excellent in elongation was easily obtained. The reason for this is that the coarse compound formed during casting (typically a compound of Mg and Si) is uniformly finely dispersed before wire drawing, so that the solution treatment step after wire drawing is concerned. This is probably because the elements can be sufficiently and uniformly dissolved. In addition, by adding elements that have a refining effect: Cu, Fe, Cr, Mn, Zr, coarsening of crystal grains can be suppressed during homogenization treatment, and in the wire drawing step described later. During intermediate heat treatment, solution treatment after wire drawing, and aging treatment, crystal growth can be prevented and a structure having a small maximum crystal grain size can be maintained.

上記均質化処理は、加熱温度を450℃以上、保持時間を1時間以上とすることで、鋳造時に生成されたMgとSiとの化合物を均一的に微細分散させると共に、組成の均質化を図ることができる。好ましくは、加熱温度:500℃以上600℃以下、保持時間:3時間以上10時間以下が挙げられる。加熱後の冷却は徐冷(冷却速度:1℃/min以下)とすると、上記MgとSiとの化合物をより均一的に微細分散させられる。上記冷却速度は、例えば、均質化処理を行う加熱炉(例えば、箱型炉)内に加熱後もそのまま放置する冷却方法、即ち炉冷により実現できる。加熱炉の大きさに応じて、炉内の雰囲気を適宜加熱したり、冷却ガスなどを導入するなどして、炉内の温度を調整することで、冷却速度を調整できる。   In the above homogenization treatment, the heating temperature is set to 450 ° C. or more and the holding time is set to 1 hour or more to uniformly and finely disperse the compound of Mg and Si generated during casting and to homogenize the composition. be able to. Preferably, the heating temperature is 500 ° C. or more and 600 ° C. or less, and the holding time is 3 hours or more and 10 hours or less. When the cooling after heating is slow cooling (cooling rate: 1 ° C./min or less), the compound of Mg and Si can be more uniformly finely dispersed. The cooling rate can be realized by, for example, a cooling method in which a heating furnace (for example, a box furnace) for performing homogenization treatment is left as it is after heating, that is, furnace cooling. Depending on the size of the heating furnace, the cooling rate can be adjusted by adjusting the temperature in the furnace by appropriately heating the atmosphere in the furnace or introducing a cooling gas or the like.

本発明では、ZrやMnなどの微細化効果のある元素を特定の範囲で含有することで、均質化熱処理を施しても微細な状態を維持できる。   In the present invention, a fine state can be maintained even if a homogenization heat treatment is performed by containing an element having a refining effect such as Zr or Mn in a specific range.

《伸線工程》
上記連続鋳造圧延材、又は均質材に(冷間)伸線加工を施す。伸線加工度は、所望の線径に応じて適宜選択することができる。ZrやMnなどの微細化効果のある元素を特定の範囲で含有することで、伸線時に断線し難く、連続して長尺な伸線材を製造することができ、伸線材の製造性に優れる。
<Wire drawing process>
The continuous cast rolled material or homogeneous material is subjected to (cold) wire drawing. The degree of wire drawing can be appropriately selected according to a desired wire diameter. By containing elements with the effect of miniaturization such as Zr and Mn in a specific range, it is difficult to break at the time of wire drawing, and it is possible to produce a continuous long wire drawing material, which is excellent in the productivity of the wire drawing material. .

伸線加工途中に中間熱処理を適宜行うと、中間熱処理前までの加工により導入された歪を除去して、中間熱処理後の線材の伸線加工性を高められる。中間熱処理の条件は、例えば、加熱温度:250℃〜450℃、加熱時間:0.5時間以上が挙げられる。中間熱処理条件は、後述する溶体化処理条件と同じとしてもよい。本発明では、ZrやMnなどの微細化効果のある元素を特定の範囲で含有することで、中間熱処理を施しても微細な状態を維持できる。   When the intermediate heat treatment is appropriately performed during the wire drawing, the strain introduced by the processing before the intermediate heat treatment is removed, and the wire drawing workability of the wire after the intermediate heat treatment can be improved. Examples of the conditions for the intermediate heat treatment include heating temperature: 250 ° C. to 450 ° C., heating time: 0.5 hour or more. The intermediate heat treatment conditions may be the same as the solution treatment conditions described later. In the present invention, a fine state can be maintained even if an intermediate heat treatment is performed by containing an element having an effect of refining such as Zr or Mn in a specific range.

《溶体化工程》
上記最終線径の伸線材、撚り線とする場合には、撚り合せる前の伸線材、又は撚り合せ後の撚り線、圧縮線材とする場合には、撚り合せる前の伸線材、圧縮前の撚り線、又は圧縮後の圧縮線材に溶体化処理を施す。この溶体化処理は、主としてMgやSiの固溶を目的とする。また、時効処理を行う場合には、溶体化処理を行うことで、次工程の時効処理において、強度に寄与する化合物:MgとSiとの化合物を結晶粒内に微細分散させられる。更に、この溶体化処理により、Cu,Fe,Cr,Mn,Zrといった元素も固溶させることで、強度の向上を図ることができる。
<< Solution process >>
In the case of the wire drawing material and the stranded wire having the above final wire diameter, the wire drawing material before being twisted, or the wire after twisting, and in the case of the compression wire, the wire drawing material before being twisted and the twist before compression. Solution treatment is performed on the wire or the compressed wire after compression. This solution treatment is mainly aimed at solid solution of Mg and Si. In addition, in the case of performing an aging treatment, a compound that contributes to strength: a compound of Mg and Si can be finely dispersed in crystal grains in the aging treatment in the next step by performing a solution treatment. Furthermore, by this solution treatment, the elements such as Cu, Fe, Cr, Mn, and Zr are also solid-dissolved, so that the strength can be improved.

溶体化処理は、MgやSiを十分に固溶できるように加熱温度:450℃以上とし、固溶元素の過度な析出を防止するために加熱後、急冷する。具体的には、冷却速度を100℃/min以上とする。冷却速度は速いほど好ましく、200℃/min以上がより好ましい。上記冷却速度は、水や液体窒素といった液体冷媒に浸漬したり、送風を行うなどの強制冷却により実現することができる。加熱温度は、500℃以上620℃以下、更に600℃以下が好ましく、保持時間は、0.005秒以上5時間以下、好ましくは0.01秒以上3時間以下が挙げられる。上述した均質化処理を行う場合、溶体化処理の処理時間を短縮しても、各添加元素を十分に固溶することができる。また、このような保持時間が短い溶体化処理には、後述する連続処理法を好適に利用することができる。   In the solution treatment, the heating temperature is set to 450 ° C. or higher so that Mg and Si can be sufficiently dissolved, and the solution is rapidly cooled to prevent excessive precipitation of the solid solution elements. Specifically, the cooling rate is set to 100 ° C./min or more. The faster the cooling rate, the better, and 200 ° C./min or more is more preferable. The cooling rate can be realized by forced cooling such as immersion in a liquid refrigerant such as water or liquid nitrogen or blowing air. The heating temperature is preferably 500 ° C. or more and 620 ° C. or less, more preferably 600 ° C. or less, and the holding time is 0.005 seconds or more and 5 hours or less, preferably 0.01 seconds or more and 3 hours or less. When the above-described homogenization treatment is performed, each additive element can be sufficiently dissolved even if the solution treatment time is shortened. Moreover, the continuous processing method mentioned later can be utilized suitably for such solution treatment with a short holding time.

溶体化処理中の雰囲気は、代表的には、大気雰囲気が挙げられる。その他、酸素含有量がより少ない雰囲気、例えば、非酸化性雰囲気とすると、溶体化処理中の熱により処理対象の線材の表面に酸化膜が生成されることを抑制できる。非酸化性雰囲気は、例えば、真空雰囲気(減圧雰囲気)、窒素(N2)やアルゴン(Ar)などの不活性ガス雰囲気、水素含有ガス(例えば、水素(H2)のみ、N2,Ar,ヘリウム(He)といった不活性ガスと水素(H2)との混合ガスなど)や炭酸ガス含有ガス(例えば、一酸化炭素(CO)と二酸化炭素(CO2)との混合ガスなど)といった還元ガス雰囲気が挙げられる。 The atmosphere during the solution treatment is typically an air atmosphere. In addition, when the atmosphere has a lower oxygen content, for example, a non-oxidizing atmosphere, generation of an oxide film on the surface of the wire to be processed due to heat during the solution treatment can be suppressed. Non-oxidizing atmospheres include, for example, a vacuum atmosphere (reduced pressure atmosphere), an inert gas atmosphere such as nitrogen (N 2 ) and argon (Ar), a hydrogen-containing gas (for example, hydrogen (H 2 ) only, N 2 , Ar, A reducing gas such as a mixed gas of inert gas such as helium (He) and hydrogen (H 2 ) or a gas containing carbon dioxide (for example, a mixed gas of carbon monoxide (CO) and carbon dioxide (CO 2 )) The atmosphere can be mentioned.

溶体化処理は、連続処理法、後述するバッチ処理法のいずれも利用できる。溶体化処理に連続処理法を利用すると、長尺な線材の全長に亘って均一的な条件で熱処理を行い易く、特性のばらつきを小さくし易い上に、最終線径が0.5mm以下といった極細線に連続的に熱処理を行えてコストを低減でき、生産性に優れて好ましい。連続処理法は、加熱用容器内に加熱対象(上述の伸線材や撚り線など)を連続的に供給して、加熱対象を連続的に加熱する方法である。例えば、加熱対象を抵抗加熱により加熱する直接通電方式(通電加熱)、加熱対象を高周波の電磁誘導により加熱する間接通電方式(高周波誘導加熱)、その他、加熱雰囲気とした加熱用容器(パイプ炉)内に加熱対象を導入して熱伝導により加熱する炉式が挙げられる。加熱対象の温度が450℃以上となるように、線速、通電電流値や雰囲気温度などを調整するとよい。   For the solution treatment, either a continuous treatment method or a batch treatment method described later can be used. When the continuous treatment method is used for the solution treatment, it is easy to heat-treat under uniform conditions over the entire length of the long wire, making it easy to reduce variations in characteristics and making the final wire diameter 0.5 mm or less. The heat treatment can be carried out continuously to reduce the cost, and is excellent in productivity. The continuous treatment method is a method in which a heating target (such as the above-described wire drawing material or stranded wire) is continuously supplied into a heating container and the heating target is continuously heated. For example, a direct energization method that heats the object to be heated by resistance heating (energization heating), an indirect energization method that heats the object to be heated by high-frequency electromagnetic induction (high-frequency induction heating), and other heating containers (pipe furnaces) in a heated atmosphere The furnace type which introduces a heating object inside and heats by heat conduction is mentioned. The linear velocity, energization current value, ambient temperature and the like may be adjusted so that the temperature of the heating target is 450 ° C. or higher.

上記溶体化工程により、上記特定の組成からなり、線径:0.5mm以下、かつ、最大結晶粒径:50μm以下、導電率(室温):40%IACS以上、引張強さ(室温):150MPa以上、伸び(室温):5%以上を満たす本発明Al合金線が得られる。このAl合金線を撚り合わせることで本発明Al合金撚り線が得られ、この撚り線を圧縮することで、上述した圧縮線材が得られる。上述のように溶体化工程前に撚り合わせたり、圧縮したりしてもよい。   Due to the solution treatment step, the above composition is included, the wire diameter: 0.5 mm or less, the maximum crystal grain size: 50 μm or less, the conductivity (room temperature): 40% IACS or more, the tensile strength (room temperature): 150 MPa or more Elongation (room temperature): An Al alloy wire of the present invention satisfying 5% or more is obtained. The Al alloy stranded wire of the present invention is obtained by twisting the Al alloy wire, and the above-described compressed wire is obtained by compressing the stranded wire. As described above, they may be twisted or compressed before the solution treatment step.

《時効工程》
上記溶体化処理後に時効処理を行うことで、Al合金中のMgやSi、その他Zrなどの添加元素を析出させ、Al合金中に析出物を分散させることができる。この析出物の分散強化、即ち、時効硬化により強度の向上を図ることができると共に、固溶元素の低減による導電率の向上を図ることができる。従って、時効工程を経て得られた本発明Al合金線は、より高強度・高導電率である。また、本発明Al合金線は、ZrやMnなどの微細化効果がある元素を含有することで、時効後も結晶粒が微細であり、この微細な結晶粒からなる組織中に微細な析出物が均一的に分散した組織となり易い。このような微細組織を有することでも、強度を更に向上でき、強度及び導電率の双方により優れるAl合金線が得られる。かつ、本発明Al合金線は、時効後も最大結晶粒径が小さい組織であることで、伸びにも優れる。溶体化処理に加えて、更に時効処理を行うと、高温強度や高温保持後の強度にも優れる傾向にある。
《Aging process》
By performing an aging treatment after the solution treatment, additive elements such as Mg, Si and other Zr in the Al alloy can be precipitated, and the precipitate can be dispersed in the Al alloy. The strength of the precipitate can be improved by dispersion strengthening of the precipitates, that is, age hardening, and the conductivity can be improved by reducing the solid solution elements. Therefore, the Al alloy wire of the present invention obtained through the aging process has higher strength and higher conductivity. In addition, the Al alloy wire of the present invention contains elements that have a refining effect such as Zr and Mn, so that the crystal grains are fine even after aging, and fine precipitates are formed in the structure composed of these fine crystal grains. Tends to be a uniformly dispersed structure. By having such a fine structure, the strength can be further improved, and an Al alloy wire excellent in both strength and conductivity can be obtained. And the Al alloy wire of the present invention is excellent in elongation because it has a structure with a small maximum crystal grain size even after aging. When an aging treatment is further performed in addition to the solution treatment, the high temperature strength and the strength after holding at high temperature tend to be excellent.

時効処理は、加熱温度を100℃以上300℃以下、保持時間を4時間以上にすることで、析出物を十分に、かつ均一的に析出させることができる。上記範囲において加熱温度を低め(180℃以下)にすると、強度・伸びが高い形態(例えば、引張強さ:240MPa以上(組成や温度によっては300MPa以上)、導電率:45%IACS以上、伸び:6%以上を満たす形態)が得られ、加熱温度を高め(180℃超)にすると、導電率が高い形態(例えば、引張強さ:200MPa以上、導電率:50%IACS以上、伸び:5%以上を満たす形態)が得られる傾向にある。所望の特性に応じて、加熱温度を選択するとよい。加熱温度は、140℃以上250℃以下、保持時間は、4時間以上16時間以下がより好ましい。時効処理の保持時間が長いほど、析出物をより多く析出できることから、導電率を向上できることがある。また、時効処理を行っていない場合でも、使用環境がある程度高温である場合(特に、100℃以上)、使用環境の温度によって、事後的に時効が施された状態となって強度を向上できることがある。   In the aging treatment, the precipitate can be sufficiently and uniformly deposited by setting the heating temperature to 100 ° C. or more and 300 ° C. or less and the holding time to 4 hours or more. When the heating temperature is lowered in the above range (180 ° C or less), the strength and elongation are high (for example, tensile strength: 240 MPa or more (300 MPa or more depending on the composition and temperature), conductivity: 45% IACS or more, elongation: When the heating temperature is increased (over 180 ° C), the conductivity is high (for example, tensile strength: 200 MPa or more, conductivity: 50% IACS or more, elongation: 5% There is a tendency to obtain a form satisfying the above. The heating temperature may be selected according to desired characteristics. The heating temperature is more preferably 140 ° C. or more and 250 ° C. or less, and the holding time is more preferably 4 hours or more and 16 hours or less. As the retention time of the aging treatment is longer, more precipitates can be precipitated, and thus the conductivity may be improved. In addition, even when the aging treatment is not performed, if the usage environment is high to some extent (especially 100 ° C or more), the strength of the aging can be improved afterwards depending on the temperature of the usage environment. is there.

時効工程における冷却工程は、上述した均質化処理と同様に、炉冷や大気中での冷却などを利用することができる。   The cooling process in the aging process can utilize furnace cooling, cooling in the atmosphere, or the like, as in the above-described homogenization treatment.

上記時効処理も上述の連続処理法を利用できるが、バッチ処理法を利用すると、熱処理時間を十分に保持でき、析出物を十分に析出させられる。バッチ処理法は、加熱用容器(雰囲気炉、例えば、箱型炉)内に加熱対象を封入した状態で加熱する方法であり、加熱温度が上記温度となるように、雰囲気温度を調整するとよい。時効処理の雰囲気も、大気雰囲気でもよいし、上述した酸素含有量が少ない雰囲気としてもよい。   The aging treatment can use the above-mentioned continuous treatment method, but if the batch treatment method is used, the heat treatment time can be sufficiently maintained, and the precipitate can be sufficiently precipitated. The batch processing method is a heating method in which a heating target is enclosed in a heating container (atmosphere furnace, for example, a box furnace), and the atmosphere temperature may be adjusted so that the heating temperature becomes the above temperature. The atmosphere of the aging treatment may be an air atmosphere or an atmosphere having a low oxygen content as described above.

上記時効工程により、上記特定の組成からなり、線径:0.5mm以下、かつ、最大結晶粒径:50μm以下、導電率(室温):40%IACS以上、引張強さ(室温):150MPa以上、伸び(室温):5%以上を満たす本発明Al合金線が得られる。このAl合金線を上述のように撚り線、圧縮線材にしてもよい。時効工程前に撚り合わせたり、圧縮したりしてもよい。   Due to the above aging process, consisting of the above specific composition, wire diameter: 0.5 mm or less, maximum crystal grain size: 50 μm or less, conductivity (room temperature): 40% IACS or more, tensile strength (room temperature): 150 MPa or more, Elongation (room temperature): An Al alloy wire of the present invention satisfying 5% or more is obtained. The Al alloy wire may be a stranded wire or a compressed wire as described above. You may twist or compress before an aging process.

《被覆工程》
上記溶体化処理や適宜時効処理が施された固溶線材や時効線材(単線、撚り線、及び圧縮線材のいずれか)を用意し、これらの線材の外周に上述した絶縁材料からなる絶縁被覆層を形成する工程を具えることで、本発明被覆電線を製造することができる。
<Coating process>
Prepare the solid solution wire or aging wire (either single wire, stranded wire, or compression wire) that has been subjected to the above solution treatment or appropriate aging treatment, and an insulating coating layer made of the above insulating material on the outer periphery of these wires. By providing the process of forming, this invention covered electric wire can be manufactured.

《端子の取り付け工程》
得られた上記被覆電線の端部に端子部を装着し、代表的には、端子部付きの被覆電線を複数束ねることで、本発明ワイヤーハーネスを製造することができる。
《Terminal installation process》
The terminal harness is attached to the end portion of the obtained covered electric wire, and the wire harness of the present invention can be manufactured typically by bundling a plurality of covered electric wires with terminal portions.

[試験例1]
Al合金線を作製してAl合金線の種々の特性を調べた。Al合金線は、溶解→連続鋳造圧延→均質化→伸線(適宜中間熱処理)→溶体化→時効という手順で作製した。
[Test Example 1]
Al alloy wires were prepared and various characteristics of Al alloy wires were investigated. The Al alloy wire was prepared in the order of melting → continuous casting and rolling → homogenization → wire drawing (intermediate heat treatment) → solution treatment → aging.

ベースとして純アルミニウム(99.7質量%以上Al)を用意して溶解し、得られた溶湯(溶融アルミニウム)に表1に示す添加元素を表1に示す含有量(質量%)となるように投入して、Al合金溶湯(添加元素、残部:Al)を作製する。成分調整を行ったAl合金溶湯は、適宜、水素ガス除去処理や、異物除去処理を行うことが望ましい。   Prepare and melt pure aluminum (99.7 mass% or more Al) as a base, and add the additive elements shown in Table 1 to the resulting molten metal (molten aluminum) so that the content (mass%) shown in Table 1 is achieved. Then, an Al alloy molten metal (addition element, balance: Al) is prepared. It is desirable that the Al alloy molten metal whose components have been adjusted is appropriately subjected to a hydrogen gas removal treatment or a foreign matter removal treatment.

ベルトアンドホイール式の連続鋳造圧延装置を用いて、用意したAl合金溶湯に鋳造及び熱間圧延を連続的に施して連続鋳造圧延を行い、φ9.5mmのワイヤーロッド(連続鋳造圧延材)を作製した。Ti及びBを含有する試料は、表1に示す含有量(質量%)となるように、鋳造直前のAl合金溶湯にTiBワイヤを供給した。   Using a belt-and-wheel type continuous casting and rolling device, continuous casting and rolling is performed by continuously casting and hot rolling the prepared molten Al alloy to produce a φ9.5mm wire rod (continuous cast rolling material). did. The TiB wire was supplied to the molten Al alloy just before casting so that the sample containing Ti and B had the content (% by mass) shown in Table 1.

上記ワイヤーロッドに、均質化処理を施した。均質化処理は、箱型炉を用いて行い、加熱温度:530℃×保持時間:5時間、加熱後の冷却は炉冷とした。この冷却工程における冷却速度は、0.89℃/min(1℃/min以下)である。   The wire rod was homogenized. The homogenization treatment was performed using a box furnace, heating temperature: 530 ° C. x holding time: 5 hours, and cooling after heating was furnace cooling. The cooling rate in this cooling step is 0.89 ° C./min (1 ° C./min or less).

均質化処理を施した均質材に冷間伸線加工を施して、最終線径:φ0.3mmの伸線材を作製した。伸線加工途中に、中間熱処理(300℃×3時間)を適宜行った。   The homogenized material subjected to the homogenization treatment was subjected to cold wire drawing to produce a wire drawing material having a final wire diameter of φ0.3 mm. Intermediate heat treatment (300 ° C. × 3 hours) was appropriately performed during the wire drawing.

得られた最終線径:φ0.3mmの伸線材に、溶体化処理を施して、固溶線材を作製した。溶体化処理は、箱型炉で行い、加熱温度:530℃×保持時間:3時間とし、加熱後の素材を急冷した。急冷は、素材を水槽に浸漬して行い、この冷却工程における冷却速度は、675℃/min(100℃/min以上)である。   The obtained wire having a final wire diameter of φ0.3 mm was subjected to a solution treatment to produce a solid solution wire. The solution treatment was performed in a box furnace, and the heating temperature was set to 530 ° C. and the holding time was set to 3 hours, and the heated material was rapidly cooled. The rapid cooling is performed by immersing the material in a water tank, and the cooling rate in this cooling step is 675 ° C./min (100 ° C./min or more).

得られた固溶線材(Al合金線)について、室温(RT。ここでは25℃)における引張強さ(MPa)、伸び(%)、導電率(%IACS)を調べた。その結果を表2〜表4に示す。   The obtained solid solution wire (Al alloy wire) was examined for tensile strength (MPa), elongation (%), and conductivity (% IACS) at room temperature (RT, here 25 ° C.). The results are shown in Tables 2-4.

引張強さ(MPa)及び伸び(%、破断伸び)は、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用いて測定した。導電率(%IACS)は、ブリッジ法により測定した。   Tensile strength (MPa) and elongation (%, elongation at break) were measured using a general-purpose tensile tester in accordance with JIS Z 2241 (metal material tensile test method, 1998). The conductivity (% IACS) was measured by the bridge method.

得られた固溶線材に、種々の温度で時効処理を施し、時効線材を作製した。時効処理は、箱型炉を用いて表2〜表4に示す温度で行い、保持時間は、いずれも8時間とした。また、加熱後、大気中で冷却した。   The obtained solid solution wire was subjected to an aging treatment at various temperatures to produce an aging wire. The aging treatment was performed at a temperature shown in Tables 2 to 4 using a box furnace, and the holding time was 8 hours. Moreover, it cooled in air | atmosphere after heating.

得られた時効線材(Al合金線)について、室温(ここでは25℃)における引張強さ(MPa)、伸び(%)、導電率(%IACS)を上記と同様にして調べた。その結果を表2〜表4に示す。   The obtained aging wire (Al alloy wire) was examined for tensile strength (MPa), elongation (%), and electrical conductivity (% IACS) at room temperature (25 ° C. in the same manner) as described above. The results are shown in Tables 2-4.

更に、得られた時効線材(Al合金線)において試料No.1,No.11,No.16,No.102について、横断面をとり、この断面を光学顕微鏡で観察した。図1(A)は、試料No.1(3000倍)、図1(B)は、試料No.11(1000倍)、図1(C)は、試料No.16(3000倍)、図1(D)は、試料No.102(250倍)の顕微鏡写真である。試料No.1,No.11,No.16,No.102の顕微鏡の観察像を用いて、最大結晶粒径を調べた。ここでは、JIS G 0551(鋼-結晶粒度の顕微鏡試験方法、2005)に準拠して、観察像に試験線を引き、各結晶粒において試験線を分断する長さを結晶粒径とした(切断法)。1断面から視野を3個とり、各視野に一つの試験線を引き、3個の視野のうち、最も大きな結晶粒径を最大結晶粒径とする。その他の試料も同様にして最大結晶粒径を調べた。その結果を表2〜表4に示す。なお、最大結晶粒径は、時効温度を160℃又は180℃とした線材について測定した。試料No.15は、溶体化処理後の線材について最大結晶粒径を測定した。   Further, in the obtained aging wire (Al alloy wire), the sample No.1, No.11, No.16, No.102 was taken with a cross section, and this cross section was observed with an optical microscope. Fig. 1 (A) shows sample No. 1 (3000 times), Fig. 1 (B) shows sample No. 11 (1000 times), Fig. 1 (C) shows sample No. 16 (3000 times), Fig. 1 (D) is a photomicrograph of Sample No. 102 (250 times). The maximum crystal grain size was examined using the microscope images of Samples No.1, No.11, No.16 and No.102. Here, in accordance with JIS G 0551 (steel-grain size microscopic test method, 2005), a test line was drawn on the observed image, and the length of the test line in each crystal grain was divided as the crystal grain size (cutting Act). Take three fields from one cross section, draw one test line for each field, and set the largest crystal grain size among the three fields as the maximum crystal grain size. The maximum crystal grain size of other samples was examined in the same manner. The results are shown in Tables 2-4. The maximum crystal grain size was measured for a wire with an aging temperature of 160 ° C. or 180 ° C. For sample No. 15, the maximum crystal grain size was measured for the wire material after the solution treatment.

特定の元素:Cu,Fe,Cr,Mn,Zrを含む試料No.1〜No.23はいずれも、最大結晶粒径が50μm以下であり、図1(A),図1(B),図1(C)に示すように、結晶が非常に微細で、かつばらつきも小さいことが分かる。例えば、図1(A)に示す試料No.1は、各結晶粒:2μm〜20μm、最大結晶粒径が20μmであり、図1(B)に示す試料No.11は、各結晶粒:4μm〜35μm、最大結晶粒径が35μmであり、図1(C)に示す試料No.16は、各結晶粒:2μm〜25μm、最大結晶粒径が25μmと、非常に微細であることが分かる。また、試料No.1,No.11,No.16は、微細な結晶粒中に非常に微細な析出物が均一的に分散していることが分かる。そして、試料No.1〜No.23はいずれも、溶体化処理後、及び時効処理後の双方において伸びが5%以上であり、伸びに優れることが分かる。特に、ZrやMnを含有する試料No.11や試料No.16などは、時効処理後の伸びが9%、11%と非常に伸びに優れることが分かる。   Samples No. 1 to No. 23 containing specific elements: Cu, Fe, Cr, Mn, Zr all have a maximum crystal grain size of 50 μm or less, and FIG. 1 (A), FIG. 1 (B), FIG. As shown in 1 (C), it can be seen that the crystals are very fine and have little variation. For example, the sample No. 1 shown in FIG. 1 (A) is each crystal grain: 2 μm to 20 μm, the maximum crystal grain size is 20 μm, and the sample No. 11 shown in FIG. 1 (B) is each crystal grain: 4 μm. It can be seen that the sample No. 16 shown in FIG. 1 (C) is very fine with each crystal grain: 2 μm to 25 μm and the maximum crystal grain size of 25 μm. In Samples No.1, No.11, and No.16, it can be seen that very fine precipitates are uniformly dispersed in fine crystal grains. And all of sample No. 1-No. 23 have elongation of 5% or more both after solution treatment and after aging treatment, and it can be seen that the samples are excellent in elongation. In particular, it can be seen that Sample No. 11 and Sample No. 16 containing Zr and Mn have extremely excellent elongation of 9% and 11% after aging treatment.

一方、Cu,Fe,Cr,Mn及びZrのいずれも含有しない試料No.102は、最大結晶粒径が300μmであり、図1(D)に示すように、結晶が非常に粗大な上に、ばらつきも大きいことが分かる(各結晶粒:50μm〜300μm)。そして、試料No.102は、表3に示すように時効処理後の伸びが非常に小さく(0.3%)、実質的に伸びを有していないことが分かる。   On the other hand, Sample No. 102 containing none of Cu, Fe, Cr, Mn and Zr has a maximum crystal grain size of 300 μm, and the crystal is very coarse as shown in FIG. It can be seen that the variation is also large (each crystal grain: 50 μm to 300 μm). And as shown in Table 3, sample No. 102 has a very small elongation after aging treatment (0.3%), and it can be seen that it has substantially no elongation.

また、試料No.1〜No.23はいずれも、溶体化処理後、及び時効処理後の双方において、引張強さが高く、150MPa以上であり、かつ導電率も高く、40%IACS以上を満たす。特に、時効処理時の温度が低め(180℃以下)であると、時効硬化による強度の向上が見られ、温度が高め(180℃超)であると、析出物の析出による導電率の向上が見られることが分かる。一方、Cu,Fe,Cr,Mn及びZrのいずれも含有しない試料No.101,No.102は、時効処理後、試料No.1などと同程度の導電率を有するものの、強度及び伸びが低い。   Samples No. 1 to No. 23 are both high in tensile strength, 150 MPa or higher, high in conductivity, and satisfy 40% IACS or higher, both after solution treatment and after aging treatment. . In particular, if the temperature during the aging treatment is low (180 ° C. or less), the strength is improved by age hardening, and if the temperature is high (above 180 ° C.), the conductivity is improved due to precipitation of precipitates. I can see that. On the other hand, Sample No. 101 and No. 102 which do not contain any of Cu, Fe, Cr, Mn and Zr have the same electrical conductivity as Sample No. 1 after aging treatment, but have low strength and elongation. .

また、この試験から、時効処理時の温度を調整することで、強度や伸びを高めたり、導電率を高めたりすることができることが分かる。なお、試料No.1について、時効処理の温度を350℃にしたところ、軟化されて伸びは11%と大きくなったが、引張強さが121MPaとなり、十分な強度が得られなかった。従って、時効処理時の温度は、100℃以上300℃以下が好ましいと言える。   Moreover, it turns out that intensity | strength and elongation can be improved or electrical conductivity can be improved by adjusting the temperature at the time of an aging treatment from this test. For sample No. 1, when the temperature of the aging treatment was set to 350 ° C., the sample was softened and the elongation increased to 11%, but the tensile strength was 121 MPa, and sufficient strength could not be obtained. Therefore, it can be said that the temperature during the aging treatment is preferably 100 ° C. or more and 300 ° C. or less.

上述のように特定の元素:Cu,Fe,Cr,Mn及びZrの少なくとも1種を特定の範囲で含むAl-Mg-Si系合金からなることで、最大結晶粒径が50μm以下である微細組織を有し、線径φ0.5mm以下と言う極細線でありながら、高強度・高導電率であり、かつ伸びにも優れるAl合金線が得られることが分かる。このように十分な伸びを有することで、このAl合金線は、耐衝撃性や屈曲特性に優れる上に、高い強度及び電気伝導性が求められる電線用導体、例えば、車載ワイヤーハーネスの電線用導体に好適に利用できると期待される。また、上記極細線からなる撚り線や圧縮線材とすると、これら撚り線や圧縮線材を構成する素線は上記Al合金線の組成・組織・機械的特性を維持することから、これら撚り線や圧縮線材は高強度・高導電率で伸びにも優れる上に、撚り合わせにより、耐衝撃性、屈曲特性に更に優れる電線用導体とすることができる。   As described above, it is made of an Al-Mg-Si alloy containing at least one of the specific elements: Cu, Fe, Cr, Mn and Zr in a specific range, so that the maximum grain size is 50 μm or less. It can be seen that an Al alloy wire having high strength, high electrical conductivity, and excellent elongation can be obtained even though it is an ultrathin wire having a wire diameter of φ0.5 mm or less. By having sufficient elongation in this way, this Al alloy wire is excellent in impact resistance and bending characteristics, and also has a high strength and electrical conductivity, for example, a conductor for electric wires in an in-vehicle wire harness. It is expected that it can be suitably used. In addition, when the stranded wire and the compressed wire made of the above-mentioned ultrafine wires are used, the strands constituting the stranded wire and the compressed wire maintain the composition, structure, and mechanical properties of the Al alloy wire. The wire has high strength, high electrical conductivity and excellent elongation, and by twisting, it can be made into a conductor for electric wire that is further excellent in impact resistance and bending characteristics.

[試験例2]
Al合金線を作製して、Al合金線の高温特性を調べた。
[Test Example 2]
An Al alloy wire was produced and the high temperature characteristics of the Al alloy wire were investigated.

この試験では、表5に示す添加元素(含有量:質量%)を含有するAl合金溶湯を用いて、試験例1と同様の手順でAl合金線を作製した。具体的には、溶解→連続鋳造圧延(φ9.5mm)→均質化(530℃×5時間、冷却速度:0.89℃/min)→伸線(φ0.3mm)までの工程を試験例1と同様の条件とした。   In this test, an Al alloy wire was produced in the same procedure as in Test Example 1, using an Al alloy molten metal containing the additive element (content: mass%) shown in Table 5. Specifically, the process from melting → continuous casting and rolling (φ9.5mm) → homogenization (530 ° C × 5 hours, cooling rate: 0.89 ° C / min) → wire drawing (φ0.3mm) is the same as in Test Example 1. Conditions.

得られた最終線径:φ0.3mmの伸線材に対して、通電加熱、高周波誘導加熱、及びパイプ炉を用いた炉式のいずれかの連続処理法によって溶体化処理を施して固溶線材を作製した。溶体化条件を以下に示す。なお、溶体化途中の線材の温度はいずれも、600℃程度であった(450℃以上)。また、溶体化のための加熱後、試験例1と同様に水槽を用いて急冷した(冷却速度:500℃/min(100℃/min以上))。   The obtained final wire diameter: φ0.3 mm wire solution is subjected to solution treatment by any one of continuous processing methods of electric heating, high frequency induction heating, and furnace type using a pipe furnace to obtain a solid solution wire. Produced. The solution conditions are shown below. Note that the temperature of the wire during the solution treatment was about 600 ° C. (450 ° C. or higher). Further, after heating for solution treatment, it was rapidly cooled using a water tank in the same manner as in Test Example 1 (cooling rate: 500 ° C./min (100 ° C./min or more)).

(溶体化条件)
通電加熱:線速50m/min〜200m/minから選択、電流値33A〜66Aから選択、
水槽までの距離1.6m
高周波加熱:線速200m/min〜1000m/minから選択、電流値100A、
水槽までの距離1.6m
炉式:線速4m/min〜8m/minから選択、パイプ炉内温度580℃〜620℃から選択、
水槽までの距離2m
(Solution conditions)
Electrical heating: Select from linear speed 50m / min to 200m / min, select from current value 33A to 66A,
Distance to water tank 1.6m
High frequency heating: Select from linear speed 200m / min to 1000m / min, current value 100A,
Distance to water tank 1.6m
Furnace type: Select from linear speed 4m / min to 8m / min, select from pipe furnace temperature 580 ℃ ~ 620 ℃,
Distance to water tank 2m

得られた固溶線材に、試験例1と同様に箱型炉を用いて、表6に示す種々の温度(℃)で時効処理を施し、時効線材(Al合金線)を作製した。保持時間は、いずれも12時間とし、加熱後、大気中で冷却した。   The obtained solid solution wire was subjected to aging treatment at various temperatures (° C.) shown in Table 6 using a box furnace in the same manner as in Test Example 1 to produce an aging wire (Al alloy wire). The holding time was 12 hours for all, and after heating, cooling was performed in the atmosphere.

比較線材として、Siを含まない試料No.2-101を用意した。この試料No.2-101は、伸線後、軟化処理(350℃×3時間)を施し、溶体化及び時効のいずれも行わなかった。   Sample No. 2-101 containing no Si was prepared as a comparative wire. Sample No. 2-101 was subjected to softening treatment (350 ° C. × 3 hours) after wire drawing, and neither solution treatment nor aging was performed.

得られた時効線材(Al合金線)、及び比較線材について、最大結晶粒径(μm)、室温(ここでは25℃)における引張強さ(MPa)、伸び(%)、導電率(%IACS)を試験例1と同様にして調べた。その結果を表6に示す。なお、後述する表7〜表9に示す最大結晶粒径は、時効線材(Al合金線)、及び比較線材の測定結果である。   About the obtained aging wire (Al alloy wire) and the comparative wire, the maximum crystal grain size (μm), tensile strength (MPa) at room temperature (25 ° C here), elongation (%), conductivity (% IACS) Was examined in the same manner as in Test Example 1. The results are shown in Table 6. Note that the maximum crystal grain sizes shown in Tables 7 to 9 described later are the measurement results of the aging wire (Al alloy wire) and the comparative wire.

試験例1と同様に、特定の元素:Cu,Fe,Cr,Mn,Zrを含む試料No.2-1〜No.2-9はいずれも、最大結晶粒径が50μm以下である微細組織を有し、引張強さが150MPa以上(ここではいずれも200MPa以上)、かつ伸びが5%以上であり、室温での機械的特性に優れることが分かる。また、試料No.2-1〜No.2-9はいずれも、導電率が40%IACS以上(ここではいずれも48%IACS以上)であり、高い導電率も有することが分かる。   Similar to Test Example 1, each of Sample Nos. 2-1 to 2-9 containing a specific element: Cu, Fe, Cr, Mn, Zr has a microstructure with a maximum crystal grain size of 50 μm or less. It has a tensile strength of 150 MPa or more (both in this case 200 MPa or more), an elongation of 5% or more, and excellent mechanical properties at room temperature. In addition, it can be seen that the samples No. 2-1 to No. 2-9 all have a conductivity of 40% IACS or more (here, 48% IACS or more), and also have high conductivity.

更に、得られた時効線材(Al合金線)、及び比較線材について、80℃〜150℃の温度範囲から選択される温度(℃)における引張強さ(MPa):表7、80℃〜150℃の温度範囲から選択される温度(℃)に1,000時間保持した後における引張強さ(MPa):表8、80℃〜150℃の温度範囲から選択される温度(℃)に3,000時間保持した後における引張強さ(MPa):表9を調べた。その結果を表7〜表9に示す。測定は、上記温度範囲から選択した温度における引張強さを測定可能な汎用の引張試験機(雰囲気炉を有するもの)を用いて測定した。なお、表7に示す高温強度の測定には、例えば、日本伸銅協会技術標準JCBA T313(2002)、JIS G 0567(鉄鋼材料及び耐熱合金の高温引張試験方法 1998)などを参照することができる。表8に示す温度(℃)に1,000時間保持した後における引張強さ、及び表9に示す温度(℃)に3,000時間保持した後における引張強さはいずれも、所定の保持時間経過後、室温に冷却してから測定した。   Furthermore, for the obtained aging wire (Al alloy wire) and comparative wire, tensile strength (MPa) at a temperature (° C) selected from a temperature range of 80 ° C to 150 ° C: Table 7, 80 ° C to 150 ° C Tensile strength (MPa) after holding for 1,000 hours at a temperature (° C) selected from a temperature range of: After holding for 3,000 hours at a temperature (° C) selected from a temperature range of 80 ° C to 150 ° C in Table 8. Tensile strength (MPa): Table 9 was examined. The results are shown in Tables 7-9. The measurement was performed using a general-purpose tensile tester (having an atmospheric furnace) capable of measuring the tensile strength at a temperature selected from the above temperature range. For the measurement of the high-temperature strength shown in Table 7, for example, Japan Copper and Brass Association Technical Standard JCBA T313 (2002), JIS G 0567 (High-temperature tensile test method for steel materials and heat-resistant alloys 1998) can be referred to. . The tensile strength after holding for 1,000 hours at the temperature (° C) shown in Table 8 and the tensile strength after holding for 3,000 hours at the temperature (° C) shown in Table 9 are both room temperature after a predetermined holding time has elapsed. Measured after cooling.

表7に示すように、特定の元素:Cu,Fe,Cr,Mn,Zrを含み、最大結晶粒径が50μm以下である組織を有し、室温での引張強さ及び伸びに優れ、高い導電率を有するAl合金線は、80℃以上150℃以下から選択される任意の温度における引張強さも150MPa以上であり、高温強度に優れることが分かる。この理由は、上述のように最大結晶粒径が50μm以下であるものの、ある程度粒径が大きい(ここでは最大結晶粒径が30μm〜40μm程度である)組織から構成されることで、粒界すべりを抑制できたため、と考えられる。また、この試験では、80℃において200MPa超の引張強さを有し、測定温度が高いほど、引張強さがある程度低下するものの、150℃といった非常に高温においても150MPa以上の引張強さを有していることが分かる。このことから、上述のような高温強度に優れるAl合金線は、80℃〜150℃の温度範囲から選択される任意の温度(例えば、80℃、85℃、100℃、120℃、125℃、150℃など)における引張強さは勿論、室温から150℃までの任意の温度における引張強さも150MPa以上であると考えられる。   As shown in Table 7, it contains a specific element: Cu, Fe, Cr, Mn, Zr, has a structure with a maximum crystal grain size of 50 μm or less, excellent tensile strength and elongation at room temperature, and high conductivity It can be seen that the Al alloy wire having a modulus has an excellent tensile strength at an arbitrary temperature selected from 80 ° C. to 150 ° C. and is excellent in high temperature strength. The reason for this is that although the maximum crystal grain size is 50 μm or less as described above, it is composed of a structure that is somewhat large in size (here, the maximum crystal grain size is about 30 μm to 40 μm), thereby causing grain boundary sliding. This is thought to be due to the fact that this was suppressed. In addition, this test has a tensile strength of over 200 MPa at 80 ° C. Although the tensile strength decreases to some extent as the measurement temperature is higher, it has a tensile strength of 150 MPa or higher even at a very high temperature of 150 ° C. You can see that From this, the Al alloy wire excellent in high-temperature strength as described above is an arbitrary temperature selected from the temperature range of 80 ° C to 150 ° C (for example, 80 ° C, 85 ° C, 100 ° C, 120 ° C, 125 ° C, Of course, the tensile strength at any temperature from room temperature to 150 ° C. is considered to be 150 MPa or more.

また、表8に示すように、特定の元素:Cu,Fe,Cr,Mn,Zrを含み、最大結晶粒径が50μm以下の微細組織を有し、室温での引張強さ及び伸びに優れ、高い導電率を有するAl合金線は、80℃以上150℃以下から選択される任意の温度に1,000時間保持された後における引張強さも150MPa以上であり、高温保持後の強度に優れることが分かる。この理由は、高温に長時間曝されても、上述の特定の元素を含有することによって結晶粒の成長が抑制されて微細な組織(代表的には、最大結晶粒径が50μm以下である組織)が維持できたため、と考えられる。試料No.2-2に着目すると、80℃〜150℃の温度範囲において温度が高いほど、引張強さがある程度低下するものの、当該温度範囲のいずれの温度においても、150MPa以上(ここでは200MPa超)の引張強さを有していることが分かる。このことから、試料No.2-2のAl合金線は、80℃〜150℃の温度範囲から選択される任意の温度(例えば、80℃、85℃、100℃、120℃、125℃、150℃など)に長時間保持された後における引張強さは勿論、室温から150℃までの任意の温度に1,000時間保持された後における引張強さが150MPa以上であると考えられる。   In addition, as shown in Table 8, it contains a specific element: Cu, Fe, Cr, Mn, Zr, has a microstructure with a maximum crystal grain size of 50 μm or less, excellent in tensile strength and elongation at room temperature, It can be seen that the Al alloy wire having a high conductivity has a tensile strength of 150 MPa or more after being held at an arbitrary temperature selected from 80 ° C. to 150 ° C. for 1,000 hours, and is excellent in strength after being held at a high temperature. The reason for this is that even when exposed to a high temperature for a long time, the growth of crystal grains is suppressed by containing the above-mentioned specific elements, and a fine structure (typically a structure having a maximum crystal grain size of 50 μm or less). ) Could be maintained. Focusing on sample No. 2-2, the higher the temperature in the temperature range of 80 ° C to 150 ° C, the lower the tensile strength, but at any temperature within that temperature range, 150 MPa or more (here over 200 MPa) It can be seen that it has a tensile strength of From this, the Al alloy wire of sample No. 2-2 is an arbitrary temperature selected from a temperature range of 80 ° C. to 150 ° C. (for example, 80 ° C., 85 ° C., 100 ° C., 120 ° C., 125 ° C., 150 ° C. It is considered that the tensile strength after being held at an arbitrary temperature from room temperature to 150 ° C. for 1,000 hours is 150 MPa or more.

更に、表9に示すように、試料No.2-2は、3,000時間経過後における引張強さと1,000時間経過後におけるが引張強さとが実質的に等しく、高い強度を維持している。このことから、80℃〜150℃の温度範囲から選択される任意の温度に1,000時間保持した後に150MPa以上の強度を有するAl合金線は、当該温度に更に長時間曝された場合にも、高い強度を維持し続けることができると考えられる。そして、この理由は、上述のように上述の特定の元素を含有することによって結晶粒の成長が抑制されたため、と考えられる。   Furthermore, as shown in Table 9, Sample No. 2-2 maintains a high strength because the tensile strength after 3,000 hours and the tensile strength after 1,000 hours are substantially equal. From this, the Al alloy wire having a strength of 150 MPa or more after holding at an arbitrary temperature selected from the temperature range of 80 ° C. to 150 ° C. for 1,000 hours is high even when exposed to the temperature for a longer time. It is considered that the strength can be maintained. And this reason is considered because the growth of the crystal grain was suppressed by containing the above-mentioned specific element as mentioned above.

加えて、表7と表8とを比較すると、150℃における引張強さよりも、150℃に1,000時間保持した後における引張強さの方が高くなっている。この理由は、150℃に1,000時間保持した後における引張強さは、所定時間経過後、室温に冷却してから測定していることが挙げられる。他の理由として、高温に長時間曝されることで、いわば事後的に時効された状態となり、析出物の均一的な分散による強化がなされたため、と考えられる。このことから、80℃〜150℃の温度範囲から選択される任意の温度における引張強さが150MPa以上であるAl合金線は、このような高温になり得ると共に高温状態から室温程度までの低温状態になり得る使用環境では、経時的に高い強度を維持する、或いは強度が更に向上すると期待される。   In addition, when Table 7 and Table 8 are compared, the tensile strength after holding at 150 ° C. for 1,000 hours is higher than the tensile strength at 150 ° C. The reason for this is that the tensile strength after holding at 150 ° C. for 1,000 hours is measured after cooling to room temperature after a predetermined time. Another reason is considered to be that after being exposed to a high temperature for a long time, it was aged after the fact and strengthened by uniform dispersion of precipitates. From this, the Al alloy wire having a tensile strength of 150 MPa or more at an arbitrary temperature selected from a temperature range of 80 ° C. to 150 ° C. can be such a high temperature and a low temperature state from a high temperature state to about room temperature. In a use environment that can become high, it is expected that high strength will be maintained over time or the strength will be further improved.

また、試料No.2-1,No.2-3〜No.2-9はいずれも、150℃に1,000時間保持した後における引張強さが150MPa以上(ここでは200MPa以上)であることから、試料No.2-2と同様に、高温保持後の強度に優れることが分かる。また、試料No.2-1,No.2-3〜No.2-9はいずれも、試料No.2-2と同様に、(1)80℃〜150℃の温度範囲から選択される任意の温度に1,000時間保持された後における引張強さ、及び室温から150℃までの任意の温度に1,000時間保持された後における引張強さが150MPa以上である、(2)上記選択される任意の温度に更に3,000時間保持した後における引張強さも150MPa以上である、(3)使用時に上記選択される任意の温度に曝されることで強度が向上することがある、と期待される。   Samples No. 2-1, No. 2-3 to No. 2-9 all have a tensile strength of 150 MPa or more (here, 200 MPa or more) after being held at 150 ° C. for 1,000 hours. It can be seen that, as with sample No. 2-2, the strength after holding at high temperature is excellent. Sample No.2-1, No.2-3 to No.2-9 are all selected from the temperature range of 80 ° C to 150 ° C as in Sample No.2-2. The tensile strength after being held at a temperature of 1,000 hours for 1,000 hours and the tensile strength after being held at an arbitrary temperature from room temperature to 150 ° C. for 1,000 hours is 150 MPa or more, (2) any of the above selected It is expected that the tensile strength after further holding for 3,000 hours at the temperature is 150 MPa or more, and (3) the strength may be improved by exposure to any temperature selected above during use.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、Al合金の組成、Al合金線の線径、溶体化処理条件などを特定の範囲で変更してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the composition of the Al alloy, the wire diameter of the Al alloy wire, the solution treatment conditions, and the like may be changed within a specific range.

本発明アルミニウム合金線及び本発明アルミニウム合金撚り線は、軽量で、高強度・高導電率を有する上に、耐衝撃性や屈曲特性にも優れることが望まれる用途、例えば、自動車や飛行機などの搬送機器、産業用ロボットなどの制御機器といった各種の電気機器の配線構造に利用される電線の導体に好適に利用することができる。また、本発明アルミニウム合金線及び本発明アルミニウム合金撚り線は、高温強度や耐熱性にも優れることが望まれる用途の電線の導体に好適に利用することができる。本発明被覆電線は、車載ワイヤーハーネスなどの各種の電気機器の配線構造に利用される電線に好適に利用することができる。本発明ワイヤーハーネスは、軽量化が望まれている種々の分野の電気機器、特に、燃費の向上のために更なる軽量化が望まれている自動車の配線構造やエンジン周りといった高温となり得る箇所を具える自動車の配線構造に好適に利用することができる。   The aluminum alloy wire of the present invention and the twisted aluminum alloy wire of the present invention are lightweight, have high strength and high electrical conductivity, and are also desired to have excellent impact resistance and bending properties, such as automobiles and airplanes. It can be suitably used for conductors of electric wires used in the wiring structures of various electric devices such as transport devices and control devices such as industrial robots. Moreover, this invention aluminum alloy wire and this invention aluminum alloy strand wire can be utilized suitably for the conductor of the electric wire of the use where it is desired to be excellent also in high temperature strength and heat resistance. The coated electric wire of the present invention can be suitably used for electric wires used in the wiring structures of various electric devices such as in-vehicle wire harnesses. The wire harness of the present invention can be used in various fields of electrical equipment where weight reduction is desired, particularly in automobile wiring structures where further weight reduction is desired to improve fuel economy and places that can be hot such as around the engine. It can be suitably used for a wiring structure of an automobile.

Claims (9)

導体に利用されるアルミニウム合金線であって、
質量%で、
Mgを0.03%以上1.5%以下、
Siを0.02%以上2.0%以下、
Cu,Fe,Cr,Mn及びZrから選択される少なくとも一種の元素を合計で0.1%以上1.0%以下含有し、残部がAl及び不純物からなり、
導電率が40%IACS以上、
引張強さが150MPa以上、
伸びが5%以上、
線径が0.5mm以下、かつ、
最大結晶粒径が50μm以下であるアルミニウム合金線。
An aluminum alloy wire used for a conductor,
% By mass
Mg is 0.03% to 1.5%,
Si is 0.02% or more and 2.0% or less,
Containing at least one element selected from Cu, Fe, Cr, Mn and Zr in a total of 0.1% to 1.0%, with the balance being Al and impurities,
Conductivity is over 40% IACS,
Tensile strength is 150 MPa or more,
Elongation more than 5%,
Wire diameter is 0.5mm or less, and
Aluminum alloy wire with a maximum grain size of 50 μm or less.
Zrを0.01質量%以上含有する請求項1に記載のアルミニウム合金線。   2. The aluminum alloy wire according to claim 1, which contains 0.01% by mass or more of Zr. Mnを0.01質量%以上含有する請求項1又は2に記載のアルミニウム合金線。   3. The aluminum alloy wire according to claim 1, comprising 0.01% by mass or more of Mn. 80℃以上150℃以下の温度範囲から選択される任意の温度に1,000時間保持した後における引張強さが150MPa以上である請求項1〜3のいずれか1項に記載のアルミニウム合金線。   The aluminum alloy wire according to any one of claims 1 to 3, wherein the tensile strength after holding at an arbitrary temperature selected from a temperature range of 80 ° C or higher and 150 ° C or lower for 1,000 hours is 150 MPa or higher. 80℃以上150℃以下の温度範囲から選択される任意の温度における引張強さが150MPa以上である請求項1〜4のいずれか1項に記載のアルミニウム合金線。   The aluminum alloy wire according to any one of claims 1 to 4, wherein a tensile strength at an arbitrary temperature selected from a temperature range of 80 ° C to 150 ° C is 150 MPa or more. 更に、質量%で、Tiを0.08%以下、及びBを0.016%以下の少なくとも一方の元素を含有する請求項1〜5のいずれか1項に記載のアルミニウム合金線。   The aluminum alloy wire according to any one of claims 1 to 5, further comprising at least one element of 0.08% or less of Ti and 0.016% or less of B by mass%. 請求項1〜6のいずれか1項に記載のアルミニウム合金線を複数撚り合わせてなるアルミニウム合金撚り線。   An aluminum alloy stranded wire formed by twisting a plurality of the aluminum alloy wires according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載のアルミニウム合金線、又は請求項1〜6のいずれか1項に記載のアルミニウム合金線を複数撚り合せたアルミニウム合金撚り線、又はこの撚り線を圧縮成形した圧縮線材のいずれかを導体とし、その外周に絶縁被覆層を具える被覆電線。   The aluminum alloy wire according to any one of claims 1 to 6, the aluminum alloy twisted wire obtained by twisting a plurality of aluminum alloy wires according to any one of claims 1 to 6, or the stranded wire is compressed. A covered electric wire that uses any one of the formed compressed wire rods as a conductor and has an insulating coating layer on its outer periphery. 請求項8に記載の被覆電線と、この電線の端部に装着された端子部とを具えるワイヤーハーネス。   9. A wire harness comprising the covered electric wire according to claim 8 and a terminal portion attached to an end portion of the electric wire.
JP2012264096A 2011-04-11 2012-12-03 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness Active JP5839237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264096A JP5839237B2 (en) 2011-04-11 2012-12-03 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011086989 2011-04-11
JP2011086989 2011-04-11
JP2012264096A JP5839237B2 (en) 2011-04-11 2012-12-03 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012052569A Division JP5155464B2 (en) 2011-04-11 2012-03-09 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015222621A Division JP6094776B2 (en) 2011-04-11 2015-11-13 Aluminum alloy wire

Publications (2)

Publication Number Publication Date
JP2013076168A true JP2013076168A (en) 2013-04-25
JP5839237B2 JP5839237B2 (en) 2016-01-06

Family

ID=48479827

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012264096A Active JP5839237B2 (en) 2011-04-11 2012-12-03 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness
JP2015222621A Active JP6094776B2 (en) 2011-04-11 2015-11-13 Aluminum alloy wire
JP2017028365A Active JP6432849B2 (en) 2011-04-11 2017-02-17 Aluminum alloy wire

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015222621A Active JP6094776B2 (en) 2011-04-11 2015-11-13 Aluminum alloy wire
JP2017028365A Active JP6432849B2 (en) 2011-04-11 2017-02-17 Aluminum alloy wire

Country Status (1)

Country Link
JP (3) JP5839237B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968816A (en) * 2013-01-21 2015-10-07 矢崎总业株式会社 Aluminum alloy wire, electric wire, cable and wire harness
KR20170028414A (en) 2014-08-19 2017-03-13 가부시키가이샤 오토네트웍스 테크놀로지스 Method for producing aluminum wire
KR20170130468A (en) * 2015-04-28 2017-11-28 가부시키가이샤 오토네트웍스 테크놀로지스 Aluminum alloy strand, aluminum alloy strand and its manufacturing method, automobile wire and wire harness
WO2018062322A1 (en) * 2016-09-30 2018-04-05 住友電気工業株式会社 Aluminum alloy wire, overhead transmission line, and method for producing aluminum alloy wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839237B2 (en) * 2011-04-11 2016-01-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness
KR101915585B1 (en) 2017-04-28 2018-11-07 (주)메탈링크 High tension and thermal resistant aluminum alloy, aluminum alloy wire and overhead conductor manufactured using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277447A (en) * 1995-04-07 1996-10-22 Mitsubishi Cable Ind Ltd Production of conductive aluminum alloy wire
JP2004134212A (en) * 2002-10-10 2004-04-30 Furukawa Electric Co Ltd:The Aluminum cable for automobile wire harnesses
WO2008053897A1 (en) * 2006-10-30 2008-05-08 Autonetworks Technologies, Ltd. Wire conductor and process for producing the same
WO2010018647A1 (en) * 2008-08-11 2010-02-18 住友電気工業株式会社 Aluminum alloy wire
JP2010163675A (en) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The Aluminum alloy wire rod
JP2010265509A (en) * 2009-05-14 2010-11-25 Fujikura Ltd Al ALLOY AND ELECTROCONDUCTIVE WIRE OF Al ALLOY
JP5155464B2 (en) * 2011-04-11 2013-03-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839237B2 (en) * 2011-04-11 2016-01-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277447A (en) * 1995-04-07 1996-10-22 Mitsubishi Cable Ind Ltd Production of conductive aluminum alloy wire
JP2004134212A (en) * 2002-10-10 2004-04-30 Furukawa Electric Co Ltd:The Aluminum cable for automobile wire harnesses
WO2008053897A1 (en) * 2006-10-30 2008-05-08 Autonetworks Technologies, Ltd. Wire conductor and process for producing the same
WO2010018647A1 (en) * 2008-08-11 2010-02-18 住友電気工業株式会社 Aluminum alloy wire
JP2010163675A (en) * 2009-01-19 2010-07-29 Furukawa Electric Co Ltd:The Aluminum alloy wire rod
JP2010265509A (en) * 2009-05-14 2010-11-25 Fujikura Ltd Al ALLOY AND ELECTROCONDUCTIVE WIRE OF Al ALLOY
JP5155464B2 (en) * 2011-04-11 2013-03-06 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104968816A (en) * 2013-01-21 2015-10-07 矢崎总业株式会社 Aluminum alloy wire, electric wire, cable and wire harness
US10249401B2 (en) 2013-01-21 2019-04-02 Yazaki Corporation Aluminum alloy wire, electric wire, cable and wire harness
KR20170028414A (en) 2014-08-19 2017-03-13 가부시키가이샤 오토네트웍스 테크놀로지스 Method for producing aluminum wire
US10829843B2 (en) 2014-08-19 2020-11-10 Autonetworks Technologies, Ltd. Method for producing aluminum wire
DE112015003811B4 (en) * 2014-08-19 2021-02-11 Autonetworks Technologies, Ltd. Method of making an aluminum wire
KR20170130468A (en) * 2015-04-28 2017-11-28 가부시키가이샤 오토네트웍스 테크놀로지스 Aluminum alloy strand, aluminum alloy strand and its manufacturing method, automobile wire and wire harness
KR101959655B1 (en) 2015-04-28 2019-03-18 가부시키가이샤 오토네트웍스 테크놀로지스 Aluminum alloy strand, aluminum alloy strand and its manufacturing method, automobile wire and wire harness
WO2018062322A1 (en) * 2016-09-30 2018-04-05 住友電気工業株式会社 Aluminum alloy wire, overhead transmission line, and method for producing aluminum alloy wire
JPWO2018062322A1 (en) * 2016-09-30 2019-07-11 住友電気工業株式会社 Aluminum alloy wire, overhead power transmission line, and method of manufacturing aluminum alloy wire
JP7080174B2 (en) 2016-09-30 2022-06-03 住友電気工業株式会社 Manufacturing method of aluminum alloy wire, overhead power transmission line, and aluminum alloy wire

Also Published As

Publication number Publication date
JP5839237B2 (en) 2016-01-06
JP2017119917A (en) 2017-07-06
JP2016041854A (en) 2016-03-31
JP6432849B2 (en) 2018-12-05
JP6094776B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5155464B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness
JP6222533B2 (en) Method for manufacturing aluminum alloy wire
JP6432849B2 (en) Aluminum alloy wire
JP6017637B2 (en) Aluminum alloy wire
JP4646998B2 (en) Aluminum alloy wire
WO2010018646A1 (en) Aluminum alloy wire
JP5311292B2 (en) Method for manufacturing aluminum alloy wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5839237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250