JP2013075592A - Travel control apparatus - Google Patents

Travel control apparatus Download PDF

Info

Publication number
JP2013075592A
JP2013075592A JP2011215910A JP2011215910A JP2013075592A JP 2013075592 A JP2013075592 A JP 2013075592A JP 2011215910 A JP2011215910 A JP 2011215910A JP 2011215910 A JP2011215910 A JP 2011215910A JP 2013075592 A JP2013075592 A JP 2013075592A
Authority
JP
Japan
Prior art keywords
acceleration
vehicle
target acceleration
control device
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2011215910A
Other languages
Japanese (ja)
Inventor
Koji Abe
孝治 阿部
Heewon JEOWN
希元 鄭
Masahide Hayashi
雅秀 林
Taisetsu Tanimichi
太雪 谷道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011215910A priority Critical patent/JP2013075592A/en
Priority to PCT/JP2012/070474 priority patent/WO2013046959A1/en
Publication of JP2013075592A publication Critical patent/JP2013075592A/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • B60K2031/0025Detecting position of target vehicle, e.g. vehicle driving ahead from host vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2310/00Arrangements, adaptations or methods for cruise controls
    • B60K2310/26Distance setting methods, e.g. determining target distance to target vehicle
    • B60K2310/262Distance setting methods, e.g. determining target distance to target vehicle setting initial distance to preceding vehicle, e.g. initial algorithms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a travel control apparatus such that accurate following control can be implemented even at low speed, such as immediately before a vehicle stops or immediately after starting.SOLUTION: The travel control apparatus includes: a target acceleration calculation part that calculates the target acceleration on the basis of input inter-vehicle distance information about the distance between the vehicle and a preceding vehicle traveling ahead of the vehicle and input information about a vehicle speed detected by a wheel speed detection part; and a control part that controls the vehicle such that the vehicle follows the preceding vehicle on the basis of the target acceleration calculated by the target acceleration calculation part. The target acceleration calculation part determines the target acceleration on the basis of acceleration of the vehicle that is calculated from the vehicle speed detected by the wheel speed detection part and acceleration in the direction of travel of the vehicle that is detected by a triaxial acceleration detection part.

Description

本発明は、自車両の走行を制御する走行制御装置に関する。   The present invention relates to a travel control device that controls travel of a host vehicle.

車両に搭載され、自車両の進行方向にいる先行車両や、障害物をレーダーやカメラ等の車間距離検出装置により検知し、その距離を一定に保ち追従制御(ACC:Adaptive Cruise Control:車間距離制御)等を行う走行制御装置が存在している。   Detects preceding vehicles and obstacles that are installed in the vehicle in the direction of travel of the host vehicle by using an inter-vehicle distance detection device such as a radar or a camera, and keeps the distance constant to perform tracking control (ACC: Adaptive Cruise Control) ) Etc. exist.

追従制御のためには、自車両の速度、加速度を利用している。この速度は、一般には、車輪に取り付けられた車輪速センサの信号を用いている。   For tracking control, the speed and acceleration of the host vehicle are used. In general, this speed uses a signal from a wheel speed sensor attached to the wheel.

しかし、車輪速センサは、車輪の軸に取り付けられた一定間隔で並んでいる凹凸が入れ替わる時間を測定して車輪速を求めているため、低速になればなるほどその精度は悪くなる傾向である。   However, since the wheel speed sensor obtains the wheel speed by measuring the time at which the irregularities arranged at regular intervals attached to the wheel shaft are replaced, the accuracy tends to deteriorate as the speed decreases.

そこで、追従制御では、特許文献1にあるように低速時には車速を推定する方法などが取られてきた。   Therefore, in the follow-up control, a method for estimating the vehicle speed at a low speed has been adopted as disclosed in Patent Document 1.

特開2002−192980号公報JP 2002-192980 A

上記特許文献1のように、車輪速センサを用いた速度検知の場合、車輪速センサで検知できない最低速度になったとき、その最低速度と直前の減速度から自車速を推定するだけであり、ACC制御のような追従制御を行う際、正確な速度制御ができず、停止位置がばらついたり、減速度が変わり、乗り心地が悪くなる課題がある。   In the case of speed detection using the wheel speed sensor as in Patent Document 1, when the minimum speed that cannot be detected by the wheel speed sensor is reached, the vehicle speed is only estimated from the minimum speed and the immediately preceding deceleration. When follow-up control such as ACC control is performed, there is a problem that accurate speed control cannot be performed, the stop position varies, the deceleration changes, and the ride comfort deteriorates.

本発明の目的は、車両が停止する直前、または発進直後のような低速時でも正確な速度制御が可能で乗り心地の良い追従制御が可能な装置を提供することである。   An object of the present invention is to provide an apparatus capable of accurate speed control even at a low speed such as immediately before the vehicle stops or immediately after starting, and capable of following control with good riding comfort.

課題を解決するために本発明は、入力された自車両の前方を走行する先行車と自車両との車間距離情報と、入力された車輪速検出部で検出された自車速情報と、に基づいて、目標加速度を算出する目標加速度算出部と、目標加速度算出部で算出した目標加速度に基づいて先行車両に追従するように制御する制御部と、を有し、目標加速度算出部は、車輪速検出部で検出した自車速に基づいて、車輪速検出部で検出した自車速から算出した自車両の加速度と、3軸加速度検出部から算出した車両の進行方向の加速度と、を切り替えて、目標加速度を決定する構成とする。   In order to solve the problem, the present invention is based on the input inter-vehicle distance information between the preceding vehicle traveling in front of the host vehicle and the host vehicle, and the input host vehicle speed information detected by the wheel speed detection unit. A target acceleration calculation unit that calculates the target acceleration, and a control unit that controls to follow the preceding vehicle based on the target acceleration calculated by the target acceleration calculation unit. Based on the vehicle speed detected by the detection unit, the acceleration of the vehicle calculated from the vehicle speed detected by the wheel speed detection unit and the acceleration in the traveling direction of the vehicle calculated from the triaxial acceleration detection unit are switched, and the target The acceleration is determined.

又は、複数の撮像素子で撮像した画像から視差情報を算出する視差情報算出部と、視差情報から自車両の前方を走行する先行車と自車両との車間距離情報を算出する車間距離算出部と、を有する撮像装置と、車間距離情報と、入力された車輪速検出部で検出された自車速情報と、に基づいて、目標加速度を算出する目標加速度算出部と、目標加速度算出部で算出した目標加速度に基づいて先行車両に追従するように制御する制御部と、を有する走行制御装置と、を有し、走行制御装置の目標加速度算出部は、車輪速検出部で検出した自車速に基づいて、車輪速検出部で検出した自車速から算出した自車両の加速度と、3軸加速度検出部から算出した車両の進行方向の加速度と、を切り替えて、目標加速度を決定する構成とする。   Alternatively, a parallax information calculation unit that calculates parallax information from images captured by a plurality of image sensors, and an inter-vehicle distance calculation unit that calculates inter-vehicle distance information between a preceding vehicle that travels ahead of the host vehicle and the host vehicle from the parallax information. The target acceleration calculation unit that calculates the target acceleration based on the imaging device having the following, the inter-vehicle distance information, and the own vehicle speed information detected by the input wheel speed detection unit, and the target acceleration calculation unit A control unit that controls to follow the preceding vehicle based on the target acceleration, and the target acceleration calculation unit of the travel control device is based on the host vehicle speed detected by the wheel speed detection unit. Thus, the target acceleration is determined by switching between the acceleration of the host vehicle calculated from the host vehicle speed detected by the wheel speed detector and the acceleration in the traveling direction of the vehicle calculated from the triaxial acceleration detector.

車両が停止する直前、または発進直後のような低速時でも正確な速度制御が可能で乗り心地の良い追従制御が可能である。   Accurate speed control is possible even at low speeds, such as immediately before the vehicle stops or immediately after starting, and it is possible to perform follow-up control with good ride comfort.

本発明に係る走行制御装置を含む車両の一構成例を示した図である。It is the figure which showed one structural example of the vehicle containing the traveling control apparatus which concerns on this invention. 本発明の車両速度と現在加速度の関係の第1の実施形態を説明する図である。It is a figure explaining 1st Embodiment of the relationship between the vehicle speed and present acceleration of this invention. 本発明に係る走行制御装置の第1の実施形態のフローを示す図である。It is a figure which shows the flow of 1st Embodiment of the traveling control apparatus which concerns on this invention. 本発明の車両速度と現在加速度の関係の第2の実施形態を説明する図である。It is a figure explaining 2nd Embodiment of the relationship between the vehicle speed and present acceleration of this invention. 本発明に係る走行制御装置の第2の実施形態のフローを示す図である。It is a figure which shows the flow of 2nd Embodiment of the traveling control apparatus which concerns on this invention. 本発明に係る走行制御装置の第3の実施形態のフローを示す図である。It is a figure which shows the flow of 3rd Embodiment of the traveling control apparatus which concerns on this invention. 本発明の車両速度と影響度比率の関係を説明する図である。It is a figure explaining the relationship between the vehicle speed and influence ratio of this invention. 路面の勾配と現在加速度の関係を説明する図である。It is a figure explaining the relationship between the gradient of a road surface, and the present acceleration. 本発明に係る走行制御装置の第4の実施形態のフローを示す図である。It is a figure which shows the flow of 4th Embodiment of the traveling control apparatus which concerns on this invention. 本発明に係る走行制御装置の制御ブロックを示す図である。It is a figure which shows the control block of the traveling control apparatus which concerns on this invention. 本発明に係る走行制御装置の他の制御ブロックを示す図である。It is a figure which shows the other control block of the traveling control apparatus which concerns on this invention.

図1は、本発明に係る走行制御装置を含む車両の一構成例である。   FIG. 1 is a configuration example of a vehicle including a travel control device according to the present invention.

車両105は、走行制御装置101と、エンジン制御装置102と、変速機制御装置103と、ブレーキ制御装置104と、車間距離検知装置106と、車輪速検出部である車輪速センサ110と、3軸加速度検出部である3軸加速度センサ111とが、搭載されている。   The vehicle 105 includes a travel control device 101, an engine control device 102, a transmission control device 103, a brake control device 104, an inter-vehicle distance detection device 106, a wheel speed sensor 110 that is a wheel speed detection unit, and three axes. A three-axis acceleration sensor 111 that is an acceleration detection unit is mounted.

走行制御装置101は、車間距離検知装置106が測定した自車両の先行車(前方を走行する車両)と自車両との車間距離情報と、車輪速検出部である車輪速センサ110で検出された自車速情報(車速測定値)と、を利用し、目標加速度を算出し、その目標加速度に基づいて先行車両に追従するようにエンジン制御装置102とブレーキ制御装置104にトルク指令、液圧指令を出力して制御している。   The travel control device 101 is detected by the inter-vehicle distance information between the preceding vehicle of the host vehicle (the vehicle traveling ahead) and the host vehicle measured by the inter-vehicle distance detection device 106 and the wheel speed sensor 110 that is a wheel speed detection unit. The target acceleration is calculated using the own vehicle speed information (vehicle speed measurement value), and a torque command and a hydraulic pressure command are sent to the engine control device 102 and the brake control device 104 so as to follow the preceding vehicle based on the target acceleration. Output and control.

なお、車間距離検知装置106は、複数の撮像素子を備えたステレオカメラ等の撮像装置や、ミリ波レーダーのようなレーダー装置等であり、これらにより測定又は算出されて、車間距離情報を出力するものである。   The inter-vehicle distance detection device 106 is an imaging device such as a stereo camera provided with a plurality of imaging elements, a radar device such as a millimeter wave radar, and the like, and is measured or calculated by these to output inter-vehicle distance information. Is.

この最終目標加速度の算出には、車両の現在加速度が必要である。現在加速度の利用方法については、本発明の走行制御装置101の制御ブロックを示す図10で説明する。車速測定値がある速度より以下になった場合は、最終目標加速度の算出には、車輪速センサ値から求めた加速度を使用せずに3軸加速度センサ111の加速度を現在加速度として使用するように切替える。つまり、車輪速検出部である車輪速センサ110で検出した自車速に基づいて、自車速から算出した自車両の加速度と、3軸加速度検出部である3軸加速度センサ111から算出した車両の進行方向の加速度と、を切り替えて、目標加速度を決定する。   Calculation of this final target acceleration requires the current acceleration of the vehicle. A method of using the current acceleration will be described with reference to FIG. 10 showing a control block of the traveling control apparatus 101 of the present invention. When the vehicle speed measurement value falls below a certain speed, the final target acceleration is calculated by using the acceleration of the three-axis acceleration sensor 111 as the current acceleration without using the acceleration obtained from the wheel speed sensor value. Switch. That is, based on the own vehicle speed detected by the wheel speed sensor 110 which is a wheel speed detection unit, the acceleration of the own vehicle calculated from the own vehicle speed and the progress of the vehicle calculated from the three-axis acceleration sensor 111 which is a three-axis acceleration detection unit. The target acceleration is determined by switching the direction acceleration.

よって本発明の走行制御装置は、低速時に3軸加速度センサを用いて、制御するため、停止時に正確な車間距離での停車が可能になる。又、発進時の燃費向上と乗り心地改善を得られるという利点がある。   Therefore, since the traveling control device of the present invention controls using the three-axis acceleration sensor at a low speed, the vehicle can be stopped at an accurate inter-vehicle distance when stopped. In addition, there is an advantage that an improvement in fuel consumption and a ride comfort can be obtained at the time of start.

図2は本発明の車両速度と現在加速度の関係の第1の実施形態である。   FIG. 2 is a first embodiment of the relationship between the vehicle speed and the current acceleration according to the present invention.

縦軸に車速、横軸に時間を表している。車両105が減速している場合、自車速201が時間と共に下降する。約8km/h以上10km/h以下の範囲内で予め決定される加速度切替車速閾値205より自車速201が大きい時は、現在加速度204は、車輪速センサ110の車輪速から求めた加速度202を選択し、自車速201が予め定めた加速度切替車速閾値205(チューニング定数)以下の時は、3軸加速度センサ111から求めた進行方向の加速度203を現在加速度204として選択する。つまり、車輪速センサ110で検出した自車速が、予め定めた速度(加速度切替車速閾値)以下の場合は、3軸加速度センサ111から算出した車両の進行方向の加速度を用いて目標加速度を決定する。   The vertical axis represents vehicle speed and the horizontal axis represents time. When the vehicle 105 is decelerating, the host vehicle speed 201 decreases with time. When the host vehicle speed 201 is larger than a predetermined acceleration switching vehicle speed threshold value 205 within a range of about 8 km / h to 10 km / h, the current acceleration 204 selects the acceleration 202 obtained from the wheel speed of the wheel speed sensor 110. When the vehicle speed 201 is equal to or less than a predetermined acceleration switching vehicle speed threshold value 205 (tuning constant), the acceleration 203 in the traveling direction obtained from the triaxial acceleration sensor 111 is selected as the current acceleration 204. That is, when the vehicle speed detected by the wheel speed sensor 110 is equal to or lower than a predetermined speed (acceleration switching vehicle speed threshold), the target acceleration is determined using the acceleration in the vehicle traveling direction calculated from the three-axis acceleration sensor 111. .

図3は、図2の第1の実施形態の制御フローを示す図である。   FIG. 3 is a diagram showing a control flow of the first embodiment of FIG.

302で車間距離検知装置106の車間距離測定値を取り込み、303で車輪速センサ110から求めた自車速を取り込み、自車速に適した車間距離で検索し、304でステレオカメラ装置やミリ波レーダーのようなセンサで検知された実車間距離情報に基づいて目標車間距離を算出し、309で目標車間距離と自車速からなる目標車速を求め、目標加速度を算出する。305で自車速は加速度切替車速閾値205未満だった場合は、306で3軸加速度センサから求めた進行方向の加速度203を現在加速度として取り込み、305で自車速は加速度切替車速閾値205以上だった場合は、307で自車速から加速度を現在加速度として算出する。そして現在加速度を用いて、308で最終目標加速度を決定する。この後、加速であれば、エンジン制御装置102にトルク指令を出し、減速であれば、ブレーキ制御装置104に液圧指令を出す。これにより、より正確な車間距離での緩やかな停止が可能になる。   In 302, the inter-vehicle distance measurement value of the inter-vehicle distance detection device 106 is fetched. In 303, the own vehicle speed obtained from the wheel speed sensor 110 is fetched, and the search is performed with the inter-vehicle distance suitable for the own vehicle speed. Based on the actual inter-vehicle distance information detected by such a sensor, the target inter-vehicle distance is calculated, and in 309, the target vehicle speed composed of the target inter-vehicle distance and the own vehicle speed is obtained, and the target acceleration is calculated. If the vehicle speed is less than the acceleration switching vehicle speed threshold value 205 in 305, the acceleration 203 in the traveling direction obtained from the three-axis acceleration sensor is fetched as the current acceleration in 306. If the vehicle speed is the acceleration switching vehicle speed threshold value 205 or more in 305 307 calculates the acceleration as the current acceleration from the own vehicle speed. Then, the final target acceleration is determined at 308 using the current acceleration. Thereafter, if acceleration, a torque command is issued to the engine control device 102, and if deceleration, a hydraulic pressure command is issued to the brake control device 104. Thereby, a gentle stop at a more accurate inter-vehicle distance becomes possible.

図4は本発明の一実施例である。   FIG. 4 shows an embodiment of the present invention.

縦軸に車速、横軸に時間を表している。車両105が減速している場合、自車速201が時間と共に下降する。加速度切替車速閾値205より自車速201が大きい時は、現在加速度204は、車輪速センサ110の車輪速から求めた加速度202を選択し、加速度切替車速閾値205より自車速201が小さくなった時から、車輪速センサ由来加速度への復帰車速閾値402より大きくなるまでの間は、現在加速度204は、3軸加速度センサから求めた進行方向の加速度203を選択する。403が3軸加速度センサ値使用範囲となる。   The vertical axis represents vehicle speed and the horizontal axis represents time. When the vehicle 105 is decelerating, the host vehicle speed 201 decreases with time. When the own vehicle speed 201 is larger than the acceleration switching vehicle speed threshold value 205, the current acceleration 204 selects the acceleration 202 obtained from the wheel speed of the wheel speed sensor 110, and when the own vehicle speed 201 becomes smaller than the acceleration switching vehicle speed threshold value 205. The current acceleration 204 selects the acceleration 203 in the traveling direction obtained from the three-axis acceleration sensor until the vehicle speed threshold 402 is greater than the vehicle speed threshold 402 returned to the wheel speed sensor-derived acceleration. 403 is the triaxial acceleration sensor value usage range.

図5は、図4の制御のフロー図の一実施例である。   FIG. 5 is an example of the control flow diagram of FIG.

302で車間距離検知装置106の車間距離測定値を取り込み、303で車輪速センサ110から求めた自車速を取り込み309で目標加速度を算出する。304で目標車間距離を算出し、309で目標加速度を算出する。305で自車速は、予め定めた速度である加速度切替車速閾値205以下の場合は、306で3軸加速度センサから求めた進行方向の加速度203を現在加速度204として取り込み、305で自車速は加速度切替車速閾値205より大きい場合で、501で自車速が車輪速センサ由来加速度へ復帰するための予め定めた第2の速度である復帰車速閾値以下の場合は、306で3軸加速度センサから求めた進行方向の加速度203を現在加速度204として取り込み、それ以外の場合(自車速が復帰車速閾値より大きい場合)は、307で自車速から算出した加速度を現在加速度204とし、308で最終目標加速度を決定する。つまり、検出された自車速が、予め定めた速度である加速度切替車速閾値205より大きく、且つ予め定められた第2の速度である復帰車速閾値より大きい場合、車輪速センサ110で検出した自車速から算出した自車両の加速度を用いて、目標加速度を決定する。   In 302, the inter-vehicle distance measurement value of the inter-vehicle distance detection device 106 is captured. In 303, the host vehicle speed obtained from the wheel speed sensor 110 is captured. In 309, the target acceleration is calculated. In 304, the target inter-vehicle distance is calculated, and in 309, the target acceleration is calculated. If the vehicle speed is equal to or lower than the acceleration switching vehicle speed threshold value 205, which is a predetermined speed in 305, the acceleration 203 in the traveling direction obtained from the triaxial acceleration sensor is acquired in 306 as the current acceleration 204. If the vehicle speed threshold is greater than 205, and the vehicle speed is less than or equal to the return vehicle speed threshold that is a predetermined second speed for returning to the wheel speed sensor-derived acceleration in 501, the progress obtained from the triaxial acceleration sensor in 306 The acceleration 203 in the direction is taken as the current acceleration 204, and in other cases (when the own vehicle speed is larger than the return vehicle speed threshold), the acceleration calculated from the own vehicle speed in 307 is set as the current acceleration 204, and the final target acceleration is determined in 308. . That is, if the detected vehicle speed is greater than the acceleration switching vehicle speed threshold value 205 which is a predetermined speed and greater than the return vehicle speed threshold value which is a predetermined second speed, the vehicle speed detected by the wheel speed sensor 110 is detected. The target acceleration is determined using the acceleration of the host vehicle calculated from the above.

この後、加速であれば、エンジン制御装置102にトルク指令を出し、減速であれば、ブレーキ制御装置104に液圧指令を出す。   Thereafter, if acceleration, a torque command is issued to the engine control device 102, and if deceleration, a hydraulic pressure command is issued to the brake control device 104.

図6は、制御フロー図の一実施例である。   FIG. 6 is an example of a control flow diagram.

302で車間距離検知装置106の車間距離測定値を取り込み、303で車輪速センサ110から求めた自車速を取り込み、309で目標加速度を算出する。601と602と603で自車が停止モードに移行するか判定し、停止モードに移行した場合には、306で3軸加速度センサから求めた進行方向の加速度203を現在加速度204として取り込み、停止モードではない場合は、307で自車速から算出した加速度を現在加速度204とし、308で最終目標加速度を決定する。つまり、先行車が停止していることが検出され、又は、自車両が追従制御から停止制御にモードが切り替えられた場合、3軸加速度センサ111から検出した車両の進行方向の加速度を用いて、目標加速度を決定する。   In 302, the inter-vehicle distance measurement value of the inter-vehicle distance detection device 106 is captured, in 303, the host vehicle speed obtained from the wheel speed sensor 110 is captured, and in 309, the target acceleration is calculated. In 601, 602, and 603, it is determined whether or not the vehicle shifts to the stop mode. When the vehicle shifts to the stop mode, the acceleration 203 in the traveling direction obtained from the three-axis acceleration sensor is captured as the current acceleration 204 in 306, If not, the acceleration calculated from the vehicle speed in 307 is set as the current acceleration 204, and the final target acceleration is determined in 308. That is, when it is detected that the preceding vehicle is stopped, or when the host vehicle is switched from follow-up control to stop control, the acceleration in the traveling direction of the vehicle detected from the three-axis acceleration sensor 111 is used. Determine the target acceleration.

この後、加速であれば、エンジン制御装置102にトルク指令を出し、減速であれば、ブレーキ制御装置104に液圧指令を出す。これにより、より正確な車間距離での停止が可能になる。   Thereafter, if acceleration, a torque command is issued to the engine control device 102, and if deceleration, a hydraulic pressure command is issued to the brake control device 104. This makes it possible to stop at a more accurate inter-vehicle distance.

図7は、本発明の一実施例である。   FIG. 7 shows an embodiment of the present invention.

最終目標加速度の決定には、自車両の現在加速度を求める必要があり、前述したように車輪速センサから求めた加速度と3軸加速度センサから求めた車両進行方向の加速度を自車速で切替える方法が有効であるが、その切替を段階的に行うために、3軸加速度センサ値影響度比率701は、自車速が高くなると下がり、逆に車輪速センサ由来加速度の影響度比率702は自車速が高くなると上がるようにする。尚、自車速が、車輪速センサ由来加速度の限界速度703以下の場合、車輪速センサは信用度が低いので3軸加速度センサ由来加速度比率を1とする。逆に自車速が3軸加速度センサ由来加速度の限界速度704より大きい時は、車輪速由来加速度比率を1とする。この時、車輪速センサ由来加速度の影響度比率702と3軸加速度センサ値影響度比率701の関係は、
3軸加速度センサ値影響度比率701
=1−車輪速センサ由来加速度の影響度比率702
とする。つまり、3軸加速度センサから求めた進行方向の加速度(3軸加速度センサ由来加速度)と、車輪速センサから求めた加速度(車輪速センサ由来加速度)と、を見ながら、予め定めた係数を重み付けし、図7に示すように3軸加速度センサ値影響度比率701と車輪速センサ由来加速度の影響度比率702がクロスさせるようにすることで、その切替を段階的に行うことができる。このようにすることにより、使用する現在加速度の切替時にそれぞれの加速度に差がある場合の改善にも利用できる。
In determining the final target acceleration, it is necessary to obtain the current acceleration of the host vehicle. As described above, there is a method of switching between the acceleration obtained from the wheel speed sensor and the acceleration in the vehicle traveling direction obtained from the three-axis acceleration sensor by the own vehicle speed. Although effective, in order to perform the switching stepwise, the triaxial acceleration sensor value influence ratio 701 decreases when the own vehicle speed increases, and conversely, the influence ratio 702 of the acceleration derived from the wheel speed sensor increases the own vehicle speed. I will go up. When the vehicle speed is equal to or less than the limit speed 703 of the acceleration derived from the wheel speed sensor, the reliability of the wheel speed sensor is set to 1 because the reliability of the wheel speed sensor is low. Conversely, when the vehicle speed is larger than the limit speed 704 of the acceleration derived from the triaxial acceleration sensor, the wheel speed derived acceleration ratio is set to 1. At this time, the relationship between the wheel speed sensor-derived acceleration influence ratio 702 and the triaxial acceleration sensor value influence ratio 701 is:
3-axis acceleration sensor value influence ratio 701
= 1-Influence ratio 702 of acceleration derived from wheel speed sensor
And That is, a predetermined coefficient is weighted while looking at the acceleration in the traveling direction obtained from the triaxial acceleration sensor (acceleration derived from the triaxial acceleration sensor) and the acceleration obtained from the wheel speed sensor (acceleration derived from the wheel speed sensor). As shown in FIG. 7, when the triaxial acceleration sensor value influence ratio 701 and the influence ratio 702 of the acceleration derived from the wheel speed sensor are crossed, the switching can be performed step by step. By doing in this way, it can utilize also for improvement when there is a difference in each acceleration at the time of switching of the present acceleration to be used.

図8は、本発明の一実施例である。   FIG. 8 shows an embodiment of the present invention.

坂道に車両105が停車している。車両は自車両進行方向801の矢印が指す方向に発車しようとしている。この時、停車しているので車輪速センサ110は、動作していないので加速度は検出できない。しかし、坂道であるため、停車時の車両進行方向加速度802の加速度がかかっている状態であるのでこのままでは、自動運転では発車できずに後退してしまう。   The vehicle 105 is stopped on a slope. The vehicle is about to depart in the direction indicated by the arrow in the own vehicle traveling direction 801. At this time, since the vehicle is stopped, the wheel speed sensor 110 is not operating, and hence the acceleration cannot be detected. However, since it is a slope, it is in a state where the acceleration of the vehicle traveling direction acceleration 802 at the time of stopping is applied, so in this state, the vehicle is not able to depart in automatic driving and moves backward.

そこで、停車時には、3軸加速度センサ111から停車時の車両進行方向加速度802を求め、これを用いて最終目標加速度を求めることにする。   Therefore, when the vehicle stops, the vehicle traveling direction acceleration 802 at the time of stopping is obtained from the triaxial acceleration sensor 111, and the final target acceleration is obtained using this.

図9は、図8の制御のフロー図の一実施例である。   FIG. 9 is an example of the control flow diagram of FIG.

302で車間距離検知装置106の車間距離測定値を取り込み、303で車輪速センサ110から求めた自車速を取り込み、304で目標車間距離を算出する。901でプログラムが始めて実行されたか否かを監視する初期化完了フラグが0(未初期化)の場合は、903で初期化完了フラグを1にし、306で3軸加速度センサ111から求めた進行方向の加速度203を現在加速度204として取り込み、901で初期化完了フラグが1(初期化済み)の場合、且つ902で停車中ではない場合は、307で自車速から算出した加速度を現在加速度204とし、308で最終目標加速度を決定する。この後、加速であれば、エンジン制御装置102にトルク指令を出し、減速であれば、ブレーキ制御装置104に液圧指令を出す。これにより、坂道に停車した状態でも制御可能となり、適切なトルク値をエンジン制御装置102に送信することができるので乗り心地改善とともに燃費向上に貢献できる。   The inter-vehicle distance measurement value of the inter-vehicle distance detection device 106 is captured at 302, the host vehicle speed obtained from the wheel speed sensor 110 is captured at 303, and the target inter-vehicle distance is calculated at 304. If the initialization completion flag for monitoring whether the program is executed for the first time in 901 is 0 (uninitialized), the initialization completion flag is set to 1 in 903, and the traveling direction obtained from the triaxial acceleration sensor 111 in 306 If the initialization completion flag is 1 (initialized) in 901, and if the vehicle is not stopped in 902, the acceleration calculated from the vehicle speed in 307 is set as the current acceleration 204. At 308, the final target acceleration is determined. Thereafter, if acceleration, a torque command is issued to the engine control device 102, and if deceleration, a hydraulic pressure command is issued to the brake control device 104. As a result, control is possible even when the vehicle is stopped on a hill, and an appropriate torque value can be transmitted to the engine control device 102, so that it is possible to contribute to improving riding comfort and improving fuel efficiency.

図10は、本発明の制御ブロック図の一実施例である。   FIG. 10 is an example of a control block diagram of the present invention.

走行制御装置101は、車間距離検出装置106から先行車車間距離情報を取得し、車輪速検出装置である車論速センサ110から車輪速情報を取得する。取得した先行車車間距離情報と車輪速情報から目標車間算出処理1001で目標車間距離を算出し、目標車速算出処理1002で目標車速を算出し、目標加速度算出処理1003で目標加速度を算出する。この時、車輪速センサからの加速度算出処理1004で自車速から車両の現在加速度を計算し、使用する加速度の選択処理1006で現在加速度を決定し、最終目標加速度を遅延処理1009で遅延させたものと差分をとり、目標加速度と足し合わせるフィードバック制御により最終目標加速度を算出する。求めた最終目標加速度は、加減速に合わせ、エンジントルク算出処理1007でエンジントルクに変換され、ブレーキ液圧算出処理1008でブレーキ液圧に変換され、それぞれ、エンジン制御装置102、ブレーキ制御装置104に伝えられ、車両の走行制御がされている。この時、使用する加速度の選択処理1006において、自車速が一定速未満の時は、3軸加速度センサ111の出力から3軸加速度センサからの車両進行方向の加速度算出処理1005で算出した進行方向の加速度を、車輪速センサからの加速度算出処理1004で算出した加速度の代わりに車両の現在加速度として使用する。   The travel control apparatus 101 acquires preceding vehicle inter-vehicle distance information from the inter-vehicle distance detection device 106, and acquires wheel speed information from a vehicle speed sensor 110 that is a wheel speed detection device. A target inter-vehicle distance calculation process 1001 calculates a target inter-vehicle distance from the acquired preceding inter-vehicle distance information and wheel speed information, a target vehicle speed calculation process 1002 calculates a target vehicle speed, and a target acceleration calculation process 1003 calculates a target acceleration. At this time, the current acceleration of the vehicle is calculated from the vehicle speed by the acceleration calculation processing 1004 from the wheel speed sensor, the current acceleration is determined by the selection processing 1006 of the acceleration to be used, and the final target acceleration is delayed by the delay processing 1009 And the final target acceleration is calculated by feedback control adding the target acceleration. The obtained final target acceleration is converted into engine torque in an engine torque calculation process 1007 in accordance with acceleration / deceleration, and is converted into brake hydraulic pressure in a brake hydraulic pressure calculation process 1008, which is sent to the engine control apparatus 102 and the brake control apparatus 104, respectively. It is reported that the vehicle is being controlled. At this time, in the acceleration selection process 1006 to be used, when the host vehicle speed is less than a fixed speed, the traveling direction calculated by the acceleration calculation process 1005 of the vehicle traveling direction from the triaxial acceleration sensor from the output of the triaxial acceleration sensor 111 is calculated. The acceleration is used as the current acceleration of the vehicle instead of the acceleration calculated in the acceleration calculation processing 1004 from the wheel speed sensor.

図11は、本発明の制御ブロック図の一実施例である。   FIG. 11 is an example of a control block diagram of the present invention.

図10では、走行中又は、停止モード中の処理について説明したが、エンジン始動直後、または、発進時、特に坂道の発進時について図11で説明する。発信時、車輪速検出装置である車輪速センサ110は動作していない。このため、先行車が発進して、追従制御を継続する場合、走行制御装置101で算出した目標車間距離を基に、目標加速度算出処理1003で算出した目標加速度では坂道の勾配を考慮していないため、坂道を後退する可能性がある。そこで、3軸加速度センサ111から算出した現在加速度を目標加速度に加算することにより最終加速度を算出する。つまり、自車両の発進時には、3軸加速度センサ111から検出した車両の進行方向の加速度を用いて、目標加速度を決定する。   In FIG. 10, the processing during traveling or in the stop mode has been described. However, FIG. 11 illustrates immediately after the engine is started or when starting, particularly when starting on a slope. At the time of transmission, the wheel speed sensor 110 which is a wheel speed detection device is not operating. Therefore, when the preceding vehicle starts and continues the follow-up control, the slope of the slope is not considered in the target acceleration calculated in the target acceleration calculation processing 1003 based on the target inter-vehicle distance calculated by the travel control device 101. Therefore, there is a possibility of going backward on the slope. Therefore, the final acceleration is calculated by adding the current acceleration calculated from the three-axis acceleration sensor 111 to the target acceleration. That is, the target acceleration is determined using the acceleration in the traveling direction of the vehicle detected from the three-axis acceleration sensor 111 when the host vehicle starts.

図10、図11では、3軸加速度センサ111は走行制御装置101の中にあるように書かれているが、3軸加速度センサ111が走行制御装置101の外部にある場合や、別の制御装置に取り付けられ通信により加速度情報をもらっていても制御には関係無く本出願に含まれる。   10 and 11, the triaxial acceleration sensor 111 is written to be in the travel control device 101. However, when the triaxial acceleration sensor 111 is outside the travel control device 101, or another control device. Even if acceleration information is obtained by communication, it is included in the present application regardless of control.

101 走行制御装置
102 エンジン制御装置
103 変速機制御装置
104 ブレーキ制御装置
105 車両
106 車間距離検知装置
107 エンジン
108 変速機
109 ブレーキ
110 車輪速センサ
111 3軸加速度センサ
201 自車速
202 車輪速から求めた加速度
203 3軸加速度センサから求めた進行方向の加速度
204 現在加速度
205 加速度切替車速閾値
402 車輪速センサ由来加速度への復帰車速閾値
403 3軸加速度センサ値使用範囲
701 3軸加速度センサ値影響度比率
702 車輪速センサ由来加速度の影響度比率
703 車輪速センサ由来加速度の限界速度
704 3軸加速度センサ由来加速度の限界速度
801 自車両進行方向
802 停車時の車両進行方向加速度
1001 目標車間算出処理
1002 目標車速算出処理
1003 目標加速度算出処理
1004 車輪速センサからの加速度算出処理
1005 3軸加速度センサからの車両進行方向の加速度算出処理
1006 使用する加速度の選択処理
1007 エンジントルク算出処理
1008 ブレーキ液圧算出処理
1009 遅延処理
101 travel control device 102 engine control device 103 transmission control device 104 brake control device 105 vehicle 106 inter-vehicle distance detection device 107 engine 108 transmission 109 brake 110 wheel speed sensor 111 three-axis acceleration sensor 201 own vehicle speed 202 acceleration determined from wheel speed 203 Acceleration in traveling direction obtained from 3-axis acceleration sensor 204 Current acceleration 205 Acceleration switching vehicle speed threshold 402 Return speed to wheel speed sensor-derived acceleration 403 3-axis acceleration sensor value use range 701 3-axis acceleration sensor value influence ratio 702 Wheel Speed sensor-derived acceleration influence ratio 703 Wheel speed sensor-derived acceleration limit speed 704 Triaxial acceleration sensor-derived acceleration limit speed 801 Own vehicle traveling direction 802 Vehicle traveling direction acceleration when stopped 1001 Target inter-vehicle distance calculation processing 1002 Target vehicle speed calculation Acceleration calculation processing 1005 triaxial acceleration pressure calculation selection process 1007 engine torque calculation processing 1008 brake fluid acceleration acceleration calculation process 1006 used in the vehicle traveling direction from the sensor output processing 1009 delay processing from physical 1003 target acceleration calculation process 1004 a wheel speed sensor

Claims (7)

入力された自車両の前方を走行する先行車と自車両との車間距離情報と、入力された車輪速検出部で検出された自車速情報と、に基づいて、目標加速度を算出する目標加速度算出部と、
前記目標加速度算出部で算出した目標加速度に基づいて先行車両に追従するように制御する制御部と、を有し、
前記目標加速度算出部は、前記車輪速検出部で検出した自車速から算出した自車両の加速度と、3軸加速度検出部で検出された車両の進行方向の加速度と、に基づいて、前記目標加速度を決定する走行制御装置。
Target acceleration calculation that calculates target acceleration based on the inter-vehicle distance information between the preceding vehicle that travels ahead of the input host vehicle and the host vehicle and the input vehicle speed information detected by the input wheel speed detection unit And
A control unit that controls to follow the preceding vehicle based on the target acceleration calculated by the target acceleration calculation unit,
The target acceleration calculation unit is configured to calculate the target acceleration based on the acceleration of the host vehicle calculated from the host vehicle speed detected by the wheel speed detection unit and the acceleration in the traveling direction of the vehicle detected by the triaxial acceleration detection unit. The travel control device that determines the.
請求項1記載の走行制御装置において、
前記目標加速度算出部は、前記車輪速検出部で検出した自車速に基づいて、前記車輪速検出部で検出した自車速から算出した自車両の加速度と、前記3軸加速度検出部から算出した車両の進行方向の加速度と、を切り替えて、前記目標加速度を決定する走行制御装置。
The travel control device according to claim 1,
The target acceleration calculation unit is based on the host vehicle speed detected by the wheel speed detection unit, and the vehicle acceleration calculated from the host vehicle speed detected by the wheel speed detection unit and the vehicle calculated from the three-axis acceleration detection unit A traveling control device that determines the target acceleration by switching between accelerations in the traveling direction of the vehicle.
請求項2記載の走行制御装置において、
前記目標加速度算出部は、前記車輪速検出部で検出した自車速が、予め定めた速度以下の場合は、前記3軸加速度検出部から算出した車両の進行方向の加速度を用いて前記目標加速度を決定する走行制御装置。
The travel control device according to claim 2, wherein
The target acceleration calculation unit calculates the target acceleration using the acceleration in the traveling direction of the vehicle calculated from the triaxial acceleration detection unit when the own vehicle speed detected by the wheel speed detection unit is equal to or lower than a predetermined speed. The travel control device to determine.
請求項2又は3記載の走行制御装置において、
前記目標加速度算出部は、前記先行車が停止が検出され、又は、自車両が追従制御から停止制御にモードが切り替えられた場合、前記3軸加速度検出部から検出した車両の進行方向の加速度を用いて、前記目標加速度を決定する走行制御装置。
In the traveling control device according to claim 2 or 3,
When the preceding vehicle is detected to be stopped or when the host vehicle is switched from follow-up control to stop control, the target acceleration calculating unit calculates the acceleration in the vehicle traveling direction detected from the three-axis acceleration detecting unit. A travel controller that uses the target acceleration to determine.
請求項1記載の走行制御装置において、
前記制御部は、前記目標加速度算出部で算出した目標加速度に基づいて先行車両に追従するようにトルク指令又は液圧指令を生成し、出力する走行制御装置。
The travel control device according to claim 1,
The control unit is a travel control device that generates and outputs a torque command or a hydraulic pressure command so as to follow the preceding vehicle based on the target acceleration calculated by the target acceleration calculation unit.
請求項3記載の走行制御装置において、
前記目標加速度算出部は、検出された自車速が、前記速度以上に予め設定された第2の速度より大きい場合、前記車輪速検出部で検出した自車速から算出した自車両の加速度を用いて、前記目標加速度を決定する走行制御装置。
The travel control device according to claim 3, wherein
The target acceleration calculation unit uses the acceleration of the host vehicle calculated from the host vehicle speed detected by the wheel speed detection unit when the detected host vehicle speed is greater than a second speed preset in advance. A travel control device for determining the target acceleration.
請求項2又は3記載の走行制御装置において、
前記目標加速度算出部は、自車両の発進時には、前記3軸加速度検出部から検出した車両の進行方向の加速度を用いて、前記目標加速度を決定する走行制御装置。
In the traveling control device according to claim 2 or 3,
The target acceleration calculation unit is a travel control device that determines the target acceleration using the acceleration in the traveling direction of the vehicle detected from the three-axis acceleration detection unit when the host vehicle starts.
JP2011215910A 2011-09-30 2011-09-30 Travel control apparatus Abandoned JP2013075592A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011215910A JP2013075592A (en) 2011-09-30 2011-09-30 Travel control apparatus
PCT/JP2012/070474 WO2013046959A1 (en) 2011-09-30 2012-08-10 Travel control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215910A JP2013075592A (en) 2011-09-30 2011-09-30 Travel control apparatus

Publications (1)

Publication Number Publication Date
JP2013075592A true JP2013075592A (en) 2013-04-25

Family

ID=47995011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215910A Abandoned JP2013075592A (en) 2011-09-30 2011-09-30 Travel control apparatus

Country Status (2)

Country Link
JP (1) JP2013075592A (en)
WO (1) WO2013046959A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008044A (en) * 2015-06-03 2016-01-18 株式会社シマノ Bicycle control apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217504B2 (en) * 2014-04-18 2017-10-25 井関農機株式会社 Work information recording device
CN110217235B (en) * 2019-06-27 2020-07-24 浙江吉利控股集团有限公司 Control method and control system for vehicle starting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137651A (en) * 2000-11-02 2002-05-14 Daihatsu Motor Co Ltd Follow-up traveling device
JP2008094246A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Vehicular braking control device
JP2009040305A (en) * 2007-08-10 2009-02-26 Denso Corp Stop control device and system for vehicle
JP2010132032A (en) * 2008-12-02 2010-06-17 Denso Corp Running control apparatus and running control program
JP2011025720A (en) * 2009-07-21 2011-02-10 Denso Corp Acceleration control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137651A (en) * 2000-11-02 2002-05-14 Daihatsu Motor Co Ltd Follow-up traveling device
JP2008094246A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Vehicular braking control device
JP2009040305A (en) * 2007-08-10 2009-02-26 Denso Corp Stop control device and system for vehicle
JP2010132032A (en) * 2008-12-02 2010-06-17 Denso Corp Running control apparatus and running control program
JP2011025720A (en) * 2009-07-21 2011-02-10 Denso Corp Acceleration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008044A (en) * 2015-06-03 2016-01-18 株式会社シマノ Bicycle control apparatus

Also Published As

Publication number Publication date
WO2013046959A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP6252548B2 (en) Vehicle speed limiting device and vehicle speed control device
US9714034B2 (en) Vehicle control device
JP6353525B2 (en) Method for controlling the speed of a host vehicle and system for controlling the speed of a host vehicle
JP6319192B2 (en) Vehicle speed limiter
JP5938483B2 (en) Vehicle control device
CN105807764A (en) Autonomous driving vehicle system
JP2018195121A (en) Abnormality detection device
KR20150099454A (en) Vehicle-installed obstacle detection apparatus having function for judging motion condition of detected object
WO2016084501A1 (en) Predicted course estimation device and prediction course estimation method
JPWO2010073300A1 (en) Traveling route estimation device and traveling route estimation method used in the device
JP6436235B2 (en) Tracking control device and tracking control method
JP2010143323A (en) Inter-vehicle distance controller
JP5375677B2 (en) Driving support device, method and program
JP5298104B2 (en) Vehicle control device
JP2007168788A (en) Traveling controller for automobile
JP2017013678A (en) Operation support apparatus
JP6241297B2 (en) Active cruise control device
JP2006264571A (en) Following stop control unit and method of controlling following stop
US8676468B2 (en) Vehicle control device
JP2013075592A (en) Travel control apparatus
JP5458051B2 (en) Vehicle driving support device
WO2019008759A1 (en) Parking assistance method and parking assistance device
JP2008030677A (en) Vehicular deceleration control apparatus
JP2020027415A (en) Object recognition device
JP7198005B2 (en) Vehicle position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20131016