JP2013075382A - Method and apparatus for setting mold clamping force for injection molding machine - Google Patents

Method and apparatus for setting mold clamping force for injection molding machine Download PDF

Info

Publication number
JP2013075382A
JP2013075382A JP2011215504A JP2011215504A JP2013075382A JP 2013075382 A JP2013075382 A JP 2013075382A JP 2011215504 A JP2011215504 A JP 2011215504A JP 2011215504 A JP2011215504 A JP 2011215504A JP 2013075382 A JP2013075382 A JP 2013075382A
Authority
JP
Japan
Prior art keywords
clamping force
mold clamping
mold
maximum
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011215504A
Other languages
Japanese (ja)
Other versions
JP5180357B1 (en
Inventor
Masaya Tajika
雅也 田近
Nobuhito Takeda
信人 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2011215504A priority Critical patent/JP5180357B1/en
Priority to DE102012018749.1A priority patent/DE102012018749B4/en
Priority to CN201210369361.4A priority patent/CN103029276B/en
Application granted granted Critical
Publication of JP5180357B1 publication Critical patent/JP5180357B1/en
Publication of JP2013075382A publication Critical patent/JP2013075382A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7653Measuring, controlling or regulating mould clamping forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76013Force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76224Closure or clamping unit
    • B29C2945/76234Closure or clamping unit tie-bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76384Holding, dwelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76391Mould clamping, compression of the cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76862Holding, dwelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76869Mould clamping, compression of the cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76943Using stored or historical data sets compare with thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/64Mould opening, closing or clamping devices
    • B29C45/641Clamping devices using means for straddling or interconnecting the mould halves, e.g. jaws, straps, latches

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for setting a mold clamping force of an injection molding machine, configured to prevent burr while improving the quality by degassed molding or to prevent reduction in the service life of a mold by determining a necessary and minimum set mold clamping force for preventing the mold from being opened.SOLUTION: When a transition point from a state 2 (the section in which a mold clamping force maximum increment in injection is increased when a set mold clamping force is increased) to a state 3 (the section in which the mold clamping force maximum increment is increased larger than in the state 2) is detected, measurement is performed at two arbitrary points of the two sections to acquire measured mold clamping force maximum increment Amax and mold clamping maximum increment Bmax respectively, and linear approximate expression Fmax=a*Fs+b is determined. Since a set clamping force C in the state 2 satisfies mold clamping force maximum increment Cmax≤(A*C+b)+β, and a set mold clamping force D in the state 3 satisfies measured mold clamping force maximum increment Dmax>(a*D+b)+β. The transition to the state 3 can be determined accordingly, and a proper mold clamping force can be set on the basis of the set mold clamping force in the transition from the state 2 to the state 3.

Description

本発明は、射出成形機において、金型内に樹脂を射出する際に発生する樹脂圧力に応じてバリを発生させることがなく、かつ、金型の変形が生じない適正な型締力を求める型締力設定方法および型締力設定装置に関する。   The present invention seeks an appropriate mold clamping force that does not generate burrs in accordance with a resin pressure generated when a resin is injected into a mold and does not cause deformation of the mold in an injection molding machine. The present invention relates to a mold clamping force setting method and a mold clamping force setting device.

射出成型サイクルでは型閉じ工程によって金型を閉じ、さらに型締め工程によって設定の型締力を発生させた後、金型内に溶融樹脂を射出する。金型内に溶融樹脂を射出する際、溶融樹脂が発生する圧力に対して型締力が不足すると金型が開いてバリを発生させる恐れがある。一方、型締力が過大な場合にはバリの心配はないものの、ガス抜けが悪く品質が低下したり、必要以上の型締力が金型にかかり金型の寿命低下、エネルギー消費増大などの問題がある。そのため型締力は、射出する際に金型が開かない最小限の値にすることでバリの発生を防ぎ、かつ、ガス抜けが生じやすい状態や金型に必要以上の負担をかけないことを可能にするため、このような金型が開かない最小限の型締力を求め設定することが望ましい。型締力を設定する技術として、特許文献1には、型締力を徐々に変化させ、検出された型締力の変化に基づいて金型に加わるべき最小型締力を求める技術が開示されている。特許文献2には、射出圧力、投影面積、安全率などの係数から、最小型締力を求める技術が開示されている。   In the injection molding cycle, the mold is closed by a mold closing process, a set clamping force is generated by the mold clamping process, and then a molten resin is injected into the mold. When the molten resin is injected into the mold, if the mold clamping force is insufficient with respect to the pressure generated by the molten resin, the mold may open and cause burrs. On the other hand, if the mold clamping force is excessive, there is no worry about burrs, but the gas will not escape and the quality will deteriorate, and the mold clamping force will be applied to the mold more than necessary. There's a problem. Therefore, the mold clamping force should be set to the minimum value that does not open the mold when injecting to prevent the occurrence of burrs, and it should not cause an excessive load on the mold as it is prone to outgassing. In order to make this possible, it is desirable to find and set a minimum clamping force that does not open such a mold. As a technique for setting the mold clamping force, Patent Document 1 discloses a technique for gradually changing the mold clamping force and obtaining the minimum mold clamping force to be applied to the mold based on the detected change in the mold clamping force. ing. Patent Document 2 discloses a technique for obtaining a minimum mold clamping force from coefficients such as injection pressure, projected area, and safety factor.

特開2008−6651号公報JP 2008-6651 A 特開平8−252849号公報JP-A-8-252849

従来技術で説明した特許文献1に開示された技術では、型締力の変化が大きいかどうかの許容値(許容できる型開量から求められた値)になるまで試行錯誤する必要があり、適切な型締力を効率的に求めることができないという問題がある。また、特許文献2に開示された技術では、投影面積、安全率等の係数を求める必要がある。投影面積を、金型図面を分析して求めなくてはならない煩雑さがあり、また、安全率は一般に経験値であるから正確な値を求めることは極めて難しい。よって、特許文献2の技術では正確な最小型締力を求めることは困難である。
そこで本発明の目的は、金型が開かない必要最小限の設定型締力を求めることで、金型が開くことにより生じるバリを防ぐことができ、また、ガス抜けが生じやすい状態で成形することによる品質の向上や、金型に必要以上の負担をかけず金型の寿命を不必要に短くしない射出成形機の型締力設定方法および型締力設定装置を提供することである。
In the technique disclosed in Patent Document 1 described in the prior art, it is necessary to perform trial and error until an allowable value (a value obtained from an allowable mold opening amount) is reached as to whether the change in the mold clamping force is large. There is a problem that it is impossible to efficiently obtain a proper mold clamping force. In the technique disclosed in Patent Document 2, it is necessary to obtain coefficients such as a projected area and a safety factor. The projection area must be obtained by analyzing the mold drawing, and the safety factor is generally an empirical value, so it is extremely difficult to obtain an accurate value. Therefore, it is difficult to obtain an accurate minimum clamping force with the technique of Patent Document 2.
Therefore, an object of the present invention is to obtain a minimum setting clamping force that does not open the mold, thereby preventing burrs caused by opening the mold and molding in a state in which gas is likely to escape. It is an object of the present invention to provide a mold clamping force setting method and a mold clamping force setting device for an injection molding machine that do not impose an unnecessary burden on the mold and do not unnecessarily shorten the mold life.

本願の請求項1に係る発明は、設定型締力に基づいて型締機構によって金型を閉じて型締力を発生させ、射出機構によって前記金型内に溶融樹脂を射出する射出成型機において、任意の異なる大きさの設定型締力で射出を行い、前記金型が閉じた際に発生する型締力と、該金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値を検出し、該金型が閉じた際に発生する型締力と該射出中の型締力の最大値の差である型締力最大増加量を算出し、型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出し、前記抽出した2つ以上の設定型締力と前記型締力最大増加量の組み合わせから設定型締力に対する前記型締力最大増加量を示す関係式を求め、前記抽出した2つ以上の異なる設定型締力より小さい設定型締力で射出を行って前記型締力最大増加量を算出し、前記算出した型締力最大増加量が前記関係式に基づく比較値を超えた時点の設定型締力を求め、前記求めた設定型締力の直前の型締力を金型が開かない必要最小限の型締力として設定することを特徴とする射出成型機の型締力設定方法である。
請求項2に係る発明は、前記型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出することは、設定型締力の大きさを大きい値から小さい値へ変化させて射出を行った場合に、型締力最大増加量の変化量が第1の所定の値より小さい場合、変化させる前の設定型締力を除くことを含むことを特徴とする請求項1に記載の射出成形機の型締力設定方法である。
請求項3に係る発明は、前記型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出することは、前記型締力最大増加量が第2の所定の値より小さい場合の設定型締力を除くことを含むことを特徴とする請求項1に記載の射出成型機の型締力設定方法である。
請求項4に係る発明は、前記関係式は線形近似を適用して求めることを特徴とする請求項1〜3のいずれか一つに記載の射出成形機の型締力設定方法である。
請求項5に係る発明は、前記比較値に1つの項として用いる閾値はあらかじめ設定するか、または型締力測定値から自動で決定することを特徴とする請求項1〜4のいずれか一つに記載の射出成形機の型締力設定方法である。
The invention according to claim 1 of the present application is an injection molding machine in which a mold is closed by a mold clamping mechanism based on a set mold clamping force to generate a mold clamping force, and a molten resin is injected into the mold by an injection mechanism. Injecting with a set clamping force of any different size, clamping force generated when the mold is closed, and clamping during injection occurring when molten resin is injected into the mold The maximum value of the clamping force is detected by calculating the maximum increase in clamping force, which is the difference between the clamping force generated when the mold is closed and the clamping force during injection. Two or more set mold clamping forces that are different in increase amount and do not open the mold are extracted, and the combination of the two or more extracted set mold clamping forces and the maximum mold clamping force increase amount is used to set the mold clamping force. A relational expression indicating the maximum increase amount of the mold clamping force is obtained, and the set mold clamping is smaller than the two or more different set mold clamping forces extracted. The mold clamping force maximum increase amount is calculated by performing injection, and the set mold clamping force at the time when the calculated mold clamping force maximum increase amount exceeds the comparison value based on the relational expression is obtained. A mold clamping force setting method for an injection molding machine, characterized in that a mold clamping force immediately before a clamping force is set as a minimum mold clamping force that prevents a mold from opening.
In the invention according to claim 2, extracting two or more set mold clamping forces that are different in the maximum increase amount of the mold clamping force and do not open the mold reduces the magnitude of the set mold clamping force from a large value. When the injection is performed while changing to a value, if the change amount of the maximum increase amount of the mold clamping force is smaller than the first predetermined value, the setting mold clamping force before the change is removed. A mold clamping force setting method for an injection molding machine according to claim 1.
The invention according to claim 3 is that the maximum amount of mold clamping force increase is different, and two or more set mold clamping forces that do not open the mold are extracted. 2. The mold clamping force setting method for an injection molding machine according to claim 1, further comprising removing a set mold clamping force when the value is smaller than the value of.
The invention according to claim 4 is the mold clamping force setting method for an injection molding machine according to any one of claims 1 to 3, wherein the relational expression is obtained by applying linear approximation.
The invention according to claim 5 is characterized in that a threshold used as one term for the comparison value is set in advance or is automatically determined from a measured value of the clamping force. The mold clamping force setting method of the injection molding machine described in 1.

請求項6に係る発明は、前記任意の異なる2つ以上の大きさの設定型締力で射出を行う場合、最大射出圧と金型の投影面積から考えて十分に足りている設定型締力で射出を開始し、該設定型締力を下げながら各射出中の型締力最大増加量を算出することを特徴とする請求項1〜5のいずれか一つに記載の射出成型機の型締力設定方法である。
請求項7に係る発明は、前記型締力最大増加量の変化が異なり、かつ、金型が開かない設定型締力は、射出を行い型締力最大増加量を算出し、該型締力最大増加量に変化が生じる設定型締力において、成形品が良品と判断できる場合の設定型締力であることを特徴とする請求項1〜6のいずれか一つに記載の射出成型機の型締力設定方法である。
請求項8に係る発明は、前記必要最小限の型締力はあらかじめ設定したマージン分だけ補正を行うことを特徴とする請求項1〜7のいずれか一つに記載の射出成形機の型締力設定方法である。
請求項9に係る発明は、設定型締力に基づいて金型を閉じて型締力を発生させる型締部と、前記金型内に溶融樹脂を射出する射出部と、任意の設定型締力で射出を行い、前記金型が閉じた際に発生する型締力および前記金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値を検出する検出部と、前記金型が閉じた際に発生する型締力と前記金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値の差から型締力最大増加量を求める型締力増加量算出部と、前記金型が閉じた際に発生する型締力と前記型締力最大増加量を対応させて記憶する記憶部と、前記型締力最大増加量の算出を少なくとも2つ以上の異なる大きさの設定型締力で行い、型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出する抽出部と、前記抽出された前記金型が閉じた際に発生する型締力と前記型締力最大増加量の組み合わせから設定型締力に対する型締力最大増加量を示す関係式を求める関係式算出部と、前記2つ以上の異なる設定型締力より小さい設定型締力で射出を行い、前記型締力最大増加量を算出し、該型締力最大増加量が前記関係式に基づく比較値を超える設定型締力を求める型締力検出部と、を備え、前記型締力検出部により検出された型締力の直前の設定型締力を金型が開かない必要最小限の型締力として設定することを特徴とする射出成形機の型締力設定装置である。
請求項10に係る発明は、前記抽出部は、設定型締力の大きさを大きい値から小さい値へ変化させて射出を行った場合に、型締力最大増加量の変化量が第1の所定の値より小さい場合、変化させる前の設定型締力を除くことを含むことを特徴とする請求項9に記載の射出成形機の型締力設定装置である。
請求項11に係る発明は、前記抽出部は、前記型締力最大増加量が第2の所定の値より小さい場合の設定型締力を除くことを含むことを特徴とする請求項9に記載の射出成型機の型締力設定装置である。
In the invention according to claim 6, in the case of performing injection with the set mold clamping forces of any two or more different sizes, the set mold clamping force that is sufficient in consideration of the maximum injection pressure and the projected area of the mold The mold of the injection molding machine according to any one of claims 1 to 5, wherein an injection is started at a step, and a maximum increase in mold clamping force during each injection is calculated while lowering the set mold clamping force. This is a tightening force setting method.
In the invention according to claim 7, the set clamping force at which the change in the maximum increase amount of the mold clamping force is different and the mold does not open is calculated by performing injection and calculating the maximum increase amount of the clamping force. 7. The injection mold machine according to claim 1, wherein the set mold clamping force causes a change in the maximum increase amount, and is a set mold clamping force when the molded product can be determined to be a non-defective product. This is a mold clamping force setting method.
The invention according to claim 8 is characterized in that the necessary minimum mold clamping force is corrected by a preset margin. Clamping of an injection molding machine according to any one of claims 1 to 7 Force setting method.
The invention according to claim 9 includes a mold clamping unit that closes a mold based on a set mold clamping force to generate a mold clamping force, an injection unit that injects molten resin into the mold, and an arbitrary set mold clamping. A detection unit that performs injection with force and detects a maximum value of a mold clamping force that is generated when the mold is closed and a mold clamping force that is generated when the molten resin is injected into the mold; A mold clamping for obtaining a maximum increase in mold clamping force from a difference between a mold clamping force generated when the mold is closed and a maximum value of mold clamping force generated during injection of molten resin into the mold. A force increase calculation unit; a storage unit for storing the mold clamping force generated when the mold is closed and the mold clamping force maximum increase in correspondence; and at least two calculations of the mold clamping force maximum increase. Performed with two or more different setting mold clamping forces, and extracted two or more set clamping forces that differ in the maximum increase in mold clamping force and do not open the mold. And a relational expression indicating a maximum increase amount of the clamping force with respect to the set clamping force from a combination of the clamping force generated when the extracted mold is closed and the maximum increase amount of the clamping force. Injection is performed with a relational expression calculation unit and a set mold clamping force smaller than the two or more different set mold clamping forces, the mold clamping force maximum increase amount is calculated, and the mold clamping force maximum increase amount is expressed in the relational expression A mold clamping force detection unit that obtains a set mold clamping force that exceeds a comparison value based on the minimum, and the minimum required to prevent the mold from opening the set mold clamping force immediately before the mold clamping force detected by the mold clamping force detection unit. A mold clamping force setting device for an injection molding machine, characterized in that the mold clamping force is set as a mold clamping force.
According to a tenth aspect of the present invention, when the extraction unit performs injection while changing the magnitude of the set mold clamping force from a large value to a small value, the amount of change in the mold clamping force maximum increase amount is the first amount. 10. The mold clamping force setting device for an injection molding machine according to claim 9, further comprising removing a set mold clamping force before being changed when it is smaller than a predetermined value.
The invention according to claim 11 is characterized in that the extraction unit includes removing a set mold clamping force when the maximum amount of mold clamping force increase is smaller than a second predetermined value. This is a mold clamping force setting device for an injection molding machine.

請求項12に係る発明は、前記関係式は線形近似を適用して求めることを特徴とする請求項9〜11のいずれか一つに記載の射出成型機の型締力設定装置である。
請求項13に係る発明は、前記比較値に1つの項として用いる閾値はあらかじめ設定するか、または型締力測定値から自動で決定されることを特徴とする請求項9〜12のいずれか一つに記載の射出成形機の型締力設定装置である。
請求項14に係る発明は、前記任意の異なる2つ以上の大きさの設定型締力で射出を行う場合、最大射出圧と金型の投影面積から考えて十分に足りている設定型締力で射出を開始し、該設定型締力を下げながら各射出中の型締力最大増加量を算出することを特徴とする請求項9〜13のいずれか一つに記載の射出成型機の型締力設定装置である。
請求項15に係る発明は、前記型締力最大増加量の変化が異なり、かつ、金型が開かない設定型締力を求める手段は、射出を行い型締力最大増加量を算出し、該型締力最大増加量に変化が生じる設定型締力において、成形品が良品と判断できる場合の設定型締力を選択する手段であることを特徴とする請求項9〜14のいずれか一つに記載の射出成型機の型締力設定装置である。
請求項16に係る発明は、前記必要最小限の型締力はあらかじめ設定したマージン分だけ補正を行うことを特徴とする請求項9〜15のいずれか一つに記載の射出成形機の型締力設定装置である。
The invention according to claim 12 is the mold clamping force setting device for an injection molding machine according to any one of claims 9 to 11, wherein the relational expression is obtained by applying linear approximation.
The invention according to claim 13 is characterized in that a threshold used as one term for the comparison value is set in advance or is automatically determined from a measured value of the clamping force. The mold clamping force setting device of the injection molding machine described in 1.
In the invention according to claim 14, in the case of performing injection with the set mold clamping forces of any two or more different sizes, the set mold clamping force that is sufficient in consideration of the maximum injection pressure and the projected area of the mold The mold of the injection molding machine according to any one of claims 9 to 13, wherein the injection is started at, and the maximum increase amount of the clamping force during each injection is calculated while lowering the set clamping force. It is a tightening force setting device.
According to a fifteenth aspect of the present invention, the means for obtaining a set mold clamping force at which the change in the mold clamping force maximum increase amount is different and the mold does not open calculates the mold clamping force maximum increase amount by performing injection, 15. The setting mold clamping force that causes a change in the maximum amount of mold clamping force, and is a means for selecting a set mold clamping force when the molded product can be determined to be a non-defective product. A mold clamping force setting device for an injection molding machine according to the above.
The invention according to claim 16 is characterized in that the necessary minimum mold clamping force is corrected by a preset margin. Clamping of an injection molding machine according to any one of claims 9 to 15 It is a force setting device.

本発明により、金型が開かない必要最小限の設定型締力を求めることで、金型が開くことにより生じるバリを防ぐことができ、また、ガス抜けが生じやすい状態で成形することによる品質の向上や、金型に必要以上の負担をかけず金型の寿命を不必要に短くしない射出成形機の型締力設定方法および型締力設定装置を提供できる。   According to the present invention, it is possible to prevent burrs caused by opening the mold by obtaining the minimum required setting clamping force that does not open the mold, and quality by molding in a state in which gas is likely to escape. It is possible to provide a mold clamping force setting method and a mold clamping force setting apparatus for an injection molding machine that do not impose an unnecessary burden on the mold and unnecessarily shorten the mold life.

設定型締力と射出時の型締力最大増加量の関係を示すグラフである。It is a graph which shows the relationship between the setting mold clamping force and the mold clamping force maximum increase amount at the time of injection. 型締力の時間変化を示すグラフである。It is a graph which shows the time change of mold clamping force. 設定型締力と射出時の金型状態を説明する図である。It is a figure explaining the setting mold clamping force and the mold state at the time of injection. 型締力最大増加量の変化量判定方法を説明するグラフである。It is a graph explaining the variation | change_quantity determination method of mold clamping force maximum increase amount. 射出成形機の概略ブロック図である。It is a schematic block diagram of an injection molding machine. 線形近似式を用い適正な型締力を求める処理のアルゴリズムを示すフローチャートである(その1)。It is a flowchart which shows the algorithm of the process which calculates | requires appropriate clamping force using a linear approximation formula (the 1). 線形近似式を用い適正な型締力を求める処理のアルゴリズムを示すフローチャートである(その2)。It is a flowchart which shows the algorithm of the process which calculates | requires appropriate clamping force using a linear approximation formula (the 2). 線形近似式の交点を基に適正な型締力を求めることを説明するグラフである。It is a graph explaining calculating | requiring an appropriate clamping force based on the intersection of a linear approximation formula. 線形近似式の交点を基に適正な型締力を算出する処理のアルゴリズムを示すフローチャートである(その1)。It is a flowchart which shows the algorithm of the process which calculates appropriate mold clamping force based on the intersection of a linear approximation formula (the 1). 線形近似式の交点を基に適正な型締力を算出する処理のアルゴリズムを示すフローチャートである(その2)。It is a flowchart which shows the algorithm of the process which calculates appropriate mold clamping force based on the intersection of a linear approximation formula (the 2). 線形近似式の交点を基に適正な型締力を算出する処理のアルゴリズムを示すフローチャートである(その3)。It is a flowchart which shows the algorithm of the process which calculates appropriate mold clamping force based on the intersection of a linear approximation formula (the 3).

以下、本発明の実施形態を図面と共に説明する。
溶融樹脂が発生する圧力に対して型締力が不足すると金型が開いてバリが発生することとなる。最大射出圧と金型の投影面積を参考に考えられる十分に足りている型締力から金型が開く状態まで型締力を下げたときの設定型締力と射出時の射出圧力に負けて金型が開いたときの型開き量を表す型締力最大増加量の関係を図1に示す。ここで型締力最大増加量とは図2に示すように設定型締力と射出中の型締力(検出値)の最大値との差を意味する。この関係を分析すると以下の3つの状態に分けて考えることができる。それぞれの状態における射出時の金型状態を図3に示す。金型の型厚はLとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
If the clamping force is insufficient with respect to the pressure at which the molten resin is generated, the mold opens and burrs are generated. Defeat the set clamping force and injection pressure at the time of injection when the clamping force is lowered from the sufficient clamping force that can be considered with reference to the maximum injection pressure and the projected area of the die to the state where the die opens. FIG. 1 shows the relationship between the maximum amount of increase in mold clamping force that represents the amount of mold opening when the mold is opened. Here, the maximum increase in mold clamping force means the difference between the set mold clamping force and the maximum value of mold clamping force (detected value) during injection, as shown in FIG. If this relationship is analyzed, it can be divided into the following three states. The state of the mold at the time of injection in each state is shown in FIG. The mold thickness is L.

状態1:設定型締力を下げても射出時の型締力最大増加量が変化しない区間。この区間では、射出圧に対して型締力が十分に足りているため金型は押し縮められるようにひずみを生じる。理想的には射出時の型締力最大増加量に変化は生じない。型締力によって金型がひずみ量δ1だけ圧縮されて型厚はL−δ1となり、プラテン間(可動プラテンと固定プラテンの間)の距離もL−δ1となる。
状態2:設定型締力を下げると射出時の型締力最大増加量が増加する区間。この区間では、状態1よりも型締力が下がることにより射出圧に負けて金型が開こうとするため、状態1で生じていた金型のひずみは徐々に解放される。そのため射出時にひずみが解放された分だけ射出時の型締力最大増加量が増えて行く。ひずみが少し解放され、金型の圧縮はδ1より小さいひずみ量δ2となる。そのため、型厚はL−δ2(0<δ2<δ1)となりプラテン間の距離もL−δ2(0<δ2<δ1)となる。
状態3:設定型締力を下げると射出時の型締力最大増加量が状態2よりも大きく増加する区間。この区間では状態1,2で生じていた金型のひずみが射出時に完全に解放されるため型厚はLとなり、加えて型開き量δ3が起きるためプラテン間の距離はL+δ3となる。
State 1: A section in which the maximum increase amount of the mold clamping force at the time of injection does not change even if the set mold clamping force is lowered. In this section, since the mold clamping force is sufficient with respect to the injection pressure, the mold is distorted so as to be compressed. Ideally, there is no change in the maximum increase in mold clamping force during injection. The mold is compressed by the strain amount δ1 by the mold clamping force, the mold thickness becomes L−δ1, and the distance between the platens (between the movable platen and the fixed platen) also becomes L−δ1.
State 2: A section in which the maximum amount of mold clamping force increase during injection increases when the set mold clamping force is lowered. In this section, the mold clamping force is lower than that in state 1 so that the mold is opened against the injection pressure, so that the mold distortion generated in state 1 is gradually released. Therefore, the maximum increase in mold clamping force at the time of injection is increased by the amount that the strain is released at the time of injection. A little strain is released, and the compression of the mold becomes a strain amount δ2 smaller than δ1. Therefore, the mold thickness is L−δ2 (0 <δ2 <δ1), and the distance between the platens is also L−δ2 (0 <δ2 <δ1).
State 3: A section in which the maximum increase amount of the mold clamping force at the time of injection increases more than in the state 2 when the set mold clamping force is lowered. In this section, since the mold strain generated in states 1 and 2 is completely released at the time of injection, the mold thickness is L, and in addition, the mold opening amount δ3 occurs, so the distance between the platens is L + δ3.

なお、上記の射出とはスクリュを動作させて金型内のキャビティ空間に溶融樹脂を充填させる全ての工程を指しており、保圧工程と呼ばれ溶融樹脂に圧力を加えて金型内のキャビティ空間に溶融樹脂を完全に充填する工程も含む。   The above injection refers to all processes in which the screw is operated to fill the cavity space in the mold with the molten resin. This is called a pressure holding process, and pressure is applied to the molten resin to create a cavity in the mold. It also includes a step of completely filling the space with the molten resin.

図4は、型締力の最大増加量の変化量判定方法を説明する図であり、図4には型締力最大増加量の変化量が状態2から状態3に移行する点を判別する方法を説明するグラフが図示されている。横軸は設定型締力(Fs)、縦軸は射出中の型締力最大増加量(Fmax)である。状態2と状態3の移行点を検出するために、まず状態2の変化を線形近似式で求める。そのために、図3にあるように、金型のひずみの解放が生じて型締力最大増加量に変化が生じる状態2区間の任意の2点での測定を行い、設定型締力Aに対して測定された型締力最大増加量Amax、と設定型締力B対して測定された型締力最大増加量Bmaxを取得する。このとき型締力最大増加量AmaxとBmaxが等しい場合は、その点が状態1区間であるため設定型締力を下げて図3に示すようなAmax<Bmaxとなる点で再度測定を行う。   FIG. 4 is a diagram for explaining a method of determining the amount of change in the maximum increase amount of the mold clamping force. FIG. A graph illustrating the above is shown. The horizontal axis is the set mold clamping force (Fs), and the vertical axis is the maximum amount of mold clamping force increase (Fmax) during injection. In order to detect the transition point between the state 2 and the state 3, first, the change in the state 2 is obtained by a linear approximation formula. Therefore, as shown in FIG. 3, measurement is performed at any two points in two sections in a state where the mold strain is released and the maximum amount of increase in the mold clamping force is changed. The mold clamping force maximum increase amount Amax measured in this way and the mold clamping force maximum increase amount Bmax measured with respect to the set mold clamping force B are acquired. At this time, if the mold clamping force maximum increase amount Amax is equal to Bmax, since this point is the state 1 section, the set mold clamping force is lowered and measurement is performed again at a point where Amax <Bmax as shown in FIG.

そしてこの測定値AmaxとBmaxの値をもとに状態2の型締力最大増加量を示す線形近似式Fmax=a*Fs+bを算出できる。この線形近似式Fmax=a*Fs+bが状態2における金型のひずみの解放による型締力の増加を表すため、状態2区間にある設定型締力Cに対して測定された型締力最大増加量Cmaxは、Cmax≦(a*C+b)+βを満たす値となる。このときβは、測定誤差やバラツキを考慮した閾値とし、任意の同じ設定型締力で数回射出をして型締力最大増加量の検出を行い、検出値の最大値と最小値の差を閾値とすることができる。なお、閾値の求め方はこの方法に限ったものではない。   Based on the measured values Amax and Bmax, a linear approximate expression Fmax = a * Fs + b indicating the maximum amount of mold clamping force increase in state 2 can be calculated. Since this linear approximation Fmax = a * Fs + b represents an increase in mold clamping force due to release of mold strain in state 2, the maximum increase in mold clamping force measured with respect to the set mold clamping force C in the state 2 section The amount Cmax is a value that satisfies Cmax ≦ (a * C + b) + β. At this time, β is a threshold value that takes into account measurement errors and variations, performs injection several times with the same set clamping force, detects the maximum increase in clamping force, and detects the difference between the maximum and minimum detection values. Can be used as a threshold value. The method for obtaining the threshold value is not limited to this method.

次に、状態3は金型のひずみの解放が終わり金型が開く状態にあるから型締力の増加量が大きく変化する。このため、状態3区間にある設定型締力Dに対して測定された型締力最大増加量Dmaxは、Dmax>(a*D+b)+βとなる。つまり状態2から状態3への移行点の判別方法は、状態2区間における任意の2点の型締力最大増加量から線形近似式Fmax=a*Fs+bを求め、設定型締力Xを下げていく過程で計測された型締力最大増加量Xmaxが、Xmax>(a*X+b)+βとなった場合に状態3への移行点として判別する。そして、その移行点の手前の点の設定型締力を金型が開かない最低型締力として検出する。なお、わずかなバリも許されない場合にはマージン分として検出された最低型締力を状態2区間の区間内で補正してもよい。また、状態2から状態3への移行を1つの設定型締力によらず連続した2つの異なる設定型締力によってもよい。この場合、連続してXmax>(a*X+b)+βとなった場合に、状態2から状態3へ移行したと判断する。   Next, since the state 3 is in a state where the mold is released and the mold is opened, the amount of increase in the mold clamping force is greatly changed. For this reason, the mold clamping force maximum increase amount Dmax measured with respect to the set mold clamping force D in the state 3 section is Dmax> (a * D + b) + β. In other words, the transition point from state 2 to state 3 is determined by obtaining the linear approximation formula Fmax = a * Fs + b from the maximum amount of mold clamping force increase at any two points in the state 2 section, and lowering the set mold clamping force X. When the maximum clamping force increase amount Xmax measured in the course of the process satisfies Xmax> (a * X + b) + β, it is determined as a transition point to the state 3. Then, the set clamping force at a point before the transition point is detected as the lowest clamping force at which the mold does not open. If a slight burr is not allowed, the minimum clamping force detected as a margin may be corrected within the state 2 section. Further, the transition from the state 2 to the state 3 may be performed by two different set mold clamping forces that are not dependent on one set mold clamping force. In this case, when Xmax> (a * X + b) + β is continuously satisfied, it is determined that the state 2 is shifted to the state 3.

金型のひずみの解放が生じる状態2の設定型締力は、最大射出圧と金型の投影面積を参考に考えられる十分に足りている状態1の型締力で射出を行い、型締力を下げながら各射出中の型締力最大増加量を算出し、型締力最大増加量の変化が生じる点から求めることができる。また、前記の状態1から状態2へ型締力を変化させて状態2の設定型締力を求める方法以外にも、任意の設定型締力で型締力最大増加量を算出し、型締力最大増加量に変化が生じる設定型締力において、オペレータやカメラの監視、良否判別機能によって成形品が良品と判断できる場合の型締力も状態2の設定型締力として求めることができる。   The mold clamping force in state 2 where mold strain is released is the mold clamping force in state 1, which is sufficient to consider the maximum injection pressure and the projected area of the mold. The maximum increase in mold clamping force during each injection can be calculated while lowering the value, and this can be obtained from the point where the maximum increase in mold clamping force occurs. In addition to the method of obtaining the set mold clamping force in state 2 by changing the mold clamping force from state 1 to state 2 above, the mold clamping force maximum increase amount is calculated with any set mold clamping force, and the mold clamping is calculated. In the setting mold clamping force that causes a change in the maximum force increase amount, the mold clamping force when the molded product can be determined to be a non-defective product by the operator and camera monitoring and the pass / fail judgment function can also be obtained as the set mold clamping force of state 2.

本発明の実施形態は、型締力検出装置を備えた射出成型機において、最大射出圧と金型の投影面積を参考に考えられる十分に足りている型締力から射出を試行して、型締力を下げながら各射出中の型締力最大増加量を計測することに対応できる。つまり状態1に該当する任意の型締力を設定することによって、型締力を下げながら各射出中の型締力最大増加量を計測することに対応できる。なお、本発明の実施形態は、少なくとも状態2において少なくとも異なる2つの型締力を設定し2つの型締力最大増加量を求め、状態3において少なくとも1つの型締力を設定し1つの型締力最大増加量を求める必要がある。   In an injection molding machine equipped with a mold clamping force detection device, an embodiment of the present invention attempts injection from a mold clamping force that is considered sufficient with reference to the maximum injection pressure and the projected area of the mold. It can cope with measuring the maximum increase in mold clamping force during each injection while lowering the clamping force. That is, by setting an arbitrary mold clamping force corresponding to the state 1, it is possible to cope with measuring the maximum amount of mold clamping force increase during each injection while lowering the mold clamping force. In the embodiment of the present invention, at least two different mold clamping forces are set in at least the state 2 to obtain two mold clamping force maximum increases, and at least one mold clamping force is set in the state 3 to obtain one mold clamping. It is necessary to find the maximum force increase.

前述したように型締力最大増加量とは設定型締力と射出中の型締力の最大値との差を意味する。金型の大きさや構造によって必ずしも設定型締力と金型に印加される実際の型締力が一致するとは限らないため、本発明の実施形態では型締め後であって射出前に検出される型締力と射出中に検出される型締力の最大値の差から正確な型締力最大増加量を測定してもよい。そして射出中の型締力最大増加量が状態2から状態3に移行する点(型締力最大増加量が大きく変化する点)を検出し、その直前の型締力を金型が開かない必要最小限の設定型締力として求めることができる。また、他の実施形態として状態2と状態3でそれぞれ線形近似式を求め、それらの線形近似式の交点を基に金型が開かない必要最小限の設定型締力として求めることができる。   As described above, the maximum increase in mold clamping force means the difference between the set mold clamping force and the maximum value of the mold clamping force during injection. Since the set mold clamping force and the actual mold clamping force applied to the mold do not always match depending on the size and structure of the mold, in the embodiment of the present invention, it is detected after mold clamping and before injection. The exact maximum increase in mold clamping force may be measured from the difference between the mold clamping force and the maximum value of the mold clamping force detected during injection. Then, it is necessary to detect the point at which the maximum increase in mold clamping force during injection shifts from state 2 to state 3 (the point at which the maximum increase in mold clamping force changes greatly), and the mold does not need to open the mold clamping force immediately before that. It can be determined as the minimum set clamping force. Further, as another embodiment, linear approximation expressions can be obtained in state 2 and state 3, respectively, and can be obtained as the minimum required set clamping force that prevents the mold from opening based on the intersection of these linear approximation expressions.

図5は、射出成形機の概略ブロック図である。図5に示される射出成形機は、本発明による型締力設定方法を用いて型締力を設定することのできる射出成形機として構成される。射出成形機Mは、機台上(図示省略)に型締部Mc、および射出部Miを備える。射出部Miは樹脂材料(ペレット)を加熱溶融し、当該溶融樹脂を金型40のキャビティ内に射出するものである。型締部Mcは主に金型40(40a,40b)の開閉を行うものである。   FIG. 5 is a schematic block diagram of the injection molding machine. The injection molding machine shown in FIG. 5 is configured as an injection molding machine capable of setting a mold clamping force using the mold clamping force setting method according to the present invention. The injection molding machine M includes a mold clamping part Mc and an injection part Mi on a machine base (not shown). The injection part Mi heats and melts a resin material (pellet), and injects the molten resin into the cavity of the mold 40. The mold clamping portion Mc mainly opens and closes the mold 40 (40a, 40b).

まず、射出部Miを説明する。射出シリンダ1の先端にはノズル2が取り付けられ、射出シリンダ1内には、スクリュ3が挿通されている。スクリュ3には、スクリュ3に掛る圧力により樹脂圧力を検出するロードセル等を用いた樹脂圧力センサ5が設けられている。樹脂圧力センサ出力信号は、A/D変換器16によりデジタル信号に変換されサーボCPU15に入力する。
スクリュ3は、スクリュ回転用サーボモータM2により、プーリ,ベルト等で構成された伝動機構6を介して回転させられる。また、スクリュ3は、スクリュ前後進用サーボモータM1によって、プーリ,ベルト,ボールねじ/ナット機構などの回転運動を直線運動に変換する機構を含む伝動機構7を介して駆動され、スクリュ3の軸方向に移動させられる。なお、符号P1はスクリュ前後進用サーボモータM1の位置,速度を検出することによって、スクリュ3の軸方向の位置,速度を検出する位置・速度検出器であり、符号P2はサーボモータM2の位置,速度を検出することによって、スクリュ3の軸周り回転位置,速度を検出する位置・速度検出器である。符号4は射出シリンダ1に樹脂を供給するホッパである。
First, the injection part Mi will be described. A nozzle 2 is attached to the tip of the injection cylinder 1, and a screw 3 is inserted into the injection cylinder 1. The screw 3 is provided with a resin pressure sensor 5 using a load cell or the like that detects the resin pressure by the pressure applied to the screw 3. The resin pressure sensor output signal is converted into a digital signal by the A / D converter 16 and input to the servo CPU 15.
The screw 3 is rotated by a screw rotating servo motor M2 via a transmission mechanism 6 composed of a pulley, a belt and the like. Further, the screw 3 is driven by a screw servo motor M1 through a transmission mechanism 7 including a mechanism for converting a rotational motion such as a pulley, a belt, and a ball screw / nut mechanism into a linear motion. Moved in the direction. Reference numeral P1 is a position / speed detector that detects the position and speed of the screw 3 in the axial direction by detecting the position and speed of the servo motor M1 for moving forward and backward, and reference numeral P2 is the position of the servo motor M2. The position / speed detector detects the rotational position and speed around the axis of the screw 3 by detecting the speed. Reference numeral 4 denotes a hopper that supplies resin to the injection cylinder 1.

次に、型締部Mcを説明する。型締部Mcは、可動プラテン30を前後進させる可動プラテン前後進サーボモータM3、リアプラテン31、成形品を金型から押し出すエジェクタピンを突き出すためのエジェクタ前後進サーボモータM4、可動プラテン30、タイバー32、固定プラテン33、クロスヘッド34、エジェクタ機構35、トグル機構36を備える。リアプラテン31と固定プラテン33とは複数本のタイバー32で連結されており、可動プラテン30はタイバー32にガイドされるように配置されている。可動プラテン30に可動側金型40a,固定プラテン33に固定側金型40bが取り付けられている。トグル機構36は、可動プラテン前後進サーボモータM3によって駆動されるボールねじ軸38に取り付けられたクロスヘッド34を進退させることによって、トグル機構36を作動させることができる。この場合、クロスヘッド34を前進(図における右方向に移動)させると、可動プラテン30が前進させられて型閉じが行われる。そして、可動プラテン前後進サーボモータM3による推進力による推進力にトグル倍率を乗じた型締力が発生させられ、その型締力によって型締が行われる。   Next, the mold clamping part Mc will be described. The mold clamping portion Mc includes a movable platen forward / reverse servo motor M3 for moving the movable platen 30 forward and backward, a rear platen 31, an ejector forward / reverse servo motor M4 for ejecting an ejector pin for pushing out a molded product from the mold, a movable platen 30, and a tie bar 32. , A fixed platen 33, a cross head 34, an ejector mechanism 35, and a toggle mechanism 36. The rear platen 31 and the fixed platen 33 are connected by a plurality of tie bars 32, and the movable platen 30 is disposed so as to be guided by the tie bars 32. A movable mold 40 a is attached to the movable platen 30, and a fixed mold 40 b is attached to the fixed platen 33. The toggle mechanism 36 can operate the toggle mechanism 36 by advancing and retracting the cross head 34 attached to the ball screw shaft 38 driven by the movable platen forward / reverse servomotor M3. In this case, when the cross head 34 is moved forward (moved in the right direction in the figure), the movable platen 30 is moved forward to perform mold closing. Then, a mold clamping force is generated by multiplying the propulsive force generated by the propulsive force of the movable platen forward / backward servomotor M3 by the toggle magnification, and the mold clamping is performed by the mold clamping force.

タイバー32の一つに型締力センサ41が配設されている。型締力センサ41は、タイバー32の歪み(主に、伸び)を検出するセンサである。タイバー32には、型締めの際に型締力に対応して引張力が加わり、型締力に比例してわずかであるが伸長する。したがって、タイバー32の伸び量を型締力センサ41によって検出することで、金型40に実際に印加されている型締力を知ることができる。型締力センサ41としては例えば歪センサを用いることができる。型締力センサ41からの検出信号はA/D変換器27を介してサーボCPU15に送られる。図2に示される型締力(検出値)と時間との関係のグラフは型締力センサ41からの検出信号を基に得られる。そして、設定型締力と、設定型締力と射出中の最大型締力の差分である型締力最大増加量をサーボCPU15にて算出し、得られたデータをRAM14に記憶する。ここで前記差分は型閉じ終了後であって射出開始前の検出した型締力を用いる。あるいは、設定した型締力の値を用いてもよい。   A mold clamping force sensor 41 is disposed on one of the tie bars 32. The mold clamping force sensor 41 is a sensor that detects distortion (mainly elongation) of the tie bar 32. When the mold is clamped, the tie bar 32 is applied with a tensile force corresponding to the clamping force, and extends slightly in proportion to the clamping force. Therefore, the mold clamping force actually applied to the mold 40 can be known by detecting the extension amount of the tie bar 32 by the mold clamping force sensor 41. As the mold clamping force sensor 41, for example, a strain sensor can be used. A detection signal from the mold clamping force sensor 41 is sent to the servo CPU 15 via the A / D converter 27. The graph of the relationship between the mold clamping force (detected value) and time shown in FIG. 2 is obtained based on the detection signal from the mold clamping force sensor 41. Then, the servo mold 15 calculates the set mold clamping force and the mold clamping force maximum increase, which is the difference between the set mold clamping force and the maximum mold clamping force during injection, and stores the obtained data in the RAM 14. Here, the difference is the die clamping force detected after the end of mold closing and before the start of injection. Alternatively, a set clamping force value may be used.

リアプラテン31には型締位置調整用モータM5が配設されている。型締位置調整用モータM5の回転軸には、図示しない駆動用歯車が取り付けられている。図示しないタイバーナットの歯車および前記駆動用歯車には歯付きベルトなどの動力伝達部材が架け回されている。そのため、型締位置調整用モータM5を駆動して、前記駆動用歯車を回転させると、それぞれのタイバー32のねじ部37に螺合されたタイバーナットが同期して回転させられる。これにより、型締位置調整用モータM5を所定の方向に所定の回転数だけ回転させて、リアプラテン31を所定の距離だけ進退させることができる。型締位置調整用モータM5は図示されるようにサーボモータが好ましく、回転位置検出用の位置検出器P5を備えている。位置検出器P5によって検出された型締位置調整用モータM5の回転位置の検出信号はサーボCPU15に入力する。本発明においては型締位置調整用モータM5を駆動することにより、例えば図6や図8に示される処理を実行することによって最適な型締力を設定することができる。   The rear platen 31 is provided with a mold clamping position adjusting motor M5. A driving gear (not shown) is attached to the rotating shaft of the mold clamping position adjusting motor M5. A power transmission member such as a toothed belt is wound around a gear of a tie bar nut (not shown) and the driving gear. Therefore, when the mold clamping position adjusting motor M5 is driven to rotate the driving gear, the tie bar nuts screwed into the threaded portions 37 of the tie bars 32 are rotated in synchronization. Accordingly, the mold clamping position adjusting motor M5 can be rotated in a predetermined direction by a predetermined number of rotations, and the rear platen 31 can be advanced and retracted by a predetermined distance. The mold clamping position adjusting motor M5 is preferably a servomotor as shown in the figure, and includes a position detector P5 for detecting the rotational position. The detection signal of the rotational position of the mold clamping position adjusting motor M5 detected by the position detector P5 is input to the servo CPU 15. In the present invention, by driving the mold clamping position adjusting motor M5, an optimal mold clamping force can be set by executing the processing shown in FIGS. 6 and 8, for example.

射出成形機Mの制御装置100は、数値制御用のマイクロプロセッサであるCNCCPU20、プログラマブルマシンコントローラ用のマイクロプロセッサであるPMCCPU17、及びサーボ制御用のマイクロプロセッサであるサーボCPU15を有し、バス26を介して相互の入出力を選択することにより各マイクロプロセッサ間で情報伝達が行えるように構成されている。   The control device 100 of the injection molding machine M includes a CNC CPU 20 that is a microprocessor for numerical control, a PMC CPU 17 that is a microprocessor for a programmable machine controller, and a servo CPU 15 that is a microprocessor for servo control. Thus, by selecting mutual input / output, information can be transmitted between the microprocessors.

サーボCPU15には、位置ループ,速度ループ,電流ループの処理を行うサーボ制御専用の制御プログラムを格納したROM13はデータの一時記憶に用いられるRAM14が接続されている。また、サーボCPU15は、A/D(アナログ/デジタル)変換器16を介して射出成形機本体側に設けられた射出圧などの各種圧力を検出する樹脂圧力センサ5からの圧力信号を検出できるように接続されている。サーボCPU15には、サーボCPU15からの指令に基づいて、射出軸に接続されたスクリュ前後進用サーボモータM1,スクリュ回転軸に接続されたスクリュ回転用サーボモータM2を駆動するサーボアンプ11,12が接続され、各サーボモータM1,M2に取り付けられた位置・速度検出器P1,P2からの出力がサーボCPU15に帰還されるようになっている。各サーボモータM1,M2の回転位置は、位置・速度検出器P1,P2からの位置のフィードバック信号に基づいてサーボCPU15により算出され、各現在位置記憶レジスタに更新記憶される。   A servo CPU 15 is connected to a ROM 13 that stores a control program dedicated to servo control that performs processing of a position loop, a speed loop, and a current loop, and a RAM 14 that is used for temporary storage of data. The servo CPU 15 can detect pressure signals from the resin pressure sensor 5 that detects various pressures such as injection pressure provided on the injection molding machine main body side via an A / D (analog / digital) converter 16. It is connected to the. The servo CPU 15 includes servo amplifiers 11 and 12 that drive a screw forward / backward servomotor M1 connected to the injection shaft and a screw rotation servomotor M2 connected to the screw rotation shaft based on a command from the servo CPU15. The outputs from the position / speed detectors P1, P2 connected to the servo motors M1, M2 are fed back to the servo CPU 15. The rotational positions of the servo motors M1 and M2 are calculated by the servo CPU 15 based on the position feedback signals from the position / speed detectors P1 and P2, and updated and stored in the current position storage registers.

金型の型締めを行う型締め軸を駆動するサーボモータM3,成形品を金型から取り出すエジェクタ軸用サーボモータM4には、それぞれサーボアンプ8,9が接続されている。各サーボモータM3,M4に取り付けられた位置・速度検出器P3,P4からの出力がサーボCPU15に帰還されるようになっている。各サーボモータM3,M4の回転位置は位置・速度検出器P3,P4からの位置のフィードバック信号に基づいてサーボCPU15により算出され、各現在位置記憶レジスタに更新記憶される。   Servo amplifiers 8 and 9 are connected to a servo motor M3 for driving a mold clamping shaft for clamping the mold and an ejector shaft servo motor M4 for taking out a molded product from the mold, respectively. Outputs from position / speed detectors P3 and P4 attached to the servo motors M3 and M4 are fed back to the servo CPU 15. The rotational positions of the servo motors M3 and M4 are calculated by the servo CPU 15 based on the position feedback signals from the position / speed detectors P3 and P4, and updated and stored in the current position storage registers.

PMCCPU17には射出成形機のシーケンス動作を制御するシーケンスプログラム等を記憶したROM18および演算データの一時記憶等に用いられるRAM19が接続され、CNCCPU20には、射出成形機を全体的に制御する自動運転プログラム、本発明に関連した型締力設定方法を実現する制御プログラムなどの各種プログラムを記憶したROM21および演算データの一時記憶に用いられるRAM22が接続されている。成形データ保存用RAM23は、不揮発性のメモリであって、射出成形作業に関する成形条件と各種設定値,パラメータ,マクロ変数等を記憶する成形データ保存用のメモリである。表示装置/MDI(手動データ入力装置)25はインタフェース(I/F)を介してバス26に接続され、機能メニューの選択および各種データの入力操作等が行えるようになっている。数値データ入力用のテンキーおよび各種のファンクションキー等が設けられている。なお、表示装置としては、LCD(液晶表示装置)、CRT、その他の表示装置を用いたものでもよい。   A ROM 18 storing a sequence program for controlling the sequence operation of the injection molding machine and a RAM 19 used for temporary storage of calculation data are connected to the PMC CPU 17, and an automatic operation program for overall control of the injection molding machine is connected to the CNC CPU 20. A ROM 21 storing various programs such as a control program for realizing the mold clamping force setting method related to the present invention and a RAM 22 used for temporary storage of calculation data are connected. The molding data storage RAM 23 is a non-volatile memory, and is a molding data storage memory that stores molding conditions relating to injection molding work, various set values, parameters, macro variables, and the like. A display device / MDI (manual data input device) 25 is connected to the bus 26 via an interface (I / F) so that a function menu can be selected and various data can be input. A numeric keypad for inputting numeric data and various function keys are provided. The display device may be an LCD (liquid crystal display device), CRT, or other display device.

以上の射出成形機の構成により、PMCCPU17が射出成形機全体のシーケンスを制御し、CNCCPU20がROM21の運転プログラムや成形データ保存用RAM23に格納された成形条件等に基づいて各軸のサーボモータに対して移動指令の分配を行い、サーボCPU15は各軸に対して分配された移動指令と位置・速度検出器P1,P2,P3,P4,53,54で検出された位置および速度のフィードバック信号等に基づいて、ディジタルサーボ処理を実行し、サーボモータM1,M2,M3,M4,M5を駆動制御する。   With the above-described configuration of the injection molding machine, the PMC CPU 17 controls the entire sequence of the injection molding machine, and the CNC CPU 20 controls the servo motors for each axis based on the operating conditions of the ROM 21 and the molding conditions stored in the molding data storage RAM 23. The servo CPU 15 uses the movement command distributed to each axis and the position and speed feedback signals detected by the position / speed detectors P1, P2, P3, P4, 53, 54, etc. Based on this, digital servo processing is executed to drive and control the servo motors M1, M2, M3, M4 and M5.

上記射出成形機Mを用いた成形動作を説明する。可動プラテン前後進サーボモータM3を正方向に回転させると、ボールねじ軸38が正方向に回転させられ、ボールねじ軸38に螺合したクロスヘッド34は前進(図4における右方向)させられ、トグル機構36が作動させられると、可動プラテン30が前進させられる。   A molding operation using the injection molding machine M will be described. When the movable platen forward / reverse servomotor M3 is rotated in the forward direction, the ball screw shaft 38 is rotated in the forward direction, and the cross head 34 screwed into the ball screw shaft 38 is moved forward (rightward in FIG. 4). When the toggle mechanism 36 is activated, the movable platen 30 is advanced.

可動プラテン30に取り付けられた可動側金型40aが固定側金型40bと接触すると(型閉状態)、型締工程に移行する。型締工程では、可動プラテン前後進サーボモータM3を更に正方向に駆動することで、トグル機構36によって金型40に型締力が発生する。そして、射出部Miに設けられたスクリュ前後進用サーボモータM1が駆動されてスクリュ3の軸方向に前進することにより、金型40内に形成されたキャビティ空間に溶融樹脂が充填される。型開きを行う場合、可動プラテン前後進サーボモータM3を逆方向に駆動すると、ボールねじ軸38が逆方向に回転させられる。それに伴って、クロスヘッド34が後退し、トグル機構36が屈曲する方向に作動し、可動プラテン30がリアプラテン31の方向に後退する。型開工程が完了すると、成形品を可動側金型40aから押し出すエジェクタピンを突き出すためのエジェクタ前後進サーボモータM4が作動する。これによって、エジェクタピン(図示せず)が可動側金型40aの内面から突きだされ、可動側金型40a内の成形品は可動側金型40aより突き出される。   When the movable mold 40a attached to the movable platen 30 comes into contact with the fixed mold 40b (mold closed state), the mold clamping process is started. In the mold clamping process, a mold clamping force is generated in the mold 40 by the toggle mechanism 36 by further driving the movable platen forward / backward servomotor M3 in the forward direction. The screw servo motor M1 provided in the injection part Mi is driven to move forward in the axial direction of the screw 3, so that the cavity space formed in the mold 40 is filled with the molten resin. When the mold is opened, the ball screw shaft 38 is rotated in the reverse direction when the movable platen forward / reverse servo motor M3 is driven in the reverse direction. Along with this, the cross head 34 moves backward, the toggle mechanism 36 operates in a bending direction, and the movable platen 30 moves backward in the direction of the rear platen 31. When the mold opening process is completed, an ejector forward / reverse servomotor M4 for ejecting an ejector pin that pushes out the molded product from the movable mold 40a is operated. Thereby, an ejector pin (not shown) is protruded from the inner surface of the movable mold 40a, and a molded product in the movable mold 40a is protruded from the movable mold 40a.

次に、本発明の実施形態による型締力設定方法および型締力設定装置について説明する。本発明の実施形態では、射出成形機の適切な型締力を設定するために、タイバー32に取り付けられた型締力センサ41を用いる。型締力センサ41は成形中の型締力を検出するために設けられたセンサである。本発明の実施形態は、元来備わっている型締力センサ41の検出値に基づいて適切な型締力を求める方法および装置である。   Next, a mold clamping force setting method and a mold clamping force setting device according to an embodiment of the present invention will be described. In the embodiment of the present invention, a mold clamping force sensor 41 attached to the tie bar 32 is used to set an appropriate mold clamping force of the injection molding machine. The mold clamping force sensor 41 is a sensor provided for detecting the mold clamping force during molding. The embodiment of the present invention is a method and apparatus for obtaining an appropriate mold clamping force based on a detection value of a mold clamping force sensor 41 that is originally provided.

図6は線形近似式を用い適正な型締力を求める処理のアルゴリズムを示すフローチャートである。以下、各ステップに従って説明する。
●[ステップSA01]N=1と初期値を設定する。なお、Nは最大型締力増加量を特定する試行回数を表す指標である。
●[ステップSA02]設定型締力FsNで5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsNと設定型締力FsNに対する最大型締力増加量FmaxNを一点記憶する。なお、ここで5成形サイクルとしているが、5成形サイクルに限定されるものではなく、測定値のバラツキが無い場合には1成形サイクルでもよいし、測定値のバラツキがある場合にはよりサンプル数を増加して測定してもよい。5成形サイクルとしている他のステップについても同様である。頻繁値は5つの最大型締力増加量FmaxNの内で最も出現度数の高い値である。
●[ステップSA03]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSA04]設定型締力FsN+1で5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsN+1と設定型締力FsN+1に対する最大型締力増加量FmaxN+1を一点記憶する。
●[ステップSA05]直前に得られたFmaxNと直近に得られたFmaxN+1とが、FmaxN+1>FmaxN+αの場合(つまりYESの場合)にはステップSA07へ移行し、FmaxN+1>FmaxN+αではない場合(つまりNOの場合)にはステップSA06へ移行する。なお、α(>0)は状態1における測定誤差を許容する値であり、請求項2や請求項10に記載の第1の所定の値に対応する。
具体的に説明すると、フローチャートの処理を開始し、N=1の場合、ステップSA02でFs1とFmax1が記憶される。ステップSA04ではFs2とFmax2とが記憶される。ステップSA05ではこのFmax2とFmax1とが比較される。ここで、ステップSA05の関係を満たさない場合、ステップSA06へ移行し、N=2とされ、ステップSA03へ戻り、さらに、ステップSA04において、Fs3とFmax3とが記憶され、ステップSA05においてFmax3とFmax2とが比較される。そして、ステップSA05の関係を満たすまでステップSA03〜ステップSA06の処理を継続する。
●[ステップSA06]指標Nを一つ増加しN+1とし、ステップSA03へ戻る。
●[ステップSA07]指標Nを一つ増加しN+1とし、ステップSA08へ移行する。
●[ステップSA08]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSA09]設定型締力FsN+1で5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsN+1と設定型締力FsN+1に対する最大型締力増加量FmaxN+1を一点記憶する。
●[ステップSA10]ステップSA04で記憶した最も新しい(FsN,FmaxN)とステップSA09で記憶した(FsN+1,FmaxN+1)を用いて、線形近似式Fmax=a*Fs+bを求める。
なお、ステップSA04とステップSA09のみを見ると両方とも(FsN+1,FmaxN+1)で表されているが、ステップSA07において指標Nを1つ増加しているので、ステップSA09で記憶したものが(FsN+1,FmaxN+1)で記述されると、直前に記憶したものは(FsN,FmaxN)と記述される。
●[ステップSA11]指標Nを一つ増加しN+1とし、ステップSA12へ移行する。
●[ステップSA12]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSA13]設定型締力FsN+1で成形サイクル実行し、射出中の最大値型締力増加量を計測し、設定型締力FsN+1と最大型締力増加量FmaxN+1を記憶する。
●[ステップSA14]ステップSA10で求めた線形近似式から求められる設定型締力FsN+1に対する最大型締力増加量a*FsN+1+bと、ステップSA13で計測した最大型締力増加量FmaxN+1が、FmaxN+1≦(a*FsN+1+b)+βの場合(つまりYESの場合)はステップSA11へ戻り、FmaxN+1≦(a*FsN+1+b)+βではない場合(つまりNOの場合)はステップSA15へ移行する。
ここで、NOの場合には状態2から状態3へ移行したことを示している。状態2から状態3への移行を一つの測定値で判断しているがステップSA02,SA04,SA09と同様に複数回測定することによってもよい。または、設定型締力を変化させて連続して2回以上ステップSA14の式を満たす(つまりYES)の場合に状態2から状態3へ移行したと判断してもよい。
なお、βはステップSA10において測定値のバラツキや測定誤差を基に線形近似式と同時に求めてもよいし、射出成形機の機差に応じて予めパラメータとして設定しておいてもよい。
●[ステップSA15]FsNを金型が開かない必要最小限の型締力として設定型締力に設定し、処理を終了する。なお、FsNはステップSA13において記憶された最新の値である。
FIG. 6 is a flowchart showing an algorithm of processing for obtaining an appropriate mold clamping force using a linear approximation formula. Hereinafter, it demonstrates according to each step.
[Step SA01] Set an initial value N = 1. N is an index representing the number of trials for specifying the maximum mold clamping force increase amount.
● [Step SA02] Execute 5 molding cycles with the set mold clamping force FsN, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate variations and errors in measured values. The set mold clamping force FsN and the maximum mold clamping force increase amount FmaxN with respect to the set mold clamping force FsN are stored in one point. In addition, although it is set as 5 molding cycles here, it is not limited to 5 molding cycles, and when there is no variation in measurement values, one molding cycle may be used, and when there is variation in measurement values, the number of samples is larger. You may measure by increasing. The same applies to the other steps in the 5 molding cycles. The frequent value is a value having the highest appearance frequency among the five maximum mold clamping force increase amounts FmaxN.
[Step SA03] The set clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
[Step SA04] Execute 5 molding cycles with the set mold clamping force FsN + 1, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate measurement value variations and errors. One point of the maximum mold clamping force increase FmaxN + 1 with respect to the set mold clamping force FsN + 1 and the set mold clamping force FsN + 1 is stored.
[Step SA05] If FmaxN obtained immediately before and FmaxN + 1 obtained most recently are FmaxN + 1> FmaxN + α (that is, YES), the process proceeds to Step SA07, and if FmaxN + 1> FmaxN + α is not satisfied (that is, NO) In the case), the process proceeds to step SA06. Note that α (> 0) is a value that allows a measurement error in the state 1, and corresponds to the first predetermined value according to claim 2 or claim 10.
More specifically, when the process of the flowchart is started and N = 1, Fs1 and Fmax1 are stored in step SA02. In step SA04, Fs2 and Fmax2 are stored. In step SA05, Fmax2 and Fmax1 are compared. If the relationship of step SA05 is not satisfied, the process proceeds to step SA06, N = 2 is set, the process returns to step SA03, and Fs3 and Fmax3 are stored in step SA04, and Fmax3 and Fmax2 are stored in step SA05. Are compared. Then, the processing of step SA03 to step SA06 is continued until the relationship of step SA05 is satisfied.
[Step SA06] The index N is incremented by one to N + 1, and the process returns to Step SA03.
[Step SA07] The index N is incremented by one to N + 1, and the process proceeds to Step SA08.
[Step SA08] Set mold clamping force FsN + 1 is (FsN-ΔFs). ΔFs is a positive value.
● [Step SA09] Execute 5 molding cycles with the set clamping force FsN + 1, measure the maximum amount of clamping force increase during injection, and use frequent values and center values to eliminate variations and errors in measured values. One point of the maximum mold clamping force increase FmaxN + 1 with respect to the set mold clamping force FsN + 1 and the set mold clamping force FsN + 1 is stored.
[Step SA10] Using the latest (FsN, FmaxN) stored in Step SA04 and (FsN + 1, FmaxN + 1) stored in Step SA09, a linear approximation formula Fmax = a * Fs + b is obtained.
Note that when only step SA04 and step SA09 are viewed, both are represented by (FsN + 1, FmaxN + 1). However, since the index N is increased by 1 in step SA07, what is stored in step SA09 is (FsN + 1, FmaxN + 1). ) Is described as (FsN, FmaxN).
[Step SA11] The index N is incremented by 1 to N + 1, and the process proceeds to Step SA12.
[Step SA12] The set clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
[Step SA13] The molding cycle is executed with the set mold clamping force FsN + 1, the maximum mold clamping force increase during injection is measured, and the set mold clamping force FsN + 1 and the maximum mold clamping force increase FmaxN + 1 are stored.
[Step SA14] The maximum mold clamping force increase amount a * FsN + 1 + b with respect to the set mold clamping force FsN + 1 obtained from the linear approximation obtained in Step SA10 and the maximum mold clamping force increase amount FmaxN + 1 measured in Step SA13 are FmaxN + 1 ≦ ( If a * FsN + 1 + b) + β (that is, YES), the process returns to step SA11. If FmaxN + 1 ≦ (a * FsN + 1 + b) + β is not satisfied (that is, NO), the process proceeds to step SA15.
Here, in the case of NO, it indicates that the state 2 is shifted to the state 3. Although the transition from the state 2 to the state 3 is determined by one measurement value, the measurement may be performed a plurality of times as in the steps SA02, SA04, and SA09. Alternatively, it may be determined that the state shifts from the state 2 to the state 3 when the set mold clamping force is changed and the expression of step SA14 is satisfied twice or more continuously (that is, YES).
In step SA10, β may be obtained simultaneously with the linear approximation formula based on measurement value variations and measurement errors, or may be set in advance as a parameter according to the machine difference of the injection molding machine.
[Step SA15] FsN is set as the set clamping force as the minimum clamping force that prevents the mold from opening, and the process is terminated. Note that FsN is the latest value stored in step SA13.

次に、線形近似式の交点を基に適正な型締力を求める本発明の実施形態を説明する。図7は線形近似式の交点を基に適正な型締力を求めることを説明する図である。上述した実施形態では状態2(図4参照)において線形近似式を求めるが、本実施形態では状態2と状態3においてそれぞれ線形近似式Fmax=a*Fs+b,Hmax=c*Fs+dを求める。適正な型締力は線形近似式Fmax=a*Fs+bとHmax=c*Fs+dの交点を基に設定することができる。   Next, an embodiment of the present invention for obtaining an appropriate mold clamping force based on the intersection of linear approximation equations will be described. FIG. 7 is a diagram for explaining obtaining an appropriate clamping force based on the intersection of the linear approximation formula. In the above-described embodiment, the linear approximation formula is obtained in the state 2 (see FIG. 4). In this embodiment, the linear approximation formulas Fmax = a * Fs + b and Hmax = c * Fs + d are obtained in the state 2 and the state 3, respectively. An appropriate mold clamping force can be set based on the intersection of the linear approximation formulas Fmax = a * Fs + b and Hmax = c * Fs + d.

図8は線形近似式の交点を基に適正な型締力を算出する処理のアルゴリズムを示すフローチャートである。以下、各ステップに従って説明する。
●[ステップSB01]N=1と初期値を設定する。なお、Nは最大型締力増加量を特定する試行回数を表す指標である。
●[ステップSB02]設定型締力FsNで5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsNと設定型締力FsNに対する最大型締力増加量FmaxNを一点記憶する。なお、ここで5成形サイクルとしているが、5成形サイクルに限定されるものではなく、測定値のバラツキが無い場合には1成形サイクルでもよいし、測定値のバラツキがある場合にはよりサンプル数を増加して測定してもよい。5成形サイクルとしている他のステップについても同様である。頻繁値は5つの最大型締力増加量FmaxNの内で最も出現度数の高い値である。
●[ステップSB03]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSB04]設定型締力FsN+1で5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsN+1と設定型締力FsN+1に対する最大型締力増加量FmaxN+1を一点記憶する。
●[ステップSB05]直前に得られたFmaxNと直近に得られたFmaxN+1とが、FmaxN+1>FmaxN+αの場合(つまりYESの場合)にはステップSB07へ移行し、FmaxN+1>FmaxN+αではない場合(つまりNOの場合)にはステップSB06へ移行する。なお、α(>0)は状態1における測定誤差を許容する値であり、請求項2や請求項10に記載の第1の所定の値に対応する。
具体的に説明すると、フローチャートの処理を開始し、N=1の場合、ステップSA02でFs1とFmax1が記憶される。ステップSB04ではFs2とFmax2とが記憶される。ステップSB05ではこのFmax2とFmax1とが比較される。ここで、ステップSB05の関係を満たさない場合、ステップSB06へ移行し、N=2とされ、ステップSB03へ戻り、さらに、ステップSB04において、Fs3とFmax3とが記憶され、ステップSB05においてFmax3とFmax2とが比較される。そして、ステップSB05の関係を満たすまでステップSB03〜ステップSB06の処理を継続する。
●[ステップSB06]指標Nを一つ増加しN+1とし、ステップSB03へ戻る。
●[ステップSB07]指標Nを一つ増加しN+1とし、ステップSB08へ移行する。
●[ステップSB08]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSB09]設定型締力FsN+1で5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsN+1と設定型締力FsN+1に対する最大型締力増加量FmaxN+1を一点記憶する。
●[ステップSB10]ステップSB04で記憶した最も新しい(FsN,FmaxN)とステップSB09で記憶した(FsN+1,FmaxN+1)を用いて、線形近似式Fmax=a*Fs+bを求める。
なお、ステップSB04とステップSB09のみを見ると両方とも(FsN+1,FmaxN+1)で表されているが、ステップSB07において指標Nを1つ増加しているので、ステップSB09で記憶したものが(FsN+1,FmaxN+1)で記述されると、直前に記憶したものは(FsN,FmaxN)と記述される。
●[ステップSB11]指標Nを一つ増加しN+1とし、ステップSB12へ移行する。
●[ステップSB12]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSB13]設定型締力FsN+1で成形サイクル実行し、射出中の最大型締力増加量を計測し、設定型締力FsN+1と最大型締力増加量FmaxN+1を記憶する。
●[ステップSB14]ステップSB10で求めた線形近似式から求められる設定型締力FsN+1に対する最大型締力増加量a*FsN+1+bと、ステップSB13で計測した最大型締力増加量FmaxN+1が、FmaxN+1≦(a*FsN+1+b)+βの場合(つまりYESの場合)はステップSB11へ戻り、FmaxN+1≦(a*FsN+1+b)+βではない場合(つまりNOの場合)はステップSB15へ移行する。
ここでNOの場合には状態2から状態3へ移行したことを示している。状態2から状態3への移行を一つの測定値で判断しているがステップSB02,SB04,SB09と同様に複数回測定することによってもよい。または、設定型締力を変化させて連続して2回以上ステップSB14の式を満たす(つまりYES)の場合に状態2から状態3へ移行したと判断してもよい。
なお、βはステップSB10において測定値のバラツキや測定誤差を基に線形近似式と同時に求めてもよいし、射出成形機の機差に応じて予めパラメータとして設定しておいてもよい。
●[ステップSB15]指標Nを一つ増加しN+1とし、ステップSB16へ移行する。
●[ステップSB16]設定型締力FsN+1を(FsN―ΔFs)とする。ΔFsは正の値である。
●[ステップSB17]設定型締力FsNで5成形サイクル実行し、射出中の最大型締力増加量を計測し、計測値のバラツキや誤差を除くために頻繁値や中心値などを用いて、設定型締力FsN+1と設定型締力FsN+1に対する最大型締力増加量FmaxN+1を一点記憶する。
●[ステップSB18]ステップSB13で記憶した最も新しい(FsN,FmaxN)とステップSB17で記憶した(FsN+1,FmaxN+1)を用いて、線形近似式Hmax=c*Fs+dを求める。
なお、ステップSB13とステップSB17のみを見ると両方とも(FsN+1,FmaxN+1)で表されているが、ステップSB07において指標Nを1つ増加しているので、ステップSB17で記憶したものが(FsN+1,FmaxN+1)で記述されると、直前に記憶したものは(FsN,FmaxN)と記述される。
●[ステップSB19]線形近似式Fmaxと線形近似式Hmaxの交点の設定型締力を基に金型が開かない必要最小限の型締力を求めて設定型締力に設定し、処理を終了する。
FIG. 8 is a flowchart showing an algorithm of processing for calculating an appropriate mold clamping force based on the intersection of the linear approximation formula. Hereinafter, it demonstrates according to each step.
[Step SB01] N = 1 and an initial value are set. N is an index representing the number of trials for specifying the maximum mold clamping force increase amount.
● [Step SB02] Execute 5 molding cycles with the set mold clamping force FsN, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate variations and errors in measured values. The set mold clamping force FsN and the maximum mold clamping force increase amount FmaxN with respect to the set mold clamping force FsN are stored in one point. In addition, although it is set as 5 molding cycles here, it is not limited to 5 molding cycles, and when there is no variation in measurement values, one molding cycle may be used, and when there is variation in measurement values, the number of samples is larger. You may measure by increasing. The same applies to the other steps in the 5 molding cycles. The frequent value is a value having the highest appearance frequency among the five maximum mold clamping force increase amounts FmaxN.
[Step SB03] The set clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
● [Step SB04] Execute 5 molding cycles with the set mold clamping force FsN + 1, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate measurement value variations and errors. One point of the maximum mold clamping force increase FmaxN + 1 with respect to the set mold clamping force FsN + 1 and the set mold clamping force FsN + 1 is stored.
[Step SB05] If FmaxN obtained immediately before and FmaxN + 1 obtained most recently are FmaxN + 1> FmaxN + α (that is, YES), the process proceeds to Step SB07, and if FmaxN + 1> FmaxN + α is not satisfied (that is, NO) In the case), the process proceeds to step SB06. Note that α (> 0) is a value that allows a measurement error in the state 1, and corresponds to the first predetermined value according to claim 2 or claim 10.
More specifically, when the process of the flowchart is started and N = 1, Fs1 and Fmax1 are stored in step SA02. In step SB04, Fs2 and Fmax2 are stored. In step SB05, Fmax2 and Fmax1 are compared. If the relationship of step SB05 is not satisfied, the process proceeds to step SB06, N = 2 is set, the process returns to step SB03, and Fs3 and Fmax3 are stored in step SB04, and Fmax3 and Fmax2 are stored in step SB05. Are compared. And the process of step SB03-step SB06 is continued until the relationship of step SB05 is satisfy | filled.
[Step SB06] The index N is incremented by one to N + 1, and the process returns to Step SB03.
[Step SB07] The index N is incremented by 1 to N + 1, and the process proceeds to Step SB08.
[Step SB08] The set mold clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
● [Step SB09] Execute 5 molding cycles with the set mold clamping force FsN + 1, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate measurement value variations and errors. One point of the maximum mold clamping force increase FmaxN + 1 with respect to the set mold clamping force FsN + 1 and the set mold clamping force FsN + 1 is stored.
[Step SB10] Using the newest (FsN, FmaxN) stored in Step SB04 and (FsN + 1, FmaxN + 1) stored in Step SB09, a linear approximation formula Fmax = a * Fs + b is obtained.
Note that when only step SB04 and step SB09 are viewed, both are represented by (FsN + 1, FmaxN + 1). However, since the index N is increased by 1 in step SB07, what is stored in step SB09 is (FsN + 1, FmaxN + 1). ) Is described as (FsN, FmaxN).
[Step SB11] The index N is increased by one to N + 1, and the process proceeds to Step SB12.
[Step SB12] The set mold clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
[Step SB13] A molding cycle is executed with the set mold clamping force FsN + 1, the maximum mold clamping force increase during injection is measured, and the set mold clamping force FsN + 1 and the maximum mold clamping force increase FmaxN + 1 are stored.
[Step SB14] The maximum mold clamping force increase amount a * FsN + 1 + b with respect to the set mold clamping force FsN + 1 obtained from the linear approximation obtained in Step SB10 and the maximum mold clamping force increase amount FmaxN + 1 measured in Step SB13 are FmaxN + 1 ≦ ( If a * FsN + 1 + b) + β (that is, YES), the process returns to step SB11. If FmaxN + 1 ≦ (a * FsN + 1 + b) + β is not satisfied (that is, NO), the process proceeds to step SB15.
Here, in the case of NO, it indicates that the state 2 is shifted to the state 3. Although the transition from the state 2 to the state 3 is determined by one measurement value, the measurement may be performed a plurality of times in the same manner as in steps SB02, SB04, and SB09. Alternatively, it may be determined that the state shifts from state 2 to state 3 when the set clamping force is changed and the expression of step SB14 is satisfied twice or more continuously (that is, YES).
In step SB10, β may be obtained at the same time as the linear approximation formula based on measurement value variations and measurement errors, or may be set in advance as a parameter according to the machine difference of the injection molding machine.
[Step SB15] The index N is incremented by 1 to N + 1, and the process proceeds to Step SB16.
[Step SB16] The set clamping force FsN + 1 is set to (FsN−ΔFs). ΔFs is a positive value.
● [Step SB17] Execute 5 molding cycles with the set mold clamping force FsN, measure the maximum mold clamping force increase during injection, and use frequent values and center values to eliminate variations and errors in measured values. One point of the maximum mold clamping force increase FmaxN + 1 with respect to the set mold clamping force FsN + 1 and the set mold clamping force FsN + 1 is stored.
[Step SB18] Using the newest (FsN, FmaxN) stored in Step SB13 and (FsN + 1, FmaxN + 1) stored in Step SB17, a linear approximate expression Hmax = c * Fs + d is obtained.
Note that when only step SB13 and step SB17 are viewed, both are represented by (FsN + 1, FmaxN + 1). However, since the index N is increased by 1 in step SB07, what is stored in step SB17 is (FsN + 1, FmaxN + 1). ) Is described as (FsN, FmaxN).
[Step SB19] Based on the set clamping force at the intersection of the linear approximation formula Fmax and the linear approximation formula Hmax, the minimum mold clamping force that prevents the mold from opening is obtained and set as the set mold clamping force, and the process ends. To do.

図6−1,図6−2、図8−1,図8−2に示されるフローチャートの処理は、基本的には状態1から状態2へ,そして、状態3へ型締力を変化させて状態2の関係式を求めるものである。本発明の他の実施形態として、設定型締力Fsを任意に変更し状態1,状態2,状態3において型締力最大増加量を測定し、上述したフロチャートにおいて記憶したように、設定型締力Xと型締力最大増加量Xmaxとを記憶し、記憶したデータを用いて、例えば、設定型締力Xの小さいほうから順に前記フローチャートの判断手順に従って関係式を求めるようにしてもよい。
あるいは、前記記憶したデータを表示装置/MDI25(図5参照)の表示画面にグラフ表示し、オペレータが状態2と判断する適宜の2つの点を選択し、選択された2つの点に基づいて関係式を演算するようにしてもよい。オペレータが選択する2点は、例えば、型締力最大増加量の増加率を基にしたり、成形品が良品と判断できる設定型締力のデータを選択するとよい。また、最大射出圧と金型の投影面積から考えて状態2に該当する設定型締力から型締力最大増加量を測定するようにしてもよい。または、成形品の良否判断をカメラなどを用いた良否判別機能を用い、製品が良品と判断できる場合の型締力を状態2の設定型締力とし、そのときの型締力最大増加量のデータを関係式を求めるためのデータとして用いてもよい。または、状態1において型締力最大増加量に変化がない場合においては第2の所定の値を比較の基準として用いて、設定型締力が状態1であるのか状態2であるのか判断してもよい。
The process of the flowcharts shown in FIGS. 6-1, 6-2, FIGS. 8-1 and 8-2 is basically performed by changing the clamping force from state 1 to state 2 and then to state 3. The relational expression of state 2 is obtained. As another embodiment of the present invention, the set mold clamping force Fs is arbitrarily changed, the maximum amount of increase in the mold clamping force is measured in the state 1, state 2 and state 3, and the set mold is stored as described above in the flowchart. The clamping force X and the mold clamping force maximum increase amount Xmax may be stored, and using the stored data, for example, the relational expression may be obtained in order from the smaller of the set mold clamping force X according to the determination procedure of the flowchart. .
Alternatively, the stored data is displayed as a graph on the display screen of the display device / MDI 25 (see FIG. 5), the operator selects two appropriate points that are judged to be in state 2, and the relationship is based on the two selected points. An expression may be calculated. The two points selected by the operator may be selected based on, for example, the rate of increase in the maximum amount of mold clamping force or data on the set mold clamping force that can determine that the molded product is a non-defective product. Further, the maximum increase in mold clamping force may be measured from the set mold clamping force corresponding to the state 2 in consideration of the maximum injection pressure and the projected area of the mold. Alternatively, the quality judgment function using a camera or the like is used to judge the quality of the molded product, and the mold clamping force when the product can be judged as a good product is set as the set mold clamping force of state 2, and the maximum increase in the clamping force at that time Data may be used as data for obtaining a relational expression. Alternatively, when there is no change in the maximum amount of increase in the mold clamping force in the state 1, it is determined whether the set mold clamping force is in the state 1 or the state 2 by using the second predetermined value as a reference for comparison. Also good.

1 射出シリンダ
2 ノズル
3 スクリュ
4 ホッパ
5 樹脂圧力センサ
6 伝動機構
7 伝動機構
8 サーボアンプ
9 サーボアンプ
10 サーボアンプ
11 サーボアンプ
12 サーボアンプ
13 ROM
14 RAM
15 サーボCPU
16 A/D変換器
17 PMCCPU
18 ROM
19 RAM
20 CNCCPU
21 ROM
22 RAM
23 成形データ保存用RAM
24 インタフェース
25 表示装置/MDI(手動データ入力装置)
26 バス
27 A/D変換器

30 可動プラテン
31 リアプラテン
32 タイバー
33 固定プラテン
34 クロスヘッド
35 エジェクタ機構
36 トグル機構
37 ねじ部
38 ボールねじ軸

40 金型
40a 可動側金型
40b 固定側金型
41 型締力センサ

M 射出成形機
Mc 型締部
Mi 射出部
M1 スクリュ前後進用サーボモータ
M2 スクリュ回転用サーボモータ
M3 可動プラテン前後進サーボモータ
M4 エジェクタ前後進サーボモータ
M5 型締位置調整用モータ

P5 位置検出器
DESCRIPTION OF SYMBOLS 1 Injection cylinder 2 Nozzle 3 Screw 4 Hopper 5 Resin pressure sensor 6 Transmission mechanism 7 Transmission mechanism 8 Servo amplifier 9 Servo amplifier 10 Servo amplifier 11 Servo amplifier 12 Servo amplifier 13 ROM
14 RAM
15 Servo CPU
16 A / D converter 17 PMCCPU
18 ROM
19 RAM
20 CNCCPU
21 ROM
22 RAM
23 Molding data storage RAM
24 interface 25 display device / MDI (manual data input device)
26 bus 27 A / D converter

30 Movable platen 31 Rear platen 32 Tie bar 33 Fixed platen 34 Cross head 35 Ejector mechanism 36 Toggle mechanism 37 Screw part 38 Ball screw shaft

40 Mold 40a Movable mold 40b Fixed mold 41 Clamping force sensor

M injection molding machine Mc mold clamping part Mi injection part M1 screw servo motor for forward and backward movement M2 servo motor for screw rotation M3 movable platen forward and backward servo motor M4 ejector forward and backward servo motor M5 mold clamping position adjustment motor

P5 Position detector

Claims (16)

設定型締力に基づいて型締機構によって金型を閉じて型締力を発生させ、射出機構によって前記金型内に溶融樹脂を射出する射出成型機において、
任意の異なる大きさの設定型締力で射出を行い、前記金型が閉じた際に発生する型締力と、該金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値を検出し、該金型が閉じた際に発生する型締力と該射出中の型締力の最大値の差である型締力最大増加量を算出し、型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出し、
前記抽出した2つ以上の設定型締力と前記型締力最大増加量の組み合わせから設定型締力に対する前記型締力最大増加量を示す関係式を求め、
前記抽出した2つ以上の異なる設定型締力より小さい設定型締力で射出を行って前記型締力最大増加量を算出し、
前記算出した型締力最大増加量が前記関係式に基づく比較値を超えた時点の設定型締力を求め、
前記求めた設定型締力の直前の型締力を金型が開かない必要最小限の型締力として設定することを特徴とする射出成型機の型締力設定方法。
In an injection molding machine that closes a mold by a mold clamping mechanism based on a set mold clamping force to generate a mold clamping force, and injects molten resin into the mold by an injection mechanism,
Clamping force generated when the mold is closed by injection with a set clamping force of any different size, and mold clamping force during injection generated when the molten resin is injected into the mold The maximum increase in mold clamping force is calculated by calculating the maximum increase in mold clamping force, which is the difference between the mold clamping force generated when the mold is closed and the maximum value of the mold clamping force during injection. Extract two or more set clamping forces that are different in quantity and do not open the mold,
From the combination of the two or more extracted set clamping forces and the maximum clamping force increase, a relational expression indicating the maximum clamping force increase with respect to the set clamping force is obtained.
Performing the injection with a set clamping force smaller than the two or more different set clamping forces extracted to calculate the maximum increase in clamping force;
Obtaining a set clamping force when the calculated maximum increase in clamping force exceeds a comparison value based on the relational expression;
A mold clamping force setting method for an injection molding machine, characterized in that the mold clamping force immediately before the obtained set mold clamping force is set as a minimum mold clamping force that prevents the mold from opening.
前記型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出することは、
設定型締力の大きさを大きい値から小さい値へ変化させて射出を行った場合に、型締力最大増加量の変化量が第1の所定の値より小さい場合、変化させる前の設定型締力を除くことを含むことを特徴とする請求項1に記載の射出成形機の型締力設定方法。
Extracting two or more set clamping forces at which the maximum increase in mold clamping force is different and the mold does not open is as follows:
When injection is performed while changing the magnitude of the set mold clamping force from a large value to a small value, if the amount of change in the maximum mold clamping force increase is smaller than the first predetermined value, the set mold before the change is made The method for setting a clamping force of an injection molding machine according to claim 1, comprising removing the clamping force.
前記型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出することは、前記型締力最大増加量が第2の所定の値より小さい場合の設定型締力を除くことを含むことを特徴とする請求項1に記載の射出成型機の型締力設定方法。   Extracting two or more set mold clamping forces that are different in the maximum amount of increase in the mold clamping force and do not open the mold means that the set mold when the maximum amount of mold clamping force increase is smaller than a second predetermined value 2. The mold clamping force setting method for an injection molding machine according to claim 1, further comprising removing the clamping force. 前記関係式は線形近似を適用して求めることを特徴とする請求項1〜3のいずれか一つに記載の射出成形機の型締力設定方法。   The mold clamping force setting method for an injection molding machine according to any one of claims 1 to 3, wherein the relational expression is obtained by applying a linear approximation. 前記比較値に1つの項として用いる閾値はあらかじめ設定するか、または型締力測定値から自動で決定することを特徴とする請求項1〜4のいずれか一つに記載の射出成形機の型締力設定方法。   The mold for an injection molding machine according to any one of claims 1 to 4, wherein a threshold value used as one term for the comparison value is set in advance or automatically determined from a measured value of the clamping force. Tightening force setting method. 前記任意の異なる2つ以上の大きさの設定型締力で射出を行う場合、最大射出圧と金型の投影面積から考えて十分に足りている設定型締力で射出を開始し、該設定型締力を下げながら各射出中の型締力最大増加量を算出することを特徴とする請求項1〜5のいずれか一つに記載の射出成型機の型締力設定方法。   When injection is performed with a set clamping force of any two or more different sizes, the injection is started with a set clamping force that is sufficient considering the maximum injection pressure and the projected area of the mold, and the setting is performed. The mold clamping force setting method for an injection molding machine according to any one of claims 1 to 5, wherein the maximum amount of mold clamping force increase during each injection is calculated while lowering the mold clamping force. 前記型締力最大増加量の変化が異なり、かつ、金型が開かない設定型締力は、射出を行い型締力最大増加量を算出し、該型締力最大増加量に変化が生じる設定型締力において、成形品が良品と判断できる場合の設定型締力であることを特徴とする請求項1〜6のいずれか一つに記載の射出成型機の型締力設定方法。   The mold clamping force is set so that the change in the maximum amount of mold clamping force is different and the mold does not open. The mold clamping force setting method for an injection molding machine according to any one of claims 1 to 6, wherein the mold clamping force is a set mold clamping force when the molded product can be determined as a non-defective product. 前記必要最小限の型締力はあらかじめ設定したマージン分だけ補正を行うことを特徴とする請求項1〜7のいずれか一つに記載の射出成形機の型締力設定方法。   8. The mold clamping force setting method for an injection molding machine according to claim 1, wherein the minimum mold clamping force is corrected by a preset margin. 設定型締力に基づいて金型を閉じて型締力を発生させる型締部と、前記金型内に溶融樹脂を射出する射出部と、
任意の設定型締力で射出を行い、前記金型が閉じた際に発生する型締力および前記金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値を検出する検出部と、
前記金型が閉じた際に発生する型締力と前記金型内に溶融樹脂を射出する際に発生する射出中の型締力の最大値の差から型締力最大増加量を求める型締力増加量算出部と、
前記金型が閉じた際に発生する型締力と前記型締力最大増加量を対応させて記憶する記憶部と、
前記型締力最大増加量の算出を少なくとも2つ以上の異なる大きさの設定型締力で行い、型締力最大増加量が異なり、かつ、金型が開かない設定型締力を2つ以上抽出する抽出部と、
前記抽出された前記金型が閉じた際に発生する型締力と前記型締力最大増加量の組み合わせから設定型締力に対する型締力最大増加量を示す関係式を求める関係式算出部と、
前記2つ以上の異なる設定型締力より小さい設定型締力で射出を行い、前記型締力最大増加量を算出し、該型締力最大増加量が前記関係式に基づく比較値を超える設定型締力を求める型締力検出部と、
を備え、
前記型締力検出部により検出された型締力の直前の設定型締力を金型が開かない必要最小限の型締力として設定することを特徴とする射出成形機の型締力設定装置。
A mold clamping unit that closes the mold based on the set mold clamping force to generate a mold clamping force, an injection unit that injects molten resin into the mold, and
Performs injection with any set clamping force, and detects the maximum clamping force generated when the mold is closed and the maximum mold clamping force that is generated when molten resin is injected into the mold. A detector to perform,
A mold clamping for obtaining a maximum increase in mold clamping force from a difference between a mold clamping force generated when the mold is closed and a maximum value of mold clamping force generated during injection of molten resin into the mold. A force increase calculation unit;
A storage unit for storing the mold clamping force generated when the mold is closed and the mold clamping force maximum increase amount in association with each other;
Calculation of the maximum increase in mold clamping force is performed with at least two different setting mold clamping forces. The maximum increase in mold clamping force is different, and there are two or more set clamping forces that do not open the mold. An extractor for extracting;
A relational expression calculation unit for obtaining a relational expression indicating a maximum amount of mold clamping force increase with respect to a set mold clamping force from a combination of a mold clamping force generated when the extracted mold is closed and the mold clamping force maximum increase amount; ,
Injection is performed with a set mold clamping force smaller than the two or more different set mold clamping forces, the mold clamping force maximum increase is calculated, and the mold clamping force maximum increasing exceeds the comparison value based on the relational expression A mold clamping force detector for obtaining mold clamping force;
With
A mold clamping force setting device for an injection molding machine, wherein the set mold clamping force immediately before the mold clamping force detected by the mold clamping force detection unit is set as a minimum mold clamping force that prevents the mold from opening. .
前記抽出部は、設定型締力の大きさを大きい値から小さい値へ変化させて射出を行った場合に、型締力最大増加量の変化量が第1の所定の値より小さい場合、変化させる前の設定型締力を除くことを含むことを特徴とする請求項9に記載の射出成形機の型締力設定装置。   The extraction unit changes when the amount of change in the maximum increase in mold clamping force is smaller than the first predetermined value when injection is performed while changing the magnitude of the set mold clamping force from a large value to a small value. 10. The mold clamping force setting device for an injection molding machine according to claim 9, further comprising removing a set mold clamping force before the operation. 前記抽出部は、前記型締力最大増加量が第2の所定の値より小さい場合の設定型締力を除くことを含むことを特徴とする請求項9に記載の射出成型機の型締力設定装置。   10. The mold clamping force of an injection molding machine according to claim 9, wherein the extraction unit includes removing a set mold clamping force when the maximum amount of mold clamping force increase is smaller than a second predetermined value. Setting device. 前記関係式は線形近似を適用して求めることを特徴とする請求項9〜11のいずれか一つに記載の射出成型機の型締力設定装置。   The mold clamping force setting device for an injection molding machine according to any one of claims 9 to 11, wherein the relational expression is obtained by applying a linear approximation. 前記比較値に1つの項として用いる閾値はあらかじめ設定するか、または型締力測定値から自動で決定されることを特徴とする請求項9〜12のいずれか一つに記載の射出成形機の型締力設定装置。   13. The injection molding machine according to claim 9, wherein a threshold value used as one term for the comparison value is set in advance or is automatically determined from a measured value of the clamping force. Mold clamping force setting device. 前記任意の異なる2つ以上の大きさの設定型締力で射出を行う場合、最大射出圧と金型の投影面積から考えて十分に足りている設定型締力で射出を開始し、該設定型締力を下げながら各射出中の型締力最大増加量を算出することを特徴とする請求項9〜13のいずれか一つに記載の射出成型機の型締力設定装置。   When injection is performed with a set clamping force of any two or more different sizes, the injection is started with a set clamping force that is sufficient considering the maximum injection pressure and the projected area of the mold, and the setting is performed. The mold clamping force setting device for an injection molding machine according to any one of claims 9 to 13, wherein the maximum amount of mold clamping force increase during each injection is calculated while lowering the mold clamping force. 前記型締力最大増加量の変化が異なり、かつ、金型が開かない設定型締力を求める手段は、射出を行い型締力最大増加量を算出し、該型締力最大増加量に変化が生じる設定型締力において、成形品が良品と判断できる場合の設定型締力を選択する手段であることを特徴とする請求項9〜14のいずれか一つに記載の射出成型機の型締力設定装置。   The means for obtaining the set mold clamping force at which the change in the maximum increase in mold clamping force is different and the mold does not open is calculated by calculating the maximum increase in mold clamping force by injection, and changing to the maximum increase in mold clamping force. The mold of an injection molding machine according to any one of claims 9 to 14, wherein the mold is a means for selecting a set mold clamping force when the molded product can be judged as a non-defective product with a set mold clamping force at which occurrence occurs. Tightening force setting device. 前記必要最小限の型締力はあらかじめ設定したマージン分だけ補正を行うことを特徴とする請求項9〜15のいずれか一つに記載の射出成形機の型締力設定装置。   The mold clamping force setting device for an injection molding machine according to any one of claims 9 to 15, wherein the minimum mold clamping force is corrected by a preset margin.
JP2011215504A 2011-09-29 2011-09-29 Mold clamping force setting method and mold clamping force setting device for injection molding machine Active JP5180357B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011215504A JP5180357B1 (en) 2011-09-29 2011-09-29 Mold clamping force setting method and mold clamping force setting device for injection molding machine
DE102012018749.1A DE102012018749B4 (en) 2011-09-29 2012-09-21 Method for specifying the clamping force of an injection mold and device for specifying the clamping force of an injection mold for an injection molding machine
CN201210369361.4A CN103029276B (en) 2011-09-29 2012-09-27 Method for setting clamping force of injection mold and clamping force setting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215504A JP5180357B1 (en) 2011-09-29 2011-09-29 Mold clamping force setting method and mold clamping force setting device for injection molding machine

Publications (2)

Publication Number Publication Date
JP5180357B1 JP5180357B1 (en) 2013-04-10
JP2013075382A true JP2013075382A (en) 2013-04-25

Family

ID=47878731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215504A Active JP5180357B1 (en) 2011-09-29 2011-09-29 Mold clamping force setting method and mold clamping force setting device for injection molding machine

Country Status (3)

Country Link
JP (1) JP5180357B1 (en)
CN (1) CN103029276B (en)
DE (1) DE102012018749B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000219A1 (en) 2014-01-15 2015-07-16 Fanuc Corporation Mold clamping force adjusting device and method for an injection molding machine
US9744705B2 (en) 2014-04-09 2017-08-29 Fanuc Corporation Controller for injection molding machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT514856B1 (en) * 2013-09-30 2015-06-15 Engel Austria Gmbh Method for monitoring tool breathing
CN104462805B (en) * 2014-12-02 2017-05-31 厦门飞游信息科技有限公司 A kind of map road-seeking method based on A* algorithms, equipment and computing terminal
AT521442B1 (en) 2018-07-12 2021-07-15 Engel Austria Gmbh Dynamic adjustment of the clamping force
JP6967566B2 (en) 2019-09-20 2021-11-17 日精樹脂工業株式会社 Injection molding machine and burr defect prevention method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866951A (en) * 1994-08-31 1996-03-12 Sumitomo Heavy Ind Ltd Control method of injection molding machine
JP2010069869A (en) * 2008-08-20 2010-04-02 Sumitomo Heavy Ind Ltd Mold clamping control device and mold clamping control method
JP2010111006A (en) * 2008-11-06 2010-05-20 Nissei Plastics Ind Co Method for setting mold clamping force of injection molding machine
JP2012206499A (en) * 2011-03-15 2012-10-25 Fanuc Ltd Mold clamping force setting method and mold clamping force setting device of injection molding machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736757B2 (en) * 1995-03-16 1998-04-02 日精樹脂工業株式会社 Mold clamping force control method for injection molding machine
JP3833140B2 (en) * 2002-05-01 2006-10-11 日精樹脂工業株式会社 Mold clamping force setting method and mold clamping method for injection molding machine
US20060082010A1 (en) * 2004-10-19 2006-04-20 Saggese Stefano M Intelligent molding environment and method of controlling applied clamp tonnage
JP5000213B2 (en) * 2006-06-28 2012-08-15 住友重機械工業株式会社 Mold clamping force setting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866951A (en) * 1994-08-31 1996-03-12 Sumitomo Heavy Ind Ltd Control method of injection molding machine
JP2010069869A (en) * 2008-08-20 2010-04-02 Sumitomo Heavy Ind Ltd Mold clamping control device and mold clamping control method
JP2010111006A (en) * 2008-11-06 2010-05-20 Nissei Plastics Ind Co Method for setting mold clamping force of injection molding machine
JP2012206499A (en) * 2011-03-15 2012-10-25 Fanuc Ltd Mold clamping force setting method and mold clamping force setting device of injection molding machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000219A1 (en) 2014-01-15 2015-07-16 Fanuc Corporation Mold clamping force adjusting device and method for an injection molding machine
JP2015131472A (en) * 2014-01-15 2015-07-23 ファナック株式会社 Mold clamping force setting device and mold clamping force setting method for injection molding machine
US9597827B2 (en) 2014-01-15 2017-03-21 Fanuc Corporation Mold clamping force setting device and mold clamping force setting method of injection molding machine
DE102015000219B4 (en) * 2014-01-15 2019-11-14 Fanuc Corporation Mold clamping force adjusting device and method for an injection molding machine
US9744705B2 (en) 2014-04-09 2017-08-29 Fanuc Corporation Controller for injection molding machine

Also Published As

Publication number Publication date
CN103029276A (en) 2013-04-10
CN103029276B (en) 2015-04-15
JP5180357B1 (en) 2013-04-10
DE102012018749B4 (en) 2015-10-22
DE102012018749A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5059960B2 (en) Mold clamping force setting method and mold clamping force setting device for injection molding machine
JP5180357B1 (en) Mold clamping force setting method and mold clamping force setting device for injection molding machine
JP5770317B2 (en) Mold clamping force setting device and mold clamping force setting method for injection molding machine
JP5155439B1 (en) Abnormality detection device for injection molding machine
EP0700768B1 (en) Injection molding controlling method for injection molding machine
JP6169633B2 (en) Pressure control device for injection molding machine
JP5155432B1 (en) Abnormality detection device for injection molding machine
JP4027380B2 (en) Control device for injection molding machine
US5772932A (en) Mold clamping control method for injection molding machine
JP5302436B1 (en) Resin condition monitoring device for injection molding machines
JP5351307B1 (en) Pressure control device for injection molding machine
JP5161358B1 (en) Rotating core control device for screw removal mold
JP6162612B2 (en) Abnormality detection device for movable parts of injection molding machine
JP5877882B2 (en) Pressure control device for injection molding machine
JP5657818B2 (en) Resin discharging device for injection molding machine
JP2010188563A (en) Device for controlling cores of mold
JP5837124B2 (en) Control device for injection molding machine
JP5570581B2 (en) Motor power shut-off device for electric injection molding machine
JP5118239B1 (en) Control device for nozzle forward / reverse motor of injection molding machine
JP6022996B2 (en) Molding device for injection molding machine
JP5113596B2 (en) Pressure abnormality detection device for injection molding machine
JP5770059B2 (en) Injection molding machine equipped with a tape transport device
JP5710362B2 (en) Resin leak detection method and resin leak prevention method for injection molding machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150