JP2013074661A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2013074661A
JP2013074661A JP2011210372A JP2011210372A JP2013074661A JP 2013074661 A JP2013074661 A JP 2013074661A JP 2011210372 A JP2011210372 A JP 2011210372A JP 2011210372 A JP2011210372 A JP 2011210372A JP 2013074661 A JP2013074661 A JP 2013074661A
Authority
JP
Japan
Prior art keywords
power
power supply
control circuit
charging
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011210372A
Other languages
Japanese (ja)
Inventor
Takuya Imai
拓也 今井
Atsuo Matsumoto
淳雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011210372A priority Critical patent/JP2013074661A/en
Publication of JP2013074661A publication Critical patent/JP2013074661A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: In a conventional charger, electric power in proportion to electric power supplied to a power supply for charge output is supplied to a power supply for charge control circuit, and power consumption of the power supply for charge output is low and when power consumption of the power supply for charge control circuit is large, electric power supplied from a primary power circuit lowers and electric power cannot be sufficiently supplied to the power supply for charge control circuit, thus causing impossible operation maintenance of the charger.SOLUTION: The charger, configured so that electric power can be supplied to each of a power supply for charge output that outputs a charge output from one transformer and a power supply for charge control circuit that supplies electric power to a charge control circuit, achieves low power consumption of the power supply for charge output and can output a voltage with the power supply for charge control circuit stable even when the power consumption of the power supply for charge control circuit is large, thereby to reduce power consumption during standby.

Description

本発明は、1つの変圧器から充電出力を出力する充電出力用電源と充電制御回路へ電力を供給する充電制御回路用電源へ個々に電力が供給されるように構成された充電装置において、電池パックが挿入されていない待機時の消費電力を低減する充電装置に関する。   The present invention relates to a charging device configured to individually supply power to a power source for charging output that outputs a charging output from one transformer and a power source for charging control circuit that supplies power to the charging control circuit. The present invention relates to a charging device that reduces power consumption during standby when no pack is inserted.

近年、地球温暖化など環境問題に対する関心が高まっている。このような中、携帯電話やノートパソコンなどモバイル機器で電源として利用されていたリチウムイオン電池などの充電電池が、CO2排出抑制や省エネの観点から従来エンジンを駆動源としていた自動車や自動二輪車、耕運機などが駆動源をモータに変更し、そのモータを駆動する電源として充電電池が搭載されるようになってきている。   In recent years, interest in environmental issues such as global warming has increased. Under these circumstances, rechargeable batteries such as lithium-ion batteries that have been used as power sources for mobile devices such as mobile phones and laptop computers are vehicles, motorcycles, and cultivators that have traditionally been driven by engines from the standpoint of reducing CO2 emissions and saving energy. The drive source is changed to a motor, and a rechargeable battery is mounted as a power source for driving the motor.

このように機器本体は充電電池の使用によりCO2削減など環境問題への取り組みがなされている。さらには、充電電池を充電する充電器にも関心が高まっており、高効率化や待機電力低減など、充電器も消費電力を抑える取り組みがなされている。   In this way, the device main body is tackled for environmental problems such as CO2 reduction by using a rechargeable battery. Furthermore, there is an increasing interest in chargers that charge rechargeable batteries, and efforts are also being made to reduce power consumption of chargers, such as higher efficiency and lower standby power.

また、本体機器に使用される充電電池は高い安全性や長時間駆動が求められている。高い安全性を確保するために、充電電池は、充電電池の充放電制御や各種保護機能を有する電池制御回路(Battery Management Unit、以下BMUと称す)を充電電池パックは内蔵している。   In addition, rechargeable batteries used for main devices are required to have high safety and long-time driving. In order to ensure high safety, the rechargeable battery pack incorporates a battery control circuit (Battery Management Unit, hereinafter referred to as BMU) having charge / discharge control of the rechargeable battery and various protection functions.

充電時、BMUと充電器の充電制御回路は常に充電電池が過放電、過電圧、過電流など不安全な状態にならないか監視し、異常が発生すれば充電を停止し、充電器の表示ランプで警告するなどし、充電時の安全性を高めている。このとき、充電器はBMUとの通信や表示ランプの切替のため、充電制御回路にマイコンを搭載し制御を行っている。   During charging, the charging control circuit of the BMU and charger always monitors whether the rechargeable battery is in an unsafe state such as overdischarge, overvoltage, overcurrent, etc., and stops charging if an abnormality occurs, and the charger indicator lamp Warnings are added to increase safety during charging. At this time, the charger performs control by installing a microcomputer in the charge control circuit for communication with the BMU and switching of the display lamp.

マイコンが搭載された充電器は、マイコンの電源を供給するために、一つの変圧器から充電電流や充電電圧を出力する充電出力用電源と、マイコンを含む充電制御回路や表示ランプに電力を供給する充電制御回路用電源の2つの電源で構成することがある。   A charger equipped with a microcomputer supplies power to a charging output circuit that outputs charging current and charging voltage from a single transformer, and to a charge control circuit and display lamp including the microcomputer, in order to supply power to the microcomputer. In some cases, the power supply for the charge control circuit is composed of two power supplies.

このように構成した電源を制御する方法は、いくつか方法がある。   There are several methods for controlling the power supply configured as described above.

例えば、特許文献1および特許文献2があげられる。それぞれの主な内容は、発明が解決しようとする課題に記載します。   Examples thereof include Patent Document 1 and Patent Document 2. The main contents of each are listed in the problem to be solved by the invention.

通常、充電出力用電源と充電制御回路用電源の出力を高精度に制御するため、双方の電源から一次側電源回路のスイッチング電源回路に信号をフィードバックをして2つの出力を制御する方法や、充電出力は高精度に制御するため、充電出力用電源は一次側電源回路のスイッチング電源回路に信号をフィードバックして充電出力の制御を行うが、充電制御回路用電源はフィードバック制御しない方法などがある。   Usually, in order to control the output of the power supply for charging output and the power supply for charging control circuit with high accuracy, a method of feeding back signals to the switching power supply circuit of the primary power supply circuit from both power supplies and controlling the two outputs, Since the charging output is controlled with high accuracy, the charging output power supply controls the charging output by feeding back a signal to the switching power supply circuit of the primary power supply circuit, but the charging control circuit power supply does not perform feedback control. .

後者の方法の場合、充電制御回路用電源には、充電出力用電源に供給される電力に比例した電力が供給され、この電力を充電制御用電源で所望の電圧に制御して充電制御回路に供給している。   In the latter method, the charge control circuit power supply is supplied with power proportional to the power supplied to the charge output power supply, and this power is controlled to a desired voltage by the charge control power supply to the charge control circuit. Supply.

特開2010−239788号公報JP 2010-239788 A 特開2004−312892号公報JP 2004-312892 A

上述した後者の回路構成、すなわち、充電出力用電源は一次側電源回路のスイッチング電源回路に信号をフィードバックして充電出力の制御を行うが、充電制御回路用電源はフィードバック制御しない方法では部品点数が少なく安価な回路構成が可能であるが、充電出力用電源の消費電力が小さく、充電制御回路用電源の出力が大きい場合は、一次側電源回路から供給される電力は低下し、充電制御回路用電源に十分に電力を供給できなくなり、充電器の動作を保てなくなってしまう。   In the latter circuit configuration described above, that is, the charge output power supply controls the charge output by feeding back a signal to the switching power supply circuit of the primary side power supply circuit. Small and inexpensive circuit configuration is possible, but if the power consumption of the power supply for charging output is small and the output of the power supply for charging control circuit is large, the power supplied from the primary side power supply circuit will decrease, Sufficient power cannot be supplied to the power supply, and the operation of the charger cannot be maintained.

例えば、電池パック挿入直後に充電電池パックが正常なものであるかどうかの認証を行い、充電出力はまだ出力されていない時や電池パックが高温であり充電するには危険な温度の時、温度低下を待つために、充電表示ランプを点滅させて充電を停止している時などである。   For example, immediately after the battery pack is inserted, it is verified whether the rechargeable battery pack is normal, and when the charging output is not yet output or when the battery pack is hot and dangerous to charge, the temperature For example, when charging is stopped by blinking the charging indicator lamp in order to wait for a decrease.

そのため、特許文献1では、充電制御回路用電源にも一次側電源回路にフィードバック信号を送信する回路と充電出力用電源に出力電圧を低下させるための抵抗を設け、必要なときだけ充電出力用電源に充電電圧を低下させるための抵抗により充電出力用電源の消費電力を低下させ、充電制御回路用電源からのフィードバック信号により一次側電源回路から供給される電力を制御するようにしている。   Therefore, in Patent Document 1, the charge control circuit power supply is provided with a circuit for transmitting a feedback signal to the primary power supply circuit and a resistor for reducing the output voltage at the charge output power supply, and the charge output power supply is only necessary. In addition, the power consumption of the power supply for charging output is reduced by a resistor for reducing the charging voltage, and the power supplied from the primary side power supply circuit is controlled by a feedback signal from the power supply for charging control circuit.

また、特許文献2では、待機電力低減のため、普段は一次側電源回路からの電力供給を停止し、充電を開始するために回路起動のために電力が必要な場合、電池パックから電力を供給するようにしている。   Also, in Patent Document 2, in order to reduce standby power, power supply from the primary power circuit is usually stopped, and power is supplied from the battery pack when power is required to start the circuit to start charging. Like to do.

しかしながら、特許文献1の方法では、出力電圧をフィードバック制御が効かないほど下げる必要があり、充電出力用電源の出力電圧を低下させるための抵抗は許容電力が大きいものが必要となる。   However, in the method of Patent Document 1, it is necessary to lower the output voltage so that the feedback control is not effective, and a resistor for reducing the output voltage of the power supply for charging output requires a large allowable power.

さらに充電制御回路用電源のフィードバック信号用の回路も必要となり、コストアップの 要因となる。また、電池パックが接続されていない待機時にも抵抗を接続して充電制御回 路用電源を駆動させるため待機時の消費電力は増加する。   In addition, a circuit for a feedback signal of the power supply for the charge control circuit is necessary, which causes a cost increase. In addition, the power consumption during standby increases because a resistor is connected to drive the power supply for the charge control circuit even during standby when the battery pack is not connected.

特許文献2では、充電電池パックから電力が供給できない状態(例えば、外部から信号を送らないと起動できないスリープ状態など)では、電池パックから電力を供給することができないため、他の方法で起動させるための回路も必要になる。   In Patent Document 2, since power cannot be supplied from the battery pack in a state where power cannot be supplied from the rechargeable battery pack (for example, a sleep state in which it cannot be started unless a signal is sent from the outside), the battery pack can be started by another method. Circuit is also required.

本発明は上記課題を鑑みたものであり、充電出力用電源の消費電力が小さく、充電制御回路用電源の出力が大きい場合でも充電制御回路用電源の出力電圧を維持できるように、充電出力用電源に負荷を接続し、充電出力用電源の消費電力を増加させる。そして、充電制御回路用電源へ供給する電力を増加させるようにし、電池パックが接続されていない待機時などの充電出力用電源の消費電力が小さく、充電制御回路用電源の消費電力も小さい場合は充電出力用電源へ負荷は追加せず、待機時の消費電力を低減するようにした充電装置を提供することを目的とする。   The present invention has been made in view of the above problems, and is intended for charging output so that the power consumption of the power source for charging output is small and the output voltage of the power source for charging control circuit can be maintained even when the output of the power source for charging control circuit is large. Connect a load to the power supply to increase the power consumption of the power supply for charging output. And if the power supplied to the power supply for the charge control circuit is increased, the power consumption of the power supply for the charge output is small when the battery pack is not connected, etc. It is an object of the present invention to provide a charging apparatus that reduces power consumption during standby without adding a load to the power supply for charging output.

このとき、充電出力用電源の消費電力を少し増やすだけでよいため、追加する抵抗の許容電力も小さいもので良くなる。   At this time, since it is only necessary to slightly increase the power consumption of the power supply for charging output, the allowable power of the added resistor can be small.

商用電源から供給される電力を整流平滑するとともに変圧器へ供給する電力を制御するスイッチング電源回路を備えた一次側電源回路と上記変圧器の出力を充電スイッチを制御して充電電池パックに充電する充電出力用電源と上記充電電池パックの情報を受けて充電出力用電源や充電スイッチを制御する充電制御回路と一次側電源回路から充電出力用電源に供給される電力に比例した電力を変圧器から供給され充電制御回路に所望の電力を供給する充電制御回路用電源からなる二次側回路からなる充電装置において、上記充電出力用電源の出力側に負荷増加回路とこの負荷増加回路の接続を切り替える負荷切替スイッチの直列回路を設け、上記充電出力用電源の消費電力が少なく充電制御回路用電源に一次側電源回路から必要な電力が供給できないときだけ上記充電制御回路によって負荷切替スイッチをオンにして充電出力電源の消費電力を増して充電制御回路用電源への電力供給量を増やし、上記充電出力用電源の電力が少ない場合でも充電制御回路用電源に必要な電力が供給できるときは負荷切替スイッチをオフのままとし待機時の消費電力を低減することを特徴とする充電装置である。   A primary power supply circuit having a switching power supply circuit for rectifying and smoothing the power supplied from the commercial power supply and controlling the power supplied to the transformer, and charging the rechargeable battery pack by controlling the charging switch for the output of the transformer Transformer power proportional to the power supplied to the charging output power from the charging control circuit and the primary side power supply circuit that receives the information of the charging output power supply and the charging battery pack and controls the charging output power supply and the charging switch. In a charging device comprising a secondary circuit comprising a power supply for a charging control circuit that supplies desired power to the charging control circuit, a load increasing circuit and a connection between the load increasing circuit are connected to the output side of the charging output power supply. A series circuit of load changeover switches is provided to reduce the power consumption of the power supply for charge output and supply the necessary power from the primary power supply circuit to the power supply for the charge control circuit. Only when there is no charge control circuit, the load changeover switch is turned on to increase the power consumption of the charge output power supply and increase the amount of power supplied to the power supply for the charge control circuit. When the power necessary for the circuit power source can be supplied, the charging device is characterized in that the load changeover switch is kept off to reduce power consumption during standby.

また、商用電源から供給される電力を整流・平滑するとともに変圧器へ供給する電力を制御するスイッチング電源回路を備えた一次側電源回路と上記変圧器の出力を充電スイッチを制御して充電電池パックに充電する充電出力用電源と上記充電電池パックの情報を受けて充電出力用電源や充電スイッチを制御する充電制御回路と一次側電源回路から充電出力用電源に供給される電力に比例した電力を変圧器から供給され充電制御回路に所望の電力を供給する充電制御回路用電源からなる二次側回路からなる充電装置において、上記充電出力用電源の出力側に負荷を増加をするための抵抗とこの抵抗の接続を切り替える負荷切替スイッチの直列回路を設け、上記充電出力用電源の消費電力が少なく充電制御回路用電源に一次側電源回路から必要な電力が供給できないときだけ上記充電制御回路によって負荷切替スイッチをオンにし、負荷を増加をするための抵抗で電力を消費することにより充電出力用電源の消費電力を増して充電制御回路用電源への電力供給量を増やし、上記充電出力用電源の電力が少ない場合でも充電制御回路用電源に必要な電力が供給できるときは負荷切替スイッチをオフのままとし待機時の消費電力を低減することを特徴とする充電装置である。さらに上記負荷増加回路は上記充電制御回路用電源の必要な電力量に応じて負荷の大きさを任意に変えることができる。   In addition, a primary side power supply circuit having a switching power supply circuit for rectifying and smoothing power supplied from a commercial power supply and controlling power supplied to the transformer, and a charge battery pack by controlling a charge switch for the output of the transformer Power that is proportional to the power supplied to the power supply for charging output from the primary side power supply circuit and the charging control circuit that controls the power supply for charging output and the charging switch by receiving information on the charging battery pack and the information on the charging battery pack A resistor for increasing a load on the output side of the charging output power source in a charging device including a secondary side circuit consisting of a power source for a charging control circuit for supplying desired power to the charging control circuit supplied from a transformer And a series circuit of load changeover switches that switch the connection of this resistor, the power consumption of the power supply for the above-mentioned charging output is low, and the power supply for the charging control circuit is required from the primary power supply circuit Only when power cannot be supplied, the load control switch is turned on by the charge control circuit, and power is consumed by a resistor for increasing the load, thereby increasing the power consumption of the power supply for charge output and supplying power to the power supply for charge control circuit. Increase the power supply amount and reduce the power consumption during standby by keeping the load changeover switch off when the power required for the power supply for the charge control circuit can be supplied even when the power for the power supply for charging output is low. It is a charging device. Furthermore, the load increasing circuit can arbitrarily change the size of the load in accordance with the amount of power required for the power supply for the charging control circuit.

本発明によると、充電制御回路用電源に大きな電力が必要なときのみ充電出力用電源の負荷を増やして充電制御回路用電源へ供給する電力を増やし、電池パックが挿入されていない待機時の消費電力を低減する待機電力の小さい充電装置を提供することができる。   According to the present invention, only when a large amount of power is required for the charging control circuit power supply, the load of the charging output power supply is increased to increase the power supplied to the charging control circuit power supply. A charging device with low standby power that reduces power can be provided.

電気回路構成図Electrical circuit configuration diagram 負荷増加抵抗を接続していないときの各動作波形図Each operation waveform diagram when no load increasing resistor is connected 負荷増加抵抗を接続したときの各動作波形図Each operation waveform diagram when a load increasing resistor is connected 一実施形態における充電装置の充電波形図Charging waveform diagram of charging device in one embodiment

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明を具体的に説明するものであって、本発明は、充電装置を以下に特定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below specifically explains the present invention, and the present invention does not specify the charging device below.

(実施の形態1)
図1は本発明の充電装置を構成する充電器の電気的構成を簡略的に示した電気回路構成図である。
(Embodiment 1)
FIG. 1 is an electric circuit configuration diagram schematically showing an electrical configuration of a charger constituting the charging device of the present invention.

充電器20は、充電電池パック10の充電電池を充電するために所定の電流・電圧を生成するものであり、充電電池パック10を充電器20に装着することにより、電気的に接続され、充電を開始する。   The charger 20 generates a predetermined current / voltage to charge the rechargeable battery of the rechargeable battery pack 10, and is electrically connected and charged by attaching the rechargeable battery pack 10 to the charger 20. To start.

次に、充電器20の構成について説明する。   Next, the configuration of the charger 20 will be described.

充電器20は外部電源(本実施例では、AC100V)を直流に整流平滑し、スイッチング制御回路22により変圧器23に電力を供給する一次側電源回路21と、一次側電源回路21から二次側に電力を供給する変圧器23、変圧器23から電力の供給を受け、充電電流、充電電圧を出力する。   The charger 20 rectifies and smoothes an external power source (AC100V in this embodiment) into a direct current, and supplies power to the transformer 23 by the switching control circuit 22, and a secondary side from the primary side power circuit 21. The power is supplied from the transformer 23 and the transformer 23 that supply power to the power supply, and the charging current and the charging voltage are output.

所望の充電出力を出力するために信号をスイッチング電源回路22にフィードバックし、充電出力を制御する充電出力用電源24、充電出力用電源24と電池パック接続部との間に設けられ、充電出力の電力供給のオンオフをする充電スイッチ25、充電電池パック10との通信や各スイッチのオンオフ信号の送信、充電制御や充電出力の過電圧や過電流を検出する。   In order to output a desired charge output, a signal is fed back to the switching power supply circuit 22, and the charge output power source 24 for controlling the charge output is provided between the charge output power source 24 and the battery pack connection portion. Communication with the charge switch 25 for turning on / off the power supply and the rechargeable battery pack 10, transmission of an on / off signal of each switch, charge control, and overvoltage and overcurrent of the charge output are detected.

充電を停止する保護機能を有し、充電状態を表示する表示ランプ28の制御等を行う充電制御回路27、変圧器23から充電出力用電源の消費電力に比例した電力が供給され充電制御回路27や表示ランプ28に電力をする充電制御回路用電源26、充電出力用電源24の出力側に設けられ、充電制御回路用電源26の消費電力に応じて必要であれば充電出力用電源24の負荷を増加させる負荷増加抵抗29、負荷増加抵抗29を充電出力用電源24への接続を切り替える負荷切替スイッチ30から構成されている。   A charge control circuit 27 that has a protection function for stopping charging and that controls the display lamp 28 that displays the state of charge, etc., and is supplied with power proportional to the power consumption of the power supply for charge output from the transformer 23. The charging control circuit power supply 26 for supplying power to the display lamp 28 and the output side of the charging output power supply 24 are provided on the output side, and the load of the charging output power supply 24 is required depending on the power consumption of the charging control circuit power supply 26 Load increasing resistor 29 and load increasing switch 29 for switching connection of the load increasing resistor 29 to the power supply 24 for charging output.

本実施例では、負荷増加回路に構成が簡単であり、入手性も容易な抵抗を使用する。   In this embodiment, a resistor having a simple configuration and easy availability is used for the load increasing circuit.

まず、充電出力用電源24の負荷が軽く必要な電力は少ないが、充電制御回路用電源26の電力は多い場合の動作例を説明する。   First, an operation example when the load of the power supply 24 for charging output is light and the required power is small, but the power of the power supply 26 for the charging control circuit is large will be described.

例えば、充電電池パック10が充電器20に装着されたとき、ユーザーに充電開始を知らせるために装着と同時に表示ランプ28を点灯させるが、充電電池パック10と充電器20の間では安全に充電できるかどうか充電電池パック10のBMUと充電器20の充電制御回路27で認証通信を行い、認証が完了するまで充電電池パック10に充電出力を供給しない場合や充電電池パック10を安全に充電するために充電電池パック10の温度が非常に高かったり、非常に低かった場合は充電出力用電源24の出力を停止するが、充電制御回路27は充電電池パック10と通信を行い、さらに表示ランプも点灯している場合である。   For example, when the rechargeable battery pack 10 is attached to the charger 20, the display lamp 28 is turned on simultaneously with the attachment to inform the user of the start of charging. However, the rechargeable battery pack 10 and the charger 20 can be charged safely. Whether the BMU of the rechargeable battery pack 10 and the charge control circuit 27 of the charger 20 perform authentication communication, and charging power is not supplied to the rechargeable battery pack 10 until the authentication is completed or to charge the rechargeable battery pack 10 safely. When the temperature of the rechargeable battery pack 10 is very high or very low, the output of the power supply 24 for charging output is stopped, but the charge control circuit 27 communicates with the rechargeable battery pack 10 and the display lamp is also lit. This is the case.

このような場合の各電源の動作波形を記した図が図2である。   FIG. 2 is a diagram illustrating operation waveforms of the respective power supplies in such a case.

充電出力用電源24の負荷が軽いときは、消費電力を少なくするため、一次側電源回路21の電流波形の三角形が少ない、すなわち一次側電源回路21から供給される電力を少なくしているため、充電出力用電源24の出力電圧は動作に影響を及ぼさない範囲で変動している。   When the load of the power supply 24 for charging output is light, in order to reduce power consumption, the triangle of the current waveform of the primary side power supply circuit 21 is small, that is, the power supplied from the primary side power supply circuit 21 is reduced. The output voltage of the power supply 24 for charging output varies within a range that does not affect the operation.

しかしながら、充電制御回路27や表示ランプ28へ電力を供給する必要があり、充電制御回路用電源26が必要な電力は多い。   However, it is necessary to supply power to the charge control circuit 27 and the display lamp 28, and the power required for the charge control circuit power supply 26 is large.

この場合、充電出力用電源24に必要な電力は少ないため、充電制御回路用電源26に一次側電源回路21から供給される電力も少なくなり、充電出力用電源24の出力電圧は充電制御回路27を動作させるために必要な電圧を下回ってしまい、充電器20は動作を停止する。   In this case, since the power required for the charge output power supply 24 is small, the power supplied from the primary power supply circuit 21 to the charge control circuit power supply 26 is also reduced, and the output voltage of the charge output power supply 24 is equal to the charge control circuit 27. The voltage required for operating the battery becomes lower, and the charger 20 stops operating.

図2の破線31は、充電制御回路の動作を維持するために必要な電圧を示してる。   A broken line 31 in FIG. 2 indicates a voltage necessary for maintaining the operation of the charge control circuit.

このような充電停止を発生させないため、充電出力用電源24の消費電力をある一定以上に保ち、充電制御回路用電源26に電力を供給するため、常時出力側に負荷増加抵抗29を接続する。   In order not to cause such a charge stop, the load increasing resistor 29 is always connected to the output side in order to keep the power consumption of the power supply 24 for charge output above a certain level and supply power to the power supply 26 for the charge control circuit.

これにより、一次側電源回路21は、充電出力に必要な電力が少ない場合でも一定程度の電力を供給することができる。   Thereby, the primary side power supply circuit 21 can supply a certain level of power even when the power required for the charge output is small.

この結果、充電制御電回路用電源26へ供給される電力が増え、充電出力用電源24の電圧変動は小さくなり、充電制御回路27を動作させるために必要な電圧を維持できるようになる。このときの各電源の動作波形を記した図が図3である。   As a result, the power supplied to the power supply for charging control circuit 26 is increased, the voltage fluctuation of the power supply for charging output 24 is reduced, and the voltage necessary for operating the charging control circuit 27 can be maintained. FIG. 3 shows the operation waveform of each power source at this time.

しかしながら、充電出力用電源24の出力側に負荷増加抵抗29を接続したままでは、充電電池パック10が接続されていない待機時でも負荷増加抵抗29で電力を消費し続け、待機時の消費電力が増加する。   However, if the load increasing resistor 29 is connected to the output side of the power supply 24 for charging output, the load increasing resistor 29 continues to consume power even during standby when the rechargeable battery pack 10 is not connected, and power consumption during standby is reduced. To increase.

そのため、本発明では、負荷増加抵抗29に直列に負荷切替スイッチ30を追加し、充電状態を常に充電制御回路27で監視し、充電出力用電源24は負荷が軽く必要な電力は少ないが、充電制御回路用電源26の消費電力が多い場合のみ負荷増加抵抗29を接続するよう充電制御回路27から信号を出し、負荷切替スイッチ30をオンするようにした。   Therefore, in the present invention, a load changeover switch 30 is added in series with the load increasing resistor 29, and the charge state is always monitored by the charge control circuit 27. The charge output power supply 24 is light in load and requires less power. Only when the power consumption of the control circuit power supply 26 is large, a signal is output from the charge control circuit 27 to connect the load increasing resistor 29, and the load changeover switch 30 is turned on.

これにより充電電池パック10が接続されていない待機時等充電出力用電源24も充電制御回路用電源26も負荷が軽いときは、負荷増加抵抗29で電力を消費することがないため、待機時の消費電力を低減させることができる。   As a result, when neither the charging output power source 24 nor the charging control circuit power source 26 is in a standby state where the rechargeable battery pack 10 is not connected, the load increasing resistor 29 does not consume power when the load is light. Power consumption can be reduced.

図3の破線31は、充電制御回路の動作を維持するために必要な電圧を示してる。   A broken line 31 in FIG. 3 indicates a voltage necessary for maintaining the operation of the charge control circuit.

この負荷切替スイッチ30のオンオフと充電時の波形を記した図が図4である。   FIG. 4 is a diagram illustrating waveforms at the time of on / off of the load changeover switch 30 and charging.

充電電池パック10が装着されていない無負荷や充電が完了し表示ランプ28がオフの場合、すなわち充電出力用電源24も充電制御回路用電源26も負荷が軽く消費電力が小さい場合や充電出力用電源24の負荷が十分大きく充電制御回路26に十分に電力を供給できる充電時は負荷切替スイッチ30をオフし、不要なときは電力を負荷増加抵抗29で消費しないようにしている。   When there is no load in which the rechargeable battery pack 10 is not installed or when the charging is completed and the display lamp 28 is turned off, that is, when the power supply 24 for the charge output and the power supply 26 for the charge control circuit are both lightly loaded and have low power consumption, The load changeover switch 30 is turned off at the time of charging when the load of the power source 24 is sufficiently large and sufficient power can be supplied to the charge control circuit 26, and the power is not consumed by the load increasing resistor 29 when unnecessary.

それに対して、負荷状態が充電電池パック10と充電器20で認証通信を行っている、あるいは高温保護で充電出力を停止しているような充電出力用電源24の負荷が軽く必要な電力は少ないが、充電制御回路用電源26の消費電力が多い場合は、負荷切替スイッチ30をオンにして、充電出力用電源24へ供給する電力を増加させ、充電制御回路用電源26へ供給する電力を増やすことより、充電制御回路用電源26の出力電圧は常に安定した値を維持し、充電動作を維持することができている。   On the other hand, the load of the power supply 24 for charging output is light and the required power is low, such that the load state is authentication communication between the rechargeable battery pack 10 and the charger 20, or the charging output is stopped due to high temperature protection. However, when the power consumption of the charge control circuit power supply 26 is large, the load changeover switch 30 is turned on to increase the power supplied to the charge output power supply 24 and increase the power supplied to the charge control circuit power supply 26. As a result, the output voltage of the power supply 26 for the charge control circuit can always maintain a stable value and maintain the charging operation.

また、上記実施例では充電出力用電源24の出力側に接続する負荷増加抵抗29は1つだけであったが、充電制御回路用電源26の必要な電力は負荷の状態によって変わる。   In the above embodiment, only one load increasing resistor 29 is connected to the output side of the power supply 24 for charge output. However, the required power of the power supply 26 for the charge control circuit varies depending on the state of the load.

そのため、充電出力用電源24の出力側に接続する抵抗を複数接続しておき、充電制御回路用電源26の消費電力に応じて負荷切替スイッチにより負荷増加抵抗29の抵抗の大きさを切り替え、充電制御回路用電源26の必要な電力が大きい場合は大きな抵抗を、電力が小さい場合は小さな抵抗を接続するようにし、充電出力用電源24の消費電力を抑えるようにしたのが、請求項3記載の内容である。   Therefore, a plurality of resistors connected to the output side of the power supply 24 for charging output are connected, and the magnitude of the resistance of the load increasing resistor 29 is switched by the load changeover switch according to the power consumption of the power supply 26 for the charging control circuit. According to a third aspect of the present invention, a large resistor is connected when the required power of the control circuit power supply 26 is large, and a small resistor is connected when the power is small, so that the power consumption of the power supply 24 for charging output is suppressed. It is the contents of.

本実施の形態では、AC100Vの外部電源を使用したため、変圧器23を用いたが、もちろん、DC電圧を外部電源とする時は、DC−DCコンバータなど最適な回路方式を用いることができる。   In this embodiment, an AC 100V external power supply is used, so the transformer 23 is used. Of course, when a DC voltage is used as an external power supply, an optimum circuit system such as a DC-DC converter can be used.

上記説明したように本発明の充電装置によれば、充電制御回路用電源に電力が必要なときのみ充電出力用電源の負荷を増やして充電制御用電源へ供給する電力を増やし、電池パックが挿入されていない待機時の消費電力を低減する待機電力の小さい充電装置を提供することができる。   As described above, according to the charging device of the present invention, only when the power for the charging control circuit power is necessary, the load of the charging output power source is increased to increase the power supplied to the charging control power source, and the battery pack is inserted. Thus, it is possible to provide a charging device with low standby power that reduces power consumption during standby.

10 充電電池パック
20 充電器
21 一次側電源回路
22 スイッチング制御回路
23 変圧器
24 充電出力用電源
25 充電スイッチ
26 充電制御回路用電源
27 充電制御回路
28 表示ランプ
29 負荷増加抵抗
30 負荷切替スイッチ
31 破線
DESCRIPTION OF SYMBOLS 10 Charge battery pack 20 Charger 21 Primary side power supply circuit 22 Switching control circuit 23 Transformer 24 Power supply for charge output 25 Charge switch 26 Power supply for charge control circuit 27 Charge control circuit 28 Display lamp 29 Load increase resistance 30 Load changeover switch 31 Broken line

Claims (3)

商用電源から供給される電力を整流平滑するとともに変圧器へ供給する電力を制御するスイッチング電源回路を備えた一次側電源回路と上記変圧器の出力を充電スイッチで制御して充電電池パックに充電する充電出力用電源と上記充電電池パックの情報を受けて充電出力用電源および充電スイッチを制御する充電制御回路と一次側電源回路から充電出力用電源に供給される電力に比例した電力を前記変圧器から供給され充電制御回路に所望の電力を供給する充電制御回路用電源からなる二次側回路からなる充電装置において、上記充電出力用電源の出力側に負荷増加回路と前記負荷増加回路の接続を切り替える負荷切替スイッチの直列回路を設け、上記充電出力用電源の消費電力が少なく充電制御回路用電源に一次側電源回路から必要な電力が供給できない場合に上記充電制御回路によって負荷切替スイッチをオンとして、充電出力電源の消費電力を増し、充電制御回路用電源への電力供給量を増加させ、上記充電出力用電源の電力が少ない場合でも充電制御回路用電源に必要な電力が供給できる場合には、負荷切替スイッチをオフのままとし待機時の消費電力を低減することを特徴とする充電装置。   A primary power supply circuit having a switching power supply circuit for rectifying and smoothing the power supplied from the commercial power supply and controlling the power supplied to the transformer and the output of the transformer are controlled by a charge switch to charge the rechargeable battery pack. The power is proportional to the power supplied to the charging output power from the charging control circuit and the primary side power supply circuit which receives the information of the charging output power supply and the charging battery pack and controls the charging output power supply and the charging switch. In a charging device comprising a secondary circuit comprising a power supply for a charge control circuit for supplying desired power to the charge control circuit supplied from the battery, the load increasing circuit and the load increasing circuit are connected to the output side of the charge output power supply A series circuit of load changeover switches is provided to reduce the power consumption of the power supply for charge output, and the power required for the power supply for the charge control circuit from the primary power supply circuit Even if the power cannot be supplied, the load switch is turned on by the charge control circuit to increase the power consumption of the charge output power supply, increase the power supply to the power supply for the charge control circuit, and even if the power of the charge output power supply is low A charging device characterized in that, when necessary power can be supplied to a power supply for a charge control circuit, the load changeover switch is kept off to reduce power consumption during standby. 上記充電装置の充電出力用電源の出力側に負荷を増加をするための抵抗とこの抵抗の接続を切り替える負荷切替スイッチの直列回路を設け、上記充電出力用電源の消費電力が少なく充電制御回路用電源に一次側電源回路から必要な電力が供給できないときだけ上記充電制御回路によって前記負荷切替スイッチをオンにし、負荷を増加をするための抵抗で電力を消費することにより、充電出力用電源の消費電力を増加して、充電制御回路用電源への電力供給量を増加し、上記充電出力用電源の電力が少ない場合でも、充電制御回路用電源に必要な電力が供給できるときは負荷切替スイッチをオフのままとし、待機時の消費電力を低減することを特徴とする請求項1記載の充電装置。   A series circuit of a resistor for increasing the load and a load changeover switch for switching the connection of the resistor is provided on the output side of the charging output power source of the charging device, and the power consumption of the charging output power source is low. Only when the necessary power cannot be supplied from the primary power supply circuit to the power supply, the load control switch is turned on by the charge control circuit, and the power is consumed by the resistor for increasing the load. Increase the power to increase the amount of power supplied to the power supply for the charge control circuit, and when the power required for the power supply for the charge control circuit can be supplied even when the power for the power supply for the charge output is low, 2. The charging device according to claim 1, wherein the charging device is kept off to reduce power consumption during standby. 上記負荷増加回路は上記充電制御回路用電源の必要な電力量に応じて負荷の大きさを任意に変えることができることを特徴とする請求項1記載の充電装置。   2. The charging device according to claim 1, wherein the load increasing circuit can arbitrarily change the load according to the amount of electric power required for the power supply for the charging control circuit.
JP2011210372A 2011-09-27 2011-09-27 Charger Withdrawn JP2013074661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210372A JP2013074661A (en) 2011-09-27 2011-09-27 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210372A JP2013074661A (en) 2011-09-27 2011-09-27 Charger

Publications (1)

Publication Number Publication Date
JP2013074661A true JP2013074661A (en) 2013-04-22

Family

ID=48478737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210372A Withdrawn JP2013074661A (en) 2011-09-27 2011-09-27 Charger

Country Status (1)

Country Link
JP (1) JP2013074661A (en)

Similar Documents

Publication Publication Date Title
KR101846680B1 (en) Battery management system for vehicle
US8933670B2 (en) Power supply system, electric vehicle and charging adapter
KR101690607B1 (en) Portable backup power supply
US20100327816A1 (en) Intelligent Voltage and Current Controlled PWM Microcontroller Type Battery Charger
JP5632771B2 (en) AC current supply device controller and AC current supply method
JP2015015895A (en) Power-supply unit
US20130257359A1 (en) Charger
EP2102961A2 (en) Battery powered charger
JP2013193738A (en) Battery pack and control method of battery pack
JP2010193597A (en) Charging controller
JP2012143020A (en) Charging system
JP3143670U (en) Battery structure for portable electronic devices
WO2011033352A1 (en) Power distribution system
JP2010288345A (en) Charge control device
CA2747493A1 (en) Rechargeable battery device, and power supplying system incorporating the same
EP2701263B1 (en) Power management system that changes the operating conditions of a battery charger
JP2020114172A (en) System for lead-acid battery replacement
US9325191B2 (en) Charger in which power consumption is reduced
US9440538B2 (en) Housekeeping circuit having trickle charge capabilities
JP2009071922A (en) Dc backup power supply device and method of controlling the same
KR101384922B1 (en) Method for auto-rechargeable in Energy Storage System
JPWO2013136655A1 (en) Charge / discharge control device
JP2013074661A (en) Charger
JP2014073023A (en) Charging control device for vehicles
JP3218109U (en) Charger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202