JP2013074391A - Transmitter receiver - Google Patents

Transmitter receiver Download PDF

Info

Publication number
JP2013074391A
JP2013074391A JP2011210785A JP2011210785A JP2013074391A JP 2013074391 A JP2013074391 A JP 2013074391A JP 2011210785 A JP2011210785 A JP 2011210785A JP 2011210785 A JP2011210785 A JP 2011210785A JP 2013074391 A JP2013074391 A JP 2013074391A
Authority
JP
Japan
Prior art keywords
frequency
signal
transmission
circuit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011210785A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takagi
暢之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011210785A priority Critical patent/JP2013074391A/en
Publication of JP2013074391A publication Critical patent/JP2013074391A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transceivers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve precision of a transmission frequency of a single-wave simplex type transmitting-receiving circuit of a transmitter receiver including a single-wave simplex type transmitting-receiving circuit in addition to a first receiving circuit exclusively for base station.SOLUTION: The transmitter receiver is provided with a first frequency measurement unit which measures the frequency of a signal received by the first receiving circuit, and a second frequency measurement unit which measures the frequency of a signal received by a second receiving circuit of the transmitting-receiving circuit, also provided with a frequency error detection unit which detects an error of the frequency measured by the second frequency measurement unit on the basis of the frequency measured by the first frequency measurement unit, and further provided with a frequency control unit which receives a transmission signal by the second receiving circuit and controls the oscillation frequency of a voltage-controlled oscillator as a reference clock so as to reduce the error detected by the frequency error detection unit when performing transmission by the transmitting-receiving circuit.

Description

本発明は、消防無線など基地局との無線通信に使用される送受信機に関するものである。さらに詳しくは、送受信機内に設けられた局部発振器の温度変化や経時変化による発振周波数の変動による送信時の送信周波数の変動を補償する送受信機に関するものである。   The present invention relates to a transceiver used for wireless communication with a base station such as a fire fighting radio. More specifically, the present invention relates to a transmitter / receiver that compensates for a change in transmission frequency at the time of transmission due to a change in oscillation frequency due to a temperature change or a change with time of a local oscillator provided in the transmitter / receiver.

業務用の狭帯域デジタル無線通信システムは、標準規格のARIB STD−T61に、基地局から送信されてくる安定した周波数の信号に基づいて移動局での送受信に用いる発振信号を生成する内部基準クロックの周波数を制御してもよいとされている。この制御の従来例について以下説明する。   The business-use narrowband digital radio communication system uses the standard ARIB STD-T61 as an internal reference clock for generating an oscillation signal used for transmission / reception in a mobile station based on a stable frequency signal transmitted from a base station. It is said that the frequency may be controlled. A conventional example of this control will be described below.

図6は第1の従来例(特許文献1)の送受信機を示すブロック図である。
この図6の送受信機は、無線回路部101、ロジック回路部102、アンテナ110、操作部146からなり、無線回路部101は、アンテナ共用器111を介して受信回路と送信回路へ接続されている。
FIG. 6 is a block diagram showing the transceiver of the first conventional example (Patent Document 1).
6 includes a radio circuit unit 101, a logic circuit unit 102, an antenna 110, and an operation unit 146. The radio circuit unit 101 is connected to a reception circuit and a transmission circuit via an antenna duplexer 111. .

受信回路は、無線回路部101内のアンテナ共用器111からの受信信号を増幅器112で増幅し、増幅した受信信号を第1ミキサ113と第2ミキサ116によって受信信号の周波数を2回ダウンコンバートし、増幅器119を介して受信信号を復調する復調部120、さらに前記ロジック回路部102内のA/D変換器133を介して受信信号処理部143で信号処理をして音声信号を出力する。
送信回路は、ロジック回路部102内の送信信号処理部142で入力された音声信号をデジタル処理してからD/A変換器130でアナログ信号に変換後、無線回路部101内の変調部121で変調した信号を増幅器122で増幅し、第2ミキサ123、第1ミキサ125によって送信信号の周波数を2回アップコンバートし、送信アンプである増幅器127を介してアンテナ共用器111へ送りアンテナ110から送信される。
The reception circuit amplifies the reception signal from the antenna duplexer 111 in the wireless circuit unit 101 by the amplifier 112, and down-converts the frequency of the reception signal twice by the first mixer 113 and the second mixer 116. Then, the demodulator 120 that demodulates the received signal through the amplifier 119, and the signal processing by the received signal processor 143 through the A / D converter 133 in the logic circuit unit 102, outputs an audio signal.
The transmission circuit performs digital processing on the audio signal input by the transmission signal processing unit 142 in the logic circuit unit 102, converts it to an analog signal by the D / A converter 130, and then uses the modulation unit 121 in the wireless circuit unit 101. The modulated signal is amplified by the amplifier 122, the frequency of the transmission signal is up-converted twice by the second mixer 123 and the first mixer 125, sent to the antenna duplexer 111 via the amplifier 127 which is a transmission amplifier, and transmitted from the antenna 110. Is done.

ロジック回路102内には制御部144が設けられ、受信信号処理部143では音声信号を出力するための信号処理と共に、基地局から送信される周波数情報を検出し、制御部144に供給する。制御部144では、この周波数情報とVC−TCXO(電圧制御温度補償型水晶発振器)128の発振周波数とを比較し、周波数偏差Δfを算出する。そして、制御部144は、この周波数偏差Δfが零となるようにVC−TCXO128の発振周波数を制御するデジタル電圧を発生し、D/A変換器132を介してVC−TCXO128の周波数調整端子に印加する。これによってVC−TCXO128の発振周波数は、基地局の発振周波数に基づいてAFC制御される。また、温度検出部129からの温度情報は、A/D変換器131を介して制御部144に供給され、制御部144でVC−TCXO128の発振周波数の制御に用いられる。
このVC−TCXO128の発振信号は、第1PLL回路115、第2PLL回路118の基準クロックとして接続されている。
A control unit 144 is provided in the logic circuit 102, and the received signal processing unit 143 detects frequency information transmitted from the base station and supplies the signal to the control unit 144 together with signal processing for outputting an audio signal. The control unit 144 compares this frequency information with the oscillation frequency of the VC-TCXO (voltage controlled temperature compensated crystal oscillator) 128 to calculate the frequency deviation Δf. Then, the control unit 144 generates a digital voltage for controlling the oscillation frequency of the VC-TCXO 128 so that the frequency deviation Δf becomes zero, and applies it to the frequency adjustment terminal of the VC-TCXO 128 via the D / A converter 132. To do. As a result, the oscillation frequency of the VC-TCXO 128 is AFC controlled based on the oscillation frequency of the base station. Further, the temperature information from the temperature detection unit 129 is supplied to the control unit 144 via the A / D converter 131 and is used for controlling the oscillation frequency of the VC-TCXO 128 by the control unit 144.
The oscillation signal of the VC-TCXO 128 is connected as a reference clock for the first PLL circuit 115 and the second PLL circuit 118.

第1PLL回路115は、VC−TCXO128の発振信号を基準クロックとしてVCO(電圧制御発振器)114、VCO126の発振周波数を制御する。VCO114は受信側の第1局部発振回路としてミキサ113に接続し、VCO126は送信側の第2局部発振回路としてミキサ125に接続している。
第2PLL回路118は、VC−TCXO128の発振信号を基準クロックとしてVCO117、VCO124の発振周波数を制御する。VCO117は受信側の第1局部発振回路としてミキサ113に接続し、VCO126は送信側の第2局部発振回路としてミキサ125に接続している。
The first PLL circuit 115 controls the oscillation frequency of the VCO (voltage controlled oscillator) 114 and the VCO 126 using the oscillation signal of the VC-TCXO 128 as a reference clock. The VCO 114 is connected to the mixer 113 as a first local oscillation circuit on the reception side, and the VCO 126 is connected to the mixer 125 as a second local oscillation circuit on the transmission side.
The second PLL circuit 118 controls the oscillation frequency of the VCO 117 and VCO 124 using the oscillation signal of the VC-TCXO 128 as a reference clock. The VCO 117 is connected to the mixer 113 as a first local oscillation circuit on the reception side, and the VCO 126 is connected to the mixer 125 as a second local oscillation circuit on the transmission side.

以上の第1の従来例では、制御部144が、受信信号処理部143から出力される基地局からの送信周波数情報と、VC−TCXO128の発振周波数と、温度検出部129からの温度情報から記憶部145に記憶された補償用の情報に基づいてVC−TCXO128に与える制御電圧を生成するようになっている。
基準となる基地局からの信号を受信していないときは、記憶部145に記憶された基地局からの信号を受信したときのVC−TCXO128の制御電圧の値を基に制御電圧を生成する。
In the above first conventional example, the control unit 144 stores the transmission frequency information output from the reception signal processing unit 143 from the base station, the oscillation frequency of the VC-TCXO 128, and the temperature information from the temperature detection unit 129. A control voltage to be given to the VC-TCXO 128 is generated based on the compensation information stored in the unit 145.
When the signal from the base station serving as the reference is not received, the control voltage is generated based on the value of the control voltage of the VC-TCXO 128 when the signal from the base station stored in the storage unit 145 is received.

次に第2の従来例について説明する。
消防無線などで使用される移動局の送受信機は、図7に示すように、基地局からの指令、連絡などが送られてくる信号を受信する受信回路と、基地局への送信または、他の移動局(現場の緊急車両など)相互間での通信に使用される1波単信方式の送受信回路とで構成されていて、基地局との通信は2波複信方式となり、他の移動局との通信は1波単信方式となる。
この図7に示す送受信機は、基地局からの送信信号を受信するための第一受信回路41と基地局受信アンテナ1、及び送信回路43と第二受信回路44からなる送受信回路42と送受信アンテナ9で構成されている。
Next, a second conventional example will be described.
As shown in FIG. 7, the transmitter / receiver of a mobile station used in a fire fighting radio, etc. has a receiving circuit that receives a signal sent from the base station, a communication to the base station, a transmission to the base station, or other Mobile stations (such as emergency vehicles in the field) are used for communication between 1-wave simplex transmission / reception circuits used for communication between each other, and communication with the base station is a 2-wave duplex system. Communication with the station is a one-wave simplex system.
The transmitter / receiver shown in FIG. 7 includes a first receiving circuit 41 and a base station receiving antenna 1 for receiving a transmission signal from a base station, and a transmitting / receiving circuit 42 including a transmitting circuit 43 and a second receiving circuit 44, and a transmitting / receiving antenna. 9.

第一受信回路41は、基地局受信アンテナ1から増幅器2、第1ミキサ3、BPF(バンドパスフィルタ)4、第2ミキサ5、BPF6、A/D変換器7、第一復調部8で構成され、受信信号処理部30に接続されている。   The first receiving circuit 41 includes a base station receiving antenna 1, an amplifier 2, a first mixer 3, a BPF (band pass filter) 4, a second mixer 5, a BPF 6, an A / D converter 7, and a first demodulator 8. And connected to the received signal processing unit 30.

また、第一復調部8の出力は、第一周波数計測部18、周波数制御部25、D/A変換器24で構成して、VC−TCXO23の発振周波数を制御するための制御電圧を生成してVC−TCXO23に入力している。
このVC−TCXO23の発振信号は、並列に接続された第一受信用シンセサイザ(PLL回路)20、第二受信用シンセサイザ21及び送信用シンセサイザ22の基準クロックとなり、20、21、22の各センセサイザ回路は局部発振信号を生成して第1ミキサ3、12及び直交変調部27へ入力されている。
また、第一受信回路41の第2ミキサ5と第二受信回路44の第2ミキサ15には、局部発振用のTCXO(温度補償型水晶発振器)14が接続されている。
The output of the first demodulator 8 is composed of a first frequency measurement unit 18, a frequency control unit 25, and a D / A converter 24, and generates a control voltage for controlling the oscillation frequency of the VC-TCXO 23. To the VC-TCXO 23.
The oscillation signal of the VC-TCXO 23 serves as a reference clock for the first reception synthesizer (PLL circuit) 20, the second reception synthesizer 21, and the transmission synthesizer 22 that are connected in parallel. Generates a local oscillation signal and inputs it to the first mixers 3 and 12 and the quadrature modulation unit 27.
Further, a TCXO (temperature compensated crystal oscillator) 14 for local oscillation is connected to the second mixer 5 of the first receiving circuit 41 and the second mixer 15 of the second receiving circuit 44.

送受信回路42は、送信回路43と第二受信回路44とで構成され、それぞれ送受信アンテナ9に送受信切換えスイッチ10を介して接続されている。
第二受信回路44は、前記送受信切換えスイッチ10の一方の端子から増幅器11、第1ミキサ12、BPF13、第2ミキサ15、BPF16、A/D変換器17、第二復調部19で構成され、受信信号処理部31に接続されている。
The transmission / reception circuit 42 includes a transmission circuit 43 and a second reception circuit 44, and is connected to the transmission / reception antenna 9 via the transmission / reception changeover switch 10.
The second receiving circuit 44 includes an amplifier 11, a first mixer 12, a BPF 13, a second mixer 15, a BPF 16, an A / D converter 17, and a second demodulator 19 from one terminal of the transmission / reception selector switch 10. The reception signal processing unit 31 is connected.

送信回路43は、送信信号処理部32から変調部29、D/A変換器28、直交変調部27、増幅器26で構成され、送受切換えスイッチ10の他方の端子を介して送受信アンテナ9に接続されている。   The transmission circuit 43 includes a modulation unit 29, a D / A converter 28, a quadrature modulation unit 27, and an amplifier 26 from the transmission signal processing unit 32, and is connected to the transmission / reception antenna 9 via the other terminal of the transmission / reception changeover switch 10. ing.

以上の構成において、基地局受信アンテナ1に接続している第一受信回路は、基地局からの信号を受信した受信信号を増幅器2で増幅し、VC−TCXO23の発振信号を基準クロックとして第一受信用シンセサイザ20で生成される局部発振信号と第1ミキサ3にて混合することで受信信号の周波数をダウンコンバートして第1IF(中間周波)信号に変換し、さらにTCXO14の発振信号と第2ミキサ5にて混合して周波数をダウンコンバートして第2IF信号に変換する。   In the above configuration, the first receiving circuit connected to the base station receiving antenna 1 amplifies the received signal received from the base station by the amplifier 2 and uses the oscillation signal of the VC-TCXO 23 as the reference clock. The local oscillation signal generated by the reception synthesizer 20 is mixed with the first mixer 3 to down-convert the frequency of the reception signal to convert it to a first IF (intermediate frequency) signal. Further, the oscillation signal of the TCXO 14 Mixing is performed by the mixer 5 and the frequency is down-converted to be converted into a second IF signal.

BPF4により第1IF信号、BPF6により第2IF信号の各々の必要な周波数帯域の信号だけを取り出し、A/D変換器7で量子化して第一復調部8に入力する。第一復調部8に入力された信号は、第一復調部によりベースバンド信号(デジタル信号)に復調される。
この復調されたベースバンド信号は、受信信号処理部30によりデジタル信号処理されて音声信号として再生される。
Only the necessary frequency band signals of the first IF signal are extracted by the BPF 4 and the second IF signal is extracted by the BPF 6, quantized by the A / D converter 7, and input to the first demodulator 8. The signal input to the first demodulator 8 is demodulated into a baseband signal (digital signal) by the first demodulator.
The demodulated baseband signal is subjected to digital signal processing by the reception signal processing unit 30 and reproduced as an audio signal.

第二受信回路44は、他の移動局からの信号を受信した受信信号を増幅器11で増幅し、VC−TCXO23の発振信号を基準クロックとして第二受信用シンセサイザ21で生成される局部発振信号と第1ミキサ12にて混合することで受信信号の周波数をダウンコンバートして第1IF(中間周波)信号に変換する。さらにTCXO14の発振信号と第2ミキサ15にて混合して周波数をダウンコンバートして第2IF信号に変換し、A/D変換器17で量子化して第二復調部19に入力する。第二復調部19に入力された信号は、第二復調部によりベースバンド信号(デジタル信号)に復調される。
この復調されたベースバンド信号は、受信信号処理部31によりデジタル信号処理されて音声信号として再生される。
The second receiving circuit 44 amplifies the received signal that has received a signal from another mobile station by the amplifier 11, and generates a local oscillation signal generated by the second receiving synthesizer 21 using the oscillation signal of the VC-TCXO 23 as a reference clock. By mixing in the first mixer 12, the frequency of the received signal is down-converted and converted to a first IF (intermediate frequency) signal. Further, the oscillation signal of the TCXO 14 is mixed by the second mixer 15, the frequency is down-converted and converted into a second IF signal, quantized by the A / D converter 17, and input to the second demodulator 19. The signal input to the second demodulator 19 is demodulated into a baseband signal (digital signal) by the second demodulator.
The demodulated baseband signal is subjected to digital signal processing by the reception signal processing unit 31 and reproduced as an audio signal.

送信回路43は、送信信号処理部32で入力された音声信号をデジタル信号処理後、変調部29で変調した信号をD/A変換器28でアナログ信号に変換し、直交変調器27で送信用シンセサイザ22から入力された搬送波とともに変調波が生成され、増幅器26で増幅されて送受信切換えスイッチ10に送られる。   The transmission circuit 43 performs digital signal processing on the audio signal input by the transmission signal processing unit 32, converts the signal modulated by the modulation unit 29 into an analog signal by the D / A converter 28, and transmits the signal by the quadrature modulator 27. A modulated wave is generated together with the carrier wave inputted from the synthesizer 22, amplified by the amplifier 26, and sent to the transmission / reception selector switch 10.

また、第一復調部8により出力されるベースバンド信号より受信したシンボルから周波数誤差を第一周波数計測部18により計測し、周波数制御部25でこの計測した周波数誤差を最小となるようにVC−TCXO23の発振周波数の制御を行なう。   Further, the frequency error is measured by the first frequency measuring unit 18 from the symbol received from the baseband signal output by the first demodulating unit 8, and the frequency control unit 25 minimizes the measured frequency error by VC− The oscillation frequency of the TCXO 23 is controlled.

特開2008−219719号公報JP 2008-219719 A

図6に示す第1の従来例の送受信機では、受信信号を第1IF信号と第2IF信号に変換するために、周波数安定度が高いVC−TCXO128を基準クロックとして2つのPLL回路115、118を用いて局部発振信号を生成している。PLL回路を2つ使用することでIF周波数の精度は向上するが、回路構成が複雑でかつ高価であり、また、消費電力も増加するという問題点があった。   In the transmitter / receiver of the first conventional example shown in FIG. 6, in order to convert the received signal into the first IF signal and the second IF signal, the two PLL circuits 115 and 118 are provided using the VC-TCXO 128 having high frequency stability as a reference clock. To generate a local oscillation signal. Although the accuracy of the IF frequency is improved by using two PLL circuits, there is a problem that the circuit configuration is complicated and expensive, and the power consumption increases.

図7に示す第2の従来例の送受信機では、第2ミキサ5、15へ供給する第二局部発振信号をTCXO14の発振信号を用いるので、第1の従来例のような第2PLL回路を必要とせず回路構成が簡単で安価である。
しかし、TCXO14の発振周波数の補償は、発振器自身が行なう温度補償のみであって、発振器の経時変化などによる誤差の補償を行なえないため、設計上の発振周波数と実際の発振周波数との間に誤差を生じる可能性がある。
第2の従来例の送受信機の受信周波数の制御は、基地局からの周波数精度が高い信号を受信し、第1ミキサ3、第2ミキサ5によりそれぞれ第一IF周波数、第二IF周波数に変換して後段の第一復調部8から出力されるベースバンド信号の周波数を周波数計測部18で計測し、誤差のない正規のベースバンド信号の周波数との誤差を周波数制御部25で検出して、検出した誤差を打ち消すためのVC−TCXO128の発振周波数を制御するデジタル電圧を出力し、D/A変換器24を介して制御されるVC−TCXO23の発振周波数を補正するようになっている。従って、TCXO14の発振周波数に誤差が生じた場合、基地局からの受信信号に基づいてVC−TCXO23を制御して第一受信用シンセサイザで生成する第一局部発振周波数を変えることでTCXO14の発振周波数の誤差を補正する。また、このVC−TCXO23の発振信号は、送信回路の搬送波を生成するためのクロックにも用いられていて、TCXO14の発振周波数に誤差によりVC−TCXO23の発振周波数が補正されると、送信信号の周波数も変動して周波数の精度が落ちるという問題点があった。
In the transmitter / receiver of the second conventional example shown in FIG. 7, the second local oscillation signal supplied to the second mixers 5 and 15 uses the oscillation signal of the TCXO 14, so that the second PLL circuit as in the first conventional example is required. However, the circuit configuration is simple and inexpensive.
However, the compensation of the oscillation frequency of the TCXO 14 is only the temperature compensation performed by the oscillator itself, and cannot compensate for the error due to the change of the oscillator over time, etc. Therefore, there is an error between the design oscillation frequency and the actual oscillation frequency. May occur.
The control of the reception frequency of the transceiver of the second conventional example is performed by receiving a signal with high frequency accuracy from the base station and converting it to the first IF frequency and the second IF frequency by the first mixer 3 and the second mixer 5, respectively. The frequency measurement unit 18 measures the frequency of the baseband signal output from the first demodulator 8 at the subsequent stage, and the frequency control unit 25 detects an error from the frequency of the normal baseband signal without error. A digital voltage for controlling the oscillation frequency of the VC-TCXO 128 for canceling the detected error is output, and the oscillation frequency of the VC-TCXO 23 controlled via the D / A converter 24 is corrected. Therefore, when an error occurs in the oscillation frequency of the TCXO 14, the oscillation frequency of the TCXO 14 is changed by controlling the VC-TCXO 23 based on the received signal from the base station and changing the first local oscillation frequency generated by the first reception synthesizer. Correct the error. The oscillation signal of the VC-TCXO 23 is also used as a clock for generating a carrier wave of the transmission circuit. When the oscillation frequency of the VC-TCXO 23 is corrected by an error in the oscillation frequency of the TCXO 14, the transmission signal There was a problem that the frequency also fluctuated and the accuracy of the frequency was lowered.

本発明は、上述のような問題点に鑑みなされたもので、基地局専用の第一受信回路に加えて一波単信方式の送受信回路を備えた送受信機において、送信時において基準クロックとなるVC−TCXO23の発振周波数を制御して送信周波数の精度を向上させることを目的とするものである。   The present invention has been made in view of the above-described problems. In a transceiver having a single-wave simplex transmission / reception circuit in addition to a first reception circuit dedicated to a base station, the present invention serves as a reference clock during transmission. The object is to improve the accuracy of the transmission frequency by controlling the oscillation frequency of the VC-TCXO 23.

本発明の請求項1は、基地局からの送信信号を受信し、復調する第一受信回路と、基地局からの送信周波数と異なる周波数の信号を送信する送信回路と受信し、復調する第二受信回路からなる一波単信方式の送受信回路を有し、前記第一受信回路と前記第二受信回路の各々の第一局部発振信号及び前記送信回路の送信信号を生成するための共通の基準クロックとなる電圧制御型発振器と、前記第一受信回路と前記第二受信回路の共通の第二局部発振信号を生成する発振器を有する送受信機において、前記第一受信回路で受信した信号を第一復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第一周波数計測部と、前記第二受信回路で受信した信号を第二復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第二周波数計測部と、前記第一周波数計測部で計測された周波数誤差と前記第二周波数計測部で計測された周波数誤差との差分を検出する周波数誤差検出部を設け、前記送信回路で基地局または他の移動局へ信号を送信する際、送信信号を前記第二受信回路に取り込んで、前記周波数誤差検出部で検出された誤差を減少させるように前記電圧制御型発振器の発振周波数を制御する周波数制御部を設けたことを特徴とする送受信機である。   According to a first aspect of the present invention, a first receiving circuit that receives and demodulates a transmission signal from the base station and a transmission circuit that transmits a signal having a frequency different from the transmission frequency from the base station are received and demodulated. A single-wave simplex transmission / reception circuit comprising a reception circuit, and a common reference for generating a first local oscillation signal of each of the first reception circuit and the second reception circuit and a transmission signal of the transmission circuit In a transceiver having a voltage-controlled oscillator serving as a clock and an oscillator that generates a second local oscillation signal common to the first receiving circuit and the second receiving circuit, the signal received by the first receiving circuit is the first A first frequency measurement unit that measures the frequency error of the reception frequency from the baseband signal demodulated by the demodulation unit, and a frequency error of the reception frequency from the baseband signal demodulated by the second demodulation unit of the signal received by the second reception circuit A second frequency measuring unit for measuring; a frequency error detecting unit for detecting a difference between the frequency error measured by the first frequency measuring unit and the frequency error measured by the second frequency measuring unit; When transmitting a signal to a base station or another mobile station, the oscillation frequency of the voltage controlled oscillator is reduced so as to reduce the error detected by the frequency error detector by taking the transmission signal into the second receiving circuit. It is the transmitter / receiver characterized by providing the frequency control part which controls.

本発明の請求項2は、基地局からの送信信号を受信し、復調する第一受信回路と、基地局からの送信周波数と異なる周波数の信号を送信する送信回路と受信し、復調する第二受信回路からなる一波単信方式の送受信回路を有し、前記第一受信回路と前記第二受信回路の各々の第一局部発振信号及び前記送信回路の送信信号を生成するための共通の基準クロックとなる電圧制御型発振器と、前記第一受信回路と前記第二受信回路の共通の第二局部発振信号を生成する発振器を有する送受信機において、前記第一受信回路で受信した信号の第二中間周波数を計測する第一周波数計測部と、前記第二受信回路で受信した信号の第二中間周波数を計測する第二周波数計測部と、前記第一周波数計測部で計測された第二中間周波数と前記第二周波数計測部で計測された第二中間周波数の差分を検出する周波数誤差検出部を設け、前記送信回路で基地局または他の移動局へ信号を送信する際、送信信号を前記第二受信回路に取り込んで、前記周波数誤差検出部で検出された誤差を減少させるように前記電圧制御型発振器の発振周波数を制御する周波数制御部を設けたことを特徴とする送受信機である。   According to a second aspect of the present invention, a first receiving circuit that receives and demodulates a transmission signal from the base station and a transmission circuit that transmits a signal having a frequency different from the transmission frequency from the base station are received and demodulated. A single-wave simplex transmission / reception circuit comprising a reception circuit, and a common reference for generating a first local oscillation signal of each of the first reception circuit and the second reception circuit and a transmission signal of the transmission circuit In a transceiver having a voltage-controlled oscillator serving as a clock and an oscillator that generates a second local oscillation signal common to the first receiving circuit and the second receiving circuit, a second of the signals received by the first receiving circuit A first frequency measuring unit for measuring an intermediate frequency; a second frequency measuring unit for measuring a second intermediate frequency of a signal received by the second receiving circuit; and a second intermediate frequency measured by the first frequency measuring unit. And the second frequency measurement A frequency error detection unit that detects a difference between the second intermediate frequencies measured in (2) is provided, and when transmitting a signal to the base station or another mobile station in the transmission circuit, the transmission signal is taken into the second reception circuit, A transceiver comprising a frequency control unit for controlling an oscillation frequency of the voltage controlled oscillator so as to reduce an error detected by the frequency error detection unit.

本発明の請求項3は、請求項1または2記載の送受信機において、前記送信回路からの送信信号を前記第二受信回路側へ取り込むためのスイッチを設けたことを特徴とするものである。   According to a third aspect of the present invention, in the transceiver according to the first or second aspect, a switch is provided for taking in a transmission signal from the transmission circuit to the second reception circuit side.

本発明の請求項4は、請求項1または2記載の送受信機において、前記送信回路からの送信信号を前記第二受信回路側へ取り込むための方向性結合器を設けたことを特徴とするものである。   According to a fourth aspect of the present invention, in the transceiver according to the first or second aspect, a directional coupler is provided for taking in a transmission signal from the transmission circuit to the second reception circuit side. It is.

本発明の請求項5は、請求項1または2記載の送受信機において、前記第一周波数計測部は前記第一受信回路が基地局からの送信信号を受信中に所定の時間毎に周波数を計測し、計測した周波数を次の計測まで保持し、前記送信回路で基地局または他の移動局へ信号を送信する際に基地局からの送信信号を受信していない場合、前記保持した周波数を用いることを特徴とするものである。   According to a fifth aspect of the present invention, in the transceiver according to the first or second aspect, the first frequency measurement unit measures the frequency at predetermined time intervals while the first reception circuit is receiving a transmission signal from the base station. The measured frequency is held until the next measurement, and when the transmission circuit does not receive a transmission signal from the base station when transmitting a signal to the base station or another mobile station, the held frequency is used. It is characterized by this.

請求項1、2記載の発明によれば、自局の送信信号を第二受信回路に取り込み、取込んだ信号のベースバンド信号の周波数または第二中間周波数を計測し、基準となる基地局からの送信信号を受信し、そのベースバンド信号の周波数または第二中間周波数と比較して、その差分がなくなるようにVC−TCXOの発振周波数を制御することで、第二局部発振のTCXOの発振周波数の誤差を補正して自局の送信周波数の精度が向上するという効果を有する。   According to the first and second aspects of the invention, the transmission signal of the own station is taken into the second receiving circuit, the frequency of the baseband signal or the second intermediate frequency of the taken signal is measured, and the base station serving as the reference TCXO oscillation frequency of the second local oscillation by controlling the oscillation frequency of the VC-TCXO so as to eliminate the difference from the baseband signal frequency or the second intermediate frequency. Thus, the accuracy of the transmission frequency of the local station is improved.

請求項3、4記載の発明によれば、自局が発信した送信信号を送信回路側から第二受信回路側へ取り込むための構成が極めて簡単であるという効果を有する。   According to the third and fourth aspects of the invention, there is an effect that the configuration for taking in the transmission signal transmitted from the own station from the transmission circuit side to the second reception circuit side is extremely simple.

請求項5記載の発明によれば、周波数の基準となる基地局からの信号は常時送信しているとは限らないので、基地局受信時に所定の時間毎に周波数を計測し、最新の計測値を保持することで、自局が送信する際に基地局からの送信信号を受信していない場合でも、保持した周波数を用いて周波数誤差検出部で誤差を検出が可能となるという効果を有する。   According to the fifth aspect of the present invention, since the signal from the base station serving as the frequency reference is not always transmitted, the frequency is measured every predetermined time when receiving the base station, and the latest measured value By holding this, there is an effect that even if the transmission signal from the base station is not received when the own station transmits, the frequency error detection unit can detect an error using the held frequency.

本発明による送受信機の回路の実施例1を示すブロック図である。It is a block diagram which shows Example 1 of the circuit of the transmitter / receiver by this invention. (a)は復調部のブロック図、(b)は復調したIQ信号の大きさと位相を表すコンスタレーション図である。(A) is a block diagram of the demodulator, and (b) is a constellation diagram showing the magnitude and phase of the demodulated IQ signal. 周波数計測部の作用を説明するコンスタレーション図である。It is a constellation figure explaining the effect | action of a frequency measurement part. 本発明による実施例2を示すブロック図である。It is a block diagram which shows Example 2 by this invention. 本発明による実施例3を示すブロック図である。It is a block diagram which shows Example 3 by this invention. 第1の従来例を示すブロック図である。It is a block diagram which shows a 1st prior art example. 第2の従来例を示すブロック図ある。It is a block diagram which shows a 2nd prior art example.

基地局からの送信信号を受信し、復調する第一受信回路と、基地局からの送信周波数と異なる周波数の信号を送信する送信回路と受信し、復調する第二受信回路からなる一波単信方式の送受信回路を有し、前記第一受信回路と前記第二受信回路の各々の第一局部発振信号及び前記送信回路の送信信号を生成するための共通の基準クロックとなる電圧制御型発振器と、前記第一受信回路と前記第二受信回路の共通の第二局部発振信号を生成する発振器を有する送受信機において、前記第一受信回路で受信した信号を第一復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第一周波数計測部と、前記第二受信回路で受信した信号を第二復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第二周波数計測部と、前記第一周波数計測部で計測された周波数誤差と前記第二周波数計測部で計測された周波数誤差との差分を検出する周波数誤差検出部を設け、前記送信回路で基地局または他の移動局へ信号を送信する際、送信信号を前記第二受信回路に取り込んで、前記周波数誤差検出部で検出された誤差を減少させるように前記電圧制御型発振器の発振周波数を制御する周波数制御部を設けることで、第二局部発振信号を生成する発振器の発振周波数の誤差を補正して自局の送信周波数の精度を向上させるようにする。   A single-wave simplex comprising a first receiving circuit that receives and demodulates a transmission signal from the base station, and a second receiving circuit that receives and demodulates a signal having a frequency different from the transmission frequency from the base station. A voltage-controlled oscillator having a transmission / reception circuit of a type and serving as a common reference clock for generating a first local oscillation signal of each of the first reception circuit and the second reception circuit and a transmission signal of the transmission circuit; A baseband signal obtained by demodulating a signal received by the first receiving circuit by a first demodulating unit in a transceiver having an oscillator that generates a second local oscillation signal common to the first receiving circuit and the second receiving circuit; A second frequency that measures the frequency error of the reception frequency from a first frequency measurement unit that measures the frequency error of the reception frequency and a baseband signal that is demodulated by the second demodulation unit of the signal received by the second reception circuit A frequency error detection unit that detects a difference between the frequency error measured by the first frequency measurement unit and the frequency error measured by the second frequency measurement unit, and a base station or other Frequency control for controlling the oscillation frequency of the voltage-controlled oscillator so as to reduce the error detected by the frequency error detection unit by taking the transmission signal into the second receiving circuit when transmitting a signal to the mobile station By providing the unit, the error of the oscillation frequency of the oscillator that generates the second local oscillation signal is corrected to improve the accuracy of the transmission frequency of the local station.

次に、本発明の実施例1を説明する。
本発明の送受信機は、図1のブロック図で示した構成になっている。送受信機としての基本的な構成は、図7に示した第2の従来例と共通であり、この第2の従来例と共通な部分については説明を省略する。
本発明の送受信機が第2の従来例の送受信機と相違する点は、送信回路43が基地局または他の移動局へ送信する際の送信信号を第二受信回路に取り込むための切換えスイッチ33と、第二受信回路44側の第二復調部19に接続されベースバンド信号より受信したシンボルから周波数誤差を計測する第二周波数計測部34を別途設け、この第二周波数計測部34で計測した周波数誤差と第一復調部8に接続された第一周波数計測部18で計測した周波数誤差とを周波数誤差検出部35に入力し、基地局からの受信信号の周波数誤差と自局の送信信号の周波数誤差との差分を検出するようにした点にある。
そしてこの周波数誤差検出部35で検出した差分値に基づいて前記周波数制御部25によりVC−TCXO23の発振周波数を電圧制御するようにしたものである。
Next, Example 1 of the present invention will be described.
The transceiver of the present invention has the configuration shown in the block diagram of FIG. The basic configuration as a transceiver is the same as that of the second conventional example shown in FIG. 7, and the description of the parts common to the second conventional example is omitted.
The transmitter / receiver of the present invention is different from the transmitter / receiver of the second conventional example in that the change-over switch 33 for taking in the transmission signal to the second reception circuit when the transmission circuit 43 transmits to the base station or another mobile station. And a second frequency measuring unit 34 that is connected to the second demodulating unit 19 on the second receiving circuit 44 side and that measures a frequency error from a symbol received from a baseband signal, and is measured by the second frequency measuring unit 34 The frequency error and the frequency error measured by the first frequency measurement unit 18 connected to the first demodulation unit 8 are input to the frequency error detection unit 35, and the frequency error of the received signal from the base station and the transmission signal of the own station are detected. The difference is that the difference from the frequency error is detected.
Based on the difference value detected by the frequency error detector 35, the frequency control unit 25 controls the oscillation frequency of the VC-TCXO 23.

次に以上の構成の送受信機による作用を説明する。但し、送受信機としての一般的な送受信の作用については、図7と同様であるからその説明を省略する。
基地局からの送信信号が基地局受信アンテナ1で受信され、第一受信回路41により第2IF信号が生成され、第一復調部8でベースバンド信号に復調される。
復調されたベースバンド信号は、受信信号処理部30によりデジタル信号処理されて音声信号として再生されるとともに、第一周波数計測部18によりベースバンド信号の周波数が計測される。
Next, the operation of the transceiver configured as described above will be described. However, a general transmission / reception operation as a transceiver is the same as that in FIG.
A transmission signal from the base station is received by the base station receiving antenna 1, a second IF signal is generated by the first receiving circuit 41, and demodulated into a baseband signal by the first demodulator 8.
The demodulated baseband signal is digitally processed by the reception signal processing unit 30 and reproduced as an audio signal, and the frequency of the baseband signal is measured by the first frequency measurement unit 18.

一方、送信回路43が基地局または他の移動局へ送信する際、送信信号処理部32で入力された音声信号をデジタル信号処理後、変調部29で変調した信号をD/A変換器28でアナログ信号に変換し、直交変調器27で送信用シンセサイザ22から入力された搬送波とともに変調波が生成され、増幅器26で増幅されて送受信切換えスイッチ10に送られるとともに、切換えスイッチ33によって、送信信号を第二受信回路に取り込むように送信回路側に切り換えられる。この時、送受信切換えスイッチ10は、第二受信回路側のままで送信されない。
第二受信回路44は、取込んだ送信信号を受信処理され第2IF信号が生成され、第二復調部19でベースバンド信号に復調し、復調したベースバンド信号より受信したシンボルから周波数誤差を第二周波数計測部34で計測される。
On the other hand, when the transmission circuit 43 transmits to the base station or another mobile station, the audio signal input by the transmission signal processing unit 32 is subjected to digital signal processing, and the signal modulated by the modulation unit 29 is converted by the D / A converter 28. The signal is converted into an analog signal, a modulated wave is generated together with the carrier wave inputted from the transmission synthesizer 22 by the quadrature modulator 27, amplified by the amplifier 26 and sent to the transmission / reception selector switch 10, and the transmission signal is changed by the selector switch 33. The transmission circuit is switched to the second reception circuit. At this time, the transmission / reception changeover switch 10 is not transmitted on the second receiving circuit side.
The second receiving circuit 44 receives and processes the captured transmission signal to generate a second IF signal, which is demodulated into a baseband signal by the second demodulator 19, and a frequency error is calculated from the received symbol from the demodulated baseband signal. It is measured by the dual frequency measuring unit 34.

前記第一周波数計測部18により計測された周波数誤差と、第二周波数計測部34により計測された周波数誤差とが、周波数誤差検出部35に入力されてその誤差が検出され、周波数制御部25がその誤差を減少させる方向にVC−TCXO23の発振周波数を制御してから送受信切換えスイッチ10を送信回路側に切り換えて本送信とする。   The frequency error measured by the first frequency measurement unit 18 and the frequency error measured by the second frequency measurement unit 34 are input to the frequency error detection unit 35 to detect the error, and the frequency control unit 25 After controlling the oscillation frequency of the VC-TCXO 23 in a direction to reduce the error, the transmission / reception selector switch 10 is switched to the transmission circuit side to perform the main transmission.

なお、図1では切換えスイッチ33を増幅器11と第1ミキサ12との間に設けているが、取込む信号レベルが小さい場合には増幅器11の前に設けてもよい。
さらに詳しい制御動作については後述する。
In FIG. 1, the change-over switch 33 is provided between the amplifier 11 and the first mixer 12, but may be provided in front of the amplifier 11 when the signal level to be captured is small.
More detailed control operation will be described later.

次に、各水晶発振子と各PLLの発振周波数について説明する。
基地局が移動局へ送信する基地局送信周波数をfFH、移動局が基地局へ送信する送信周波数(移動局間通信用周波数でもある)をfFL、第1IF周波数をfIF1、第2IF周波数をfIF2とし、送受信機のVC−TCXO23の発振周波数をfREF、VC−TCXO23の発振周波数fREFに対しての周波数偏差をΔα、TCXO14の発振周波数をfLO2、TCXO14の発振周波数fLO2に対しての周波数偏差をΔβとすると、VC−TCXO23、TCXO14の発振周波数は次のようになる。
VC−TCXO23の発振周波数:fREF×(1+Δα)…(1)
TCXO14の発振周波数:fLO2×(1+Δβ)…(2)
Next, the oscillation frequency of each crystal oscillator and each PLL will be described.
The base station transmission frequency transmitted from the base station to the mobile station is f FH , the transmission frequency transmitted from the mobile station to the base station (also a frequency for communication between mobile stations) is f FL , the first IF frequency is f IF1 , and the second IF frequency. F IF2 , the oscillation frequency of the VC-TCXO 23 of the transceiver is f REF , the frequency deviation with respect to the oscillation frequency f REF of the VC-TCXO 23 is Δα, the oscillation frequency of the TCXO 14 is f LO2 , and the oscillation frequency f LO2 of the TCXO 14 Assuming that the frequency deviation is Δβ, the oscillation frequencies of the VC-TCXO 23 and the TCXO 14 are as follows.
The oscillation frequency of the VC-TCXO 23: f REF × (1 + Δα) (1)
TCXO14 oscillation frequency: f LO2 × (1 + Δβ) (2)

このとき、各シンセサイザ20、21、22の発振周波数は、VC−TCXO23の発振周波数と同じ周波数偏差を有するため、次のようになる。
第一受信用シンセサイザ20の発振周波数:fLO1H=(fFH+fIF1)×(1+Δα)…(3)
第二受信用シンセサイザ21の発振周波数:fLO1L=(fFL+fIF1)×(1+Δα)…(4)
送信用シンセサイザ22の発振周波数:fFLT=fFL×(1+Δα)…(5)
At this time, the oscillation frequencies of the synthesizers 20, 21, and 22 have the same frequency deviation as the oscillation frequency of the VC-TCXO 23, and are as follows.
Oscillation frequency of first receiving synthesizer 20: f LO1H = (f FH + f IF1 ) × (1 + Δα) (3)
Oscillation frequency of second reception synthesizer 21: f LO1L = (f FL + f IF1 ) × (1 + Δα) (4)
Oscillation frequency of transmission synthesizer 22: f FLT = f FL × (1 + Δα) (5)

式(3)(4)より、第1ミキサ3、12から出力される第1IF周波数は、次のようになる。
第一受信回路41の第1IF周波数:fIF1H=fIF1×(1+Δα)+fFH×Δα…(6)
第二受信回路44の第1IF周波数:fIF1L=fLO1L−fFLT=fIF1×(1+Δα)…(7)
From Equations (3) and (4), the first IF frequency output from the first mixers 3 and 12 is as follows.
First IF frequency of the first receiving circuit 41: f IF1H = f IF1 × (1 + Δα) + f FH × Δα (6)
First IF frequency of second receiving circuit 44: f IF1L = f LO1L -f FLT = f IF1 × (1 + Δα) (7)

式(6)(7)により、第2ミキサ5、15から出力される第2IF周波数は、次のようになる。
第一受信回路41の第2IF周波数:fIF2H=fIF1×(1+Δα)+fFH×Δα−fLO2×(1+Δβ)…(8)
第二受信回路44の第2IF周波数:fIF2L=fIF1×(1+Δα)−fLo2×(1+Δβ)…(9)
From equations (6) and (7), the second IF frequency output from the second mixers 5 and 15 is as follows.
Second IF frequency of the first receiving circuit 41: f IF2H = f IF1 × (1 + Δα) + f FH × Δα−f LO2 × (1 + Δβ) (8)
Second IF frequency of second receiving circuit 44: f IF2L = f IF1 × (1 + Δα) −f Lo2 × (1 + Δβ) (9)

従って、第一周波数計測部18と第二周波数計測部34で計測した周波数の差分(fIF2H−fIF2L)をとると、TCXO14の発振周波数偏差Δβが相殺されて、周波数誤差はfFH×Δαの項のみが残る。
この周波数誤差が0になるようにVC−TCXO23の発振周波数を制御すると、Δα=0となり、VC−TCXO23の発振周波数を基地局から送信信号の周波数に正確に追従させることができる。
その結果、送受信機の内部基準クロックは、TCXO14の発振周波数(第2局部発振周波数)の偏差に影響されることなく、基地局の送信周波数に正確に追従することができる。
Therefore, if the difference (f IF2H −f IF2L ) between the frequencies measured by the first frequency measuring unit 18 and the second frequency measuring unit 34 is taken, the oscillation frequency deviation Δβ of the TCXO 14 is canceled out, and the frequency error is f FH × Δα. Only the term remains.
When the oscillation frequency of the VC-TCXO 23 is controlled so that this frequency error becomes 0, Δα = 0, and the oscillation frequency of the VC-TCXO 23 can be made to accurately follow the frequency of the transmission signal from the base station.
As a result, the internal reference clock of the transceiver can accurately follow the transmission frequency of the base station without being affected by the deviation of the oscillation frequency (second local oscillation frequency) of the TCXO 14.

次に、第一周波数計測部18による受信周波数の計測から周波数制御部25によるVC−TCXO23の発振周波数の制御について詳しく説明する。
まず、第一復調部8は、図2(a)に示すように、第2IF信号とπ/2移相器40によりこの第2IF信号の搬送波49と位相をπ/2遅らせたクロック信号とをミキサ36、37で乗算(混合)し、LPF38、39で高調波成分を抑制してIQ信号(ベースバンド信号)を出力する。
このIQ信号と搬送波の位相、振幅との関係を図2(b)に示すようなコンスタレーションで表すことができる。QPSK変調方式の場合は、シンボルの位置が白丸の位置となる。1/4πシフトQPSK変調方式の場合は、シンボルの位置が白丸と黒丸の位置が交互になる。
Next, control of the oscillation frequency of the VC-TCXO 23 by the frequency control unit 25 from measurement of the reception frequency by the first frequency measurement unit 18 will be described in detail.
First, as shown in FIG. 2A, the first demodulator 8 generates a second IF signal, a carrier signal 49 of the second IF signal by a π / 2 phase shifter 40, and a clock signal delayed in phase by π / 2. Multiplication (mixing) is performed by the mixers 36 and 37, and harmonic components are suppressed by the LPFs 38 and 39, and an IQ signal (baseband signal) is output.
The relationship between the IQ signal and the phase and amplitude of the carrier wave can be expressed by a constellation as shown in FIG. In the case of the QPSK modulation method, the symbol position is a white circle position. In the case of the 1 / 4π shift QPSK modulation method, the positions of symbols are alternately white and black circles.

第一周波数計測部18は、基地局からの信号を受信、復調している時に、受信信号のシンボルから位相変化量Δθ、周波数変化量Δfを検出する。
第二周波数計測部34は、自局の送信信号を受信した信号のシンボルから位相変化量Δθ、周波数変化量Δfを検出し、検出した位相変化量Δθを数フレームにわたって平均し、周波数に換算して周波数誤差とする。
それぞれの位相変化量Δθの検出は、図3に示すように、前回検出のシンボルの位置から予測した基準位置を(I1,Q1)、実際の検出したシンボルの位置を(I2,Q2)として、Δθ=tan-1(Q2/I2)−tan-1(Q1/I1)により検出する。
周波数変化量Δfは、シンボルレート(変調速度)が4800spsの場合、Δf=Δθ/2π×4800により換算される。
When receiving and demodulating a signal from the base station, the first frequency measurement unit 18 detects the phase change amount Δθ and the frequency change amount Δf from the symbol of the received signal.
The second frequency measurement unit 34 detects the phase change amount Δθ and the frequency change amount Δf from the symbol of the signal that has received the transmission signal of the local station, averages the detected phase change amount Δθ over several frames, and converts it into a frequency. Frequency error.
As shown in FIG. 3, each phase change amount Δθ is detected by setting the reference position predicted from the previously detected symbol position as (I1, Q1) and the actual detected symbol position as (I2, Q2). Δθ = tan −1 (Q2 / I2) −tan −1 (Q1 / I1).
The frequency change amount Δf is converted by Δf = Δθ / 2π × 4800 when the symbol rate (modulation speed) is 4800 sps.

周波数誤差検出部35は、第一周波数計測部18の計測結果と、第二周波数計測部34の計測結果との差分を演算して出力する。
周波数制御部25は、周波数誤差検出部35で演算された周波数の差分値が、許容値(例えば、±200Hz以内)を超えた場合にVC−TCXO23の制御電圧を調整して、次の制御を行なう。
The frequency error detection unit 35 calculates and outputs the difference between the measurement result of the first frequency measurement unit 18 and the measurement result of the second frequency measurement unit 34.
The frequency control unit 25 adjusts the control voltage of the VC-TCXO 23 when the frequency difference value calculated by the frequency error detection unit 35 exceeds an allowable value (for example, within ± 200 Hz), and performs the next control. Do.

第二周波数計測部34で計測された周波数が、第一周波数計測部18で計測された周波数よりも大きい場合、発振周波数を引き下げるようにVC−TCXO23への制御電圧を調整する。
逆に、第二周波数計測部34で計測された周波数が、第一周波数計測部18で計測された周波数よりも小さい場合、発振周波数を引き上げるようにVC−TCXO23への制御電圧を調整する。
つまり、自局の送信周波数の方が高い場合にはVC−TCXO23の発振周波数引き下げて送信周波数を低くし、自局の送信周波数の方が低い場合にはVC−TCXO23の発振周波数を引き上げて送信周波数を高くする。
When the frequency measured by the second frequency measurement unit 34 is higher than the frequency measured by the first frequency measurement unit 18, the control voltage to the VC-TCXO 23 is adjusted so as to lower the oscillation frequency.
Conversely, when the frequency measured by the second frequency measuring unit 34 is smaller than the frequency measured by the first frequency measuring unit 18, the control voltage to the VC-TCXO 23 is adjusted so as to raise the oscillation frequency.
That is, when the transmission frequency of the own station is higher, the transmission frequency is lowered by lowering the oscillation frequency of the VC-TCXO 23, and when the transmission frequency of the own station is lower, the oscillation frequency of the VC-TCXO 23 is raised. Increase the frequency.

以上、自局が基地局または他の移動局へ送信する際、送信信号を第二受信回路44に取り込んでその周波数を第二周波数計測部34で計測して、周波数誤差検出部35による誤差検出を行い、VC−TCXO23への制御電圧を調整して送信周波数を補正するとしているが、送信中に送信信号の周波数を第二周波数計測部34で計測し、周波数誤差検出部35による誤差を検出し保持して、次の送信時に保持していた誤差に基づいて周波数制御部25を作動させて送信周波数を補正してもよい。
なお、自局が基地局または他の移動局へ送信する際、基地局が移動局に対して送信しているとは限らないので、第一受信回路41が基地局からの信号を受信している際、第一周波数計測部18で所定の時間毎に基地局からの信号の周波数を計測し、最新の計測値を保持して、自局が送信する際の送信周波数の補正に最新の計測値を用いるようにする。
As described above, when the own station transmits to the base station or another mobile station, the transmission signal is taken into the second receiving circuit 44, the frequency is measured by the second frequency measuring unit 34, and the error is detected by the frequency error detecting unit 35. The transmission frequency is corrected by adjusting the control voltage to the VC-TCXO 23, but the frequency of the transmission signal is measured by the second frequency measurement unit 34 during transmission, and the error by the frequency error detection unit 35 is detected. Then, the transmission frequency may be corrected by operating the frequency control unit 25 based on the error held at the next transmission.
Since the base station does not always transmit to the mobile station when the own station transmits to the base station or another mobile station, the first receiving circuit 41 receives a signal from the base station. The first frequency measurement unit 18 measures the frequency of the signal from the base station at predetermined time intervals, holds the latest measurement value, and corrects the transmission frequency when the local station transmits the latest measurement. Use the value.

以上の実施例では、第一復調部8で復調されたベースバンド信号と、第二復調部19で復調されたベースバンド信号とにより誤差を検出してVC−TCXO23の発振周波数の制御を行なうようにしたが、本発明はこれに限るものではなく、図4に示すように、第一受信回路41のA/D変換器7からの出力された第2IF周波数と、第二受信回路44のA/D変換器17から出力された第2IF周波数との周波数誤差検出部35で誤差を検出してVC−TCXO23の発振周波数の制御を行なうようにしてもよい。   In the above embodiment, an error is detected from the baseband signal demodulated by the first demodulator 8 and the baseband signal demodulated by the second demodulator 19 to control the oscillation frequency of the VC-TCXO 23. However, the present invention is not limited to this, and the second IF frequency output from the A / D converter 7 of the first receiving circuit 41 and the A of the second receiving circuit 44 are not limited to this, as shown in FIG. An error may be detected by the frequency error detection unit 35 for the second IF frequency output from the / D converter 17 to control the oscillation frequency of the VC-TCXO 23.

実施例1、2では、切換えスイッチ33を用いて、送信回路43から第二受信回路44へ自局の送信信号を取り込むようにしたが、本発明はこれに限るものではなく、例えば図5に示すように、方向性結合器46を用いてもよい。送受信アンテナ9から送信する前に取り込む場合、ダミー切換えスイッチ47、ダミー負荷器48を設けてダミー負荷器側にダミー切換えスイッチ37を切換えるようにしてもよい。   In the first and second embodiments, the changeover switch 33 is used to capture the transmission signal of the own station from the transmission circuit 43 to the second reception circuit 44. However, the present invention is not limited to this. For example, FIG. As shown, a directional coupler 46 may be used. When taking in before transmitting from the transmission / reception antenna 9, the dummy changeover switch 47 and the dummy loader 48 may be provided, and the dummy changeover switch 37 may be switched to the dummy loader side.

1…基地局受信アンテナ、2…増幅器、3…第1ミキサ、4…BPF、5…第2ミキサ、6…BPF、7…A/D変換器、8…第一復調部、9…送受信アンテナ、10…送受信切換えスイッチ、11…増幅器、12…第1ミキサ、13…BPF、14…TCXO、15…第2ミキサ、16…BPF、17…A/D変換器、18…第一周波数計測部、19…第二復調部、20…第一受信用シンセサイザ、21…第二受信用シンセサイザ、22…送信用シンセサイザ、23…VC−TCXO、24…D/A変換器、25…周波数制御部、26…増幅器、27…直交変調部、28…D/A変換器、29…変調部、30…受信信号処理部、31…受信信号処理部、32…送信信号処理部、33…切換えスイッチ、34…第二周波数計測部、35…周波数誤差検出部、36、37…ミキサ、39、39…LPF、40…π/2移相器、41…第一受信回路、42…送受信回路、43…送信回路、44…第二受信回路、46…方向性結合器、47…ダミー切換えスイッチ、48…ダミー負荷器、49…搬送波。   DESCRIPTION OF SYMBOLS 1 ... Base station receiving antenna, 2 ... Amplifier, 3 ... 1st mixer, 4 ... BPF, 5 ... 2nd mixer, 6 ... BPF, 7 ... A / D converter, 8 ... 1st demodulation part, 9 ... Transmission / reception antenna DESCRIPTION OF SYMBOLS 10 ... Transmission / reception changeover switch, 11 ... Amplifier, 12 ... 1st mixer, 13 ... BPF, 14 ... TCXO, 15 ... 2nd mixer, 16 ... BPF, 17 ... A / D converter, 18 ... 1st frequency measurement part , 19 ... second demodulator, 20 ... first reception synthesizer, 21 ... second reception synthesizer, 22 ... transmission synthesizer, 23 ... VC-TCXO, 24 ... D / A converter, 25 ... frequency control unit, DESCRIPTION OF SYMBOLS 26 ... Amplifier, 27 ... Quadrature modulation part, 28 ... D / A converter, 29 ... Modulation part, 30 ... Reception signal processing part, 31 ... Reception signal processing part, 32 ... Transmission signal processing part, 33 ... Changeover switch, 34 ... second frequency measurement unit, 35 ... frequency Error detection unit 36, 37 ... mixer, 39, 39 ... LPF, 40 ... π / 2 phase shifter, 41 ... first receiver circuit, 42 ... transmitter / receiver circuit, 43 ... transmitter circuit, 44 ... second receiver circuit, 46 ... Directional coupler, 47 ... Dummy changeover switch, 48 ... Dummy loader, 49 ... Carrier wave.

Claims (5)

基地局からの送信信号を受信し、復調する第一受信回路と、基地局からの送信周波数と異なる周波数の信号を送信する送信回路と受信し、復調する第二受信回路からなる一波単信方式の送受信回路を有し、前記第一受信回路と前記第二受信回路の各々の第一局部発振信号及び前記送信回路の送信信号を生成するための共通の基準クロックとなる電圧制御型発振器と、前記第一受信回路と前記第二受信回路の共通の第二局部発振信号を生成する発振器を有する送受信機において、
前記第一受信回路で受信した信号を第一復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第一周波数計測部と、
前記第二受信回路で受信した信号を第二復調部で復調したベースバンド信号より受信周波数の周波数誤差を計測する第二周波数計測部と、
前記第一周波数計測部で計測された周波数誤差と前記第二周波数計測部で計測された周波数誤差との差分を検出する周波数誤差検出部を設け、
前記送信回路で基地局または他の移動局へ信号を送信する際、送信信号を前記第二受信回路に取り込んで、前記周波数誤差検出部で検出された誤差を減少させるように前記電圧制御型発振器の発振周波数を制御する周波数制御部を設けたことを特徴とする送受信機。
A single-wave simplex comprising a first receiving circuit that receives and demodulates a transmission signal from the base station, and a second receiving circuit that receives and demodulates a signal having a frequency different from the transmission frequency from the base station. A voltage-controlled oscillator having a transmission / reception circuit of a type and serving as a common reference clock for generating a first local oscillation signal of each of the first reception circuit and the second reception circuit and a transmission signal of the transmission circuit; In the transceiver having an oscillator that generates a second local oscillation signal common to the first receiving circuit and the second receiving circuit,
A first frequency measurement unit that measures a frequency error of a reception frequency from a baseband signal demodulated by a first demodulation unit for a signal received by the first reception circuit;
A second frequency measurement unit that measures a frequency error of the reception frequency from the baseband signal demodulated by the second demodulation unit for the signal received by the second reception circuit;
A frequency error detection unit for detecting a difference between the frequency error measured by the first frequency measurement unit and the frequency error measured by the second frequency measurement unit;
When transmitting a signal to a base station or another mobile station by the transmission circuit, the voltage controlled oscillator is configured so that the transmission signal is taken into the second reception circuit and the error detected by the frequency error detection unit is reduced. A transceiver having a frequency control unit for controlling the oscillation frequency of the transmitter.
基地局からの送信信号を受信し、復調する第一受信回路と、基地局からの送信周波数と異なる周波数の信号を送信する送信回路と受信し、復調する第二受信回路からなる一波単信方式の送受信回路を有し、前記第一受信回路と前記第二受信回路の各々の第一局部発振信号及び前記送信回路の送信信号を生成するための共通の基準クロックとなる電圧制御型発振器と、前記第一受信回路と前記第二受信回路の共通の第二局部発振信号を生成する発振器を有する送受信機において、
前記第一受信回路で受信した信号の第二中間周波数を計測する第一周波数計測部と、
前記第二受信回路で受信した信号の第二中間周波数を計測する第二周波数計測部と、
前記第一周波数計測部で計測された第二中間周波数と前記第二周波数計測部で計測された第二中間周波数の差分を検出する周波数誤差検出部を設け、
前記送信回路で基地局または他の移動局へ信号を送信する際、送信信号を前記第二受信回路に取り込んで、前記周波数誤差検出部で検出された誤差を減少させるように前記電圧制御型発振器の発振周波数を制御する周波数制御部を設けたことを特徴とする送受信機。
A single-wave simplex comprising a first receiving circuit that receives and demodulates a transmission signal from the base station, and a second receiving circuit that receives and demodulates a signal having a frequency different from the transmission frequency from the base station. A voltage-controlled oscillator having a transmission / reception circuit of a type and serving as a common reference clock for generating a first local oscillation signal of each of the first reception circuit and the second reception circuit and a transmission signal of the transmission circuit; In the transceiver having an oscillator that generates a second local oscillation signal common to the first receiving circuit and the second receiving circuit,
A first frequency measuring unit for measuring a second intermediate frequency of the signal received by the first receiving circuit;
A second frequency measuring unit for measuring a second intermediate frequency of the signal received by the second receiving circuit;
A frequency error detection unit for detecting a difference between the second intermediate frequency measured by the first frequency measurement unit and the second intermediate frequency measured by the second frequency measurement unit;
When transmitting a signal to a base station or another mobile station by the transmission circuit, the voltage controlled oscillator is configured so that the transmission signal is taken into the second reception circuit and the error detected by the frequency error detection unit is reduced. A transceiver having a frequency control unit for controlling the oscillation frequency of the transmitter.
前記送信回路からの送信信号を前記第二受信回路側へ取り込むためのスイッチを設けたことを特徴とする請求項1又は2記載の送受信機。   3. The transceiver according to claim 1, further comprising a switch for taking a transmission signal from the transmission circuit into the second reception circuit. 前記送信回路からの送信信号を前記第二受信回路側へ取り込むための方向性結合器を設けたことを特徴とする請求項1又は2記載の送受信機。   3. The transceiver according to claim 1, further comprising a directional coupler for taking a transmission signal from the transmission circuit into the second reception circuit. 前記第一周波数計測部は前記第一受信回路が基地局からの送信信号を受信中に所定の時間毎に周波数を計測し、計測した周波数を次の計測まで保持し、
前記送信回路で基地局または他の移動局へ信号を送信する際に基地局からの送信信号を受信していない場合、前記保持した周波数を用いることを特徴とする請求項1又は2記載の送受信機。
The first frequency measurement unit measures the frequency every predetermined time while the first receiving circuit receives a transmission signal from the base station, and holds the measured frequency until the next measurement,
3. The transmission / reception according to claim 1, wherein when the transmission circuit does not receive a transmission signal from the base station when transmitting a signal to the base station or another mobile station, the held frequency is used. Machine.
JP2011210785A 2011-09-27 2011-09-27 Transmitter receiver Withdrawn JP2013074391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011210785A JP2013074391A (en) 2011-09-27 2011-09-27 Transmitter receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011210785A JP2013074391A (en) 2011-09-27 2011-09-27 Transmitter receiver

Publications (1)

Publication Number Publication Date
JP2013074391A true JP2013074391A (en) 2013-04-22

Family

ID=48478556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011210785A Withdrawn JP2013074391A (en) 2011-09-27 2011-09-27 Transmitter receiver

Country Status (1)

Country Link
JP (1) JP2013074391A (en)

Similar Documents

Publication Publication Date Title
JP5846204B2 (en) Compensation device, signal generator, and wireless communication device
US8093943B2 (en) Phase noise correction device and its method
US20140037026A1 (en) Quadrature demodulator
CN101442392A (en) Apparatus, integrated circuit, and method of compensating iq phase mismatch
JP4901679B2 (en) Wireless transmission / reception device and wireless transmission method
JPWO2012111131A1 (en) Millimeter-wave wireless transceiver
US6898257B2 (en) Transmitter device having a modulation closed loop
JP2006109476A (en) Frequency-shift-keying demodulator and frequency-shift keying demodulation
US20160036486A1 (en) Phase rotator for compensating transceiver impairments
US20120002754A1 (en) Transmission apparatus, radio communication apparatus, and transmission method
US8396433B2 (en) Radio communication apparatus and DC offset adjustment method
JP2005304007A (en) Phase modulation apparatus, polar modulation transmission apparatus, radio transmission apparatus and radio communication apparatus
US8824593B2 (en) Wireless communication device capable of pre-compensating for oscillator phase noise
JP5263081B2 (en) Transmitter circuit
JP2005535168A (en) Receiver structure suitable for mobile radio
JP2013074391A (en) Transmitter receiver
US9049082B2 (en) Carrier frequency and phase recovery in quadrature encoded E-band communications
JP2007311839A (en) Digital radio device
US20070135064A1 (en) Method and apparatus for reducing phase imbalance in radio frequency signals
JP3441311B2 (en) Receiving machine
JP2009060476A (en) Frequency synthesizer, control method of frequency synthesizer, multi-band telecommunication device
JPH11122121A (en) Transmitter
JP2004349789A (en) Frequency converter and frequency converting method
US8897346B2 (en) Modem device and amplitude adjustment method
JP5618863B2 (en) Wireless receiver

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202