JP2013072984A - Glass polarizer - Google Patents

Glass polarizer Download PDF

Info

Publication number
JP2013072984A
JP2013072984A JP2011211527A JP2011211527A JP2013072984A JP 2013072984 A JP2013072984 A JP 2013072984A JP 2011211527 A JP2011211527 A JP 2011211527A JP 2011211527 A JP2011211527 A JP 2011211527A JP 2013072984 A JP2013072984 A JP 2013072984A
Authority
JP
Japan
Prior art keywords
glass
silver
silver chloride
insertion loss
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011211527A
Other languages
Japanese (ja)
Other versions
JP5839457B2 (en
Inventor
Nobuhito Takeshima
延仁 武島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Glass Co Ltd
Original Assignee
Okamoto Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Glass Co Ltd filed Critical Okamoto Glass Co Ltd
Priority to JP2011211527A priority Critical patent/JP5839457B2/en
Publication of JP2013072984A publication Critical patent/JP2013072984A/en
Application granted granted Critical
Publication of JP5839457B2 publication Critical patent/JP5839457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass polarizer having a high extinction ratio, low insertion loss and a low phase difference in a wide band.SOLUTION: A method for manufacturing a glass polarizing element comprises: a melting step of melting glass adjusted so that a glass component after melting the glass contains silver ions of 0.2-0.3 wt.% and chlorine ions of 0.25-0.35 wt.%; a silver chloride depositing step of uniformly depositing silver chlorides inside the melted glass by heat-treatment at a temperature lower by 10-50°C than the softening point of the glass; a preform manufacturing step of processing the glass into a desired size; a drawing step of heating and drawing the preform and elongating the silver chloride particles in an uniaxial direction to form a glass sheet; and a reduction step of reducing the elongated silver chlorides in the glass sheet under a pressure equal to or less than the atmospheric pressure.

Description

本発明は、ガラス偏光素子及びその製造方法に関する。特に、近赤外領域の光に対し工業的に利用可能な偏光特性を有するガラス偏光素子に関する。   The present invention relates to a glass polarizing element and a method for manufacturing the same. In particular, the present invention relates to a glass polarizing element having polarization characteristics that can be industrially used for light in the near infrared region.

光通信用アイソレータは、反射による戻り光を遮断し、S/N比を向上させるために使用される重要なデバイスである。アイソレータは、ファラデー回転素子、二つの偏光子および磁石から構成されるが、高い信頼性が求められるため高性能、小型化が進む昨今、偏光子への要求も高くなっている。   An optical communication isolator is an important device used to block the return light due to reflection and improve the S / N ratio. The isolator is composed of a Faraday rotator, two polarizers, and a magnet. However, since high reliability is required, high performance and miniaturization have been advanced recently, and the demand for polarizers is also increasing.

しかしながら、例えば、複屈折結晶や偏光ビームスプリッターでは、偏光子の厚さをビーム有効径より薄くすることが出来ない。また、二色性ポリマーを延伸したタイプの偏光子では、十分な消光比が実現できず、また耐環境性に劣る。   However, for example, in a birefringent crystal or a polarizing beam splitter, the thickness of the polarizer cannot be made thinner than the effective beam diameter. In addition, a polarizer of a type obtained by stretching a dichroic polymer cannot realize a sufficient extinction ratio and is inferior in environmental resistance.

高い信頼性を実現できる偏光子としては、銀や銅などのナノ金属粒子を一軸方向に伸張し、表面プラズモン共鳴に起因する偏光特性を用いたガラス偏光子が挙げられる。このようなガラス偏光子は、高消光比を得ることが可能であり、耐環境性を実現できることから光通信用アイソレータに広く利用されている。   As a polarizer capable of realizing high reliability, a glass polarizer using a polarization characteristic caused by surface plasmon resonance by stretching nano metal particles such as silver and copper in a uniaxial direction can be mentioned. Such glass polarizers are widely used in optical communication isolators because they can obtain a high extinction ratio and can realize environmental resistance.

ガラス偏光子は、銀および塩化物、臭化物、ヨウ化物からなる少なくとも1種類のハロゲン化物からなるガラスバッチを溶解し、成型する。次いで、成型されたガラスに熱処理を施しハロゲン化銀粒子を析出させる。このガラスを適切な張力下で延伸を行い、ハロゲン化銀粒子を伸張し、張力方向へ整列させる。最後に伸張したハロゲン化銀粒子を還元雰囲気下で熱処理を行い、銀粒子を析出させることにより、ガラス偏光子が得られる (特許文献 1、2、3、4、5)。   The glass polarizer melts and molds a glass batch composed of silver and at least one halide composed of chloride, bromide and iodide. Next, the molded glass is subjected to a heat treatment to precipitate silver halide grains. The glass is stretched under an appropriate tension, and the silver halide grains are stretched and aligned in the tension direction. Finally, the elongated silver halide grains are heat-treated in a reducing atmosphere to precipitate the silver grains, thereby obtaining a glass polarizer (Patent Documents 1, 2, 3, 4, 5).

上記製造方法により作製されたガラス偏光子は、50dB以上の消光比を示し、優れた耐環境性を有した優れた偏光子である。   The glass polarizer produced by the above production method is an excellent polarizer having an extinction ratio of 50 dB or more and having excellent environmental resistance.

一方、通信容量の増大に伴って、光信号として複数の波長を同時に乗せる波長分割多重通信が主流となってきている。様々な波長の光を使用するため、信号レーザ、ポンプレーザの性能も格段に飛躍し、アイソレータへの性能要求も厳しくなっている。特に、アイソレータの挿入損失の低減と偏光特性を示す波長領域を広げることが求められている。   On the other hand, with the increase in communication capacity, wavelength division multiplex communication in which a plurality of wavelengths are simultaneously loaded as optical signals has become mainstream. Since light of various wavelengths is used, the performance of signal lasers and pump lasers has dramatically increased, and the performance requirements for isolators have become severe. In particular, it is required to reduce the insertion loss of the isolator and widen the wavelength region showing the polarization characteristics.

アイソレータの挿入損失を低減させる方法としては、例えば特許文献 6に示されるようにハロゲン化物の含有量を調整する方法があるが、この方法でも、挿入損失は0.04dBまでしか低減できていない。   As a method for reducing the insertion loss of the isolator, for example, as shown in Patent Document 6, there is a method of adjusting the halide content, but even with this method, the insertion loss can be reduced only to 0.04 dB.

偏光特性を示す波長領域を広げたものは、特許文献 7および8に示される偏光子がある。特許文献7においては、広帯域ではあるが消光比が40dB以上となっており、消光性能において劣っている。また、特許文献 8においては、消光比が50dB以上であり、波長帯域も600nm以上のガラス偏光子が示されている。しかしながら、これらは還元に高圧という特殊な技法を用いており、安全・コストの観点から問題がある。また、いずれも挿入損失に関する記述は無く、挿入損失に関しては従来と同程度である。   Patent Documents 7 and 8 disclose polarizers in which the wavelength region exhibiting polarization characteristics is expanded. In Patent Document 7, although it is a wide band, the extinction ratio is 40 dB or more, and the extinction performance is inferior. Patent Document 8 discloses a glass polarizer having an extinction ratio of 50 dB or more and a wavelength band of 600 nm or more. However, these use a special technique of high pressure for reduction, which is problematic from the viewpoint of safety and cost. In addition, there is no description about the insertion loss, and the insertion loss is about the same as the conventional one.

特開平2-248341号公報JP-A-2-248341 特開平5-208844号公報Japanese Patent Laid-Open No. 5-208844 特開2007-171982号公報JP 2007-171982 特開2004-086100号公報JP 2004-086100 A 特開2010-150132号公報JP 2010-150132 A 特開平9-86956号公報JP-A-9-86956 特表2003-517634号公報Special Table 2003-517634 特開2010-204677号公報JP 2010-204677 A

また、通信システムにおいては、挿入損失のみならず時間軸におけるノイズ低減が重要な課題となっている。時間軸におけるノイズ低減には、レーザの安定が最も重要な要素でありアイソレーション性能の向上が必要とされる。アイソレーション性能は、一般的にガーネットとガラス偏光子の消光性能によって決まる。しかしながら、等方媒体であるガラスもガラス偏光子のように一軸方向に伸張することによって光学的異方性を発現する。さらに、一軸伸張された塩化銀粒子が析出していることによって、さらに大きな光学的異方性が付加される。   In communication systems, noise reduction on the time axis as well as insertion loss is an important issue. In order to reduce noise on the time axis, the stability of the laser is the most important factor, and improvement in isolation performance is required. The isolation performance is generally determined by the quenching performance of garnet and glass polarizer. However, glass, which is an isotropic medium, develops optical anisotropy by stretching in a uniaxial direction like a glass polarizer. Further, the precipitation of uniaxially stretched silver chloride grains adds even greater optical anisotropy.

光学的異方性は、偏光した光がガラス偏光子を通過する際に位相差を生じさせる。位相差が生じると直線偏光の光が楕円化してしまい、消光性能を低下させる。位相差は下記の式によって定義され、n0 (常光屈折率) および ne (異常光屈折率) の差および光路長dに依存する。

Figure 2013072984
Optical anisotropy causes a phase difference when polarized light passes through a glass polarizer. When the phase difference occurs, the linearly polarized light becomes elliptical and the quenching performance is lowered. The phase difference is defined by the following equation and depends on the difference between n 0 (ordinary refractive index) and n e (extraordinary refractive index) and the optical path length d.
Figure 2013072984

従って、レーザの安定には位相差をできる限り小さくする必要がある。しかしながら、現在市販されているガラス偏光子は、位相差による消光性能の低下を補うために、粒子径を大きくすることにより吸収面積を増大させ、アイソレータとして問題ない消光性能を実現している。その消光比は少なくとも60dB以上である。このため、大きな粒子による光散乱を避けることができず低挿入損失を実現するに至っていない。また、大きな粒子は大きな位相差を発現させてしまい、偏光した光の楕円化による挿入損失も、低挿入損失を実現できない一つの要因となっている。   Therefore, it is necessary to make the phase difference as small as possible for the stability of the laser. However, in order to compensate for the decrease in the extinction performance due to the phase difference, the glass polarizer currently on the market increases the absorption area by increasing the particle diameter, and realizes an extinction performance that has no problem as an isolator. Its extinction ratio is at least 60 dB. For this reason, light scattering by large particles cannot be avoided, and low insertion loss has not been realized. In addition, large particles cause a large phase difference, and the insertion loss due to the ovalization of polarized light is one factor that cannot achieve a low insertion loss.

上記のような背景の下、本発明は、広帯域で高消光比、さらには低挿入損失、低い位相差を有するガラス偏光子を提供することを目的とする。   Under the background as described above, an object of the present invention is to provide a glass polarizer having a wide band, a high extinction ratio, a low insertion loss, and a low phase difference.

上記課題を解決すべく、本発明者らは、種々の銀イオンおよび塩化物イオンの濃度をもつガラス組成を製作し、様々な温度で熱処理・塩化銀粒子の析出を行い、消光性能、挿入損失、位相差、および帯域幅を検討した結果、ある濃度において消光性能、挿入損失、位相差および帯域幅の全てを満足する領域を発見し、更に検討を重ね本発明の完成に至った。   In order to solve the above-mentioned problems, the present inventors manufactured glass compositions having various silver ion and chloride ion concentrations, heat-treated at various temperatures, and precipitated silver chloride particles, so that the quenching performance and insertion loss were reduced. As a result of examining the phase difference and the bandwidth, a region satisfying all of the quenching performance, the insertion loss, the phase difference and the bandwidth at a certain concentration was discovered, and further studies were made to complete the present invention.

すなわち、本発明は以下のガラス偏光子を提供する。
(1)1260〜1630nmの広範囲において50dB以上の消光比を有し、且つ挿入損失が0.015dB以下、厚み方向におけるリタデーションがλ/2以下であるガラス偏光子。
(2)
前記ガラス偏光素子の製造方法において、
溶融後のガラス成分が銀イオンを重量%で0.2〜0.3、および塩素イオンを重量%で0.25〜0.35になるよう調整しガラスを溶解する溶融工程と;
前記溶融ガラス内部に軟化点より10〜50℃低い温度で熱処理し、塩化銀を均一に析出させる塩化銀析出工程と;
前記ガラスを所望の大きさに加工するプリフォーム製造工程と;
前記プリフォーム加熱、延伸し、前記塩化銀粒子を一軸方向に伸張させてガラスシートを成形する延伸工程と;
前記ガラスシート中の伸張された塩化銀を大気圧以下の圧力で還元する還元工程により製造されるガラス偏光子。
That is, the present invention provides the following glass polarizer.
(1) A glass polarizer having an extinction ratio of 50 dB or more in a wide range of 1260 to 1630 nm, an insertion loss of 0.015 dB or less, and a retardation in the thickness direction of λ / 2 or less.
(2)
In the manufacturing method of the glass polarizing element,
A melting step of adjusting the glass components after melting to 0.2 to 0.3% by weight of silver ions and 0.25 to 0.35% by weight of chlorine ions to melt the glass;
A silver chloride precipitation step of heat-treating the molten glass at a temperature lower by 10 to 50 ° C. than the softening point to uniformly precipitate silver chloride;
A preform manufacturing process for processing the glass into a desired size;
A stretching step in which the preform is heated and stretched to form a glass sheet by stretching the silver chloride particles in a uniaxial direction;
The glass polarizer manufactured by the reduction | restoration process which reduces the extended | stretched silver chloride in the said glass sheet at the pressure below atmospheric pressure.

上記のように、本発明においては、溶融後のガラス組成中の銀イオンを重量%で0.2〜0.3、塩化物イオンを重量%で0.25〜0.35になるように調整し、軟化点より10〜50℃低い温度で熱処理することにより、300nm以下の均一な塩化銀を析出させることが可能となる。この粒子径は、レイリー散乱の影響を抑え、且つ大気圧下での還元においても50dB以上の消光性能を達成することが可能である。さらに、粒子径を小さく保っていることから、位相差を小さくすることが可能であり、低挿入損失を実現することができる。また、108ホアズ以上の適切な温度で延伸を行うことにより、広帯域の偏光子を作製することが可能となる。300kgf/cm2以上の大きな延伸張力を必要とするが、プリフォーム表面をRa粗さで20〜100nmに加工することによって、ローラとの摩擦力が増大し、延伸中のすべりが格段に低減し、破損を大きく低下させることが可能である。また、摩擦力が増大することによって、張力をテープ全面に均一に伝えることができる。 As described above, in the present invention, silver ions in the glass composition after melting are adjusted to 0.2 to 0.3% by weight and chloride ions to 0.25 to 0.35% by weight, and 10 to 50 from the softening point. By performing heat treatment at a temperature as low as ° C, uniform silver chloride of 300 nm or less can be deposited. This particle size suppresses the influence of Rayleigh scattering, and can achieve a quenching performance of 50 dB or more even in reduction under atmospheric pressure. Furthermore, since the particle diameter is kept small, the phase difference can be reduced and a low insertion loss can be realized. In addition, it is possible to produce a broadband polarizer by performing stretching at an appropriate temperature of 10 8 Woise or more. Although a large stretching tension of 300 kgf / cm 2 or more is required, by processing the preform surface to 20 to 100 nm with Ra roughness, the frictional force with the roller increases and the slip during stretching is remarkably reduced. It is possible to greatly reduce the damage. Moreover, the tension can be uniformly transmitted to the entire surface of the tape by increasing the frictional force.

本発明における、銀イオンおよび塩化物イオンの含有量、熱処理温度について詳しく説明する。銀イオンおよび塩化物イオンの含有量は、消光比挿入損失および位相差に大きく影響する。含有量が多いと消光比を高くしやすい反面、挿入損失および位相差が増大する。また、溶融時に銀の析出を引き起こし、均一な塩化銀粒子を析出させることが困難となる。逆に銀イオンおよび塩化物イオンの濃度が少ないと挿入損失、位相差は低下するが、高い消光比を得ることが困難となる。   The content of silver ions and chloride ions and the heat treatment temperature in the present invention will be described in detail. The content of silver ions and chloride ions greatly affects the extinction ratio insertion loss and phase difference. If the content is large, the extinction ratio tends to be high, but the insertion loss and the phase difference increase. In addition, silver is precipitated at the time of melting, and it becomes difficult to deposit uniform silver chloride particles. On the contrary, if the concentration of silver ions and chloride ions is small, the insertion loss and the phase difference are lowered, but it is difficult to obtain a high extinction ratio.

また、これらの含有量と同様に塩化銀の粒子径も消光比挿入損失および位相差に大きく影響する。塩化銀の粒子径は、熱処理温度が高いほどおよび熱処理時間が長いほど粒子径が増大し、熱処理温度が低いほどおよび熱処理時間が短いほど粒子径が小さくなる。粒子径が大きいと消光比を高くしやすい反面、挿入損失および位相差が増大する。逆に粒子径が小さいと挿入損失および位相差は低下するが、高い消光比を得ることが困難となり、更に偏光特性を示す帯域が短波長側にシフトし、帯域幅が狭くなる。軟化点より10℃低い温度を超える温度で熱処理した際には、銀イオンおよび塩化物イオンの含有量をいくら低下させても、粒子径の増大により0.015dBを下回る低い挿入損失を実現することが出来なくなる。また、熱処理温度が軟化点より50℃以上低い温度で行うと、粒子径が小さくなりすぎてしまい、大きな張力で延伸しても偏光特性を示す波長領域が通信波長領域より短波長となってしまう。従って、熱処理は軟化点以下、好ましくは軟化点より少なくとも10℃低く、軟化点より50℃低い温度以上で行うことが好ましい。   Similarly to these contents, the silver chloride particle diameter greatly affects the extinction ratio insertion loss and the phase difference. The particle diameter of silver chloride increases as the heat treatment temperature increases and the heat treatment time increases, and the particle diameter decreases as the heat treatment temperature decreases and the heat treatment time decreases. Larger particle diameters tend to increase the extinction ratio, but increase insertion loss and phase difference. On the contrary, if the particle diameter is small, the insertion loss and the phase difference are reduced, but it is difficult to obtain a high extinction ratio, and the band showing the polarization characteristics is shifted to the short wavelength side and the bandwidth is narrowed. When heat treatment is performed at a temperature exceeding 10 ° C lower than the softening point, it is possible to achieve a low insertion loss of less than 0.015 dB by increasing the particle size, no matter how much the content of silver ions and chloride ions is reduced. It becomes impossible. In addition, if the heat treatment temperature is 50 ° C. or more lower than the softening point, the particle size becomes too small, and the wavelength region exhibiting polarization characteristics becomes shorter than the communication wavelength region even when stretched with a large tension. . Accordingly, the heat treatment is preferably performed at a temperature below the softening point, preferably at least 10 ° C. lower than the softening point and 50 ° C. lower than the softening point.

上記温度領域で熱処理を行う場合、銀イオン濃度は重量%で0.2〜0.3、塩化物イオンは重量%で0.25〜0.35に調整する。銀イオン濃度が重量%で0.2未満、塩化物イオンが重量%で0.25未満の場合には、1260〜1630nmの帯域全域において50dB以上の高消光比を実現することが出来ない。一方、銀イオン濃度が重量%で0.3を越える、塩化物イオンが重量%で0.35を超える場合には、挿入損失が0.02dB程度となってしまい、高い消光比を実現することが出来ない。   When heat treatment is performed in the above temperature range, the silver ion concentration is adjusted to 0.2 to 0.3 by weight%, and the chloride ion is adjusted to 0.25 to 0.35 by weight%. When the silver ion concentration is less than 0.2% by weight and the chloride ion is less than 0.25% by weight, a high extinction ratio of 50 dB or more cannot be realized over the entire band of 1260 to 1630 nm. On the other hand, when the silver ion concentration exceeds 0.3 by weight% and the chloride ion exceeds 0.35 by weight%, the insertion loss becomes about 0.02 dB, and a high extinction ratio cannot be realized.

小さな粒子を延伸する際には大きな張力が必要となるため、延伸時のすべりによる破損が大きな問題となる。上記条件で作製したプリフォームにおいては、少なくとも300kgf/cm2以上の応力を必要とするため破損の可能性が高くなる。そのため、すべりによる破損の防止と、張力を均一に伝えるために、プリフォーム表面をRaで20〜100nm、好ましくは40〜70nmに調整する。このようなプリフォームを108ホアズ以上の粘性で延伸を行うことにより、1260〜1650nmの広範囲において50dB以上の消光比を有し、且つ挿入損失が0.015dB以下、厚み方向におけるリタデーションがλ/2以下であることを特徴とするガラス偏光子を得ることができる。 When stretching small particles, a large tension is required, so that damage due to slippage during stretching becomes a big problem. Since the preform manufactured under the above conditions requires a stress of at least 300 kgf / cm 2 or more, the possibility of breakage increases. Therefore, the preform surface is adjusted to 20 to 100 nm, preferably 40 to 70 nm in terms of Ra in order to prevent breakage due to slip and transmit the tension uniformly. By stretching such a preform with a viscosity of 10 8 Woise or more, it has an extinction ratio of 50 dB or more in a wide range of 1260 to 1650 nm, an insertion loss of 0.015 dB or less, and a retardation in the thickness direction of λ / 2. A glass polarizer characterized by the following can be obtained.

以下、本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to these examples.

銀イオン含有量を重量%で0.08〜0.4、塩化物イオンを重量%で0.1〜0.5の間で、様々な含有量の組み合わせとなるよう複数の銀イオンおよび塩化物イオンを含有したガラスブロックを作製した。   Create a glass block containing multiple silver ions and chloride ions so that the content of silver ions is 0.08 to 0.4% by weight and chloride ions are 0.1 to 0.5% by weight. did.

次いで、これらのガラスを60×300×4.0mmとなるように成型し軟化点-60℃から軟化点までの温度で熱処理を施し、塩化銀粒子を析出させた。この塩化銀含有ガラス成型物を厚さが2.3mmとなるように両面を研削した。この時表面粗さRaは50nmとなるように調整した。   Next, these glasses were molded to 60 × 300 × 4.0 mm and subjected to heat treatment at a temperature from a softening point of −60 ° C. to a softening point to precipitate silver chloride grains. Both sides of this silver chloride-containing glass molding were ground so that the thickness was 2.3 mm. At this time, the surface roughness Ra was adjusted to 50 nm.

作製したプリフォームは、熱処理温度に応じて300〜600kgf/cm2の張力で延伸を行った。この時、延伸テープの幅は26mmとなるように温度、延伸速度を調整した。 The produced preform was stretched with a tension of 300 to 600 kgf / cm 2 depending on the heat treatment temperature. At this time, the temperature and the stretching speed were adjusted so that the width of the stretched tape was 26 mm.

作製した延伸テープは、26×21の大きさに切断し、厚さが0.5mm、平面度がλ以下となるように光学研磨を施した。   The produced stretched tape was cut into a size of 26 × 21 and optically polished so that the thickness was 0.5 mm and the flatness was λ or less.

上記ガラス成型物を、420℃、水素分圧が0.012MPaとなるように水素還元炉を調整し、8時間還元を行い、次いで両面にARコートを施してガラス偏光子作製した。   The glass molding was adjusted to a hydrogen reduction furnace so that the hydrogen partial pressure was 420 ° C. and 0.012 MPa, reduced for 8 hours, and then AR coated on both sides to produce a glass polarizer.

得られたガラス偏光子は、レーザ光源、グラントムソンプリズム、マルチメータを用いて、消光比、挿入損失を測定した。また、リタデーション測定装置により400〜1100nmまでの位相差を測定し、外挿により1260、 1430、 1630nmの位相差を算出した。その結果を、表1に示す。

Figure 2013072984
The obtained glass polarizer was measured for the extinction ratio and insertion loss using a laser light source, a Glan-Thompson prism, and a multimeter. In addition, the phase difference from 400 to 1100 nm was measured with a retardation measuring device, and the phase differences at 1260, 1430, and 1630 nm were calculated by extrapolation. The results are shown in Table 1.
Figure 2013072984

以上のように、銀イオンおよび塩化物イオンの含有量と熱処理温度を適切に調整することにより、広帯域で高消光比、さらには低挿入損失、低い位相差を有するガラス偏光子を提供することが可能となる。   As described above, by appropriately adjusting the content of silver ions and chloride ions and the heat treatment temperature, it is possible to provide a glass polarizer having a wide band with a high extinction ratio, a low insertion loss, and a low phase difference. It becomes possible.

Claims (2)

波長帯域が1260〜1630nmの範囲の光に対して、50dB以上の消光比を有し、且つ挿入損失が0.015dB以下、厚み方向におけるリタデーションがλ/2以下であることを特徴とするガラス偏光子。   A glass polarizer characterized by having an extinction ratio of 50 dB or more, light having an insertion loss of 0.015 dB or less, and retardation in the thickness direction of λ / 2 or less with respect to light in the wavelength range of 1260 to 1630 nm. . 前記ガラス偏光素子の製造方法において、
溶融後のガラス成分が銀イオンを重量%で0.2〜0.3、および塩素イオンを重量%で0.25〜0.35になるよう調整しガラスを溶解する溶融工程と;
前記溶融ガラス内部に軟化点より10〜50℃低い温度で熱処理し、塩化銀を均一に析出させる塩化銀析出工程と;
前記ガラスを所望の大きさに加工するプリフォーム製造工程と;
前記プリフォームを加熱、延伸し、前記塩化銀粒子を一軸方向に伸張させてガラスシートを成形する延伸工程と;
前記ガラスシート中の伸張された塩化銀を大気圧以下の圧力で還元する還元工程により製造される請求項1に記載のガラス偏光子。
In the manufacturing method of the glass polarizing element,
A melting step of adjusting the glass components after melting to 0.2 to 0.3% by weight of silver ions and 0.25 to 0.35% by weight of chlorine ions to melt the glass;
A silver chloride precipitation step of heat-treating the molten glass at a temperature lower by 10 to 50 ° C. than the softening point to uniformly precipitate silver chloride;
A preform manufacturing process for processing the glass into a desired size;
Heating and stretching the preform, and stretching the silver chloride particles in a uniaxial direction to form a glass sheet;
The glass polarizer of Claim 1 manufactured by the reduction | restoration process reduce | restored the extended | stretched silver chloride in the said glass sheet at the pressure below atmospheric pressure.
JP2011211527A 2011-09-27 2011-09-27 Glass polarizer Active JP5839457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211527A JP5839457B2 (en) 2011-09-27 2011-09-27 Glass polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211527A JP5839457B2 (en) 2011-09-27 2011-09-27 Glass polarizer

Publications (2)

Publication Number Publication Date
JP2013072984A true JP2013072984A (en) 2013-04-22
JP5839457B2 JP5839457B2 (en) 2016-01-06

Family

ID=48477540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211527A Active JP5839457B2 (en) 2011-09-27 2011-09-27 Glass polarizer

Country Status (1)

Country Link
JP (1) JP5839457B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169139A (en) * 1980-04-28 1981-12-25 Corning Glass Works Manufacture of extruded polarizing glass
JPH08248227A (en) * 1994-12-27 1996-09-27 Hoya Corp Polarizing glass and its production
JP2003098349A (en) * 2001-09-21 2003-04-03 Hoya Corp Polarizing glass and method for manufacturing the same
JP2004086100A (en) * 2002-08-29 2004-03-18 Arisawa Mfg Co Ltd Polarizing glass and its manufacture method
JP2006169098A (en) * 2004-12-07 2006-06-29 Corning Inc Drawn glass having high birefringence
WO2008078524A1 (en) * 2006-12-26 2008-07-03 Arisawa Mfg. Co., Ltd. Polarizing glass and process for producing polarizing glass
JP2011059592A (en) * 2009-09-14 2011-03-24 Okamoto Glass Co Ltd Glass polarizing element and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169139A (en) * 1980-04-28 1981-12-25 Corning Glass Works Manufacture of extruded polarizing glass
JPH08248227A (en) * 1994-12-27 1996-09-27 Hoya Corp Polarizing glass and its production
JP2003098349A (en) * 2001-09-21 2003-04-03 Hoya Corp Polarizing glass and method for manufacturing the same
JP2004086100A (en) * 2002-08-29 2004-03-18 Arisawa Mfg Co Ltd Polarizing glass and its manufacture method
JP2006169098A (en) * 2004-12-07 2006-06-29 Corning Inc Drawn glass having high birefringence
WO2008078524A1 (en) * 2006-12-26 2008-07-03 Arisawa Mfg. Co., Ltd. Polarizing glass and process for producing polarizing glass
JP2011059592A (en) * 2009-09-14 2011-03-24 Okamoto Glass Co Ltd Glass polarizing element and manufacturing method thereof

Also Published As

Publication number Publication date
JP5839457B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5379473B2 (en) Copper-containing polarizing glass and optical isolator
KR102365676B1 (en) Polyvinyl alcohol-based film, manufacturing method thereof, and polarizing film using the polyvinyl alcohol-based film
US7230760B2 (en) Polarizers and isolators and methods of manufacture
JP2016536650A (en) Broadband polarizer using ion-exchangeable fusion draw glass plate
US20100167904A1 (en) Polarized glass and method for manufacturing the polarized glass
US8077389B2 (en) Glass polarizer for visible light
WO2010044472A1 (en) Polarizing glass and optical isolator
JP6519119B2 (en) Method of manufacturing polarizing glass plate
JP2006221166A (en) Polarizing glass and method for manufacturing polarizing glass
JP5839457B2 (en) Glass polarizer
JP4685901B2 (en) Manufacturing method of polarizing glass
JP5121165B2 (en) Manufacturing method of polarizing glass
WO2018112386A1 (en) Chalcogenide compositions for optical fibers and other systems
JP2009134131A (en) Light polarizer, light polarizer manufacturing method, and optical isolator
JP2013126921A (en) Method for producing polarizing glass
JP4524330B2 (en) High extinction ratio polarizing glass
JP4611438B2 (en) High extinction ratio polarizing glass
JP4659849B2 (en) Polarizing glass and manufacturing method of polarizing glass
KR100490316B1 (en) Method of making a polarizing glass
JP2009217177A (en) Optical isolator
JP2011059592A (en) Glass polarizing element and manufacturing method thereof
JP2009086519A (en) Polarizing glass, optical isolator using the same, and manufacturing method
JP2012225956A (en) Glass polarizer and method for manufacturing the same
JP2011197465A (en) Glass polarizing element
JP2013025266A (en) Polarizing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5839457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250