JP2013025266A - Polarizing material - Google Patents

Polarizing material Download PDF

Info

Publication number
JP2013025266A
JP2013025266A JP2011162650A JP2011162650A JP2013025266A JP 2013025266 A JP2013025266 A JP 2013025266A JP 2011162650 A JP2011162650 A JP 2011162650A JP 2011162650 A JP2011162650 A JP 2011162650A JP 2013025266 A JP2013025266 A JP 2013025266A
Authority
JP
Japan
Prior art keywords
glass
polarizing material
particles
material according
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162650A
Other languages
Japanese (ja)
Inventor
Takuro Ikeda
拓朗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2011162650A priority Critical patent/JP2013025266A/en
Publication of JP2013025266A publication Critical patent/JP2013025266A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarizing material containing dispersed flat metal particles whose minor axes are oriented in a constant direction and including glass as a base material, and glass containing dispersed and oriented flat metal halide particles for manufacturing the material.SOLUTION: The polarizing material contains flat metal particles which are dispersed in at least a surface layer of a glass base material and have minor axes oriented in a constant direction. The polarizing material has a glass transition point not more than Tg 500°C and a viscosity η not less than 1.0×10dPa*s at Tg+10°C. Glass for manufacturing the polarizing material has these characteristics and contains flat metal halide particles.

Description

本発明は,偏光性材料,特に偏光子に関し,より詳しくは,可視光領域での使用に特に適した偏光性材料,特に偏光子に関する。   The present invention relates to a polarizing material, particularly a polarizer, and more particularly to a polarizing material particularly suitable for use in the visible light region.

液晶プロジェクター,液晶リアプロジェクションディスプレイ等では,主に有機系吸収型偏光子が用いられている。有機系吸収型偏光子には,熱や光(特にエネルギーの高い青色光)により経時劣化が起こってしまうという欠点がある。そのため,耐熱性・耐光性に優れた無機系偏光子が求められている。   Organic absorption polarizers are mainly used in liquid crystal projectors, liquid crystal rear projection displays, and the like. Organic absorption polarizers have the disadvantage that they degrade over time due to heat and light (especially high-energy blue light). Therefore, an inorganic polarizer excellent in heat resistance and light resistance is required.

無機系吸収型の偏光子としては,形状異方性の金属銀粒子を分散して含んだ偏光子の基本的な製造方法が特許文献1〜3に示されている。それらの方法は,Ag及びハロゲン(Cl,Br又はI)を成分として含むガラスを熱処理してハロゲン化銀粒子を析出させた後,そのガラスを押し出し又は延伸して紡錘形(prolate)の形状異方性ハロゲン化銀粒子を,その長軸を特定方向に配向させた形で分散して含んだガラスとし,次いでこれを還元処理することにより,紡錘形の金属銀粒子を,その長軸を特定方向に配向させた形で分散して含んだ偏光子とするものである。偏光子として機能するためには,紡錘形の金属銀粒子の長軸の配向する方向と偏光子の光入射面(光を入射させる面)とが平行であることが必要である。   As an inorganic absorption type polarizer, Patent Documents 1 to 3 show basic methods for producing a polarizer containing dispersed metallic silver particles having shape anisotropy. In these methods, a glass containing Ag and halogen (Cl, Br or I) as components is heat-treated to precipitate silver halide grains, and then the glass is extruded or stretched to form a spindle-shaped anisotropic shape. Glass containing silver halide grains dispersed in a form in which the major axis is oriented in a specific direction, and then reducing the glass to form spindle-shaped metallic silver grains in a particular direction. The polarizer is dispersed and contained in an oriented form. In order to function as a polarizer, the direction in which the long axes of spindle-shaped metallic silver particles are aligned and the light incident surface (surface on which light is incident) of the polarizer must be parallel.

可視光域のうち緑色領域で高透過率且つ高消光比を示す偏光子の製法として,ハロゲン化銀粒子のサイズを小さくする方法が特許文献4,5に示されている。   Patent Documents 4 and 5 show methods for reducing the size of silver halide grains as a method for producing a polarizer exhibiting a high transmittance and a high extinction ratio in the green region of the visible light region.

しかしながら,金属銀粒子を用いてこれまでに得られている偏光子には,可視光領域特に青色〜緑色領域において,高透過率と高消光比を両立させることが困難であるという欠点があった。   However, the polarizers obtained so far using metallic silver particles have a drawback that it is difficult to achieve both high transmittance and high extinction ratio in the visible light region, particularly in the blue to green region. .

更に特許文献6には,金属銀粒子及び/又はハロゲン化銀粒子を含有するガラスを,ガラスの流動方向に粒子が引き延ばされて整列するような方法で押出し成形することによって,フォトクロミック又は非フォトクロミックの,偏光性を有するガラスを製造する方法が開示されている。同文献には,押出し成形で得られた粒子が紡錘形の場合,二色比は平均で1.8〜3.0となること,及び,粒子が紡錘形よりも偏球形(oblate)の場合に二色比がより大きく(最大5.0まで)なることが述べられている。しかしながら,この程度の二色比の値が示す偏光性は,偏光子に求められる偏光性(消光比)のレベルよりはるかに低い。また,同文献には,押出し成形の具体的方法に関しては,直径1インチのガラスディスクを直径0.25インチの棒へと,すなわち断面積が1/16に縮小するように押出し成形したことが記載されているのみである(従って,中心軸方向の寸法は16倍に延ばされたと推定される)。しかしながら,この方法では元のガラスディスクが,周囲から中心方向へと圧縮されつつ厚さ(長さ)方向に延びるため,含まれていた粒子は紡錘形へと変形される筈であり,偏球形にはなり得ない。すなわち同文献には,偏球形の粒子を形成させる方法についての記載はない。   Further, in Patent Document 6, glass containing metallic silver particles and / or silver halide particles is extruded by a method in which the particles are stretched and aligned in the flow direction of the glass, thereby photochromic or non-chromic. A method for producing photochromic, polarizing glass is disclosed. The document states that when the particles obtained by extrusion are spindle-shaped, the dichroic ratio is 1.8 to 3.0 on average, and when the particles are oblate rather than spindle-shaped. It is stated that the color ratio is larger (up to 5.0). However, the degree of polarization exhibited by such dichroic ratio values is much lower than the level of polarization (extinction ratio) required for polarizers. Also, in the same document, regarding a specific method of extrusion molding, a glass disk having a diameter of 1 inch was extruded into a rod having a diameter of 0.25 inch, that is, the cross-sectional area was reduced to 1/16. It is only described (thus, the dimension in the direction of the central axis is estimated to have been extended 16 times). However, in this method, the original glass disk extends in the thickness (length) direction while being compressed from the periphery to the center direction, so that the contained particles should be deformed into a spindle shape. Cannot be. That is, this document does not describe a method for forming oblate spherical particles.

また,非特許文献1には,塩化銀の微結晶を含んだ円柱状のガラスを加熱下に高さ方向に圧縮してディスク状にし,サンプルを切り出し,含まれる塩化銀の形状について偏球形であったとしている。そして圧縮方向に平行な面で切り出したサンプルに紫外線を照射して着色させた後,圧縮方向と平行な方向に分極した光と,垂直に分極した光をサンプルに入射させてそれぞれ測定した吸光度をグラフで表示している(第98頁図5(a)及び(b))。しかしながら,それらのグラフにおいて,青色〜緑色領域の3つの波長450nm,550nm,及び500nmについて見ると,それら分極方向の異なる2とおりの入射光での吸光度の相違は,それぞれ,約1.6倍,約2.4倍,及び約2.0倍に過ぎず,偏光性が極めて不十分である。   Non-Patent Document 1 discloses that cylindrical glass containing silver chloride microcrystals is compressed in the height direction under heating to form a disk, a sample is cut out, and the shape of silver chloride contained is oblate. It is said that there was. Then, after irradiating the sample cut with a surface parallel to the compression direction with ultraviolet light and coloring it, the light polarized in the direction parallel to the compression direction and the light polarized in the direction perpendicular to the sample were incident on the sample, and the measured absorbance was measured. The graph is displayed (FIG. 5 (a) and (b) on page 98). However, in these graphs, when the three wavelengths 450 nm, 550 nm, and 500 nm in the blue to green region are viewed, the difference in absorbance between the two incident lights having different polarization directions is about 1.6 times, It is only about 2.4 times and about 2.0 times, and the polarization property is extremely insufficient.

特許文献7,8には誘電体の少なくとも表面層に3次元的に長さの異なる金属粒子が分散配向した偏光子が記載されているが,可視光,特に青色領域での性能向上のために要求される粒子形状,金属の種類,誘電体の屈折率については記載されておらず,誘電体を変形させるための熱物性は記載されていない。なお,該文献で誘電体として用いられているガラス材料はそれぞれパイレックス(登録商標),BK−7と記載されており,どちらもガラス転移点は550℃以上である。   Patent Documents 7 and 8 describe a polarizer in which metal particles having three-dimensionally different lengths are dispersed and oriented on at least a surface layer of a dielectric. To improve performance in the visible light, particularly in the blue region. The required particle shape, metal type, and refractive index of the dielectric are not described, and the thermophysical properties for deforming the dielectric are not described. The glass materials used as dielectrics in this document are described as Pyrex (registered trademark) and BK-7, respectively, and both have a glass transition point of 550 ° C. or higher.

米国特許4304584号公報US Patent No. 4,304,584 米国特許4479819号公報US Pat. No. 4,479,819 特開平4−208844号公報JP-A-4-208844 特開2008−162810号公報JP 2008-162810 A 特開2008−225483号公報JP 2008-225483 A 米国特許4282022号公報US Pat. No. 4,282,222 特開平07−056018公報Japanese Patent Laid-Open No. 07-056018 特開平10−133015号公報JP 10-1333015 A

Y. Kimura et al., Physics and Chemistry of Glasses, 18(5), p.96-100(1977).Y. Kimura et al., Physics and Chemistry of Glasses, 18 (5), p.96-100 (1977). A.N.Gent , J.Appl.Phys.,17,p458, (1946).A.N.Gent, J.Appl.Phys., 17, p458, (1946).

上記の背景において本願の出願人は,本願に先立ち,紡錘形金属粒子ではなく,扁平化金属粒子をガラス等の透明無機固体基材中に分散して含有し,該扁平化金属粒子の短軸が一定方向に配向しているものである,偏光性材料の製造方法を発明し,これにつき特許出願を行った(本願出願時点で未公開の特願2010−198286号)。当該製造方法によれば,可視光領域特に青色領域で高性能を示す偏光子を作製することができる。   In the above background, prior to this application, the applicant of the present application contains flattened metal particles dispersed in a transparent inorganic solid substrate such as glass instead of spindle-shaped metal particles, and the minor axis of the flattened metal particles is A method for producing a polarizing material, which is oriented in a certain direction, was invented, and a patent application was filed for this method (Japanese Patent Application No. 2010-198286 unpublished at the time of filing this application). According to the manufacturing method, a polarizer exhibiting high performance in the visible light region, particularly in the blue region, can be manufactured.

扁平化金属粒子を分散した偏光ガラスは,これを一軸延伸によって作製しようとすれば複数回にわたって別方向に延伸するなどの方法を取る必要があるが,このような方法は実施が困難であるため,圧縮や押出といった成形方法を取ることが好ましい。しかるに,延伸ではガラスの高温部が装置の部材と接触することがないのに対し,圧縮や押出では高温のガラスと金型とが直接に,しかも高圧で接触し,そのため金型の劣化が速く進むという問題がある。金型の劣化を抑制するには,成形時の温度を低くすることが有効である。成形を行う温度の指標としてガラス転移点Tgもしくは屈伏点Atを用いることができる。しかし,ガラス転移点を下げる成分は高屈折率化に寄与し,多く含有すると青色域における吸収損失を高めてしまうという問題を生じる。   If a polarizing glass in which flattened metal particles are dispersed is produced by uniaxial stretching, it is necessary to take a method such as stretching in different directions several times, but such a method is difficult to implement. It is preferable to take a molding method such as compression or extrusion. However, in the drawing, the high temperature part of the glass does not come into contact with the components of the equipment, whereas in the compression or extrusion, the high temperature glass and the mold are in direct contact with each other at a high pressure, so that the mold is rapidly deteriorated. There is a problem of going forward. In order to suppress the deterioration of the mold, it is effective to lower the temperature during molding. The glass transition point Tg or the yield point At can be used as an index of the temperature at which the molding is performed. However, a component that lowers the glass transition point contributes to a higher refractive index, and if it is contained in a large amount, it causes a problem of increasing absorption loss in the blue region.

本発明の目的は,これらの問題を解決し,扁平化金属粒子を分散して含有し,それらの粒子の短軸が一定方向に配向しているものである,ガラスを基材とする偏光性材料,及びそのような偏光性材料の製造のための,扁平化ハロゲン化金属粒子を分散して含有し,それらの粒子の短軸が一定方向に配向しているものであるガラスを提供することである。   The object of the present invention is to solve these problems, to contain flattened metal particles in a dispersed manner, and to have a short axis of these particles oriented in a certain direction. Disclosed are materials, and glass for the production of such polarizing materials, containing flattened metal halide particles dispersedly, the minor axes of these particles being oriented in a certain direction. It is.

本発明者は,上記課題の解決のため,成形条件を検討した結果,成形温度(これはガラス転移点以上である。)における粘性が低過ぎないことが好ましいことが判明した。この結果を踏まえて種々のガラス組成を検討した結果,Tg+10℃における粘性ηを指標として,η(Tg+10℃)が1.0×1012dPa・sを下回らないガラス基材が好ましいことが判明した。本発明は,この知見に基づき,更に検討を重ねて,透明無機固体基材として従来より適したガラス基材を見出し,これに基づき本発明を完成させた。すなわち本発明は,以下を提供するものである。 As a result of examining the molding conditions in order to solve the above problems, the present inventor has found that the viscosity at the molding temperature (which is higher than the glass transition point) is preferably not too low. As a result of examining various glass compositions based on this result, it has been found that a glass substrate whose η (Tg + 10 ° C.) is not less than 1.0 × 10 12 dPa · s is preferable using the viscosity η at Tg + 10 ° C. as an index. . Based on this finding, the present invention has been further studied and found a glass substrate that has been conventionally suitable as a transparent inorganic solid substrate, and the present invention has been completed based on this. That is, the present invention provides the following.

(1)ガラス基材中の少なくとも表面層に扁平化金属粒子を分散して含有し,該扁平化金属粒子の短軸が一定方向に配向しているものである偏光性材料であって,ガラス転移点Tgが500℃を超えず,且つTg+10℃における粘度ηが1.0×1012dPa・sを下回らないものであることを特徴とする偏光性材料。
(2)屈伏点Atが550℃を超えないものである,上記1の偏光性材料。
(3)d線に対する屈折率ndが1.50を超えないものである,上記1又は2の偏光性材料。
(4)該扁平化金属粒子の該短軸の長さ(a)に対する該粒子の幅(b)の比の平均値が少なくとも1.2である上記1ないし3の何れかの偏光性材料。
(5)該金属が銀又は銀合金である,上記1ないし4の何れかの偏光性材料。
(6)銀が0.05重量%以上含有されているものである,上記5の偏光性材料。
(7)該扁平化金属粒子が短軸とこれに直交し相互にも直交する長さの異なる2本の長軸を有し,該短軸及び該2本の長軸が,それぞれ一定方向に配向しているものである,上記1ないし6の何れかの偏光性材料。
(8)該扁平化金属粒子の該短軸の長さ(a)に対する該2本の長軸のうち短い方の長さ(b)の比の平均値が、少なくとも1.2である,上記1ないし7の何れかの偏光性材料。
(9)該偏光性材料が組成として,
SiO+Al:10〜60重量%
:25〜60重量%
NaO+KO:5〜20重量%
Ag:0.05重量%以上
Cl:0.05重量%以上
を含んでなるものであることを特徴とする上記1ないし8の何れかの偏光性材料。
(10)上記1ないし9の何れかの偏光性材料であって,板の形に形成されており,該板の表面に対して,該扁平化金属粒子の短軸の配向方向が平行なものである,偏光子。
(11)上記1ないし9の何れかの偏光性材料であって,板の形に形成されており,該板の表面に対して,該扁平化金属粒子の短軸及び一方の長軸の配向方向が共に平行なものである,偏光子。
(12)該扁平化金属粒子の短軸の長さに対する該板の表面に垂直な方向に配向した長軸の長さの比の平均値が,少なくとも1.4である,上記11の偏光子。
(13)該扁平化金属粒子の2本の長軸のうち,該板の表面に対して平行に配向した長軸の長さより,該板の表面に対して垂直に配向した長軸の長さの方が長いものである,上記11又は12の偏光子。
(14)430nm〜700nmの何れかの波長の直線偏光について,粒子の短軸の配向方向と該直線偏光の電場ベクトルが平行な場合における透過率が30%以上であり,且つ消光比が10dB以上である,上記11ないし13の何れかの偏光子。
(15)430nm〜450nm,450nm〜500nm,及び500nm〜550nmのうち少なくとも何れかの波長範囲にわたって,直線偏光に対する消光比が15dB以上である,上記11ないし14の何れかの偏光子。
(16)ガラス基材中に扁平化ハロゲン化金属粒子を分散して含有し,該扁平化ハロゲン化金属粒子の短軸が一定方向に配向しており,ガラス転移点Tgが500℃を超えず,且つTg+10℃における粘度ηが1.0×1012dPa・sを下回らないものであることを特徴とする,偏光性材料製造用ガラス。
(17)屈伏点Atが550℃を超えないものである,上記16の偏光性材料製造用ガラス。
(18)d線に対する屈折率ndが1.50を超えないものである,上記16又は17の偏光性材料製造用ガラス。
(19)該扁平化ハロゲン化金属粒子の該短軸の長さ(a)に対する該粒子の幅(b)の比の平均値が少なくとも1.2である上記16ないし18の何れかの偏光性材料製造用ガラス。
(20)該金属が銀又は銀合金である,上記16ないし19の何れかの偏光性材料製造用ガラス。
(21)銀が0.05重量%以上含有されているものである,上記20の偏光性材料製造用ガラス。
(22)該扁平化ハロゲン化金属粒子が短軸とこれに直交し相互にも直交する長さの異なる2本の長軸を有し,該短軸及び該2本の長軸が,それぞれ一定方向に配向しているものである,上記16ないし21の何れかの偏光性材料製造用ガラス。
(23)該扁平化ハロゲン化金属粒子の該短軸の長さ(a)に対する該2本の長軸のうち短い方の長さ(b)の比の平均値が、少なくとも1.2である,上記16ないし22の何れかの偏光性材料製造用ガラス。
(24)該偏光性材料製造用ガラスが組成として,
SiO+Al:10〜60重量%
:25〜60重量%
NaO+KO:5〜20重量%
Ag:0.05重量%以上
Cl:0.05重量%以上
を含んでなるものであることを特徴とする上記1ないし8の何れかの偏光性材料製造用ガラス。
(25)上記16ないし24の何れかの偏光性材料製造用ガラスであって,板の形に形成されており,該板の表面に対して,該扁平化ハロゲン化金属粒子の短軸の配向方向が平行なものである,偏光性材料製造用ガラス。
(26)上記16ないし25の何れかの偏光性材料製造用ガラスであって,板の形に形成されており,該板の表面に対して,該扁平化ハロゲン化金属粒子の短軸及び一方の長軸の配向方向が共に平行なものである,偏光性材料製造用ガラス。
(27)該扁平化ハロゲン化金属粒子の短軸の長さに対する該板の表面に垂直な方向に配向した長軸の長さの比の平均値が,少なくとも1.4である,上記26の偏光性材料製造用ガラス。
(28)該扁平化ハロゲン化金属粒子の2本の長軸のうち,該板の表面に対して平行に配向した長軸の長さより,該板の表面に対して垂直に配向した長軸の長さの方が長いものである,上記26又は27の偏光性材料製造用ガラス。
(1) A polarizing material comprising flattened metal particles dispersed and contained in at least a surface layer in a glass substrate, wherein the short axis of the flattened metal particles is oriented in a certain direction. A polarizing material characterized in that the transition point Tg does not exceed 500 ° C., and the viscosity η at Tg + 10 ° C. does not fall below 1.0 × 10 12 dPa · s.
(2) The polarizing material according to 1 above, wherein the yield point At does not exceed 550 ° C.
(3) The polarizing material according to 1 or 2 above, wherein the refractive index nd with respect to the d-line does not exceed 1.50.
(4) The polarizing material according to any one of 1 to 3 above, wherein the average value of the ratio of the width (b) of the particles to the length (a) of the short axis of the flattened metal particles is at least 1.2.
(5) The polarizing material according to any one of 1 to 4 above, wherein the metal is silver or a silver alloy.
(6) The polarizing material as described in 5 above, which contains 0.05% by weight or more of silver.
(7) The flattened metal particle has a minor axis and two major axes orthogonal to each other and different from each other, and the minor axis and the two major axes are respectively in a fixed direction. 7. The polarizing material according to any one of 1 to 6 above, which is oriented.
(8) The average value of the ratio of the shorter length (b) of the two major axes to the minor axis length (a) of the flattened metal particles is at least 1.2, The polarizing material according to any one of 1 to 7.
(9) The polarizing material has a composition
SiO 2 + Al 2 O 3 : 10 to 60% by weight
B 2 O 3: 25~60 wt%
Na 2 O + K 2 O: 5 to 20% by weight
Ag: 0.05% by weight or more Cl: 0.05% by weight or more The light-polarizing material according to any one of 1 to 8 above, which comprises 0.05% by weight or more.
(10) The polarizing material according to any one of 1 to 9 above, which is formed into a plate shape, and the orientation direction of the short axis of the flattened metal particles is parallel to the surface of the plate A polarizer.
(11) The polarizing material according to any one of 1 to 9, which is formed in a plate shape, and the orientation of the short axis and one long axis of the flattened metal particles with respect to the surface of the plate A polarizer whose directions are parallel to each other.
(12) The polarizer according to 11 above, wherein the average value of the ratio of the length of the major axis oriented in the direction perpendicular to the surface of the plate to the length of the minor axis of the flattened metal particles is at least 1.4. .
(13) Of the two major axes of the flattened metal particles, the length of the major axis oriented perpendicular to the surface of the plate from the length of the major axis oriented parallel to the surface of the plate The polarizer according to 11 or 12 above, which is longer.
(14) For linearly polarized light having a wavelength of 430 nm to 700 nm, the transmittance is 30% or more and the extinction ratio is 10 dB or more when the orientation direction of the minor axis of the particle is parallel to the electric field vector of the linearly polarized light. The polarizer according to any one of 11 to 13 above.
(15) The polarizer according to any one of the above 11 to 14, wherein an extinction ratio to linearly polarized light is 15 dB or more over at least any wavelength range of 430 nm to 450 nm, 450 nm to 500 nm, and 500 nm to 550 nm.
(16) The flattened metal halide particles are dispersed and contained in the glass substrate, the short axes of the flattened metal halide particles are oriented in a certain direction, and the glass transition point Tg does not exceed 500 ° C. A glass for producing a polarizing material, wherein the viscosity η at Tg + 10 ° C. does not fall below 1.0 × 10 12 dPa · s.
(17) The glass for producing a polarizing material as described in 16 above, wherein the yield point At does not exceed 550 ° C.
(18) The glass for producing a polarizing material according to the above 16 or 17, wherein the refractive index nd with respect to the d-line does not exceed 1.50.
(19) The polarization property according to any one of 16 to 18 above, wherein the average value of the ratio of the width (b) of the flat metal halide particles to the short axis length (a) is at least 1.2. Glass for material production.
(20) The glass for producing a polarizing material according to any one of 16 to 19, wherein the metal is silver or a silver alloy.
(21) The glass for producing a polarizing material as described in 20 above, which contains 0.05% by weight or more of silver.
(22) The flattened metal halide particle has a minor axis and two major axes perpendicular to each other and different from each other, and the minor axis and the two major axes are constant. The glass for producing a polarizing material according to any one of 16 to 21, which is oriented in a direction.
(23) The average value of the ratio of the shorter length (b) of the two major axes to the minor axis length (a) of the flattened metal halide particles is at least 1.2. The glass for producing a polarizing material according to any one of 16 to 22 above.
(24) The polarizing material manufacturing glass has a composition,
SiO 2 + Al 2 O 3 : 10 to 60% by weight
B 2 O 3: 25~60 wt%
Na 2 O + K 2 O: 5 to 20% by weight
The glass for producing a polarizing material according to any one of 1 to 8 above, comprising Ag: 0.05% by weight or more and Cl: 0.05% by weight or more.
(25) The glass for producing a polarizing material according to any one of 16 to 24, wherein the glass is formed in a plate shape, and the short axis orientation of the flattened metal halide particles is relative to the surface of the plate. Polarizing material manufacturing glass with parallel directions.
(26) The glass for producing a polarizing material according to any one of 16 to 25, wherein the glass is formed in a plate shape, and the short axis and one of the flattened metal halide particles are formed on the surface of the plate. A glass for producing a polarizing material, in which the orientation directions of the major axes are parallel to each other.
(27) The average value of the ratio of the length of the major axis oriented in the direction perpendicular to the surface of the plate to the length of the minor axis of the flattened metal halide particles is at least 1.4. Polarizing material manufacturing glass.
(28) Of the two major axes of the flattened metal halide particles, the major axis oriented perpendicular to the surface of the plate is longer than the length of the major axis oriented parallel to the surface of the plate. 26. The glass for producing a polarizing material as described in 26 or 27 above, which has a longer length.

本発明によれば,可視光領域,とりわけ青色〜緑色領域において従来のものより優れた特性を示す偏光性材料,特に偏光子を得ることができる。   According to the present invention, it is possible to obtain a polarizing material, particularly a polarizer, which exhibits characteristics superior to those of conventional ones in the visible light region, particularly in the blue to green region.

実施例1の熱処理済母材ガラス1mm厚での透過率曲線。The transmittance | permeability curve in 1 mm thickness of heat-processed base material glass of Example 1. FIG. 実施例1でのガラスの変形を表す概念図。FIG. 3 is a conceptual diagram illustrating the deformation of glass in Example 1. 実施例1で製造した偏光子の透過率曲線。E//aは,電場ベクトルが扁平金属粒子の短軸の配向方向(a)と平行な場合における偏光の透過率を,E//bは,電場ベクトルがこれと垂直な場合における透過率曲線を示す。4 is a transmittance curve of the polarizer manufactured in Example 1. FIG. E // a is the transmittance of polarized light when the electric field vector is parallel to the orientation direction (a) of the short axis of the flat metal particle, and E // b is the transmittance curve when the electric field vector is perpendicular thereto. Indicates.

実施例の部において述べるように,実験の結果,本発明の偏光子が従来の紡錘形金属粒子を用いた偏光子に比して,可視光領域,特に青色〜緑色領域において優れた特性を示すことが見出された。   As described in the Examples section, as a result of experiments, the polarizer of the present invention exhibits superior characteristics in the visible light region, particularly in the blue to green region, as compared with a polarizer using conventional spindle-shaped metal particles. Was found.

本発明において,「偏光性材料」というときは,偏光性を有する材料をいい,偏光子を包含する。   In the present invention, the term “polarizing material” refers to a material having a polarizing property and includes a polarizer.

本発明において,偏光性材料製造用ガラスは,これを(必要な場合,切り出し等の加工の後)還元して,一定方向に配向した扁平化ハロゲン化金属粒子の少なくとも一部を扁平化金属粒子に変換することで,偏光性材料を与える。   In the present invention, the glass for producing a polarizing material is reduced (after processing such as cutting if necessary), and at least a part of the flattened metal halide particles oriented in a certain direction is flattened metal particles. By converting to, a polarizing material is given.

なお本発明において,扁平化金属粒子について,「少なくとも表面層に含んだ」とは,ガラスの中心部に含まれる扁平化ハロゲン化銀粒子までが全て金属粒子へと変換される必要がないことを示すに過ぎず,「表面層」は,何らかの特定の厚みを有する層でなければならないことを意味しない。   In the present invention, regarding the flattened metal particles, “at least included in the surface layer” means that it is not necessary to convert all of the flattened silver halide grains contained in the center of the glass into metal particles. For the sake of illustration only, a “surface layer” does not mean that the layer must have any particular thickness.

本発明の偏光性材料特に偏光子の製造は,例えば,ハロゲン化銀等のハロゲン化金属粒子(球状)を分散して含有する透明無機固体材料(ガラス)を準備し,これを加熱下に一軸圧縮して扁平化し,それにより粒子も同時に扁平化させ,得られた材料をそのまま,短軸の方向に(すなわち圧縮方向に)平行な面で板状に切り出し,ハロゲン化金属粒子を金属粒子へと還元することにより行うことができる。   The polarizing material of the present invention, particularly the polarizer, is prepared, for example, by preparing a transparent inorganic solid material (glass) containing dispersed metal halide particles (spherical) such as silver halide, which is uniaxially heated. Compress and flatten, thereby flattening the particles at the same time. Cut the resulting material directly into a plate shape with a plane parallel to the direction of the short axis (that is, in the compression direction) to convert the metal halide particles into metal particles. It can be carried out by reducing.

本発明において,球に関して「扁平化」した形状とは,直角座標(デカルト座標)の原点に球の中心を置き,(i) 球の寸法を例えばx軸方向に寸法を縮小して得られる形状(偏球形:oblate)のほか,(ii) x軸方向のそのような縮小と同時に例えばz軸方向に寸法を拡大することにより得られる形状も包含する。現実の球状粒子は体積が実質上一定であることから,x軸方向への圧縮はこれと直交する放射方向に径の拡張をもたらすが,得られる形状は,上記(i)で得られる何れかの偏球と実質上相似である。また,現実の球状粒子をx軸方向に圧縮するのと同時にy軸方向へそれが拡張するのを阻止又は抑制することにより,z軸方向への拡張が余分に起こり,上記(ii)で得られる形状に概略相似である。   In the present invention, the “flattened” shape for a sphere is a shape obtained by placing the center of the sphere at the origin of Cartesian coordinates (Cartesian coordinates) and (i) reducing the size of the sphere in the x-axis direction, for example. In addition to (oblate shape: oblate), (ii) shapes obtained by enlarging the dimensions in the z-axis direction, for example, simultaneously with such reduction in the x-axis direction are also included. Since the volume of an actual spherical particle is substantially constant, compression in the x-axis direction results in an expansion of the diameter in the radial direction orthogonal to this, but the shape obtained can be any of those obtained in (i) above. Is substantially similar to In addition, by compressing an actual spherical particle in the x-axis direction and simultaneously preventing or suppressing it from expanding in the y-axis direction, extra expansion in the z-axis direction occurs, which is obtained in (ii) above. It is roughly similar to the resulting shape.

なお,上記(ii)のタイプの形状も,y軸方向の拡張の抑制の程度小さいほど上記(i)のタイプの形状に近づき,抑制の程度がゼロであれば上記(i)のタイプの形状に完全に一致するから,上記(i)の形状は上記(ii)の形状の特別の場合として,後者に包含される。また,本発明の偏光性材料中の扁平化金属粒子(及び還元前の扁平化したハロゲン化金属粒子)は,数学的な厳密さを以て上記(i)又は(ii)の形状に一致することまでが求められるものでなく,実質上それら(i)又は(ii)のタイプの形状として観念することができるものであれば足りる。すなわち,(i)のタイプの粒子では,1本の短軸を有し,該短軸に垂直な断面において実質的に円形であればよく,(ii)のタイプの粒子では,一本の短軸を有し,該短軸に垂直な断面において実質的に楕円形であればよい。   The shape of the above type (ii) is also closer to the shape of the above type (i) as the degree of suppression of expansion in the y-axis direction is smaller, and if the degree of suppression is zero, the shape of the above type (i) Therefore, the shape of (i) above is included in the latter as a special case of the shape of (ii) above. Further, the flattened metal particles (and the flattened metal halide particles before reduction) in the polarizing material of the present invention agree with the shape of (i) or (ii) with mathematical strictness. Is not required, and it is sufficient if it can be considered as a shape of the type (i) or (ii). That is, the particle of type (i) has only one short axis and may be substantially circular in the cross section perpendicular to the short axis, and the particle of type (ii) has one short axis. It only has to be substantially oval in a cross section having an axis and perpendicular to the minor axis.

本発明において,扁平化金属粒子について「短軸」とは,該粒子の3軸中,最も短い長さ(a)のものをいう。上記(i)のタイプの偏球形の扁平化金属粒子の場合,2本の長軸の方向は不定であるが,それらの長さ(b,c)は定まり,それらは互いに等しい(すなわち,a<b=c)。また,異なる長さの3軸を有する上記(ii)のタイプの扁平化金属粒子の場合,短軸(長さa)以外の2本の軸を長軸とし,それらのうち短い方の長さをb,長い方の長さをcで表す(すなわち,a<b<c)。   In the present invention, the “short axis” of the flattened metal particles means the shortest length (a) among the three axes of the particles. In the case of the oblate spherical flattened metal particles of type (i) above, the directions of the two major axes are indefinite, but their lengths (b, c) are determined and they are equal to each other (ie, a <B = c). In the case of flattened metal particles of the above type (ii) having three different lengths, two axes other than the short axis (length a) are the major axes, and the shorter one of them Is represented by b, and the longer one is represented by c (that is, a <b <c).

従来の紡錘形金属粒子に基づく偏光子においては,粒子の長軸を偏光子の表面(光入射面)に平行に配向させることで偏光特性を得ているが,本発明の偏光子では,粒子の短軸が偏光子の表面に平行になるように作製される。特に,上記(i)のタイプの扁平化金属粒子では,そもそも長軸の方向は不定である。また長さの異なる3本の軸を有する上記(ii)のタイプの扁平化金属粒子を用いる偏光子では,偏光子の表面に粒子の短軸が平行である一方,粒子は,表面に垂直な深さ方向に,短軸より長い軸を持っており,これは紡錘形の粒子を用いる偏光子には無い重要な特徴の一つである。この表面に垂直な,深さ方向の軸は,2本の長軸の何れであることもできる。また,長い方の長軸を偏光子の表面に対して垂直に,すなわち深さ方向に配向させた場合,青色〜緑色領域に優れた偏光子を製造する上で,とりわけ有利である。   In a polarizer based on a conventional spindle-shaped metal particle, the polarization characteristics are obtained by orienting the long axis of the particle in parallel with the surface of the polarizer (light incident surface). The short axis is made parallel to the surface of the polarizer. In particular, in the case of the flattened metal particles of the above type (i), the major axis direction is indefinite in the first place. In the polarizer using the flattened metal particles of type (ii) having three axes with different lengths, the minor axis of the particles is parallel to the surface of the polarizer, while the particles are perpendicular to the surface. In the depth direction, it has an axis longer than the minor axis, which is one of the important features not found in a polarizer using spindle-shaped particles. The depth axis perpendicular to the surface can be any of the two long axes. Further, when the longer major axis is oriented perpendicularly to the surface of the polarizer, that is, in the depth direction, it is particularly advantageous for producing a polarizer excellent in the blue to green region.

本発明の偏光性材料は,必要に応じ切り出し又は研磨等の加工を施して,偏光子とするのに適している。   The polarizing material of the present invention is suitable for use as a polarizer by cutting or polishing as necessary.

本発明において,ガラス基材中に懸濁して含有される粒子のある軸について「配向」しているとは,含有されるそれらの粒子の当該軸の方向の分布に,全体として特定の方向の偏りがある(すなわち,等方性でない)ことをいう。この特定方向の偏りは,必ずしも当該軸の全てが実質上正確に当該特定の方向を向いていることまでは要しない。何故なら,偏光特性は,基材中に分散して含まれるそれらの無数の粒子があくまでも集団として入射光と相互作用する結果として観察される特性であるため,粒子の集団が全体として(すなわち,粒子の軸方向の分布の平均値として),特定方向に軸を向けていれば,偏光特性は得られるからである。   In the present invention, “oriented” with respect to a certain axis of particles contained suspended in a glass substrate means that the distribution of those particles contained in the direction of the axis in a specific direction as a whole. This means there is a bias (ie, it is not isotropic). This bias in the specific direction does not necessarily require that all of the axes are oriented in the specific direction substantially accurately. This is because the polarization property is a property that is observed as a result of the innumerable particles contained in the substrate dispersed and interacting with the incident light as a group, so that the group of particles as a whole (ie, This is because the polarization characteristic can be obtained if the axis is oriented in a specific direction (as an average value of the distribution in the axial direction of the particles).

本発明においてガラス基材は,偏光子として利用しようとする波長帯域において,利用しようとする厚みの場合に80%以上の内部透過率(表面及び裏面での反射損失を除いた,物体の内部を光が横切る際の透過率)を示す無機材料であることが好ましい。   In the present invention, the glass base material has an internal transmittance of 80% or more in the wavelength band to be used as a polarizer in the wavelength band to be used (excluding the reflection loss on the front and back surfaces, the inside of the object). It is preferably an inorganic material exhibiting a transmittance when light crosses.

本発明において,ガラス基材の屈折率(偏光性材料の屈折率に等しい)(nd:ヘリウムのd線に対する屈折率)は,1.50以下とすることによって従来に比べ優れた性能を発現させることができ,より好ましくは1.49以下とすることがよく,更に好ましくは1.48以下とするとよい。   In the present invention, the refractive index of the glass substrate (equal to the refractive index of the polarizing material) (nd: the refractive index of helium with respect to the d-line) is 1.50 or less, so that superior performance can be achieved compared to the prior art. More preferably, it should be 1.49 or less, and more preferably 1.48 or less.

本発明において,ガラス基材のガラス転移点(偏光性材料のガラス転移点に等しい)Tgは500℃を超えないことが好ましく,480℃を超えないことがより好ましく,450℃以下を超えないことが更に好ましい。   In the present invention, the glass transition point (equal to the glass transition point of the polarizing material) Tg of the glass substrate preferably does not exceed 500 ° C, more preferably does not exceed 480 ° C, and does not exceed 450 ° C or less. Is more preferable.

屈伏点(At)は550℃を超えないことが好ましく,520℃を超えないことがより好ましく,490℃を超えないことが更に好ましい。
なお,屈伏点(At)とは,熱機械分析装置(TMA)で熱膨張測定をしたとき、ガラスの軟化によって,膨張曲線が上昇から下降に転じる極大点をいう。
The yield point (At) preferably does not exceed 550 ° C, more preferably does not exceed 520 ° C, and further preferably does not exceed 490 ° C.
The yield point (At) is the maximum point at which the expansion curve changes from rising to falling due to softening of the glass when the thermal expansion is measured with a thermomechanical analyzer (TMA).

本発明において,扁平化金属粒子について「短軸の長さに対する該粒子の幅の比の平均値」とは,上記(i)のタイプの扁平化金属粒子の場合,についていうときは,偏光性材料中に観察される個々の粒子について「幅(すなわち長軸の長さ)/短軸の長さ」により求められる比の個数平均を意味する。また上記(ii)のタイプの扁平化金属粒子についていうときは,同様に,個々の粒子について「長軸の長さに/短軸の長さ」により求められる比の個数平均を意味し,2本の長軸に関してそれぞれ算出される。   In the present invention, the term “average value of the ratio of the width of the particle to the length of the minor axis” for the flattened metal particles refers to the case of the flattened metal particles of the type (i) above. It means the number average of ratios determined by “width (ie, length of major axis) / length of minor axis” for individual particles observed in the material. In addition, when referring to the above-mentioned type (ii) of flattened metal particles, it means the number average of ratios determined by “long axis length / short axis length” for each particle. Each is calculated for the long axis of the book.

本発明において偏光性材料中の扁平化金属粒子の短軸の長さ(a)に対する該粒子の幅(又は,長軸の長さ(b=c))の比の平均値は,1.2以上であることが好ましく,1.4以上であることがより好ましい。この比に特段の上限はないが,通常は100以下でよく,より好ましくは70以下,更に好ましくは40以下,なおも好ましくは15以下,特に好ましくは10以下とすればよい。   In the present invention, the average value of the ratio of the width (or long axis length (b = c)) of the flat metal particles in the polarizing material to the short axis length (a) is 1.2. It is preferable that it is above, and it is more preferable that it is 1.4 or more. Although there is no particular upper limit to this ratio, it is usually 100 or less, more preferably 70 or less, still more preferably 40 or less, still more preferably 15 or less, and particularly preferably 10 or less.

また,異なる長さの3軸(a,b,c)(それぞれの長さ,a<b<c)を有する上記(ii)のタイプの粒子の場合も,同様に,aに対する,bの比の平均値は,少なくとも1.2であることが好ましく,1.4以上であることがより好ましい。また,bに対するcの比の平均値は,1を超える任意の値に設定することができるが,少なくとも1.2とすることがこのタイプの粒子の更なる利点を生かす上で好ましく,1.4以上とすることがより好ましく,3以上とすることが更に好ましく,5以上とすることが特に好ましい。bに対するcの比に特段の上限はないが,通常は10以下で十分であり,8以下としてもよい。また,aに対するcの比の平均値は,上記のa及びbの比の平均値と,b及びcの比の平均値とに従って定まり,それ以外に特段の制限はない。     Similarly, in the case of particles of the above type (ii) having three different axes (a, b, c) (each length, a <b <c), the ratio of b to a is also the same. The average value of is preferably at least 1.2, more preferably 1.4 or more. The average value of the ratio of c to b can be set to an arbitrary value exceeding 1, but is preferably at least 1.2 in order to take advantage of the further advantage of this type of particle. It is more preferably 4 or more, further preferably 3 or more, and particularly preferably 5 or more. There is no particular upper limit to the ratio of c to b, but usually 10 or less is sufficient and may be 8 or less. The average value of the ratio of c to a is determined according to the average value of the ratio of a and b and the average value of the ratio of b and c, and there is no particular limitation other than that.

扁平化金属粒子は,その粒子径(短軸の長さ)の平均値が小さいほど短波長域でも高透過率となりやすく,その粒子径は200nm以下であることが好ましく,150nm以下であることがより好ましく,100nm以下であることが更に好ましい。   The flattened metal particles are likely to have a high transmittance even in a short wavelength region as the average value of the particle size (length of the short axis) is small, and the particle size is preferably 200 nm or less, and preferably 150 nm or less. More preferably, it is 100 nm or less.

本発明において,扁平化金属粒子を構成する金属として特に好ましいのは,銀又は銀合金である。「銀合金」としては,銀とカドミウム,インジウムとの合金が挙げられるが,それ以外の金属と銀との合金であってもよい。カドミウム,インジウム以外の金属と銀と合金の場合,合金中の銀の含有量は,50重量%以上であることが好ましい。   In the present invention, silver or a silver alloy is particularly preferable as the metal constituting the flattened metal particles. Examples of the “silver alloy” include alloys of silver, cadmium, and indium, but may be alloys of other metals and silver. In the case of an alloy of silver and a metal other than cadmium and indium, the silver content in the alloy is preferably 50% by weight or more.

扁平化金属粒子を構成する金属として銅,カドミウム,インジウム及び/又はそれらの合金,又は銅,カドミウム,インジウムと銀との合金の何れを用いる場合も,銀のみを用いる場合も,同様に,ハロゲン化金属の形で,例えばガラス基材中に配合し,加熱して球状のハロゲン化金属粒子として分散して析出させ,ガラスを圧縮して扁平化し,ガラスの固化後に,大気圧下の水素ガス中での加熱等の適宜な方法で還元することにより,本発明の偏光性材料を与え,そこから偏光子を作製することができる。   Whether any of copper, cadmium, indium and / or alloys thereof, or an alloy of copper, cadmium, indium and silver is used as the metal constituting the flattened metal particles, or only silver is used, the halogen is similarly used. In the form of metal halide, for example, compounded in a glass substrate, heated to disperse and precipitate as spherical metal halide particles, the glass is compressed and flattened, and after the glass is solidified, hydrogen gas under atmospheric pressure The polarizing material of the present invention can be provided by reducing by an appropriate method such as heating in the same, and a polarizer can be produced therefrom.

ハロゲン化金属の球状粒子を分散して含有するガラスは,組成としてハロゲン及び当該金属を含有する適宜の組成になるガラスを製造し,これを熱処理することにより得ることができる。   A glass containing metal halide spherical particles dispersed therein can be obtained by producing a glass having an appropriate composition containing halogen and the metal as a composition and heat-treating it.

本発明において,ガラス基材中のハロゲン化金属の球状粒子を扁平化し,その短軸を(及び該当する場合は他の軸も)配向させるステップでは,ガラスを軟化する温度まで加熱し,ガラスに一方向から圧力を加えて,ガラスおよびその内部に分散した粒子を変形させ,除荷しても粒子が元の球状へは戻らない温度(通常,ガラス転移温度より50度低い温度まで冷却すればよい)まで冷却させた後,除荷を行う。軟化させる程度は,加える圧力の種類と大きさ,及び加圧時間によって異なるが,概ねη=1011〜1013dPa・sの範囲である。 In the present invention, in the step of flattening the spherical particles of the metal halide in the glass substrate and orienting its short axis (and other axes if applicable), the glass is heated to a temperature that softens the glass. Applying pressure from one direction to deform the glass and the particles dispersed in it, and when unloaded, the particles will not return to their original spherical shape (usually if cooled to a temperature 50 degrees below the glass transition temperature) Uncool after cooling to (good). The degree of softening varies depending on the type and magnitude of pressure applied and the pressurization time, but is generally in the range of η = 10 11 to 10 13 dPa · s.

ハロゲン化金属の球状粒子を分散して含有するガラスの一軸圧縮は,例えば,加熱した状態のガラスをプレスして単一の方向に圧力を加えることにより,行うことができる。ガラスにかける圧力の大きさは適宜であるが,ハロゲン化金属粒子を充分に変形させるために,通常は少なくとも100kgf/cmとすることが好ましく,200kgf/cm以上とすることがより好ましく,300kgf/cm以上とすることが更に好ましい。但し,緩やかに圧縮が行われる限り,加熱下におけるガラスの粘度に応じて圧力は適宜設定すればよい。圧縮にかける時間も適宜であってよいが,通常,例えば数分〜数時間とすることができる。勿論,ガラスが圧縮変形の速度に追随する限り,より短時間で圧縮を完了させてもよい。 Uniaxial compression of glass containing dispersed metal halide spherical particles can be performed, for example, by pressing the heated glass and applying pressure in a single direction. The magnitude of the pressure applied to the glass is appropriate, but in order to sufficiently deform the metal halide particles, it is usually preferably at least 100 kgf / cm 2 , more preferably 200 kgf / cm 2 or more, More preferably, it is 300 kgf / cm 2 or more. However, the pressure may be appropriately set according to the viscosity of the glass under heating as long as it is gently compressed. Although the time for compression may be appropriate, it can usually be several minutes to several hours, for example. Of course, as long as the glass follows the speed of compression deformation, the compression may be completed in a shorter time.

上述の(ii)のタイプの,異なる長さ(それぞれ,a,b,cであり,a<b<c)の3軸を有する扁平化金属粒子を含有する偏光性材料の製造は,種々の方法で行うことができる。例えば実施例に記載されているように,にハロゲン化金属の球状粒子を分散して含有するガラスを決まったサイズの溝の中に嵌めて,これを上から圧縮すること(一軸拘束一軸圧縮)により行うことができる。この場合,溝の壁に垂直な方向へはガラスは変形せず,溝の長手方向にのみ延びる。圧縮方向の寸法が1/n(n>1)となるようにガラスを圧縮したとすると,圧縮方向寸法:幅方向寸法:長手方向寸法=1/n:1:n=1:n:n2となる。これに応じて,元は球状であったハロゲン化金属粒子は,長さの異なる3軸を有するように変形する。   The production of a polarizing material containing flattened metal particles having three axes of different lengths (respectively a, b, c and a <b <c) of the type (ii) described above is various. Can be done by the method. For example, as described in the examples, a glass containing dispersed metal halide spherical particles is fitted into a groove of a predetermined size and compressed from above (uniaxial constrained uniaxial compression). Can be performed. In this case, the glass is not deformed in the direction perpendicular to the groove wall and extends only in the longitudinal direction of the groove. When the glass is compressed so that the dimension in the compression direction is 1 / n (n> 1), the dimension in the compression direction: the dimension in the width direction: the dimension in the longitudinal direction = 1 / n: 1: n = 1: n: n2. Become. Accordingly, the metal halide particles that were originally spherical are deformed to have three axes with different lengths.

また,別の方法としては,溝の両側を可動の壁で構成し,一軸圧縮の間,それらの壁を両側から所定の力で圧してしておく(緩衝性の材料,ばね,油圧等)ようにすることにより,その両側からの圧力と,一軸方向の加圧によって粘性のガラス内に生じたに横方向の応力(と両者の接触面積との積)とが釣り合う位置まで壁が後退する一方,溝の長手方向にはガラスは自由に延びるため,加圧方向には短縮し,溝の長手方向には自由に拡張し,これに加えて溝と垂直の方向にある程度拡張した形へと,ガラスを変形させることができ,それに応じて,含有されるハロゲン化金属粒子の形状も,短軸及び2本の異なる長さの長軸が生ずるように変形する。   As another method, both sides of the groove are configured with movable walls, and during uniaxial compression, these walls are pressed with a predetermined force from both sides (buffering material, spring, hydraulic pressure, etc.) By doing so, the wall retracts to a position where the pressure from both sides and the lateral stress (product of the contact area of both) generated in the viscous glass due to uniaxial pressurization are balanced. On the other hand, since the glass extends freely in the longitudinal direction of the groove, it is shortened in the pressing direction, expanded freely in the longitudinal direction of the groove, and in addition to this, it is expanded to some extent in the direction perpendicular to the groove. The glass can be deformed, and accordingly, the shape of the metal halide particles contained is also deformed so that a short axis and two long axes with different lengths are generated.

更に別の方法として,ハロゲン化金属の球状粒子を分散して含有するガラスを,直交する二軸方向から圧縮してもよい(二軸圧縮)。これは,例えば,上記において,溝の上方からのガラスの圧縮に際し,溝の両側を構成する可動の壁を内側に圧して溝の幅を狭めるようにすることによって行うことができる。二軸圧縮を行う場合,主たる圧縮方向(Da)の圧縮比(ガラスの圧縮前の寸法:圧縮後の寸法)よりも,これに直交する方向(Db)の圧縮比を小さくしておくことが好ましく,Da方向の圧縮比の50%以下とするのがより好ましく,40%以下にするのが好ましく35%以下とするのが特に好ましい。   As yet another method, a glass containing spherical metal halide particles dispersed therein may be compressed from two orthogonal biaxial directions (biaxial compression). This can be performed, for example, by compressing the glass from above the groove in the above manner by pressing the movable walls forming both sides of the groove inward to narrow the width of the groove. When biaxial compression is performed, the compression ratio in the direction (Db) perpendicular to the compression ratio in the main compression direction (Da) (the dimension before compression of the glass: the dimension after compression) may be made smaller. Preferably, the compression ratio in the Da direction is 50% or less, more preferably 40% or less, and particularly preferably 35% or less.

上記により得られる,扁平化ハロゲン化金属粒子を含有するガラスを還元処理に付すことによって,扁平化ハロゲン化金属粒子の少なくとも一部を還元して金属粒子に変換することができる。還元処理は,例えば,同ガラスを水素雰囲気中で加熱することにより行うことができる。加熱は,扁平化しているハロゲン化金属粒子が再球状化するおそれのない温度で行うことが好ましい。ガラス転移点より低い温度の加熱であれば,このおそれは回避できる。   By subjecting the glass containing the flattened metal halide particles obtained above to reduction treatment, at least a part of the flattened metal halide particles can be reduced and converted into metal particles. The reduction treatment can be performed, for example, by heating the glass in a hydrogen atmosphere. The heating is preferably performed at a temperature at which the flattened metal halide particles are not likely to be re-sphericalized. This fear can be avoided by heating at a temperature lower than the glass transition point.

本発明の偏光子は,430nm〜700nmの何れかの波長の直線偏光について,粒子の短軸の配向方向と該直線偏光の電場ベクトルが平行な場合における透過率が,好ましくは50%以上,より好ましくは60%以上,更に好ましくは70%以上であり,且つ当該光について消光比が,好ましくは10dB以上,より好ましくは15dB以上,更に好ましくは20dB以上である。   In the polarizer of the present invention, for linearly polarized light having a wavelength of 430 nm to 700 nm, the transmittance when the orientation direction of the minor axis of the particle is parallel to the electric field vector of the linearly polarized light is preferably 50% or more. It is preferably 60% or more, more preferably 70% or more, and the extinction ratio for the light is preferably 10 dB or more, more preferably 15 dB or more, and further preferably 20 dB or more.

本発明において,透明無機固体基材としてのガラスとしては,SiO,B,Al,アルカリ金属酸化物(RO)等を主成分とするガラスにAg,ハロゲンを添加したものを用いることができる。 In the present invention, as a glass as a transparent inorganic solid substrate, Ag and halogen are added to glass mainly composed of SiO 2 , B 2 O 3 , Al 2 O 3 , alkali metal oxide (R 2 O) or the like. Can be used.

より具体的には,
SiO+Al:10〜60重量%
:25〜60重量%
NaO+KO:5〜20重量%
Ag:0.05重量%以上
Cl:0.05重量%以上
を主成分とするガラスを,本発明において好適に使用することができる。
More specifically,
SiO 2 + Al 2 O 3 : 10 to 60% by weight
B 2 O 3: 25~60 wt%
Na 2 O + K 2 O: 5 to 20% by weight
A glass mainly composed of Ag: 0.05% by weight or more and Cl: 0.05% by weight or more can be suitably used in the present invention.

本発明における偏光ガラスの組成についてより詳しく説明する。
SiOは,ガラスのTgを上げ,ガラスのTg付近での粘性を上げる効果がある。これらの兼ね合いから,SiOの含有量は,10〜50重量%とするのが好ましく,20〜47重量%とするのがより好ましく,30〜45重量%とするのが更に好ましい。
The composition of the polarizing glass in the present invention will be described in more detail.
SiO 2 has the effect of increasing the Tg of the glass and increasing the viscosity near the Tg of the glass. In view of these, the content of SiO 2 is preferably 10 to 50% by weight, more preferably 20 to 47% by weight, and still more preferably 30 to 45% by weight.

はガラスのTgを下げることができるが,Tg付近での粘性を低下させる。これらの兼ね合いから,Bの含有量は,25〜60重量%とするのが好ましく,30〜50重量%とするのがより好ましい。 B 2 O 3 can lower the Tg of glass, but lowers the viscosity in the vicinity of Tg. From these considerations, the content of B 2 O 3 is preferably 25 to 60% by weight, more preferably 30 to 50% by weight.

Alは,ガラスのTgを上げ,Tg付近での粘性を上げ,耐候性を著しく向上させる効果がある。これらの兼ね合いから,SiO+Al含有量は10〜60重量%とするのが好ましく,20〜55重量%とするのがより好ましく,30〜50重量%とするのが更に好ましい。 Al 2 O 3 has the effect of increasing the Tg of the glass, increasing the viscosity in the vicinity of Tg, and significantly improving the weather resistance. In view of these balances, the content of SiO 2 + Al 2 O 3 is preferably 10 to 60% by weight, more preferably 20 to 55% by weight, and still more preferably 30 to 50% by weight.

アルカリ金属酸化物はTgを下げるために必須の成分である。屈折率上昇効果の少ないNaOとKOを選択することが好ましい。NaO+KOの含有量はは5〜20重量%とするのが好ましく,8〜17重量%とするのがより好ましく,10〜15重量%とするのが更に好ましい。 Alkali metal oxide is an essential component for lowering Tg. It is preferable to select Na 2 O and K 2 O that have a small effect of increasing the refractive index. The content of Na 2 O + K 2 O is preferably 5 to 20% by weight, more preferably 8 to 17% by weight, and still more preferably 10 to 15% by weight.

扁平化金属粒子として銀を採用する場合,もとのガラス基材に含有させる銀の量は,0.05重量%以上とすることが好ましく,0.10重量%以上とすることがより好ましく,0.15重量%以上とすることが更に好ましい。銀の含有量に明確な上限はないが,失透の懸念を少なくするには1.5重量%以下とするのが好ましく,1.2重量%以下とするのがより好ましい。例えば,0.2〜0.8重量%等とすることができる。   When silver is employed as the flattened metal particles, the amount of silver contained in the original glass substrate is preferably 0.05% by weight or more, more preferably 0.10% by weight or more, More preferably, it is 0.15% by weight or more. Although there is no clear upper limit to the silver content, it is preferably 1.5% by weight or less, more preferably 1.2% by weight or less in order to reduce the concern about devitrification. For example, it can be 0.2 to 0.8% by weight.

ハロゲンとしては,析出したハロゲン化銀が青色領域の光を吸収しないよう,Clを選択することが好ましい。Clの量はAgの化学当量以上とし,0.05重量%以上とすることが好ましく,0.10重量%以上とすることがより好ましい。Clの含有量に明確な上限はないが,失透の懸念を少なくするには1.0重量%以下とするのが好ましく,0.8重量%以下とするのがより好ましい。例えば,0.15〜0.6重量%等とすることができる。   As the halogen, Cl is preferably selected so that the precipitated silver halide does not absorb light in the blue region. The amount of Cl is not less than the chemical equivalent of Ag, preferably not less than 0.05% by weight, and more preferably not less than 0.10% by weight. Although there is no clear upper limit to the Cl content, it is preferably 1.0% by weight or less, and more preferably 0.8% by weight or less in order to reduce the concern about devitrification. For example, it may be 0.15 to 0.6% by weight.

また,Fはハロゲン元素であるが,AgFとして析出はせず,ガラス中に残存し,ガラスのTgを下げる効果を生じるため任意成分として添加しても良い。   Further, although F is a halogen element, it does not precipitate as AgF, but remains in the glass and produces an effect of lowering the Tg of the glass.

他に,任意成分として,LiO,MgO,CaO,SrO,BaO,ZnO,PbO,TiO,ZrO,Nb,La,CeO,Sb等を諸特性(熱膨張係数,硬度,化学的耐久性等)を調整するために用いることもできるが,高屈折率化成分であるため,含有量は抑えることが好ましい。ここに挙げた成分の合計は,例えば5重量%以下とすることが好ましい。 In addition, Li 2 O, MgO, CaO, SrO, BaO, ZnO, PbO, TiO 2 , ZrO 2 , Nb 2 O 5 , La 2 O 3 , CeO 2 , Sb 2 O 3, etc. are optional properties. Although it can be used to adjust (thermal expansion coefficient, hardness, chemical durability, etc.), since it is a component having a high refractive index, it is preferable to suppress the content. The total of the components listed here is preferably 5% by weight or less, for example.

また,CuOはガラスを着色成分であるため含有させないことが好ましい。   Moreover, it is preferable not to contain CuO because glass is a coloring component.

以下,実施例を参照して本発明を更に詳細に説明するが,本発明が実施例に限定されることは意図しない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, it is not intended that the present invention be limited to the examples.

〔実施例1〕
<母材ガラスの製造>
重量%でSiO:44.6,B:33.8,Al:2.9,AlF:4.8,KO:13.5,Ag:0.32,Cl:0.15の組成からなる母材ガラスを作製した。すなわち,それぞれの組成を与えるように混合した原料を500ccの白金坩堝にて1450℃で溶解した後,鋳型に流し込み,ガラス転移点以下まで一旦冷却し,母材ガラスブロックを得た。作製したガラスのガラス転移点Tgは410℃,降伏点Atは485℃(TMAで測定),屈折率ndは1.477であった。
[Example 1]
<Manufacture of base glass>
SiO 2 : 44.6, B 2 O 3 : 33.8, Al 2 O 3 : 2.9, AlF 3 : 4.8, K 2 O: 13.5, Ag: 0.32, Cl by weight% : A base glass having a composition of 0.15 was produced. That is, the raw materials mixed so as to give each composition were melted at 1450 ° C. in a 500 cc platinum crucible, poured into a mold, and once cooled to below the glass transition point, a base glass block was obtained. The produced glass had a glass transition point Tg of 410 ° C., a yield point At of 485 ° C. (measured by TMA), and a refractive index nd of 1.477.

粘度η(Tg+10℃)は非特許文献2に記載された平行平板法に基づき,10mmφ×10mmHの円柱プリフォームを用いて10kNを負荷して測定,算出した。数式1において,Fは荷重,tは時間,Vはガラス円柱の体積,hは時刻0における円柱の高さ,hは時刻tにおける円柱の高さである。η(Tg+10℃)=3.0×1012dPa・sであった。 Viscosity η (Tg + 10 ° C.) was measured and calculated based on the parallel plate method described in Non-Patent Document 2 with a 10 mmφ × 10 mmH cylindrical preform loaded at 10 kN. In Equation 1, F is the load, t is the time, V is the volume of the glass cylinder, h 0 is the height of the cylinder at time 0, and h is the height of the cylinder at time t. η (Tg + 10 ° C.) = 3.0 × 10 12 dPa · s.

Figure 2013025266
Figure 2013025266

この母材ガラスブロックを560℃に保持した電気炉中で4時間熱処理し,熱処理済母材ガラスブロックを作製した。この熱処理済母材ガラスは,ハロゲン化銀結晶の析出によって白色に濁っていた。熱処理済母材ガラスを1mm厚に研磨し,分光光度計を用いて透過率を測定した。透過率曲線を図1に示す。   This base glass block was heat-treated in an electric furnace maintained at 560 ° C. for 4 hours to produce a heat-treated base glass block. This heat-treated base glass was cloudy white due to the precipitation of silver halide crystals. The heat-treated base glass was polished to a thickness of 1 mm, and the transmittance was measured using a spectrophotometer. The transmittance curve is shown in FIG.

また,熱処理済母材ガラスについて,析出したハロゲン化銀結晶の粒子径の計測を行った。計測の手順は次のとおりである。すなわち,熱処理済母材ガラスを破断して平滑面を得た。得られた平滑面を5重量%HF水溶液で15秒間エッチングした。析出粒子部分が選択的に溶解してできる球形の孔を走査型電子顕微鏡(SEM)で観察して行った。粒子径は小さく正確に測定できないが50nm以下であった。   In addition, the grain size of precipitated silver halide crystals was measured for the heat-treated base glass. The measurement procedure is as follows. That is, the heat-treated base glass was broken to obtain a smooth surface. The resulting smooth surface was etched with a 5 wt% HF aqueous solution for 15 seconds. A spherical hole formed by selectively dissolving the precipitated particle portion was observed with a scanning electron microscope (SEM). Although the particle size was small and could not be measured accurately, it was 50 nm or less.

<一軸準拘束一軸圧縮>
熱処理済母材ガラスを,10mm×10mm×25mmの角柱状に加工し,プリフォームを得た。このプリフォーム表面にh−BN潤滑離型剤を塗布した。図2に示す10mm×40mm×40mmの穴の溝を有する金型を用いた。この金型には,内側の部分型1,1’の外側表面とそれらの周囲を取り囲む円筒状の外枠2との間に隙間が設けられており,そこにはAl粉末が充填されている。部分型1,1’の間に挿入された母材ガラスGが上から部分型4によって圧縮されるとき,部分型1,1’は,水平方向に広がろうとする母材ガラスGによって相互に離れる方向に圧され,この圧力は,部分型1,1’と外枠3との間の充填物3(Al粉末)に伝達される。充填物3は,部分型1,1’同士の間隔が自由に広がるのをほぼ防止するが,それ自身僅かに圧縮変形されて薄くなるため,部分型1,1’の間隔が僅かだけ広がることを許容し,それに応じて母材ガラスGもその方向に完全には拘束されずに僅かだけ広がることができる(準拘束)。なお,挿入される母材ガラスGは,図2においてc方向の拘束は受けない。
<Uniaxial quasi-constrained uniaxial compression>
The heat-treated base glass was processed into a prismatic shape of 10 mm × 10 mm × 25 mm to obtain a preform. An h-BN lubricant release agent was applied to the preform surface. A mold having a groove of 10 mm × 40 mm × 40 mm holes shown in FIG. 2 was used. In this mold, a gap is provided between the outer surface of the inner partial mold 1, 1 ′ and the cylindrical outer frame 2 surrounding the periphery thereof, and this is filled with Al 2 O 3 powder. Has been. When the base glass G inserted between the partial molds 1 and 1 ′ is compressed by the partial mold 4 from above, the partial molds 1 and 1 ′ are mutually connected by the base glass G that is going to spread in the horizontal direction. The pressure is applied in the direction of leaving, and this pressure is transmitted to the filling 3 (Al 2 O 3 powder) between the partial molds 1, 1 ′ and the outer frame 3. The filling 3 almost prevents the space between the partial molds 1 and 1 'from being freely expanded, but the space between the partial molds 1 and 1' is slightly widened because it is slightly compressed and thinned by itself. Accordingly, the base glass G can be slightly expanded without being completely constrained in that direction (quasi-constraint). The base glass G to be inserted is not restricted in the c direction in FIG.

この金型に,母材ガラスGを,圧縮荷重を受ける面が10mm×10mm面となるように挿入し,440℃まで加熱した状態で圧縮荷重を負荷した。圧縮荷重の負荷開始から2分経過後,圧縮荷重は4000kgfに達し,その後1分間4000kgfを負荷し続けた後,負荷はそのままで降温させ始めた。更に1分経過後,ガラスの温度が420℃になったところで除荷し,その後はガラスをゆっくり室温まで降温させた。圧縮後の形状は約24mm×13.0mm×8.1mmであった。圧縮後の形状から算出した最終段階での圧縮方向の圧力は,約1300kgf/cm2である。   The base glass G was inserted into this mold so that the surface receiving the compressive load was a 10 mm × 10 mm surface, and the compressive load was applied while heating to 440 ° C. Two minutes after the start of loading of the compressive load, the compressive load reached 4000 kgf, and after that, after continuing to load 4000 kgf for 1 minute, the load was started to be lowered without changing the load. After an additional 1 minute, the glass was unloaded when the glass temperature reached 420 ° C., and then the glass was slowly cooled to room temperature. The shape after compression was about 24 mm × 13.0 mm × 8.1 mm. The pressure in the compression direction at the final stage calculated from the shape after compression is about 1300 kgf / cm 2.

<還元処理>
上記で圧縮したガラスを,圧縮方向と準拘束方向の双方に対して平行(従って,図2においてc方向に垂直な)な面で切断した後,0.4mm厚に精密研磨し,水素雰囲気での還元処理を施した。還元処理は,大気圧下で100%水素ガスを流量10ml/分でフローしながら380℃で4時間行った。
<Reduction treatment>
The glass compressed above is cut in a plane parallel to both the compression direction and the quasi-constraining direction (and thus perpendicular to the c direction in FIG. 2), then precision polished to a thickness of 0.4 mm in a hydrogen atmosphere. The reduction treatment was applied. The reduction treatment was performed at 380 ° C. for 4 hours while flowing 100% hydrogen gas at a flow rate of 10 ml / min under atmospheric pressure.

還元処理したガラスの片面を研磨して0.2mm厚とし,分光光度計で直線偏光の透過率を測定した。得られた透過率曲線を図3に示す。図より,本実施例で得られた偏光子は,430〜700nmの波長において,粒子の短軸の配向方向と電場ベクトルが平行な直線偏光の透過率が30%以上,460nm〜640nmの波長におけるそれは50%以上であり,且つこれらの範囲内で消光比は10dB以上である。同時に,430nm〜450nm,450nm〜500nm,及び500nm〜550nmの各波長範囲にわたって,直線偏光に対する消光比は15dB以上である。これらのことは,本実施例で得られた偏光子が,青色〜緑色領域において高い偏光性能を有することを示している。   One side of the reduced glass was polished to a thickness of 0.2 mm, and the transmittance of linearly polarized light was measured with a spectrophotometer. The obtained transmittance curve is shown in FIG. From the figure, the polarizer obtained in the present example has a transmittance of 30% or more and a wavelength of 460 nm to 640 nm at a wavelength of 430 nm to 700 nm, and the linearly polarized light whose parallel direction of the short axis of the particle is parallel to the electric field vector. It is 50% or more, and within these ranges, the extinction ratio is 10 dB or more. At the same time, the extinction ratio for linearly polarized light is 15 dB or more over the wavelength ranges of 430 nm to 450 nm, 450 nm to 500 nm, and 500 nm to 550 nm. These facts indicate that the polarizer obtained in this example has high polarization performance in the blue to green region.

〔参考例1〜14〕
実施例1と同様にガラスブロックを作製し,Tg,At,η(Tg+10℃),ndを測定した。但し,Tgが高いものについては,金型を劣化させることになるため,粘性測定や成形性評価は行わなかった。
[Reference Examples 1-14]
A glass block was prepared in the same manner as in Example 1, and Tg, At, η (Tg + 10 ° C.), and nd were measured. However, for those having a high Tg, the mold was deteriorated, so viscosity measurement and formability evaluation were not performed.

実施例及び参考例の組成及び測定結果を以下の表にまとめて示す。   The compositions and measurement results of Examples and Reference Examples are summarized in the following table.

Figure 2013025266
Figure 2013025266

Figure 2013025266
Figure 2013025266

Figure 2013025266
Figure 2013025266

Figure 2013025266
Figure 2013025266

本発明は,扁平化金属粒子を用いた偏光性材料及び該偏光性材料からなる偏光子を与える。当該偏光子は,従来の紡錘形粒子を用いたものに比べ,可視光領域,特に青色〜緑色領域において高透過率且つ高消光比の偏光子として有用性が高い。
The present invention provides a polarizing material using flattened metal particles and a polarizer comprising the polarizing material. The polarizer is highly useful as a polarizer having a high transmittance and a high extinction ratio in the visible light region, particularly in the blue to green region, as compared with a conventional one using spindle-shaped particles.

Claims (28)

ガラス基材中の少なくとも表面層に扁平化金属粒子を分散して含有し,該扁平化金属粒子の短軸が一定方向に配向しているものである偏光性材料であって,ガラス転移点Tgが500℃を超えず,且つTg+10℃における粘度ηが1.0×1012dPa・sを下回らないものであることを特徴とする偏光性材料。 A polarizing material comprising flattened metal particles dispersed and contained in at least a surface layer of a glass substrate, the short axis of the flattened metal particles being oriented in a certain direction, and having a glass transition point Tg A polarizing material, characterized by not exceeding 500 ° C. and having a viscosity η at Tg + 10 ° C. of not less than 1.0 × 10 12 dPa · s. 屈伏点Atが550℃を超えないものである,請求項1の偏光性材料。   The polarizing material according to claim 1, wherein the yield point At does not exceed 550 ° C. d線に対する屈折率ndが1.50を超えないものである,請求項1又は2の偏光性材料。   The polarizing material according to claim 1 or 2, wherein the refractive index nd with respect to d-line does not exceed 1.50. 該扁平化金属粒子の該短軸の長さ(a)に対する該粒子の幅(b)の比の平均値が少なくとも1.2である請求項1ないし3の何れかの偏光性材料。   4. The polarizing material according to claim 1, wherein an average value of a ratio of the width (b) of the particles to the length (a) of the short axis of the flattened metal particles is at least 1.2. 該金属が銀又は銀合金である,請求項1ないし4の何れかの偏光性材料。   The polarizing material according to claim 1, wherein the metal is silver or a silver alloy. 銀が0.05重量%以上含有されているものである,請求項5の偏光性材料。   The polarizing material according to claim 5, which contains 0.05% by weight or more of silver. 該扁平化金属粒子が短軸とこれに直交し相互にも直交する長さの異なる2本の長軸を有し,該短軸及び該2本の長軸が,それぞれ一定方向に配向しているものである,請求項1ないし6の何れかの偏光性材料。   The flattened metal particles have a minor axis and two major axes perpendicular to each other and different from each other, and the minor axis and the two major axes are each oriented in a certain direction. The polarizing material according to any one of claims 1 to 6, wherein: 該扁平化金属粒子の該短軸の長さ(a)に対する該2本の長軸のうち短い方の長さ(b)の比の平均値が、少なくとも1.2である,請求項1ないし7の何れかの偏光性材料。   The average value of the ratio of the shorter length (b) of the two major axes to the minor axis length (a) of the flattened metal particles is at least 1.2. 7. The polarizing material according to any one of 7 above. 該偏光性材料が組成として,
SiO+Al:10〜60重量%
:25〜60重量%
NaO+KO:5〜20重量%
Ag:0.05重量%以上
Cl:0.05重量%以上
を含んでなるものであることを特徴とする請求項1ないし8の何れかの偏光性材料。
As the composition of the polarizing material,
SiO 2 + Al 2 O 3 : 10 to 60% by weight
B 2 O 3: 25~60 wt%
Na 2 O + K 2 O: 5 to 20% by weight
The polarizing material according to any one of claims 1 to 8, which comprises Ag: 0.05% by weight or more and Cl: 0.05% by weight or more.
請求項1ないし9の何れかの偏光性材料であって,板の形に形成されており,該板の表面に対して,該扁平化金属粒子の短軸の配向方向が平行なものである,偏光子。   The polarizing material according to any one of claims 1 to 9, wherein the polarizing material is formed in a plate shape, and the orientation direction of the minor axis of the flattened metal particles is parallel to the surface of the plate. , Polarizer. 請求項1ないし9の何れかの偏光性材料であって,板の形に形成されており,該板の表面に対して,該扁平化金属粒子の短軸及び一方の長軸の配向方向が共に平行なものである,偏光子。   The polarizing material according to any one of claims 1 to 9, wherein the polarizing material is formed in a plate shape, and the orientation direction of the minor axis and one major axis of the flattened metal particles is relative to the surface of the plate. Polarizers that are both parallel. 該扁平化金属粒子の短軸の長さに対する該板の表面に垂直な方向に配向した長軸の長さの比の平均値が,少なくとも1.4である,請求項11の偏光子。   The polarizer according to claim 11, wherein an average value of a ratio of a length of a major axis oriented in a direction perpendicular to a surface of the plate to a length of a minor axis of the flattened metal particle is at least 1.4. 該扁平化金属粒子の2本の長軸のうち,該板の表面に対して平行に配向した長軸の長さより,該板の表面に対して垂直に配向した長軸の長さの方が長いものである,請求項11又は12の偏光子。   Of the two major axes of the flattened metal particles, the length of the major axis oriented perpendicular to the surface of the plate is greater than the length of the major axis oriented parallel to the surface of the plate. The polarizer according to claim 11 or 12, which is long. 430nm〜700nmの何れかの波長の直線偏光について,粒子の短軸の配向方向と該直線偏光の電場ベクトルが平行な場合における透過率が30%以上であり,且つ消光比が10dB以上である,請求項11ないし13の何れかの偏光子。   For linearly polarized light of any wavelength between 430 nm and 700 nm, the transmittance when the orientation direction of the minor axis of the particle is parallel to the electric field vector of the linearly polarized light is 30% or more, and the extinction ratio is 10 dB or more. The polarizer according to claim 11. 430nm〜450nm,450nm〜500nm,及び500nm〜550nmのうち少なくとも何れかの波長範囲にわたって,直線偏光に対する消光比が15dB以上である,請求項11ないし14の何れかの偏光子。   The polarizer according to any one of claims 11 to 14, wherein an extinction ratio with respect to linearly polarized light is 15 dB or more over at least one of a wavelength range of 430 nm to 450 nm, 450 nm to 500 nm, and 500 nm to 550 nm. ガラス基材中に扁平化ハロゲン化金属粒子を分散して含有し,該扁平化ハロゲン化金属粒子の短軸が一定方向に配向しており,ガラス転移点Tgが500℃を超えず,且つTg+10℃における粘度ηが1.0×1012dPa・sを下回らないものであることを特徴とする,偏光性材料製造用ガラス。 Flattened metal halide particles are dispersed and contained in a glass substrate, the short axis of the flattened metal halide particles is oriented in a certain direction, the glass transition point Tg does not exceed 500 ° C., and Tg + 10 A glass for producing a polarizing material, wherein the viscosity η at ° C is not less than 1.0 × 10 12 dPa · s. 屈伏点Atが550℃を超えないものである,請求項16の偏光性材料製造用ガラス。   The glass for producing a polarizing material according to claim 16, wherein the yield point At does not exceed 550 ° C. d線に対する屈折率ndが1.50を超えないものである,請求項16又は17の偏光性材料製造用ガラス。   The glass for producing a polarizing material according to claim 16 or 17, wherein the refractive index nd with respect to d-line does not exceed 1.50. 該扁平化ハロゲン化金属粒子の該短軸の長さ(a)に対する該粒子の幅(b)の比の平均値が少なくとも1.2である請求項16ないし18の何れかの偏光性材料製造用ガラス。   19. The production of a polarizing material according to claim 16, wherein the average value of the ratio of the width (b) of the particles to the length (a) of the minor axis of the flattened metal halide particles is at least 1.2. Glass. 該金属が銀又は銀合金である,請求項16ないし19の何れかの偏光性材料製造用ガラス。   The glass for producing a polarizing material according to claim 16, wherein the metal is silver or a silver alloy. 銀が0.05重量%以上含有されているものである,請求項20の偏光性材料製造用ガラス。   21. The glass for producing a polarizing material according to claim 20, wherein 0.05% by weight or more of silver is contained. 該扁平化ハロゲン化金属粒子が短軸とこれに直交し相互にも直交する長さの異なる2本の長軸を有し,該短軸及び該2本の長軸が,それぞれ一定方向に配向しているものである,請求項16ないし21の何れかの偏光性材料製造用ガラス。   The flattened metal halide particles have a minor axis and two major axes perpendicular to each other and different from each other, and the minor axis and the two major axes are each oriented in a certain direction. The glass for producing a polarizing material according to any one of claims 16 to 21, wherein 該扁平化ハロゲン化金属粒子の該短軸の長さ(a)に対する該2本の長軸のうち短い方の長さ(b)の比の平均値が、少なくとも1.2である,請求項16ないし22の何れかの偏光性材料製造用ガラス。   The average value of the ratio of the shorter length (b) of the two major axes to the minor axis length (a) of the flattened metal halide particles is at least 1.2. A glass for producing a polarizing material according to any one of 16 to 22. 該偏光性材料製造用ガラスが組成として,
SiO+Al:10〜60重量%
:25〜60重量%
NaO+KO:5〜20重量%
Ag:0.05重量%以上
Cl:0.05重量%以上
を含んでなるものであることを特徴とする請求項1ないし8の何れかの偏光性材料製造用ガラス。
The glass for producing a polarizing material is a composition,
SiO 2 + Al 2 O 3 : 10 to 60% by weight
B 2 O 3: 25~60 wt%
Na 2 O + K 2 O: 5 to 20% by weight
The glass for producing a polarizing material according to any one of claims 1 to 8, which comprises Ag: 0.05% by weight or more and Cl: 0.05% by weight or more.
請求項16ないし24の何れかの偏光性材料製造用ガラスであって,板の形に形成されており,該板の表面に対して,該扁平化ハロゲン化金属粒子の短軸の配向方向が平行なものである,偏光性材料製造用ガラス。   25. The glass for producing a polarizing material according to claim 16, wherein the glass is formed in a plate shape, and the orientation direction of the minor axis of the flattened metal halide particles is relative to the surface of the plate. Glass for manufacturing polarizing materials that are parallel. 請求項16ないし25の何れかの偏光性材料製造用ガラスであって,板の形に形成されており,該板の表面に対して,該扁平化ハロゲン化金属粒子の短軸及び一方の長軸の配向方向が共に平行なものである,偏光性材料製造用ガラス。   The glass for producing a polarizing material according to any one of claims 16 to 25, wherein the glass is formed into a plate shape, and the short axis and one length of the flattened metal halide particles are formed on the surface of the plate. A glass for manufacturing a polarizing material, in which both axes have parallel orientation directions. 該扁平化ハロゲン化金属粒子の短軸の長さに対する該板の表面に垂直な方向に配向した長軸の長さの比の平均値が,少なくとも1.4である,請求項26の偏光性材料製造用ガラス。   27. Polarizing property according to claim 26, wherein the average value of the ratio of the length of the major axis oriented in the direction perpendicular to the surface of the plate to the length of the minor axis of the flattened metal halide particles is at least 1.4. Glass for material production. 該扁平化ハロゲン化金属粒子の2本の長軸のうち,該板の表面に対して平行に配向した長軸の長さより,該板の表面に対して垂直に配向した長軸の長さの方が長いものである,請求項26又は27の偏光性材料製造用ガラス。
Of the two major axes of the flattened metal halide particles, the length of the major axis oriented perpendicular to the surface of the plate is greater than the length of the major axis oriented parallel to the surface of the plate. The glass for producing a polarizing material according to claim 26 or 27, wherein the glass is longer.
JP2011162650A 2011-07-25 2011-07-25 Polarizing material Withdrawn JP2013025266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162650A JP2013025266A (en) 2011-07-25 2011-07-25 Polarizing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162650A JP2013025266A (en) 2011-07-25 2011-07-25 Polarizing material

Publications (1)

Publication Number Publication Date
JP2013025266A true JP2013025266A (en) 2013-02-04

Family

ID=47783627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162650A Withdrawn JP2013025266A (en) 2011-07-25 2011-07-25 Polarizing material

Country Status (1)

Country Link
JP (1) JP2013025266A (en)

Similar Documents

Publication Publication Date Title
JP2885655B2 (en) Glass polarizer and method of manufacturing the same
JP2740601B2 (en) Copper-containing polarizing glass and method for producing the same
JP5379473B2 (en) Copper-containing polarizing glass and optical isolator
TW201912601A (en) Near infrared absorbing glass
JP2013025266A (en) Polarizing material
WO2011089756A1 (en) Polarizer
JP2003517634A (en) Infrared broadband dichroic glass polarizer
TW201912600A (en) Near infrared absorbing glass
JP4524330B2 (en) High extinction ratio polarizing glass
JP4611438B2 (en) High extinction ratio polarizing glass
JP2012128041A (en) Manufacturing method of polarizer
JP2013035745A (en) Light diffusion glass member
EP3310740B1 (en) Transparent ceramic material as component for a unbreakable lenses
JP2010085736A (en) Optical element
TW202233540A (en) Polarized glass and optical isolator
WO2019044563A1 (en) Glass
JP6614527B2 (en) Luminescent glass composite and method for producing the same
WO2021065562A1 (en) Glass and production method therefor
JP3383960B2 (en) Polarizing glass and manufacturing method thereof
JP2011093721A (en) Method for producing optical glass
WO2024101445A1 (en) Polarizing element
TW202436257A (en) Polarizing glass
JP2012218973A (en) METHOD FOR PRODUCING LaAlO3 CERAMIC
JP2014062007A (en) Translucent ceramic, method of producing the same, optical element and method of producing the same
WO2020179516A1 (en) Near-infrared absorbing glass plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007