JP2013072499A - Angular ball bearing - Google Patents

Angular ball bearing Download PDF

Info

Publication number
JP2013072499A
JP2013072499A JP2011212354A JP2011212354A JP2013072499A JP 2013072499 A JP2013072499 A JP 2013072499A JP 2011212354 A JP2011212354 A JP 2011212354A JP 2011212354 A JP2011212354 A JP 2011212354A JP 2013072499 A JP2013072499 A JP 2013072499A
Authority
JP
Japan
Prior art keywords
diameter
small
diameter side
annular portion
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212354A
Other languages
Japanese (ja)
Inventor
Yasuhiro Uehori
泰裕 上堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011212354A priority Critical patent/JP2013072499A/en
Publication of JP2013072499A publication Critical patent/JP2013072499A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact

Abstract

PROBLEM TO BE SOLVED: To reduce bearing torque by a slight change in a cage shape, in an angular ball bearing having a resin cage.SOLUTION: A small diameter side ball receiving surface 35 and a large diameter side ball receiving surface 37 for determining a position of a ball 40, and a small diameter side recessed place 36 and a large diameter side recessed place 38 further recessed to the outside of a pocket 33 from the ball receiving surfaces 35 and 37, are formed in a small annular part 31 and a large annular part 32 of the resin cage 30, the small diameter side recessed place 36 is linked to the outer race 20 side from an inner diameter surface 31a of the small annular part 31, the small diameter side ball receiving surface 35 is connected with the small diameter side recessed place 36 on the inner race 10 side more than a PCD, and is also linked to an outer diameter surface 31b of the small annular part 31, the large diameter side recessed place 38 is linked to the inner race 10 side from an outer diameter surface 32a of the large annular part 32, and the large diameter side ball receiving surface 37 is connected with the large diameter side recessed place 38 on the outer race 20 side more than the PCD, and is also linked to an inner diameter surface 32b of the large annular part 32, so that the sliding area is reduced from the highest place of a sliding speed and shearing resistance of an oil film by the ball 40 is reduced.

Description

この発明は、アンギュラ玉軸受に関する。   The present invention relates to an angular ball bearing.

従来、肩落とし内輪と、肩落とし外輪とを備えたアンギュラ玉軸受がある。図4に例示するように、この種のアンギュラ玉軸受に用いる樹脂保持器として、内輪1の肩落とし部と外輪2の肩部間に収まる小環状部3と、外輪2の肩落とし部及び内輪1の肩部間に収まる大環状部4と、小環状部3と大環状部4との間を柱部5で区切った窓型のポケット6とが形成されたものがある。接触角側の内輪1の肩部を高くしたいため、小環状部3の外径面は、小環状部3の内径面よりも玉セットのピッチ径(以下、PCDと呼ぶ)に近くなっている。また、接触角側の外輪2の肩部を高くしたいため、大環状部4の内径面は、大環状部4の外径面よりもPCDに近い径寸になっている。一般に、ポケット6は、樹脂保持器の内外径間に亘って単一球面状に形成されている(例えば、特許文献1)。   Conventionally, there is an angular ball bearing provided with a shoulder drop inner ring and a shoulder drop outer ring. As illustrated in FIG. 4, as a resin cage used for this type of angular ball bearing, a small annular portion 3 that fits between a shoulder drop portion of the inner ring 1 and a shoulder portion of the outer ring 2, a shoulder drop portion and an inner ring of the outer ring 2. There are those in which a large annular portion 4 that fits between the shoulder portions of 1 and a window-type pocket 6 in which the small annular portion 3 and the large annular portion 4 are separated by a pillar portion 5 are formed. In order to increase the shoulder portion of the inner ring 1 on the contact angle side, the outer diameter surface of the small annular portion 3 is closer to the pitch diameter of the ball set (hereinafter referred to as PCD) than the inner diameter surface of the small annular portion 3. . Further, in order to increase the shoulder portion of the outer ring 2 on the contact angle side, the inner diameter surface of the large annular portion 4 is closer to the PCD than the outer diameter surface of the large annular portion 4. In general, the pocket 6 is formed in a single spherical shape across the inner and outer diameters of the resin cage (for example, Patent Document 1).

今般、自動車用途の軸受では、燃費向上等の環境問題からトルク低減が求められている。軸受トルクの中で、保持器と玉との間で発生するトルクは、玉による油、グリースによる油膜のせん断抵抗が多くの割合を占めている。また、そのせん断抵抗の殆どは、ポケット内面と、玉との間に形成された油膜をせん断するときに発生するものである。図4に例示した従来例のように、ポケット6の内面全体が、玉7の位置を定める玉受け面になっていると、玉7と玉受け面との間の僅かな隙間を油が通過しようとするため、抵抗が発生し、トルクを大きくする要因の1つになる。   Recently, bearings for automobiles are required to reduce torque due to environmental problems such as improved fuel consumption. Of the bearing torque, the torque generated between the cage and the ball is mainly composed of oil by the ball and shear resistance of the oil film by the grease. Most of the shear resistance is generated when the oil film formed between the pocket inner surface and the ball is sheared. When the entire inner surface of the pocket 6 is a ball receiving surface that determines the position of the ball 7 as in the conventional example illustrated in FIG. 4, the oil passes through a slight gap between the ball 7 and the ball receiving surface. As a result, resistance is generated, which becomes one of the factors that increase the torque.

軸受トルクを下げる手段の1つとして、玉受け面からポケット外側へ更に凹んだ凹所を形成することがある。玉の位置を定める玉受け面と玉との間で設定されたポケットすきまは、凹所と玉との間のすきまよりも十分に小さい(特許文献2〜4)。   One means for reducing the bearing torque is to form a recess that is further recessed from the ball receiving surface to the outside of the pocket. The pocket clearance set between the ball receiving surface that determines the position of the ball and the ball is sufficiently smaller than the clearance between the recess and the ball (Patent Documents 2 to 4).

特許文献2のものは、金属製の波形保持器に凹所を採用したものである。その凹所は、PCDの円周を含む仮想円筒面上から径方向及び円周方向に幅をもって形成されている。玉受け面は、凹所の保持器内径側及び外径側に形成されている。   The thing of patent document 2 employ | adopts a recess in a metal waveform holder. The recess is formed with a width in the radial direction and the circumferential direction from the virtual cylindrical surface including the circumference of the PCD. The ball receiving surfaces are formed on the inner diameter side and the outer diameter side of the recess.

また、特許文献3のものは、金属製の打抜き保持器に凹所を採用したものである。その凹所は、保持器内径から外径側に亘って形成されている。玉受け面は、凹所の円周方向両側に形成されている。   Moreover, the thing of patent document 3 employ | adopts a recess in a metal punching cage. The recess is formed from the inner diameter of the cage to the outer diameter side. The ball receiving surfaces are formed on both sides of the recess in the circumferential direction.

特許文献4のものは、金属製のプレス保持器に凹所を採用したものである。その玉受け面は、玉の赤道付近に沿い、その凹所は、玉受け面から保持器内径に亘る楔状空間と、玉受け面から保持器外径に亘る楔状空間とを成し、かつ玉極と対向するところで特に深く凹むように形成されている。   The thing of patent document 4 employs a recess in a metal press cage. The ball receiving surface runs along the equator of the ball, and the recess forms a wedge-shaped space extending from the ball receiving surface to the inner diameter of the cage and a wedge-shaped space extending from the ball receiving surface to the outer diameter of the cage. It is formed so as to be particularly deeply recessed where it faces the pole.

実開平4−78331号公報Japanese Utility Model Publication No. 4-78331 特開2003−13962号公報JP 2003-13962 A 特開2006−342901号公報JP 2006-342901 A 特開平2−221715号公報JP-A-2-221715

図4に例示した従来のアンギュラ玉軸受の樹脂保持器によれば、ポケット6の内面に全面的に形成された玉受け面と玉7との間に油膜が形成される。ポケット6の内面の一部を特許文献2等のようにポケット外側へ更に凹んだ凹所に変更すれば、前記せん断抵抗を凹所で低下させることは可能である。   According to the resin cage of the conventional angular ball bearing illustrated in FIG. 4, an oil film is formed between the ball receiving surface formed on the entire inner surface of the pocket 6 and the ball 7. If a part of the inner surface of the pocket 6 is changed to a recess further recessed toward the outside of the pocket as in Patent Document 2, the shear resistance can be reduced at the recess.

しかしながら、樹脂保持器の場合、金属板製の保持器と異なり、小環状部3、大環状部4を塑性変形させて凹所を形成することはできない。特許文献2〜4のように、凹所をPCD近傍で形成したり、保持器内外径に亘って形成したり、保持器内外径の略全部に亘って形成したりすると、樹脂製の小環状部3及び大環状部4の軸方向肉厚を特にPCD近傍で確保することが困難になり、大幅な保持器形状の変更を要する。   However, in the case of the resin cage, unlike the metal plate cage, the small annular portion 3 and the large annular portion 4 cannot be plastically deformed to form a recess. As in Patent Documents 2 to 4, when the recess is formed in the vicinity of the PCD, formed over the inner and outer diameters of the cage, or formed over substantially the entire inner and outer diameter of the cage, a resin small ring It becomes difficult to secure the axial thickness of the portion 3 and the large annular portion 4 particularly in the vicinity of the PCD, which requires a significant change in the cage shape.

そこで、この発明が解決しようとする課題は、樹脂保持器を備えたアンギュラ玉軸受において、軽微な保持器形状の変更で軸受トルクの低減を図ることである。   Therefore, the problem to be solved by the present invention is to reduce the bearing torque by changing the shape of the cage slightly in the angular ball bearing provided with the resin cage.

上記の課題を達成するため、この発明は、肩落とし内輪と、肩落とし外輪と、樹脂保持器とを備え、前記樹脂保持器は、前記内輪の肩落とし部と前記外輪の肩部との間に収まる小環状部、及び前記外輪の肩落とし部と前記内輪の肩部との間に収まる大環状部を有し、前記小環状部の外径面は、当該小環状部の内径面よりも玉セットのピッチ径に近く、前記大環状部の内径面は、当該大環状部の外径面よりも前記ピッチ径に近いアンギュラ玉軸受において、前記小環状部は、ポケットに入った玉の位置を定める小径側玉受け面と、当該玉受け面からポケット外側へ更に凹んだ小径側凹所とを有し、前記大環状部は、前記玉の位置を定める大径側玉受け面と、当該玉受け面からポケット外側へ更に凹んだ大径側凹所とを有しており、前記小径側凹所は、前記小環状部の内径面から外輪側へ連なり、前記小径側玉受け面は、前記ピッチ径よりも内輪側で前記小径側凹所と繋がり、かつ前記小環状部の外径面まで連なり、前記大径側凹所は、前記大環状部の外径面から内輪側へ連なり、前記大径側玉受け面は、前記ピッチ径よりも外輪側で前記大径側凹所と繋がり、かつ前記大環状部の内径面まで連なっている構成を採用した。   To achieve the above object, the present invention includes a shoulder drop inner ring, a shoulder drop outer ring, and a resin retainer, and the resin retainer is provided between a shoulder drop portion of the inner ring and a shoulder portion of the outer ring. A small annular portion that fits between the shoulder drop portion of the outer ring and a shoulder portion of the inner ring, and the outer diameter surface of the small annular portion is larger than the inner diameter surface of the small annular portion. In the angular ball bearing close to the pitch diameter of the ball set, the inner ring surface of the large annular part is closer to the pitch diameter than the outer diameter surface of the large annular part, the small annular part is the position of the ball in the pocket A small-diameter side ball receiving surface and a small-diameter side recess further recessed from the ball receiving surface toward the outside of the pocket, and the large annular portion includes a large-diameter side ball receiving surface that determines the position of the ball, and A large-diameter side recess further recessed from the ball receiving surface to the outside of the pocket, and the small-diameter side concave Is connected from the inner diameter surface of the small annular part to the outer ring side, and the small diameter side ball receiving surface is connected to the small diameter side recess on the inner ring side of the pitch diameter and is connected to the outer diameter surface of the small annular part. The large diameter side recess is continuous from the outer diameter surface of the large annular portion to the inner ring side, the large diameter side ball receiving surface is connected to the large diameter side recess on the outer ring side than the pitch diameter, and The structure which continued to the internal-diameter surface of the said large annular part was employ | adopted.

玉によるせん断抵抗は、一般に、F=η(u/h)Sで求められる。ここで、F:せん断抵抗、η:油の粘度、u:すべり速度、h:油膜厚さ、S:すべり面積である。軸受回転に伴い、玉が自転する際に玉セットのピッチ径(PCD)から径方向に離れる程に、玉自転の周速が速くなるので、すべり速度が速くなる。小環状部の外径面が小環状部の内径面よりもPCDに近く、大環状部の内径面が大環状部の外径面よりもPCDに近いから、小環状部の内径面、大環状部の外径面のところですべり速度が最も速くなり得る。その小環状部の内径面、大環状部の外径面からポケット外側へ更に凹んだ凹所を形成すれば、玉自転の周速の最も速いところから玉との間のすきまをポケットから更に広げ、せん断抵抗を最も効果的に下げることができる。また、小径側凹所、大径側凹所により、ポケットへの間口を広げ、潤滑剤がポケット内を通過する際の抵抗を低下させることができる。また、小径側凹所、大径側凹所の形成で玉受け面の面積を減らすことにより、玉とポケット内側との間に形成される油膜量を少なくし、玉が樹脂保持器に対して運動する際にせん断する油膜量も少なくすることができる。これらの低減によって、軸受トルクを低減することができる。小環状部と大環状部の双方に凹所を形成することで、小径側凹所、大径側凹所の径方向深さを浅くすることができる。さらに、小径側玉受け面を、PCDよりも内輪側で小径側凹所と繋ぎ、かつ小環状部の外径面まで連ねると、PCD近傍を含む比較的にすべり速度の遅くなるところで、小環状部の軸方向肉厚を従来通りに確保することができるので、軽微な小環状部形状の変更で済ますことができる。同じく、大径側玉受け面を、PCDよりも外輪側で大径側凹所と連ね、かつ大環状部の内径面まで連ねると、軽微な大環状部形状の変更に留めることができる。   The shear resistance due to balls is generally determined by F = η (u / h) S. Here, F: shear resistance, η: viscosity of oil, u: sliding speed, h: oil film thickness, S: sliding area. As the ball rotates, the circumferential speed of the ball rotation increases as the ball rotates away from the pitch diameter (PCD) of the ball set when the ball rotates, and the sliding speed increases. The outer diameter surface of the small annular portion is closer to the PCD than the inner diameter surface of the small annular portion, and the inner diameter surface of the large annular portion is closer to the PCD than the outer diameter surface of the large annular portion. The sliding speed can be the fastest at the outer diameter surface of the part. By forming recesses that are further recessed from the inner diameter surface of the small annular portion and the outer diameter surface of the large annular portion to the outside of the pocket, the clearance between the balls from the place where the peripheral speed of the ball rotation is fastest is further expanded from the pocket. The shear resistance can be reduced most effectively. Further, the small-diameter side recess and the large-diameter side recess can widen the opening to the pocket and reduce the resistance when the lubricant passes through the pocket. Also, by reducing the area of the ball receiving surface by forming the small diameter side recess and the large diameter side recess, the amount of oil film formed between the ball and the inside of the pocket is reduced, and the ball is against the resin cage The amount of oil film that shears during movement can also be reduced. These reductions can reduce the bearing torque. By forming a recess in both the small annular portion and the large annular portion, the radial depth of the small diameter side recess and the large diameter side recess can be reduced. Further, when the small diameter side ball receiving surface is connected to the small diameter side recess on the inner ring side of the PCD and connected to the outer diameter surface of the small annular portion, the small annular portion is located where the sliding speed including the vicinity of the PCD becomes relatively slow. Since the axial thickness of the part can be ensured as before, it is possible to change the shape of a small small annular part. Similarly, if the large-diameter side ball receiving surface is connected to the large-diameter side recess on the outer ring side of the PCD and connected to the inner diameter surface of the large annular portion, it is possible to keep the slight change in the shape of the large annular portion.

前記小環状部の内径面は前記内輪の肩部外径よりも小径であり、前記大環状部の外径面は前記外輪の肩部内径よりも大径であり、前記小径側凹所は前記内輪の肩部外径よりも小径のところに形成され、前記大径側凹所は前記外輪の肩部内径よりも大径のところに形成されていることが好ましい。肩落としの空間を利用して小径側凹所、大径側凹所の深さを取りつつ、内輪の肩部との間、外輪の肩部との間の環状スペースを利用して小環状部及び大環状部の肉厚を全周に亘って確保することができる。   The inner diameter surface of the small annular portion is smaller than the shoulder outer diameter of the inner ring, the outer diameter surface of the large annular portion is larger than the shoulder inner diameter of the outer ring, and the small diameter side recess is the Preferably, the inner ring is formed at a smaller diameter than the shoulder outer diameter, and the large diameter side recess is formed at a diameter larger than the shoulder inner diameter of the outer ring. Small annular part using the annular space between the shoulder of the inner ring and the shoulder of the outer ring while taking the depth of the small diameter side recess and large diameter side recess using the shoulder drop space And the wall thickness of a macrocyclic part can be ensured over a perimeter.

前記小環状部の内外径差は前記大環状部の内外径差よりも大きいことが好ましい。大環状部と比して強度を確保し難い小環状部の強度を確保するため、内外径差を小環状部側で大きくしている。この種の樹脂保持器であれば、小径側凹所の径方向深さが制限され難く、この発明に好適である。   The difference between the inner and outer diameters of the small annular part is preferably larger than the inner and outer diameter difference of the large annular part. In order to ensure the strength of the small annular part, which is difficult to ensure the strength compared to the large annular part, the inner and outer diameter differences are increased on the small annular part side. This type of resin retainer is suitable for the present invention because the radial depth of the small-diameter side recess is hardly limited.

前記小環状部の内径面は前記大環状部の外径面よりも幅広で円周方向に亘っていることも好ましい。大環状部と比して強度を確保し難い小環状部の強度を確保するため、小環状部の内径面幅を円周方向に亘って大環状部の外径面よりも大きくしている。この種の樹脂保持器であれば、小径側凹所の軸方向深さが制限され難く、この発明に好適である。   It is also preferable that the inner diameter surface of the small annular portion is wider than the outer diameter surface of the large annular portion and extends in the circumferential direction. In order to secure the strength of the small annular portion, which is difficult to ensure the strength as compared with the large annular portion, the inner diameter width of the small annular portion is made larger than the outer diameter surface of the large annular portion in the circumferential direction. This type of resin retainer is suitable for the present invention because the axial depth of the small-diameter side recess is hardly limited.

例えば、前記小径側玉受け面及び前記大径側玉受け面は、それぞれ球面状に形成することができる。最も一般的な玉受け面形状の従来品から小径側凹所、大径側凹所を形成するだけでこの発明を実施することができる。なお、この発明において、小径側玉受け面、大径玉受け面のそれぞれは、軸受運転中、樹脂保持器に対する玉の位置を定めるために玉と接触し得るポケット内面部分であり、この目的を達成し得る限り、単一又は複数の面から任意の形状にすることができる。   For example, the small-diameter side ball receiving surface and the large-diameter side ball receiving surface can each be formed in a spherical shape. The present invention can be implemented only by forming a small-diameter side recess and a large-diameter side recess from a conventional product having the most common ball receiving surface shape. In the present invention, each of the small-diameter side ball receiving surface and the large-diameter ball receiving surface is a pocket inner surface portion that can come into contact with the ball to determine the position of the ball relative to the resin cage during the bearing operation. As long as it can be achieved, it can be any shape from a single or multiple faces.

例えば、前記樹脂保持器は、射出成型によって形成することができる。小径側凹所、大径側凹所は、小環状部の内径面、大環状部の外径面から凹む形状なので、小環状部、大環状部の成型時に同時に形成することができる。   For example, the resin holder can be formed by injection molding. Since the small diameter side recess and the large diameter side recess are recessed from the inner diameter surface of the small annular portion and the outer diameter surface of the large annular portion, they can be formed simultaneously when molding the small annular portion and the large annular portion.

前記小径側凹所及び前記大径側凹所は、小環状部の内径面、大環状部の外径面から凹む形状なので、それぞれ削り加工で形成することもできる。削り加工によれば、小環状部の外径が大環状部の内径よりも大きい従来品にこの発明を適用することができる。   Since the small diameter side recess and the large diameter side recess are recessed from the inner diameter surface of the small annular portion and the outer diameter surface of the large annular portion, they can also be formed by shaving. According to the shaving process, the present invention can be applied to a conventional product in which the outer diameter of the small annular portion is larger than the inner diameter of the large annular portion.

前記樹脂保持器は、ポリフェニレンサルファイド(PPS)樹脂で形成することが好ましい。PPSは、射出成型、又は削り加工が可能な樹脂の中でも機械的強度が特に優れるので、小径側凹所、大径側凹所の形成に好適である。   The resin cage is preferably formed of polyphenylene sulfide (PPS) resin. PPS is particularly excellent in mechanical strength among resins that can be injection-molded or machined, and thus is suitable for forming a small-diameter side recess and a large-diameter side recess.

この発明に係る樹脂保持器は、従来品と置換することで軸受トルクを低減することができる。   The resin cage according to the present invention can reduce the bearing torque by substituting the conventional product.

この発明に係るアンギュラ玉軸受は、トランスミッションの回転軸の支持に用いることにより、燃費向上を図ることができる。   The angular contact ball bearing according to the present invention can improve fuel consumption by being used for supporting the rotation shaft of the transmission.

上述のように、この発明は、樹脂保持器を備えたアンギュラ玉軸受において、上記構成の採用により、小径側凹所、大径側凹所で比較的にすべり速度の速いところのせん断抵抗等を効果的に低減し、比較的にすべり速度の遅いPCD近傍のところで小環状部、大環状部の軸方向肉厚を確保したので、軽微な保持器形状の変更で軸受トルクの低減を図ることができる。   As described above, according to the present invention, in the angular ball bearing provided with a resin cage, by adopting the above-described configuration, the shear resistance and the like at a relatively high sliding speed in the small diameter side recess and the large diameter side recess can be obtained. Effectively reducing the axial thickness of the small and large annular parts in the vicinity of the PCD where the sliding speed is relatively slow, so the bearing torque can be reduced by a slight change in the cage shape. it can.

実施形態に係るアンギュラ玉軸受の断面図Sectional view of angular contact ball bearing according to the embodiment 図1の小径側凹所の部分拡大図Partial enlarged view of the small-diameter side recess in FIG. 図1のアンギュラ玉軸受を組み込んだトランスミッションの全体構成を示す模式図Schematic diagram showing the overall configuration of a transmission incorporating the angular ball bearing of FIG. 従来例の断面図Cross section of conventional example

この発明の実施形態に係るアンギュラ玉軸受を図1に基づいて説明する。図示のように、このアンギュラ玉軸受は、肩落とし内輪10と、肩落とし外輪20と、樹脂保持器30とを備えている。なお、図1は、ポケットすきまが円周方向、軸方向及び径方向の各両側に均等な状態で、軸受中心軸及び円周方向に等配した玉40の中心を含む断面上を示している。この発明において、軸方向とは、軸受中心軸に沿った方向のことをいう。また、径方向とは、軸方向に垂直な方向のことをいう。また、円周方向とは、軸受中心軸回りの円周方向のことをいう。   An angular ball bearing according to an embodiment of the present invention will be described with reference to FIG. As shown in the figure, this angular ball bearing includes a shoulder drop inner ring 10, a shoulder drop outer ring 20, and a resin retainer 30. FIG. 1 shows a cross section including the center of the ball 40 equally distributed in the bearing central axis and the circumferential direction in a state where the pocket clearance is uniform on both sides in the circumferential direction, the axial direction and the radial direction. . In the present invention, the axial direction refers to a direction along the bearing central axis. Further, the radial direction means a direction perpendicular to the axial direction. The circumferential direction means a circumferential direction around the bearing central axis.

内輪10、外輪20は、単列の片肩落としの軌道輪になっている。樹脂保持器30は、内輪10の肩落とし部11と外輪20の肩部21との間の環状空間に収まる小環状部31、外輪20の肩落とし部22と内輪10の肩部12との間の環状空間に収まる大環状部32、及び小環状部31と大環状部32との間を窓型のポケット33に区切る柱部34からなる。肩落とし部11は、軌道溝13から反肩部12側に位置した外周面部からなる。肩落とし部22は、軌道溝23から反肩部21側に位置した内周面部からなる。樹脂保持器30の保持器中心軸は、軸受中心軸と同軸になっている。   The inner ring 10 and the outer ring 20 are single-row, single-shoulder raceways. The resin retainer 30 includes a small annular part 31 that fits in an annular space between the shoulder drop part 11 of the inner ring 10 and the shoulder part 21 of the outer ring 20, and between the shoulder drop part 22 of the outer ring 20 and the shoulder part 12 of the inner ring 10. A large annular portion 32 that fits in the annular space, and a column portion 34 that divides the small annular portion 31 and the large annular portion 32 into a window-shaped pocket 33. The shoulder drop portion 11 is composed of an outer peripheral surface portion located on the side opposite the shoulder portion 12 from the raceway groove 13. The shoulder drop portion 22 is composed of an inner peripheral surface portion located on the side opposite the shoulder portion 21 from the raceway groove 23. The cage central axis of the resin cage 30 is coaxial with the bearing central axis.

樹脂保持器30は、転動体案内方式になっており、内輪10、外輪20との間にすきまが設けられている。小環状部31は、ポケット33に入った玉40の位置を定める小径側玉受け面35と、小径側玉受け面35からポケット33外側へ更に凹んだ小径側凹所36とを有している。大環状部32は、玉40の位置を定める大径側玉受け面37と、大径側玉受け面37からポケット33外側へ更に凹んだ大径側凹所38とを有している。ポケット33は、玉40が占め得る空所のことをいう。   The resin cage 30 is a rolling element guide system, and a gap is provided between the inner ring 10 and the outer ring 20. The small annular portion 31 has a small diameter side ball receiving surface 35 that determines the position of the ball 40 that has entered the pocket 33, and a small diameter side recess 36 that is further recessed from the small diameter side ball receiving surface 35 to the outside of the pocket 33. . The large annular portion 32 has a large-diameter side ball receiving surface 37 that defines the position of the ball 40 and a large-diameter side recess 38 that is further recessed from the large-diameter side ball receiving surface 37 to the outside of the pocket 33. The pocket 33 refers to a space that can be occupied by the ball 40.

小径側凹所36は、小環状部31の内径面31aから外輪20側へ連なっている。小径側玉受け面35は、PCDよりも内輪10側で小径側凹所36と繋がり、かつ小環状部31の外径面31bまで連なっている。PCDは、樹脂保持器30に保持された1列の玉40の中心を含む円の直径のことをいう。大径側凹所38は、大環状部32の外径面32aから内輪10側へ連なっている。大径側玉受け面37は、PCDよりも外輪20側で大径側凹所38と繋がり、かつ大環状部32の内径面32bまで連なっている。   The small diameter side recess 36 is continued from the inner diameter surface 31 a of the small annular portion 31 to the outer ring 20 side. The small-diameter side ball receiving surface 35 is connected to the small-diameter side recess 36 on the inner ring 10 side with respect to the PCD, and is connected to the outer-diameter surface 31 b of the small annular portion 31. PCD refers to the diameter of a circle including the center of one row of balls 40 held by the resin holder 30. The large diameter side recess 38 is continuous from the outer diameter surface 32a of the large annular portion 32 to the inner ring 10 side. The large-diameter ball receiving surface 37 is connected to the large-diameter recess 38 on the outer ring 20 side of the PCD and continues to the inner diameter surface 32 b of the large annular portion 32.

小環状部31の内径面31a、大環状部32の外径面32aは、それぞれ円筒面に沿うように形成され、保持器中心軸と同軸の面形状になっている。小環状部31の外径面31b、大環状部32の内径面32bは、軸受中心軸に同軸の円錐面に沿うように形成されている。小環状部31の外径面31bは、大環状部32側に円錐面状の大端部をもち、その外径面31b全体は、小環状部31の内径面31aよりもPCDに近い径寸になっている。大環状部32の内径面32bは、小環状部31側に円錐面状の小端部をもち、その内径面32b全体は、大環状部32の外径面32aよりもPCDに近い径寸になっている。小環状部31の外径面31b、大環状部32の内径面32bは、円錐面状に限られず、例えば、円筒面状にすることもできる。小環状部31の内径面31a、大環状部32の外径面32aは、小径側凹所36、大径側凹所38の形成に伴い、外径面31b、内径面32bよりも狭い幅で円周方向に亘っている。   The inner diameter surface 31a of the small annular portion 31 and the outer diameter surface 32a of the large annular portion 32 are formed along the cylindrical surface, respectively, and have a surface shape coaxial with the cage central axis. The outer diameter surface 31b of the small annular portion 31 and the inner diameter surface 32b of the large annular portion 32 are formed along a conical surface coaxial with the bearing central axis. The outer diameter surface 31 b of the small annular portion 31 has a conical large end on the large annular portion 32 side, and the entire outer diameter surface 31 b is closer to the PCD than the inner diameter surface 31 a of the small annular portion 31. It has become. An inner diameter surface 32b of the large annular portion 32 has a conical small end on the small annular portion 31 side, and the entire inner diameter surface 32b has a diameter closer to the PCD than the outer diameter surface 32a of the large annular portion 32. It has become. The outer diameter surface 31b of the small annular portion 31 and the inner diameter surface 32b of the large annular portion 32 are not limited to a conical surface shape, and may be a cylindrical surface shape, for example. The inner diameter surface 31a of the small annular portion 31 and the outer diameter surface 32a of the large annular portion 32 are narrower than the outer diameter surface 31b and the inner diameter surface 32b with the formation of the small diameter side recess 36 and the large diameter side recess 38. It extends in the circumferential direction.

小径側玉受け面35、大径側玉受け面37は、玉40と少なくとも軸方向に接触し得る小環状部31、大環状部32の表面部位からなる。図示例の樹脂保持器30が転動体案内方式なので、小径側玉受け面35、大径側玉受け面37は、玉40の表面に沿う面形状に形成され、樹脂保持器30に対する玉40の径方向位置を定める部位ともなっている。小径側玉受け面35、大径側玉受け面37は、樹脂保持器30の相対的な径方向変位によって玉40と軸方向に接触し得る箇所がその外径側縁部と内径側縁部との間で径方向に変位するようになっている。樹脂保持器30に対して径方向に外輪20側へ向う玉40の位置は、小環状部31の外径面31bと交わる小径側玉受け面35の外径側縁部、及び大環状部32の外径面32aと交わる大径側玉受け面37の外径側縁部との接触で定まる。樹脂保持器30に対して径方向に内輪10側へ向う玉40の位置は、小環状部31の内径面31aと交わる小径側玉受け面35の内径側縁部、及び大環状部32の内径面32bと交わる大径側玉受け面37の内径側縁部との接触で定まる。   The small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37 are composed of surface portions of a small annular portion 31 and a large annular portion 32 that can contact the ball 40 at least in the axial direction. Since the resin cage 30 in the illustrated example is a rolling element guide system, the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37 are formed in a surface shape along the surface of the ball 40, and It also serves as a part for determining the radial position. The small-diameter-side ball receiving surface 35 and the large-diameter-side ball receiving surface 37 are arranged such that locations where they can come into contact with the balls 40 in the axial direction due to relative radial displacement of the resin retainer 30 are the outer diameter side edge and the inner diameter side edge. Is displaced in the radial direction. The positions of the balls 40 that are radially directed toward the outer ring 20 with respect to the resin retainer 30 are the outer diameter side edge of the small diameter side ball receiving surface 35 that intersects the outer diameter surface 31 b of the small annular portion 31, and the large annular portion 32. It is determined by contact with the outer diameter side edge portion of the large diameter side ball receiving surface 37 that intersects the outer diameter surface 32a. The positions of the balls 40 that are radially directed toward the inner ring 10 with respect to the resin retainer 30 are the inner diameter side edge of the small diameter ball receiving surface 35 that intersects the inner diameter surface 31 a of the small annular portion 31 and the inner diameter of the large annular portion 32. It is determined by contact with the inner diameter side edge of the large diameter side ball receiving surface 37 that intersects the surface 32b.

小径側玉受け面35、大径側玉受け面37の面形状は、球面状になっている。この球面状は、公知の転動体案内方式の樹脂保持器で採用されているものなので、この発明の適用に際し、ポケットすきまの設定を変更する必要性がない。   The surface shapes of the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37 are spherical. Since this spherical shape is adopted in a known rolling element guide type resin retainer, there is no need to change the setting of the pocket clearance when applying the present invention.

小径側玉受け面35、大径側玉受け面37と玉40との間には、ポケットすきまが確保されているだけなので、軸受運転中、両玉受け面35、37と玉40との間のすきまに油膜が形成され、それぞれの間のすきまで玉40が油膜をせん断するせん断抵抗が生じる。したがって、その油膜は、潤滑油、グリース等の適宜の潤滑剤(流体)によって形成される。上記すべり面積Sは、小径側玉受け面35、大径側玉受け面37と玉40とが軸方向に対面する範囲の面積に相当する。小径側凹所36、大径側凹所38と玉40との間には、小径側玉受け面35、大径側玉受け面37のところよりも十分に大きなすきまとなるので、これらの間では、玉40による油のせん断抵抗が問題にならない。小径側凹所36、大径側凹所38の形成により、小径側玉受け面35、大径側玉受け面37を小環状部31の内径面31a、大環状部32の外径面32aと同径まで形成した場合と比して、すべり面積S、油膜量を減らしている。   Since only a pocket clearance is secured between the small-diameter side ball receiving surface 35, the large-diameter side ball receiving surface 37, and the ball 40, between the ball receiving surfaces 35, 37 and the ball 40 during the bearing operation. An oil film is formed in the gap, and shear resistance is generated in which the balls 40 shear the oil film up to the gap between them. Therefore, the oil film is formed by an appropriate lubricant (fluid) such as lubricating oil or grease. The slip area S corresponds to an area in a range in which the small diameter side ball receiving surface 35, the large diameter side ball receiving surface 37, and the ball 40 face each other in the axial direction. Between the small-diameter side recess 36 and the large-diameter side recess 38 and the ball 40, there is a sufficiently larger clearance than the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37. Then, the shear resistance of the oil by the ball 40 does not become a problem. By forming the small-diameter side recess 36 and the large-diameter side recess 38, the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37 are connected to the inner diameter surface 31a of the small annular portion 31 and the outer diameter surface 32a of the large annular portion 32. The sliding area S and the amount of oil film are reduced compared to the case where the same diameter is formed.

また、小径側玉受け面35の外径側縁部は、比較的にPCDに近く、小径側玉受け面35の内径側縁部は、比較的にPCDから遠い。大径側玉受け面37の内径側縁部は、比較的にPCDに近く、同玉受け面37の外径側縁部は、比較的にPCDから遠い。小径側玉受け面35を例に説明すると、図2に示すように、軸受回転中に玉40が自転する際、小径側玉受け面35の外径側縁部と軸方向に対向する玉40部分での玉自転周速と、小径側玉受け面35の内径側縁部と軸方向に対向する玉40部分での玉自転周速とを比較すると、外径側縁部とPCDとの径差a<内径側縁部とPCDとの径差bになるので、内径側縁部側での玉自転周速の方が高速になる。上記すべり速度uは、これら玉自転周速に基いて定まる。小環状部31の内径面31aと軸方向に対向する玉40部分での玉自転周速は、内径側縁部側の玉自転周速よりもさらに高速になる。小径側凹所36を小環状部31の内径面31aから径方向に凹ませることにより、小径側玉受け面35を内径面31aと同径まで形成した場合と比して、すべり速度uの最も高い領域から油膜のせん断抵抗を低減している。勿論、図1に示す大径側凹所38の形成によっても同様の低減効果を奏している。   Further, the outer diameter side edge portion of the small diameter side ball receiving surface 35 is relatively close to the PCD, and the inner diameter side edge portion of the small diameter side ball receiving surface 35 is relatively far from the PCD. The inner diameter side edge of the large diameter side ball receiving surface 37 is relatively close to the PCD, and the outer diameter side edge of the same ball receiving surface 37 is relatively far from the PCD. The small diameter side ball receiving surface 35 will be described as an example. As shown in FIG. 2, when the ball 40 rotates during rotation of the bearing, the ball 40 facing the outer diameter side edge of the small diameter side ball receiving surface 35 in the axial direction. Comparing the ball rotation speed at the portion and the ball rotation speed at the ball 40 portion facing the inner diameter side edge of the small diameter side ball receiving surface 35 in the axial direction, the diameter of the outer diameter side edge portion and the PCD Since the difference a <the diameter difference b between the inner diameter side edge and the PCD, the ball rotation speed on the inner diameter side edge becomes higher. The sliding speed u is determined based on these ball rotation peripheral speeds. The ball rotation peripheral speed at the portion of the ball 40 facing the inner diameter surface 31a of the small annular portion 31 in the axial direction becomes higher than the ball rotation peripheral speed on the inner diameter side edge side. Compared with the case where the small diameter side ball receiving surface 35 is formed to the same diameter as the inner diameter surface 31a by denting the small diameter side recess 36 from the inner diameter surface 31a of the small annular portion 31 in the radial direction, the sliding speed u is the highest. The shear resistance of the oil film is reduced from the high region. Of course, the same reduction effect can be obtained by forming the large-diameter side recess 38 shown in FIG.

小径側凹所36、大径側凹所38は、径方向に深くする程、せん断抵抗を低減することができる。玉40の軸方向両側でせん断抵抗を低減することにより、小径側凹所36、大径側凹所38の径方向深さ、軸方向深さを浅くし、樹脂製の小環状部31、大環状部32の強度確保を容易にしている。   As the small diameter side recess 36 and the large diameter side recess 38 are deepened in the radial direction, the shear resistance can be reduced. By reducing the shear resistance on both axial sides of the ball 40, the radial depth and axial depth of the small-diameter side recess 36 and the large-diameter side recess 38 are reduced, and the resin small annular portion 31 and the large Ensuring the strength of the annular portion 32 is facilitated.

小環状部31の内径面31aは、内輪10の肩部12の外径よりも小径である。大環状部32の外径面32aは、外輪20の肩部21の内径よりも大径である。内輪10の肩落とし部11上には、肩部12の外径よりも小径な環状スペースが存在する。外輪20の肩落とし部22上には、肩部21の内径よりも大径な環状スペースが存在する。それら環状スペースを利用して小径側凹所36、大径側凹所38の深さを径方向に取ることができる。小径側凹所36は、内輪10の肩部12の外径よりも小径のところに形成されている。このため、小環状部31の円周方向に亘る肉部は、内輪10の肩部12の外径から大径側に存在する環状スペースをも利用して、円周方向に亘って十分な径方向厚さに確保されている。大径側凹所38は、外輪20の肩部21の内径よりも大径のところに形成されている。このため、大環状部32の円周方向に亘る肉部は、外輪20の肩部21の内径から小径側に存在する環状スペースをも利用して、円周方向に亘って十分な径方向厚さに確保されている。   The inner diameter surface 31 a of the small annular portion 31 has a smaller diameter than the outer diameter of the shoulder portion 12 of the inner ring 10. The outer diameter surface 32 a of the large annular portion 32 has a larger diameter than the inner diameter of the shoulder portion 21 of the outer ring 20. An annular space having a smaller diameter than the outer diameter of the shoulder portion 12 exists on the shoulder dropping portion 11 of the inner ring 10. An annular space having a diameter larger than the inner diameter of the shoulder portion 21 exists on the shoulder dropping portion 22 of the outer ring 20. Using these annular spaces, the depth of the small diameter side recess 36 and the large diameter side recess 38 can be taken in the radial direction. The small-diameter side recess 36 is formed at a smaller diameter than the outer diameter of the shoulder 12 of the inner ring 10. For this reason, the circumferential portion of the small annular portion 31 has a sufficient diameter in the circumferential direction using the annular space existing on the large diameter side from the outer diameter of the shoulder portion 12 of the inner ring 10. Secured in the direction thickness. The large-diameter side recess 38 is formed at a diameter larger than the inner diameter of the shoulder portion 21 of the outer ring 20. For this reason, the circumferential portion of the large annular portion 32 has a sufficient thickness in the circumferential direction using the annular space existing on the small diameter side from the inner diameter of the shoulder portion 21 of the outer ring 20. Secured.

小環状部31の内外径差は、大環状部32の内外径差よりも大きい。小環状部31の内外径差は、小環状部31の最大の径方向幅に相当し、図示例だと、外径面31bの大端部外径と、内径面31aの内径との差である。大環状部32の内外径差は、大環状部32の最大の径方向幅に相当し、図示例だと、外径面32aの外径と内径面32bの小端部内径との差である。大環状部32と比して、内外径が小さく強度を確保し難い小環状部31の径方向幅を比較的に大きくし、小径側凹所36の径方向深さが大径側凹所38よりも制限されることを防止している。   The difference between the inner and outer diameters of the small annular portion 31 is larger than the inner and outer diameter difference of the large annular portion 32. The difference between the inner and outer diameters of the small annular portion 31 corresponds to the maximum radial width of the small annular portion 31, and in the illustrated example, the difference between the outer diameter of the large end portion of the outer diameter surface 31b and the inner diameter of the inner diameter surface 31a. is there. The difference between the inner and outer diameters of the large annular portion 32 corresponds to the maximum radial width of the large annular portion 32. In the illustrated example, the difference between the outer diameter of the outer diameter surface 32a and the inner diameter of the small end portion of the inner diameter surface 32b. . Compared with the large annular portion 32, the radial width of the small annular portion 31 whose inner and outer diameters are small and it is difficult to ensure the strength is relatively large, and the radial depth of the small diameter side recess 36 is large. Is more restrictive than it is.

同じく小環状部31の強度を得るため、小環状部31の内径面31aは、大環状部32の外径面32aよりも幅広で円周方向に亘っている。小環状部31の円周方向に亘る部分の幅を比較的に大きくし、小径側凹所36の径方向深さが大径側凹所38よりも制限されることを防止している。   Similarly, in order to obtain the strength of the small annular portion 31, the inner diameter surface 31 a of the small annular portion 31 is wider than the outer diameter surface 32 a of the large annular portion 32 and extends in the circumferential direction. The width of the portion of the small annular portion 31 in the circumferential direction is made relatively large, and the radial depth of the small diameter side recess 36 is prevented from being limited more than that of the large diameter side recess 38.

小径側凹所36、大径側凹所38の形成範囲は、ポケット33の軸方向両側に留まり、柱部34の強度を優先するため、小径側凹所36、大径側凹所38は、柱部34から外して形成されている。なお、小径側凹所36、大径側凹所38の径方向深さ及び軸方向深さは、同じになっているが、これに限定されない。大環状部32の外径面32aが小環状部31の内径面31aよりもPCDに近いため、大径側凹所38を径方向に比較的に浅くすることも可能である。   The formation range of the small-diameter side recess 36 and the large-diameter side recess 38 remains on both sides in the axial direction of the pocket 33 and gives priority to the strength of the column part 34. It is formed by removing from the column part 34. In addition, although the radial direction depth and the axial direction depth of the small diameter side recess 36 and the large diameter side recess 38 are the same, it is not limited to this. Since the outer diameter surface 32a of the large annular portion 32 is closer to the PCD than the inner diameter surface 31a of the small annular portion 31, the large diameter side recess 38 can be made relatively shallow in the radial direction.

樹脂保持器は射出成型によって形成されている。軸方向に二分割の金型で樹脂保持器30を射出成型するため、小環状部31の外径は、大環状部32の内径よりも小径になっている。小径側玉受け面35、小径側凹所36及び小環状部31全体は、軸方向に大環状部32側へ向ってアンダーカットになる部分をもたない。大径側玉受け面37、大径側凹所38及び大環状部32全体は、軸方向に小環状部31側へ向ってアンダーカットになる部分をもたない。   The resin holder is formed by injection molding. Since the resin retainer 30 is injection-molded with a two-part mold in the axial direction, the outer diameter of the small annular portion 31 is smaller than the inner diameter of the large annular portion 32. The small-diameter-side ball receiving surface 35, the small-diameter-side recess 36, and the small annular portion 31 as a whole do not have a portion that is undercut toward the large annular portion 32 in the axial direction. The large-diameter-side ball receiving surface 37, the large-diameter-side recess 38, and the entire large annular portion 32 do not have a portion that is undercut toward the small annular portion 31 in the axial direction.

小径側凹所36及び大径側凹所38は、削り加工によって形成することもできる。   The small-diameter side recess 36 and the large-diameter side recess 38 can also be formed by machining.

樹脂保持器30は、ポリフェニレンサルファイド(PPS)樹脂で形成することができる。樹脂保持器30は、その他のスーパーエンジニリアリングプラスチックで形成することも可能である。PPSは、スーパーエンジニリアリングプラスチックの中でも機械的強度が特に優れるので、小径側凹所36、大径側凹所38を形成しつつ、小環状部31、大環状部32の強度を確保するのに好適である。   The resin holder 30 can be formed of polyphenylene sulfide (PPS) resin. The resin holder 30 can also be formed of other super engineering ring plastic. Since PPS is particularly excellent in mechanical strength among super engineering rearing plastics, the strength of the small annular portion 31 and the large annular portion 32 is ensured while forming the small diameter side recess 36 and the large diameter side recess 38. It is suitable for.

このアンギュラ玉軸受は、上述のように、小径側凹所36、大径側凹所38を形成したので、玉自転周速の最も速いところから、せん断抵抗を最も効果的に下げることができる。また、小径側凹所36、大径側凹所38により、ポケット33への間口を広げ、潤滑剤がポケット33内を通過する際の抵抗を低下させることができる。また、小径側凹所36、大径側凹所38の形成で小径側玉受け面35、大径側玉受け面37の面積を減らすことにより、玉40とポケット33内側との間に形成される油膜量を少なくし、玉40が樹脂保持器30に対して運動する際にせん断する油膜量も少なくすることができる。これらの低減によって、軸受トルクを低減することができる。小環状部31、大環状部32に小径側凹所36、大径側凹所38を形成することで同じ軸受トルクの低減効果を片側の凹所形成のみで得るよりも径方向深さを浅くすることができる。さらに小径側玉受け面35、大径側玉受け面37を、PCDよりも内輪10側、外輪20側で小径側凹所36、大径側凹所38と繋ぎ、かつ小環状部31の外径面31b、大環状部32の内径面32bまで連ねることにより、PCD近傍を含む比較的にすべり速度の遅くなるところで小環状部31、大環状部32の軸方向肉厚を確保し、軽微な小環状部31、大環状部32の形状変更で済ますことができる。   Since the angular ball bearing has the small-diameter side recess 36 and the large-diameter side recess 38 as described above, the shear resistance can be most effectively lowered from the place where the ball rotation speed is fastest. Moreover, the small diameter side recess 36 and the large diameter side recess 38 can widen the opening to the pocket 33 and reduce the resistance when the lubricant passes through the pocket 33. Further, the formation of the small-diameter side recess 36 and the large-diameter side recess 38 reduces the area of the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37, thereby forming the ball 40 and the inside of the pocket 33. The amount of oil film that is sheared when the ball 40 moves relative to the resin holder 30 can also be reduced. These reductions can reduce the bearing torque. By forming the small-diameter side recess 36 and the large-diameter side recess 38 in the small annular portion 31 and the large annular portion 32, the radial depth is made shallower than when the same bearing torque reduction effect is obtained only by forming the concave portion on one side. can do. Further, the small-diameter side ball receiving surface 35 and the large-diameter side ball receiving surface 37 are connected to the small-diameter side recess 36 and the large-diameter side recess 38 on the inner ring 10 side and the outer ring 20 side of the PCD, and outside the small annular portion 31. By connecting the radial surface 31b to the inner diameter surface 32b of the large annular portion 32, the axial thickness of the small annular portion 31 and the large annular portion 32 is ensured at a relatively slow sliding speed including the vicinity of the PCD. The shape of the small annular portion 31 and the large annular portion 32 can be changed.

図3は、上述した実施形態に係るアンギュラ玉軸受を回転軸の支持に用いたトランスミッションの全体構成を模式的に示している。このトランスミッション100は、実施形態に係るアンギュラ玉軸受110を使用した自動車用のものであり、クラッチを介してエンジン200の動力が伝達される第1回転軸120と、この動力を車輪に伝達する第2回転軸130とを有している。回転軸120、130には、複数の変速ギヤ121〜125、131〜135が取り付けられ、それぞれ両端部をアンギュラ玉軸受110で支持された変速軸になっている。アンギュラ玉軸受110の低トルク化により、両回転軸120、130の回転の低トルク化を図り、燃費を向上させることができる。   FIG. 3 schematically shows the overall configuration of a transmission that uses the angular ball bearing according to the above-described embodiment to support a rotating shaft. The transmission 100 is for an automobile using the angular ball bearing 110 according to the embodiment, and includes a first rotating shaft 120 to which the power of the engine 200 is transmitted via a clutch, and a first rotating shaft 120 that transmits this power to the wheels. 2 rotation shafts 130. A plurality of transmission gears 121 to 125 and 131 to 135 are attached to the rotary shafts 120 and 130, respectively, and both ends are the transmission shafts supported by the angular ball bearings 110. By reducing the torque of the angular ball bearing 110, the torque of the rotating shafts 120 and 130 can be reduced and the fuel efficiency can be improved.

この発明の技術的範囲は、上述の各実施形態に限定されず、特許請求の範囲の記載に基く技術的思想の範囲内での全ての変更を含むものである。   The technical scope of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope of the technical idea based on the description of the scope of claims.

10 内輪
11、22 肩落とし部
12、21 肩部
13、23 軌道溝
20 外輪
30 樹脂保持器
31 小環状部
31a、32b 内径面
31b、32a 外径面
32 大環状部
33 ポケット
34 柱部
35 小径側玉受け面
36 小径側凹所
37 大径側玉受け面
38 大径側凹所
40 玉
100 トランスミッション
110 アンギュラ玉軸受
120 130 回転軸
PCD 玉セットのピッチ径
DESCRIPTION OF SYMBOLS 10 Inner ring | wheel 11,22 Shoulder drop part 12,21 Shoulder part 13,23 Track groove 20 Outer ring 30 Resin holder 31 Small annular part 31a, 32b Inner diameter surface 31b, 32a Outer diameter surface 32 Large annular part 33 Pocket 34 Column part 35 Small diameter Side ball receiving surface 36 Small diameter side recess 37 Large diameter side ball receiving surface 38 Large diameter side recess 40 Ball 100 Transmission 110 Angular ball bearing 120 130 Rotating shaft PCD Ball set pitch diameter

Claims (10)

肩落とし内輪(10)と、肩落とし外輪(20)と、樹脂保持器(30)とを備え、
前記樹脂保持器(30)は、前記内輪(10)の肩落とし部(11)と前記外輪(20)の肩部(21)との間に収まる小環状部(31)、及び前記外輪(20)の肩落とし部(22)と前記内輪(10)の肩部(12)との間に収まる大環状部(32)を有し、
前記小環状部(31)の外径面(31b)は、当該小環状部(31)の内径面(31a)よりも玉セットのピッチ径(PCD)に近く、前記大環状部(32)の内径面(32b)は、当該大環状部(32)の外径面(32a)よりも前記ピッチ径(PCD)に近いアンギュラ玉軸受において、
前記小環状部(31)は、ポケット(33)に入った玉(40)の位置を定める小径側玉受け面(35)と、当該玉受け面(35)からポケット(33)外側へ更に凹んだ小径側凹所(36)とを有し、前記大環状部(32)は、前記玉(40)の位置を定める大径側玉受け面(37)と、当該玉受け面(37)からポケット(33)外側へ更に凹んだ大径側凹所(38)とを有しており、
前記小径側凹所(36)は、前記小環状部(31)の内径面(31a)から外輪(20)側へ連なり、前記小径側玉受け面(35)は、前記ピッチ径(PCD)よりも内輪(10)側で前記小径側凹所(36)と繋がり、かつ前記小環状部(31)の外径面(31b)まで連なり、
前記大径側凹所(38)は、前記大環状部(32)の外径面(32a)から内輪(10)側へ連なり、前記大径側玉受け面(37)は、前記ピッチ径(PCD)よりも外輪(20)側で前記大径側凹所(38)と繋がり、かつ前記大環状部(32)の内径面(32b)まで連なっていることを特徴とするアンギュラ玉軸受。
A shoulder drop inner ring (10), a shoulder drop outer ring (20), and a resin retainer (30);
The resin retainer (30) includes a small annular part (31) that fits between a shoulder drop part (11) of the inner ring (10) and a shoulder part (21) of the outer ring (20), and the outer ring (20 ) Having a large annular portion (32) that fits between the shoulder drop portion (22) and the shoulder portion (12) of the inner ring (10),
The outer diameter surface (31b) of the small annular portion (31) is closer to the pitch diameter (PCD) of the ball set than the inner diameter surface (31a) of the small annular portion (31), and the large annular portion (32). In the angular ball bearing, the inner diameter surface (32b) is closer to the pitch diameter (PCD) than the outer diameter surface (32a) of the large annular portion (32).
The small annular portion (31) is further recessed from the ball receiving surface (35) to the outside of the pocket (33) from the small diameter side ball receiving surface (35) for determining the position of the ball (40) entering the pocket (33). The large annular portion (32) has a small diameter side recess (36), and the large diameter side ball receiving surface (37) for determining the position of the ball (40) and the ball receiving surface (37). The pocket (33) has a large-diameter side recess (38) further recessed to the outside,
The small diameter side recess (36) is continuous from the inner diameter surface (31a) of the small annular portion (31) to the outer ring (20) side, and the small diameter side ball receiving surface (35) is formed from the pitch diameter (PCD). Is connected to the small-diameter side recess (36) on the inner ring (10) side, and continues to the outer diameter surface (31b) of the small annular portion (31),
The large diameter side recess (38) continues from the outer diameter surface (32a) of the large annular portion (32) to the inner ring (10) side, and the large diameter side ball receiving surface (37) has the pitch diameter ( An angular contact ball bearing characterized in that it is connected to the large-diameter side recess (38) on the outer ring (20) side of the PCD) and to the inner diameter surface (32b) of the large annular portion (32).
前記小環状部(31)の内径面(31a)は前記内輪(10)の肩部(12)外径よりも小径であり、前記大環状部(32)の外径面(32a)は前記外輪(20)の肩部(21)内径よりも大径であり、前記小径側凹所(36)は前記内輪(10)の肩部(12)外径よりも小径のところに形成され、前記大径側凹所(38)は前記外輪(20)の肩部(21)内径よりも大径のところに形成されている請求項1に記載のアンギュラ玉軸受。   An inner diameter surface (31a) of the small annular portion (31) is smaller in diameter than a shoulder portion (12) outer diameter of the inner ring (10), and an outer diameter surface (32a) of the large annular portion (32) is the outer ring. The shoulder (21) of (20) has a larger diameter than the inner diameter, and the small-diameter side recess (36) is formed at a diameter smaller than the outer diameter of the shoulder (12) of the inner ring (10). The angular ball bearing according to claim 1, wherein the radial recess (38) is formed at a diameter larger than the inner diameter of the shoulder (21) of the outer ring (20). 前記小環状部(31)の内外径差は前記大環状部(32)の内外径差よりも大きい請求項1又は2に記載のアンギュラ玉軸受。   The angular ball bearing according to claim 1 or 2, wherein a difference in inner and outer diameters of the small annular part (31) is larger than an inner and outer diameter difference of the large annular part (32). 前記小環状部(31)の内径面(31a)は前記大環状部(32)の外径面(32a)よりも幅広で円周方向に亘っている請求項1から3のいずれか1項に記載のアンギュラ玉軸受。   The inner diameter surface (31a) of the small annular portion (31) is wider than the outer diameter surface (32a) of the large annular portion (32) and extends in the circumferential direction. Angular contact ball bearing described. 前記小径側玉受け面(35)及び前記大径側玉受け面(37)は、それぞれ球面状に形成されている請求項1から4のいずれか1項に記載のアンギュラ玉軸受。   The angular ball bearing according to any one of claims 1 to 4, wherein the small-diameter side ball receiving surface (35) and the large-diameter side ball receiving surface (37) are each formed in a spherical shape. 前記樹脂保持器(30)は射出成型によって形成されている請求項1から5のいずれか1項に記載のアンギュラ玉軸受。   The angular contact ball bearing according to any one of claims 1 to 5, wherein the resin retainer (30) is formed by injection molding. 前記小径側凹所(36)及び前記大径側凹所(38)は、それぞれ削り加工によって形成されている請求項1から5のいずれか1項に記載のアンギュラ玉軸受。   The angular ball bearing according to any one of claims 1 to 5, wherein each of the small-diameter side recess (36) and the large-diameter side recess (38) is formed by machining. 前記樹脂保持器(30)は、ポリフェニレンサルファイド(PPS)樹脂で形成されている請求項1から7のいずれか1項に記載のアンギュラ玉軸受。   The angular contact ball bearing according to any one of claims 1 to 7, wherein the resin cage (30) is made of polyphenylene sulfide (PPS) resin. 請求項1から8のいずれか1項に記載の樹脂保持器。   The resin holder according to any one of claims 1 to 8. 請求項1から8のいずれか1項に記載のアンギュラ玉軸受(110)を回転軸(120、130)の支持に用いたトランスミッション。   The transmission which used the angular ball bearing (110) of any one of Claim 1 to 8 for support of a rotating shaft (120,130).
JP2011212354A 2011-09-28 2011-09-28 Angular ball bearing Withdrawn JP2013072499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212354A JP2013072499A (en) 2011-09-28 2011-09-28 Angular ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212354A JP2013072499A (en) 2011-09-28 2011-09-28 Angular ball bearing

Publications (1)

Publication Number Publication Date
JP2013072499A true JP2013072499A (en) 2013-04-22

Family

ID=48477169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212354A Withdrawn JP2013072499A (en) 2011-09-28 2011-09-28 Angular ball bearing

Country Status (1)

Country Link
JP (1) JP2013072499A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118294A (en) * 2014-12-18 2016-06-30 日本精工株式会社 Angular ball bearing
CN105782246A (en) * 2014-12-26 2016-07-20 日本精工株式会社 Angular contact ball bearing
WO2016152696A1 (en) * 2015-03-25 2016-09-29 Ntn株式会社 Rolling bearing
JP2020159485A (en) * 2019-03-27 2020-10-01 Ntn株式会社 Cage for angular ball bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118294A (en) * 2014-12-18 2016-06-30 日本精工株式会社 Angular ball bearing
CN105782246A (en) * 2014-12-26 2016-07-20 日本精工株式会社 Angular contact ball bearing
CN105782246B (en) * 2014-12-26 2018-09-14 日本精工株式会社 Angular contact ball bearing
WO2016152696A1 (en) * 2015-03-25 2016-09-29 Ntn株式会社 Rolling bearing
JP2020159485A (en) * 2019-03-27 2020-10-01 Ntn株式会社 Cage for angular ball bearing

Similar Documents

Publication Publication Date Title
EP2562437B1 (en) Method of lubricating an angular contact ball bearing and ball bearing cage
US8622622B2 (en) Antifriction bearing
EP2889500B1 (en) Tapered roller bearing
EP3543553B1 (en) Rolling bearing cage and rolling bearing
CN100443751C (en) Needle roller thrust bearing
CN101365890A (en) Radial rolling bearing, especially single-row deep groove rolling bearing
BR122019024860B1 (en) retainer, deep groove ball bearing and sealed bearing
CN100378357C (en) Cylinder roller bearing
JP2013072499A (en) Angular ball bearing
EP2884123B1 (en) Tapered roller bearing and power transmission device
EP2889501B1 (en) Tapered roller bearing
CN201106625Y (en) Locating bearing for high speed aluminium foil mill
JP2018179039A (en) Tapered roller bearing
CN107559300B (en) Tapered roller bearing
JP2012197043A (en) Bearing device for wheel, and method of manufacturing same
JP2011117542A (en) Rolling bearing and retainer for rolling bearing
WO2013018654A1 (en) Radial ball bearing
CN111649069A (en) Novel bearing retainer
JP6224402B2 (en) Method for manufacturing outer member of wheel bearing device
CN107588094B (en) Tapered roller bearing
JP2003254338A (en) Conical roller bearing
CN212643333U (en) Novel bearing retainer
JP2019132330A (en) Ball bearing
JP2014202302A (en) Cage for conical roller bearing and conical roller bearing
CN219911512U (en) Tapered roller bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202