JP2013072053A - Phosphor composition - Google Patents

Phosphor composition Download PDF

Info

Publication number
JP2013072053A
JP2013072053A JP2011213828A JP2011213828A JP2013072053A JP 2013072053 A JP2013072053 A JP 2013072053A JP 2011213828 A JP2011213828 A JP 2011213828A JP 2011213828 A JP2011213828 A JP 2011213828A JP 2013072053 A JP2013072053 A JP 2013072053A
Authority
JP
Japan
Prior art keywords
phosphor
derivatives
quantum yield
organic
fluorescence quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011213828A
Other languages
Japanese (ja)
Inventor
Hideji Iwasaki
秀治 岩崎
Shuichi Sunaga
修一 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2011213828A priority Critical patent/JP2013072053A/en
Publication of JP2013072053A publication Critical patent/JP2013072053A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor composition which does not contain rare-earth elements and heavy metals, hardly deteriorates fluorescence quantum yield due to UV rays, can improve the fluorescence quantum yield and, further, conveniently exhibits desired chromaticity.SOLUTION: The phosphor composition comprises an organic phosphor and a B-C-N-O phosphor. In the phosphor composition, UV rays are absorbed by the B-C-N-O phosphor and, therefore, the deterioration in the fluorescence quantum yield of the organic phosphor can be suppressed. The phosphor composition exhibits a fluorescence quantum yield higher than the single fluorescence quantum yield of each of the organic phosphor and B-C-N-O phosphor which are used. Further, by adjusting kinds and amounts of the organic phosphor and B-C-N-O phosphor, the desired chromaticity can be provided conveniently.

Description

本発明は、電子材料、蛍光材料、化粧品材料として有用な、有機蛍光体と、ホウ素(B)、炭素(C)、窒素(N)および酸素(O)からなるB−C−N−O蛍光体(以下、単に「B−C−N−O蛍光体」と称する)とを含有する蛍光体組成物に関する。   The present invention is an organic phosphor useful as an electronic material, a fluorescent material, and a cosmetic material, and a B—C—N—O fluorescence composed of boron (B), carbon (C), nitrogen (N), and oxygen (O). The present invention relates to a phosphor composition containing a phosphor (hereinafter, simply referred to as “B—C—N—O phosphor”).

無機蛍光体はLEDの色調変換剤として照明機器や各種表示機器に用いられる。また化粧品材料への応用も検討されている。かかる使用目的に適した発光色、蛍光量子収率、耐久性、工業的供給性を実現するために、種々の無機蛍光体が提案されている。   Inorganic phosphors are used in lighting devices and various display devices as color tone conversion agents for LEDs. Application to cosmetic materials is also being studied. Various inorganic phosphors have been proposed in order to realize the emission color, fluorescence quantum yield, durability, and industrial availability suitable for the purpose of use.

例えば、発光中心としてEuやCeなどの希土類元素を含有する無機蛍光体が知られているが、希土類元素を含有する無機蛍光体は工業的供給性が課題となる。また、発光中心としてZn、Cu、Mn、Cdなどの重金属を含有する無機蛍光体も知られているが、環境保護の観点から望ましくない。   For example, an inorganic phosphor containing a rare earth element such as Eu or Ce as a light emission center is known. However, industrial availability of an inorganic phosphor containing a rare earth element is a problem. In addition, inorganic phosphors containing heavy metals such as Zn, Cu, Mn, and Cd as emission centers are also known, but are not desirable from the viewpoint of environmental protection.

上記のような、希土類元素および重金属を含まない無機蛍光体として、例えば、B−C−N−O蛍光体が提案されている(特許文献1、2参照)。   For example, B-C-N-O phosphors have been proposed as inorganic phosphors that do not contain rare earth elements and heavy metals (see Patent Documents 1 and 2).

一方、有機蛍光体の分野においても、さまざまな化合物が提案されている(例えば、特許文献3参照)。   On the other hand, various compounds have also been proposed in the field of organic phosphors (see, for example, Patent Document 3).

国際公開第2008/126500号International Publication No. 2008/126500 国際公開第2010/067767号International Publication No. 2010/067767 特開2009−4351号公報JP 2009-4351 A

しかしながら、これら蛍光体は蛍光量子収率を一層高めることが求められている。また、有機蛍光体は紫外線による励起によって、蛍光量子収率が低下する問題点があった。   However, these phosphors are required to further increase the fluorescence quantum yield. In addition, the organic phosphor has a problem in that the fluorescence quantum yield is reduced by excitation with ultraviolet rays.

しかして、本発明の目的は、希土類元素および重金属を含まず、紫外線による蛍光量子収率の低下が少なく、蛍光量子収率を向上できる蛍光体組成物を提供することにある。また、本発明の別の目的は、簡便に所望の色度を示す蛍光体組成物を提供することにある。   Accordingly, an object of the present invention is to provide a phosphor composition that does not contain a rare earth element and a heavy metal, has a small decrease in fluorescence quantum yield due to ultraviolet rays, and can improve the fluorescence quantum yield. Another object of the present invention is to provide a phosphor composition that easily exhibits desired chromaticity.

本発明によれば、上記目的は、有機蛍光体と、B−C−N−O蛍光体とを含有する蛍光体組成物を提供することで達成できる。   According to the present invention, the above object can be achieved by providing a phosphor composition containing an organic phosphor and a B—C—N—O phosphor.

本発明の蛍光体組成物は、B−C−N−O蛍光体によって紫外線が吸収されるので、有機蛍光体の蛍光量子収率の低下が抑制できる。また、用いる有機蛍光体およびB−C−N−O蛍光体それぞれ単独の蛍光量子収率よりも高い蛍光量子収率を示す。さらに有機蛍光体とB−C−N−O蛍光体の種類と量を調節することで、簡便に所望の色度が得られる。   In the phosphor composition of the present invention, ultraviolet light is absorbed by the B—C—N—O phosphor, so that a decrease in the fluorescence quantum yield of the organic phosphor can be suppressed. In addition, the fluorescence quantum yield is higher than the fluorescence quantum yield of each of the organic phosphor and the B—C—N—O phosphor used. Furthermore, desired chromaticity can be easily obtained by adjusting the types and amounts of the organic phosphor and the B—C—N—O phosphor.

実施例1で用いたB−C−N−O蛍光体(1)の360nmの励起光による蛍光スペクトルである。2 is a fluorescence spectrum of the B—C—N—O phosphor (1) used in Example 1 by excitation light at 360 nm. 実施例1で用いたB−C−N−O蛍光体(1)の360nmの励起光による色度図である。FIG. 3 is a chromaticity diagram of excitation light at 360 nm of the B—C—N—O phosphor (1) used in Example 1. 実施例1で得られた蛍光体組成物(1)の360nmの励起光による蛍光スペクトルである。2 is a fluorescence spectrum of the phosphor composition (1) obtained in Example 1 by excitation light at 360 nm. 実施例1で得られた蛍光体組成物(1)の360nmの励起光による色度図である。FIG. 2 is a chromaticity diagram of the phosphor composition (1) obtained in Example 1 by excitation light at 360 nm. 実施例2で用いたB−C−N−O蛍光体(2)の360nmの励起光による蛍光スペクトルである。It is a fluorescence spectrum by the excitation light of 360 nm of the B—C—N—O phosphor (2) used in Example 2. 実施例2で用いたB−C−N−O蛍光体(2)の360nmの励起光による色度図である。6 is a chromaticity diagram of excitation light of 360 nm of the B—C—N—O phosphor (2) used in Example 2. FIG. 実施例2で得られた蛍光体組成物(2)の360nmの励起光による蛍光スペクトルである。3 is a fluorescence spectrum of the phosphor composition (2) obtained in Example 2 by excitation light at 360 nm. 実施例2で得られた蛍光体組成物(2)の360nmの励起光による色度図である。FIG. 3 is a chromaticity diagram of the phosphor composition (2) obtained in Example 2 by excitation light at 360 nm.

本発明の蛍光体組成物は250〜470nmの波長の光、特に360〜470nmの波長の光によって励起されて、450〜700nmの範囲に複数の発光ピークを示す。   The phosphor composition of the present invention is excited by light having a wavelength of 250 to 470 nm, particularly light having a wavelength of 360 to 470 nm, and exhibits a plurality of emission peaks in the range of 450 to 700 nm.

本発明の蛍光体組成物に含有されるB−C−N−O蛍光体は、特許文献1または2に記載の方法に従って調製することができ、蛍光体組成物の色度の調整を容易にする観点から、特許文献2にしたがって調製されたものが好ましい。   The B—C—N—O phosphor contained in the phosphor composition of the present invention can be prepared according to the method described in Patent Document 1 or 2, and the chromaticity of the phosphor composition can be easily adjusted. In view of the above, those prepared according to Patent Document 2 are preferable.

本発明で用いる有機蛍光体に特に制限はないが、アリールアミン誘導体;フェニルアントラセン誘導体などのアントラセン誘導体;ペンタセン誘導体;オキサジアゾール誘導体、オキサゾール誘導体、トリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾアザトリアゾール誘導体などのアゾール誘導体;オリゴチオフェン誘導体などのチオフェン誘導体;カルバゾール誘導体;シクロペンタジエン誘導体、テトラフェニルブタジエン誘導体などのジエン誘導体;ジスチリルベンゼン誘導体、ジスチリルピラジン誘導体、ジスチリルアリーレン誘導体;スチルベン誘導体;シロール誘導体;スピロ化合物;トリフェニルアミン誘導体;トリフマニルアミン誘導体;ピラゾロキノリン誘導体;ヒドラゾン誘導体;ピラゾール誘導体;ピラゾリン誘導体;ピリジン誘導体;ポルフィリン誘導体、フタロシアニン誘導体などのピロール誘導体;フルオレン誘導体、フェナントロリン誘導体、ピレン誘導体;フェナントレン誘導体;ペリノン誘導体;ペリレン誘導体;フェニレン化合物;ローダミン類;クマリン誘導体;ナフタルイミド誘導体;ベンゾオキサジノン誘導体;キナゾリノン誘導体;キノフタロン誘導体;ルブレン誘導体;キナクリドン誘導体を一種以上含む蛍光体(以下、上記した蛍光体を蛍光体群(A)と称する)が挙げられる。   The organic phosphor used in the present invention is not particularly limited, but arylamine derivatives; anthracene derivatives such as phenylanthracene derivatives; pentacene derivatives; oxadiazole derivatives, oxazole derivatives, triazole derivatives, benzoxazole derivatives, benzoazatriazole derivatives, etc. Thiophene derivatives such as oligothiophene derivatives; carbazole derivatives; diene derivatives such as cyclopentadiene derivatives and tetraphenylbutadiene derivatives; distyrylbenzene derivatives, distyrylpyrazine derivatives, distyrylarylene derivatives; stilbene derivatives; silole derivatives; spiro compounds Triphenylamine derivatives; trifumanylamine derivatives; pyrazoloquinoline derivatives; hydrazone derivatives; pyrazole derivatives; Derivatives; pyridine derivatives; pyrrole derivatives such as porphyrin derivatives and phthalocyanine derivatives; fluorene derivatives, phenanthroline derivatives, pyrene derivatives; phenanthrene derivatives; perylene derivatives; perylene derivatives; phenylene compounds; rhodamines; A quinazolinone derivative; a quinophthalone derivative; a rubrene derivative; a phosphor containing one or more quinacridone derivatives (hereinafter, the above phosphor is referred to as a phosphor group (A)).

これら蛍光体群(A)の具体例としては、ルモゲンFシリーズ(製造元:BASF)、7−ジエチルアミノ−4a,8a−ジヒドロ−クロメン−2−オン、7−ジエチルアミノ−4−トリフルオロメチル−クロメン−2−オン、7−ジエチルアミノ−3−フェニル−クロメン−2−オン、1,4−ビス−[2−(4−フルオロフェニル)−ビニル]−2,5−ビス−オクチルオキシ−ベンゼン、[4−[2−(4−フルオロフェニル)−ビニル]−フェニル]−ジフェニル−アミン、ジフェニル−(4−スチリルフェニル)−アミン、5−(tert−ブチル)−2−(2−(4−(2−(5−tert−ブチルベンゾキサゾール−2−イル)ビニル)フェニル)ビニル)ベンゾオキサゾール(テクノケミカル株式会社)、新規有機蛍光色素シリーズ(製造元:ハリマ化成株式会社)、シンロイヒカラーシリーズ(販売元:シンロイヒ株式会社)、TINOPAL OB、TINOPAL OB−one(販売元:チバ・ジャパン株式会社)等が挙げられる。これらの中でも、ルモゲンFシリーズ(製造元:BASF)は、紫外領域から可視領域の入り口にかけての広い励起帯を有し、蛍光量子収率が高く、励起光と放出光との重なりが少ないため特に好ましい。これらは単独で用いても、複数種を合わせて用いてもよい。   Specific examples of these phosphor groups (A) include Lumogen F series (manufacturer: BASF), 7-diethylamino-4a, 8a-dihydro-chromen-2-one, 7-diethylamino-4-trifluoromethyl-chromene- 2-one, 7-diethylamino-3-phenyl-chromen-2-one, 1,4-bis- [2- (4-fluorophenyl) -vinyl] -2,5-bis-octyloxy-benzene, [4 -[2- (4-Fluorophenyl) -vinyl] -phenyl] -diphenyl-amine, diphenyl- (4-styrylphenyl) -amine, 5- (tert-butyl) -2- (2- (4- (2 -(5-tert-butylbenzoxazol-2-yl) vinyl) phenyl) vinyl) benzoxazole (Technochemical Co., Ltd.), a novel organic fluorescent dye Leeds (manufacturer: Harima Chemicals, Inc.), Shin Loihi color series (Publisher: Shinroihi Co., Ltd.), TINOPAL OB, TINOPAL OB-one (Publisher: Ciba Japan Co., Ltd.) and the like. Among these, the Lumogen F series (manufacturer: BASF) is particularly preferable because it has a wide excitation band from the ultraviolet region to the entrance of the visible region, has a high fluorescence quantum yield, and has little overlap between excitation light and emission light. . These may be used alone or in combination.

有機蛍光体として、錯体型蛍光体を用いてもよい。ここで述べる錯体型蛍光体とは、配位結合や水素結合によって、一種以上の発光中心に、配位子が配位して形成された化合物を指す。かかる錯体型蛍光体が有する発光中心には、遷移金属元素、典型元素、非典型元素等が用いられる。かかる発光中心は、錯体型蛍光体1分子あたりに複数含まれてもよく、また複数種の発光中心を併せて用いてもよい。かかる錯体型蛍光体が有する配位子には、蛍光発光する配位子を用いてもよい。   A complex-type phosphor may be used as the organic phosphor. The complex-type phosphor described here refers to a compound formed by coordination of a ligand to one or more emission centers by coordination bond or hydrogen bond. A transition metal element, a typical element, an atypical element, or the like is used for the emission center of such a complex phosphor. A plurality of such emission centers may be included per molecule of the complex-type phosphor, and a plurality of types of emission centers may be used in combination. A ligand that emits fluorescence may be used as the ligand of the complex phosphor.

有機蛍光体として、高分子蛍光体を用いてもよい。高分子蛍光体としては、分子内の主鎖あるいは側鎖に、無機蛍光体もしくは上述の蛍光体群(A)または錯体型蛍光体を導入したものや、2量体、3量体やそれ以上に連なった重合体やデンドリマー等が用いられ、各々が任意に導入された共重合体でもよい。例えば、ポリパラフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリビニルカルバゾール誘導体、ポリフルオレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレノン誘導体、ポリキノキサリン誘導体、ポリチオフェン誘導体およびそれらの共重合体等が挙げられる。   As the organic phosphor, a polymer phosphor may be used. As the polymeric fluorescent substance, an inorganic fluorescent substance, a fluorescent substance group (A) or a complex fluorescent substance introduced into the main chain or side chain in the molecule, a dimer, a trimer or more. A polymer, a dendrimer, or the like connected to each other is used, and a copolymer in which each is arbitrarily introduced may be used. Examples include polyparaphenylene vinylene derivatives, polyparaphenylene derivatives, polyvinylcarbazole derivatives, polyfluorene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorenone derivatives, polyquinoxaline derivatives, polythiophene derivatives, and copolymers thereof.

本発明において、金属、特に希土類金属を含まないという観点から、蛍光体群(A)または高分子蛍光体から選択することが好ましく、操作性、経済性から蛍光体群(A)から選択することがより好ましい。   In the present invention, it is preferable to select from the phosphor group (A) or the polymer phosphor from the viewpoint of not containing metals, particularly rare earth metals, and from the phosphor group (A) in view of operability and economy. Is more preferable.

有機蛍光体とB−C−N−O蛍光体とを含有する本発明の蛍光体組成物の製造方法に特に制限はなく、粉体状の蛍光体同士を混合する方法、有機蛍光体を溶媒に溶解して無機蛍光体と混合したのち、溶媒を除去する方法が挙げられる。蛍光体組成物の均一性の観点から、有機蛍光体を溶媒に溶解して無機蛍光体と混合したのち、溶媒を除去する方法を用いることが好ましい。また、これらの工程の後、同一溶媒による洗浄などの操作で、余分な有機蛍光体を除去し、さらに乾燥することが好ましい。   There is no particular limitation on the method for producing the phosphor composition of the present invention containing the organic phosphor and the B—C—N—O phosphor, a method of mixing powdery phosphors, and the organic phosphor as a solvent There is a method in which the solvent is removed after being dissolved in and mixed with the inorganic phosphor. From the viewpoint of the uniformity of the phosphor composition, it is preferable to use a method in which the organic phosphor is dissolved in a solvent and mixed with the inorganic phosphor, and then the solvent is removed. In addition, after these steps, it is preferable to remove excess organic phosphor by an operation such as washing with the same solvent, and further dry.

有機蛍光体を溶解するために用いる溶媒としては、B−C−N−O蛍光体を分解しないものであればよく、メタノール、エタノール、プロパノール、イソプロパノールなどのアルコール;アセトン、メチルエチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、テトラヒドロピランなどのエーテル;N,N−ジメチルホルムアミド、N−メチルピロリドンなどのアミド;ヘキサン、シクロヘキサン、ヘプタン、オクタンなどの飽和脂肪族炭化水素;トルエン、キシレン、メシチレンなどの芳香族炭化水素;を使用でき、除去の容易さ、経済性、操作性などの観点から、トルエン、アセトンが好ましい。これらは単独または複数種を併せて用いることができる。   The solvent used for dissolving the organic phosphor is not particularly limited as long as it does not decompose the B—C—N—O phosphor; alcohols such as methanol, ethanol, propanol, and isopropanol; acetone, methyl ethyl ketone, diethyl ketone, cyclohexane Ketones such as pentanone and cyclohexanone; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and tetrahydropyran; amides such as N, N-dimethylformamide and N-methylpyrrolidone; hexane And saturated aliphatic hydrocarbons such as cyclohexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, and mesitylene; from the viewpoint of ease of removal, economy, and operability, It is preferred. These can be used alone or in combination.

上記溶媒に対する有機蛍光体の量は、特に制限はないが、0.01〜5質量%の範囲が好ましく、0.1〜1質量%の範囲がより好ましい。   Although there is no restriction | limiting in particular in the quantity of the organic fluorescent substance with respect to the said solvent, The range of 0.01-5 mass% is preferable, and the range of 0.1-1 mass% is more preferable.

本発明の蛍光体組成物における有機蛍光体の含有量は、目的の発光波長に応じて設定されるが、通常蛍光体組成物に対して、0.01〜5質量%の範囲が好ましく、0.1〜2質量%の範囲がより好ましい。有機蛍光体が多すぎるとB−C−N−O蛍光体が十分励起されず、蛍光量子収率が低下する傾向がある。   The content of the organic phosphor in the phosphor composition of the present invention is set according to the target emission wavelength, but is usually in the range of 0.01 to 5% by mass with respect to the phosphor composition. The range of .1 to 2% by mass is more preferable. If the organic phosphor is too much, the B—C—N—O phosphor is not sufficiently excited, and the fluorescence quantum yield tends to decrease.

以下に実施例により、本発明を詳細に説明するが、本発明はこれらの実施例に限定されない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

<実施例1>
ホウ酸(HBO、和光純薬工業(株)製、試薬特級)5.1g(0.084モル)、メラミン(和光純薬工業(株)製、試薬特級)4.4g(0.035モル)をエタノール80mLと水110mLの混合溶媒に添加し、100℃まで加熱して溶解させた後、20℃まで冷却して8.4gのホウ酸メラミン(C・2HBO(ホウ素と窒素のモル比=1:3))を析出させた。その後、ホウ酸メラミンをろ取し乾燥させた。得られたホウ酸メラミン5gをアルミナ製のるつぼにとり、加熱炉に入れ、大気気流下でるつぼを10℃/分の昇温速度で650℃まで上昇させた。引き続き、窒素雰囲気に切り替えて650℃に保ちながら30分間焼成した後、10℃/分の降温速度で室温まで冷却し、B−C−N−O蛍光体(1)1.2gを得た。図1に、B−C−N−O蛍光体(1)の360nmの励起光による蛍光スペクトルを、図2に色度図を示した。
<Example 1>
Boric acid (H 3 BO 3 , Wako Pure Chemical Industries, Ltd., reagent special grade) 5.1 g (0.084 mol), melamine (Wako Pure Chemical Industries, Ltd., reagent special grade) 4.4 g (0. 035 mol) was added to a mixed solvent of ethanol 80mL and water 110 mL, was dissolved by heating to 100 ° C., cooled to 20 ° C. 8.4 g of boric acid melamine (C 3 H 6 N 6 · 2H 3 BO 3 (molar ratio of boron and nitrogen = 1: 3)) was precipitated. Thereafter, melamine borate was collected by filtration and dried. 5 g of the obtained melamine borate was put in an alumina crucible, placed in a heating furnace, and the crucible was raised to 650 ° C. at a temperature rising rate of 10 ° C./min under an air flow. Subsequently, after switching to a nitrogen atmosphere and baking at 650 ° C. for 30 minutes, the mixture was cooled to room temperature at a temperature decrease rate of 10 ° C./min to obtain 1.2 g of B—C—N—O phosphor (1). FIG. 1 shows a fluorescence spectrum of the B—C—N—O phosphor (1) by excitation light at 360 nm, and FIG. 2 shows a chromaticity diagram.

エタノール10gに、有機蛍光体であるペリレンジカルボキシイミド蛍光体(ルモゲンYellow、BASF製)0.053gを溶解させ、次いで、B−C−N−O蛍光体(1)1.002gを添加して、23℃で30分間攪拌した。その後、固形分をろ取し、エタノール30gで洗浄した。得られた固形分を真空乾燥幾にて、1.3kPa、30℃で8時間乾燥し、本発明の蛍光体組成物(1)1.014gを得た。元素分析の結果から、蛍光体組成物(1)中の有機蛍光体の含有量は0.012g(1.18質量%)であった。
得られた蛍光体組成物(1)の360nmの励起光による蛍光スペクトルを図3、色度図を図4に示した。また蛍光体組成物(1)を波長360nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
In 10 g of ethanol, 0.053 g of perylene dicarboxyimide phosphor (Lumogen Yellow, manufactured by BASF) which is an organic phosphor was dissolved, and then 1.002 g of B—C—N—O phosphor (1) was added. , And stirred at 23 ° C. for 30 minutes. Thereafter, the solid content was collected by filtration and washed with 30 g of ethanol. The obtained solid content was dried in a vacuum at 1.3 kPa and 30 ° C. for 8 hours to obtain 1.014 g of the phosphor composition (1) of the present invention. As a result of elemental analysis, the content of the organic phosphor in the phosphor composition (1) was 0.012 g (1.18% by mass).
The fluorescence spectrum of the obtained phosphor composition (1) by excitation light at 360 nm is shown in FIG. 3, and the chromaticity diagram is shown in FIG. Table 1 shows the fluorescence quantum yield when the phosphor composition (1) was excited with light having a wavelength of 360 nm immediately after excitation and when excited continuously for 100 hours.

<比較例1−1>
有機蛍光体であるルモゲンYellowを波長360nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
<Comparative Example 1-1>
Table 1 shows the fluorescence quantum yield when the organic phosphor, Lummogen Yellow, was excited with light having a wavelength of 360 nm immediately after excitation and when excited continuously for 100 hours.

<比較例1−2>
無機蛍光体であるB−C−N−O蛍光体(1)を波長360nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
<Comparative Example 1-2>
Table 1 shows the fluorescence quantum yield when the B—C—N—O phosphor (1), which is an inorganic phosphor, was excited with light having a wavelength of 360 nm immediately after excitation and continuously for 100 hours.

<実施例2>
実施例1と同様の操作で得られたホウ酸メラミン5gにポリエチレングリコール(和光純薬工業(株)製、試薬特級、分子量4,000)1.5gをアルミナ製のるつぼにとり、加熱炉に入れ、大気気流下でるつぼを10℃/分の昇温速度で650℃まで上昇させた。引き続き、窒素雰囲気に切り替えて650℃に保ちながら30分間焼成した後、10℃/分の降温速度で室温まで冷却し、B−C−N−O蛍光体(2)1.1gを得た。図5に、B−C−N−O蛍光体(2)の460nmの励起光による蛍光スペクトルを、図6に色度図を示した。
<Example 2>
1.5 g of polyethylene glycol (made by Wako Pure Chemical Industries, Ltd., reagent grade, molecular weight 4,000) is placed in 5 g of melamine borate obtained in the same manner as in Example 1 and placed in a heating furnace. The crucible was raised to 650 ° C. at a heating rate of 10 ° C./min under an air stream. Subsequently, after switching to a nitrogen atmosphere and baking for 30 minutes while maintaining the temperature at 650 ° C., the mixture was cooled to room temperature at a temperature decrease rate of 10 ° C./min to obtain 1.1 g of B—C—N—O phosphor (2). FIG. 5 shows a fluorescence spectrum of the B—C—N—O phosphor (2) by excitation light of 460 nm, and FIG. 6 shows a chromaticity diagram.

エタノール10gに、ペリレンジカルボキシイミド蛍光体(ルモゲンRed、BASF製)0.051gを溶解させ、次いで、B−C−N−O蛍光体(2)1.007gを添加して、23℃で30分間攪拌した。固形分をろ過し、エタノール30gで洗浄した。得られた固形分を真空乾燥幾にて、1.3kPa、30℃で8時間乾燥し、本発明の蛍光体組成物(2)1.016gを得た。元素分析の結果から、蛍光体組成物(2)中の有機蛍光体の含有量は0.009g(0.89質量%)であった。
得られた蛍光体組成物(2)の460nmの励起光による蛍光スペクトルを図7、色度図を図8に示した。また、蛍光体組成物(2)を波長460nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
In 10 g of ethanol, 0.051 g of perylene dicarboxyimide phosphor (Lumogen Red, manufactured by BASF) was dissolved, then 1.007 g of B—C—N—O phosphor (2) was added, and the mixture was added at 30 ° C. for 30 hours. Stir for minutes. The solid content was filtered and washed with 30 g of ethanol. The obtained solid content was dried in vacuum at 1.3 kPa and 30 ° C. for 8 hours to obtain 1.016 g of the phosphor composition (2) of the present invention. As a result of elemental analysis, the content of the organic phosphor in the phosphor composition (2) was 0.009 g (0.89 mass%).
FIG. 7 shows a fluorescence spectrum of the obtained phosphor composition (2) by excitation light at 460 nm, and FIG. 8 shows a chromaticity diagram. Further, Table 1 shows the fluorescence quantum yield when the phosphor composition (2) was excited with light having a wavelength of 460 nm and immediately after excitation for 100 hours.

<比較例2−1>
有機蛍光体であるルモゲンRedを波長460nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
<Comparative Example 2-1>
Table 1 shows the fluorescence quantum yield immediately after excitation when the organic phosphor, lumogen Red, was excited with light having a wavelength of 460 nm and when excited continuously for 100 hours.

<比較例2−2>
無機蛍光体であるB−C−N−O蛍光体(2)を波長460nmの光で励起した場合の励起直後および100時間連続して励起したときの蛍光量子収率を表1に示した。
<Comparative Example 2-2>
Table 1 shows the fluorescence quantum yields when the B—C—N—O phosphor (2), which is an inorganic phosphor, was excited with light having a wavelength of 460 nm immediately after excitation and when excited continuously for 100 hours.

Figure 2013072053
Figure 2013072053

表1より、本発明の蛍光体組成物は、用いた原料であるB−C−N−O蛍光体や有機蛍光体と比較して蛍光量子収率が向上している。また、有機蛍光体の紫外線による経時劣化が抑制されたことがわかる。また、図2および図4並びに図5および図7の比較により、本発明の蛍光体組成物が、用いた原料であるB−C−N−O蛍光体と異なる色度を示すことがわかり、B−C−N−O蛍光体および有機蛍光体の種類や量によって所望の色度に調整できる。   From Table 1, the fluorescent quantum yield of the phosphor composition of the present invention is improved as compared with the B—C—N—O phosphor and the organic phosphor which are the raw materials used. Moreover, it turns out that the deterioration with time of the organic phosphor due to ultraviolet rays was suppressed. Moreover, by comparing FIG. 2 and FIG. 4 and FIG. 5 and FIG. 7, it can be seen that the phosphor composition of the present invention exhibits a chromaticity different from that of the B—C—N—O phosphor used as a raw material. The desired chromaticity can be adjusted according to the type and amount of the B—C—N—O phosphor and the organic phosphor.

Claims (1)

有機蛍光体と、B−C−N−O蛍光体とを含有する蛍光体組成物。   A phosphor composition containing an organic phosphor and a B—C—N—O phosphor.
JP2011213828A 2011-09-29 2011-09-29 Phosphor composition Withdrawn JP2013072053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213828A JP2013072053A (en) 2011-09-29 2011-09-29 Phosphor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213828A JP2013072053A (en) 2011-09-29 2011-09-29 Phosphor composition

Publications (1)

Publication Number Publication Date
JP2013072053A true JP2013072053A (en) 2013-04-22

Family

ID=48476815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213828A Withdrawn JP2013072053A (en) 2011-09-29 2011-09-29 Phosphor composition

Country Status (1)

Country Link
JP (1) JP2013072053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333687A (en) * 2013-07-22 2013-10-02 中国人民解放军国防科学技术大学 Inorganic photoluminescent material and preparation method thereof
JP2015063627A (en) * 2013-09-25 2015-04-09 株式会社クラレ Method for producing b-c-n-o fluophor
CN104531146A (en) * 2014-12-02 2015-04-22 河北工业大学 Preparation method of orange-red light emission adjustable BCNO fluorescent powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333687A (en) * 2013-07-22 2013-10-02 中国人民解放军国防科学技术大学 Inorganic photoluminescent material and preparation method thereof
CN103333687B (en) * 2013-07-22 2015-04-08 中国人民解放军国防科学技术大学 Inorganic photoluminescent material and preparation method thereof
JP2015063627A (en) * 2013-09-25 2015-04-09 株式会社クラレ Method for producing b-c-n-o fluophor
CN104531146A (en) * 2014-12-02 2015-04-22 河北工业大学 Preparation method of orange-red light emission adjustable BCNO fluorescent powder

Similar Documents

Publication Publication Date Title
Zhan et al. Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect
Chen et al. Isomeric thermally activated delayed fluorescence emitters for color purity-improved emission in organic light-emitting devices
Farinola et al. Electroluminescent materials for white organic light emitting diodes
Yao et al. Hydroxyphenyl-benzothiazole based full color organic emitting materials generated by facile molecular modification
WO2020162600A1 (en) Polycyclic aromatic compound
CN110444693A (en) Organic electroluminescence device
CN110612304A (en) Polycyclic aromatic compound
TWI700334B (en) Color conversion composition, color conversion film, and light-emitting device, liquid crystal display device and lighting device containing the same
CN110452226B (en) Organic blue light fluorescent material based on pyrrole derivatives and blue light device
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
JPWO2014129330A1 (en) ORGANIC EL ELEMENT AND LIGHTING EQUIPMENT AND DISPLAY DEVICE USING THE SAME
CN108137604B (en) Azole derivatives and their use in organic electronic devices
Ban et al. Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs—Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters
Zhao et al. Highly efficient green and red OLEDs based on a new exciplex system with simple structures
Konidena et al. Two-channel emission controlled by a conjugation valve for the color switching of thermally activated delayed fluorescence emission
Bhagat et al. Novel Na+ doped Alq3 hybrid materials for organic light‐emitting diode (OLED) devices and flat panel displays
Sk et al. A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity
EP3401317B1 (en) Sulfone-containing fused heterocyclic compounds and applications thereof
US20190330152A1 (en) Fused ring compound, high polymer, mixture, composition, and organic electronic component
Yun et al. More than 25,000 h device lifetime in blue phosphorescent organic light-emitting diodes via fast triplet up-conversion of n-type hosts with sub μs triplet exciton lifetime
JP2013072053A (en) Phosphor composition
JP6580392B2 (en) Compound, mixture, light emitting layer, organic light emitting device and assist dopant
CN110776503A (en) Organic electroluminescent material based on halogenated aromatic ketone derivatives, and preparation method and application thereof
Jeong et al. Dual role of a pyrene derivative as a hole transport material and an emitter in blue fluorescent organic light-emitting diodes
KR101327301B1 (en) Amine derivative as hole transporting material and organic electroluminescent device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202