JP2013070572A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2013070572A
JP2013070572A JP2011208951A JP2011208951A JP2013070572A JP 2013070572 A JP2013070572 A JP 2013070572A JP 2011208951 A JP2011208951 A JP 2011208951A JP 2011208951 A JP2011208951 A JP 2011208951A JP 2013070572 A JP2013070572 A JP 2013070572A
Authority
JP
Japan
Prior art keywords
rotor
axial direction
electrical machine
rotating electrical
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011208951A
Other languages
Japanese (ja)
Inventor
Takaaki Fujikawa
貴陽 藤川
Masaya Ishikawa
将也 石川
Hidenobu Tsuchimoto
英伸 槌本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2011208951A priority Critical patent/JP2013070572A/en
Priority to CN201210362697.8A priority patent/CN103023181B/en
Publication of JP2013070572A publication Critical patent/JP2013070572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary electric machine that provides effective cooling for a stator core and the like thereof.SOLUTION: A rotary electric machine includes a rotor 20, a stator core 30, and a stator frame 40 that surrounds the stator core 30. The rotor 20 has: an annular member 21a that is annularly-shaped and rotatable; a plurality of mounts 22 that are fixed to an outer circumferential surface of the annular member 21a; permanent magnets 23 that are fixed to the respective mounts 22; and ventilation passage boards that have surfaces facing outer circumferential sides of circumferential gaps, that cover the circumferential gaps from a radially outer side, while straddling between circumferentially adjacent pairs of the mounts 22, so as to form rotor ventilation passages 70 penetrating through axial direction, and that have ventilation through-holes 71 formed on downstream sides thereof.

Description

本発明は、永久磁石が取り付けられた回転子を有する回転電機に関する。   The present invention relates to a rotating electrical machine having a rotor to which a permanent magnet is attached.

回転電機は、回転子と、この回転子を半径方向外側から取り囲む固定子鉄心と、この固定子鉄心を収容する固定子枠と、を有する。   The rotating electrical machine includes a rotor, a stator core that surrounds the rotor from the outside in the radial direction, and a stator frame that accommodates the stator core.

回転子は、所定の軸(回転中心軸)の周りを回転する。回転子には、例えば永久磁石が取り付けられたものがある。このような回転子は、円環状の部材の外周に台座が固定されて、この台座に永久磁石が固定されるものがある。回転子や固定子には、これらを冷却するための通風路が形成されるものがある(例えば特許文献1)。   The rotor rotates around a predetermined axis (rotation center axis). Some rotors have permanent magnets attached, for example. Some of such rotors have a base fixed to the outer periphery of an annular member, and a permanent magnet fixed to the base. Some rotors and stators are formed with ventilation paths for cooling them (for example, Patent Document 1).

固定子は、固定子鉄心および固定子巻線等を有する。固定子鉄心には、固定子鉄心を冷却するための通風路が形成されるものがある。この通風路に冷却用の空気が流れることによって、固定子鉄心が冷却される。この通風路には、回転中心軸が延びる方向の一方向に空気が流れる。   The stator has a stator core and a stator winding. Some of the stator cores are provided with ventilation paths for cooling the stator core. The cooling iron flows through this ventilation path, whereby the stator core is cooled. In this ventilation path, air flows in one direction in which the rotation center axis extends.

特開2011−142735号公報JP 2011-142735 A

通風路には、軸方向に流れる軸方向流路と半径方向に流れる半径方向流路がある。軸方向流路は、固定子鉄心に形成されるものの他に、回転子と固定子鉄心との間に形成される空隙も含まれる。   The ventilation path includes an axial flow path that flows in the axial direction and a radial flow path that flows in the radial direction. The axial flow path includes a gap formed between the rotor and the stator core in addition to the one formed in the stator core.

この空隙を流れる空気は、軸方向に流れるものと、半径方向に流れるものとがある。空隙の流路断面積に比べて、半径方向流路の流路断面積が大きいため、軸方向の上流側では、半径方向流路に流れる空気が多くなる。   The air flowing through the gap includes an air flowing in the axial direction and an air flowing in the radial direction. Since the flow path cross-sectional area of the radial flow path is larger than the flow path cross-sectional area of the gap, more air flows in the radial flow path on the upstream side in the axial direction.

このため、軸方向流路の軸方向位置ごとに空気流量が異なってしまうことがある。流路分布が異なると、有効に冷却が行われる部位と、非効率な部位とに分かれてしまう。   For this reason, the air flow rate may be different for each axial position of the axial flow path. If the flow path distribution is different, it is divided into a part where cooling is effectively performed and a part where it is inefficient.

本発明は上述した課題を解決するためになされたものであり、その目的は、固定子鉄心等を効率よく冷却することである。   The present invention has been made to solve the above-described problems, and an object thereof is to efficiently cool a stator core and the like.

上記目的を達成するための本発明に係る回転電機は、所定の軸周りを回転自在な回転子と、前記回転子を半径方向外側から取り囲む固定子鉄心と、前記固定子鉄心を半径方向外側から取り囲むように構成された固定子枠と、を有する回転電機において、前記回転子は、前記軸を半径方向外側から取り囲むように配置された円環状で、前記軸の周りを同軸に回転可能な円環部材と、それぞれが軸方向に延びて、互いに周方向間隙を形成するように前記円環部材の半径方向外側の外周面に固定された複数の台座と、前記各台座の半径方向外側にそれぞれ固定された複数の永久磁石と、前記半径方向間隙の前記外周面に対向する板面が形成された板材で、周方向に隣り合う前記台座を跨ぎながら前記周方向間隙を半径方向外側から覆い軸方向に貫通する通風路を形成し、前記板面に少なくとも一つの貫通穴が形成された通風路用板材と、を有し、前記板面の表面積に対する前記貫通穴の開口面積が、前記通風路に流れる空気の上流側に比べて下流側が大きくなるように形成されていること、を特徴とする。   In order to achieve the above object, a rotating electrical machine according to the present invention includes a rotor that can rotate around a predetermined axis, a stator core that surrounds the rotor from the outside in the radial direction, and the stator core from the outside in the radial direction. A rotating electrical machine having a stator frame configured to surround the rotor, wherein the rotor is an annular shape disposed so as to surround the shaft from the outside in the radial direction, and is a circle that can rotate coaxially around the shaft. An annular member, a plurality of pedestals each extending in the axial direction and fixed to the outer circumferential surface on the radially outer side of the annular member so as to form a circumferential gap with each other, and radially outward of each of the pedestals, respectively A plate member formed with a plurality of fixed permanent magnets and a plate surface opposite to the outer peripheral surface of the radial gap, and covers the circumferential gap from the outside in the radial direction while straddling the pedestal adjacent in the circumferential direction. Pierce in the direction A ventilation passage plate material having at least one through hole formed in the plate surface, and an air flow of the through hole with respect to the surface area of the plate surface through the ventilation passage. It is characterized by being formed so that the downstream side is larger than the upstream side.

本発明によれば、固定子鉄心等を効率よく冷却することが可能になる。   According to the present invention, it is possible to efficiently cool the stator core and the like.

本発明に係る第1の実施形態の回転電機の概略部分正断面図で、回転中心よりも上側半分を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic partial cross-sectional view of a rotating electrical machine according to a first embodiment of the present invention, showing an upper half of the center of rotation. 図1のII−II矢視を部分的に示した側面図である。It is the side view which showed the II-II arrow view of FIG. 1 partially. 図2のIII部の拡大側面図である。FIG. 3 is an enlarged side view of a part III in FIG. 2. 図1のIV−IV矢視を部分的に示した上面図である。It is the top view which showed the IV-IV arrow of FIG. 1 partially. 図1のV−V矢視を部分的に示した側面図である。It is the side view which showed partially the VV arrow of FIG. 本発明に係る第2の実施形態の回転電機の回転子を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。It is the general | schematic fragmentary top view which showed partially the rotor of the rotary electric machine of 2nd Embodiment which concerns on this invention, Comprising: It is a figure corresponding to FIG. 4 of 1st Embodiment. 本発明に係る第3の実施形態の回転電機の回転子を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。It is the general | schematic fragmentary top view which showed partially the rotor of the rotary electric machine of 3rd Embodiment which concerns on this invention, Comprising: It is a figure corresponding to FIG. 4 of 1st Embodiment. 本発明に係る第4の実施形態の回転電機の回転子を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。It is the general | schematic fragmentary top view which showed partially the rotor of the rotary electric machine of 4th Embodiment which concerns on this invention, Comprising: It is a figure corresponding to FIG. 4 of 1st Embodiment.

以下、本発明に係る回転電機の実施形態について図面を参照して説明する。   Embodiments of a rotating electrical machine according to the present invention will be described below with reference to the drawings.

[第1の実施形態]
第1の実施形態について、図1〜図5を用いて説明する。図1は、本実施形態の回転電機の概略部分正断面図で、回転中心よりも上側半分を示す。図2は、図1のII−II矢視を部分的に示した側面図である。図3は、図2のIII部の拡大側面図である。
[First Embodiment]
A first embodiment will be described with reference to FIGS. FIG. 1 is a schematic partial cross-sectional view of the rotating electrical machine of the present embodiment, showing the upper half of the center of rotation. FIG. 2 is a side view partially showing an II-II arrow view of FIG. FIG. 3 is an enlarged side view of a portion III in FIG.

図4は、図1のIV−IV矢視を部分的に示した上面図である。図5は、図1のV−V矢視を部分的に示した側面図である。   4 is a top view partially showing the IV-IV arrow of FIG. FIG. 5 is a side view partially showing the VV arrow view of FIG. 1.

先ず、本実施形態の回転電機の構成について説明する。   First, the configuration of the rotating electrical machine of the present embodiment will be described.

回転電機は、回転中心軸1の周りを回転する回転子20と、この回転子20が取り付けられた軸部材10と、固定子鉄心30と、これらを収容する固定子枠40と、を有する(図1)。   The rotating electrical machine includes a rotor 20 that rotates around the rotation center shaft 1, a shaft member 10 to which the rotor 20 is attached, a stator core 30, and a stator frame 40 that accommodates these members ( FIG. 1).

軸部材10は、図示しない軸受で回転可能に支持されて、回転中心軸1の周りを同軸で回転する。   The shaft member 10 is rotatably supported by a bearing (not shown) and rotates coaxially around the rotation center shaft 1.

回転子20は、全体で円環状をなし、軸部材10を取り囲む。固定子鉄心30は、回転子20の半径方向外側に所定の半径方向間隔(空隙61a)をあけて半径方向外側から取り囲む円環状である。   The rotor 20 has an annular shape as a whole and surrounds the shaft member 10. The stator core 30 has an annular shape that surrounds the outer side of the rotor 20 from the outer side in the radial direction with a predetermined radial interval (gap 61a).

回転子20および固定子鉄心30それぞれの構成等を以下に説明する。先ず、回転子20について説明する。   The configurations of the rotor 20 and the stator core 30 will be described below. First, the rotor 20 will be described.

回転子20は、円環部材21aと、複数の支持部材21bと、複数の台座22と、複数の永久磁石23と、複数の通風路用板材28と、を有する。   The rotor 20 includes an annular member 21a, a plurality of support members 21b, a plurality of pedestals 22, a plurality of permanent magnets 23, and a plurality of ventilation path plates 28.

支持部材21bは、軸部材10の四箇所の軸方向位置それぞれに複数本ずつ固定されて、軸部材10と共に回転可能である。各軸方向位置に固定される支持部材21bは、それぞれの軸方向位置から放射状に円環部材21aの内周面まで延びて、円環部材21aを支持する。   A plurality of support members 21 b are fixed to each of the four axial positions of the shaft member 10, and can be rotated together with the shaft member 10. The support members 21b fixed at the respective axial positions extend radially from the respective axial positions to the inner peripheral surface of the annular member 21a to support the annular member 21a.

円環部材21aは、支持部材21bに支持されて回転自在で、軸部材10を半径方向外側から取り囲む円環状の部材である。   The annular member 21a is an annular member that is supported by the support member 21b and is rotatable, and surrounds the shaft member 10 from the outside in the radial direction.

台座22は、円環部材21aの外周面に周方向(図2、図3の左右方向)に複数配列されている。これらの台座22は、互いに周方向間隙を形成するように配列される。これらの周方向間隙は、後述する回転子通風路70を形成する(図2、図3)。   A plurality of pedestals 22 are arranged in the circumferential direction (left and right direction in FIGS. 2 and 3) on the outer peripheral surface of the annular member 21a. These pedestals 22 are arranged so as to form a circumferential gap therebetween. These circumferential gaps form a rotor ventilation path 70 described later (FIGS. 2 and 3).

各台座22は、軸方向に長い長方形が形成される板状の部材で、半径方向外側に座面22aが形成されている。永久磁石23は、各座面22aに接着により取り付けられている。   Each pedestal 22 is a plate-like member in which a long rectangle is formed in the axial direction, and a seat surface 22a is formed on the outer side in the radial direction. The permanent magnet 23 is attached to each seating surface 22a by adhesion.

各台座22の周方向に面する部位には、軸方向に延びる固定溝22bが形成されている。この固定溝22bには、通風路用板部材が嵌め込まれる。   A fixing groove 22b extending in the axial direction is formed at a portion of each base 22 facing in the circumferential direction. An air passage plate member is fitted into the fixing groove 22b.

通風路用板材28は、略長方形状の板材で、長辺側が固定溝22bに嵌め込まれる。このとき、通風路用板材28の各長辺側は、周方向に隣り合う台座を連結するように、周方向間隙を半径方向外側から覆う。すなわち、通風路用板材28の長方形状の板面が、周方向間隙の外周面に対向するように配置される。   The ventilation path plate 28 is a substantially rectangular plate, and the long side is fitted in the fixed groove 22b. At this time, each long side of the ventilation path plate member 28 covers the circumferential gap from the outside in the radial direction so as to connect the pedestals adjacent in the circumferential direction. That is, the rectangular plate surface of the ventilation path plate member 28 is disposed so as to face the outer peripheral surface of the circumferential gap.

これにより、周方向間隙は、円環部材21aの外周面、隣り合う台座22および通風路用板材28によって、取り囲まれる。これらに取り囲まれた周方向間隙は、軸方向に空気が流通可能な回転子通風路70を形成する。   As a result, the circumferential gap is surrounded by the outer peripheral surface of the annular member 21a, the adjacent pedestal 22 and the plate member 28 for the air passage. The circumferential gap surrounded by these forms a rotor ventilation path 70 through which air can flow in the axial direction.

通風路用板材28には、下流側(図1および図4の左側)寄りに、軸方向に長い略長方形状の通風用貫通穴71が形成されている。この通風用貫通穴71によって、回転子通風路70を流れる空気が、空隙61aに流れ出ることができる。   The ventilation path plate member 28 is formed with a substantially rectangular ventilation through hole 71 which is long in the axial direction on the downstream side (left side in FIGS. 1 and 4). By this through hole 71 for ventilation, the air flowing through the rotor ventilation path 70 can flow out to the gap 61a.

次に、固定子鉄心30について説明する。   Next, the stator core 30 will be described.

固定子鉄心30は、上述したように、回転子20を半径方向外側から取り囲むように構成されて、全体で円環状の部材である。固定子鉄心30の内周面は、回転子20の外周面(半径方向外側)と所定の半径方向間隔(空隙61a)をあけるように配置される。この空隙61aは、後述する軸方向通風路61の一つである。この固定子鉄心30は、6個の鋼板群31と、5個のダクト板38と、を有する。   As described above, the stator core 30 is configured to surround the rotor 20 from the outside in the radial direction, and is a ring-shaped member as a whole. The inner peripheral surface of the stator core 30 is arranged so as to leave a predetermined radial interval (gap 61a) from the outer peripheral surface (radially outer side) of the rotor 20. The gap 61a is one of axial ventilation paths 61 described later. The stator core 30 includes six steel plate groups 31 and five duct plates 38.

鋼板群31は、詳細な図示は省略するが、複数の鋼板33が軸方向に積層されてなる。鋼板33は中央に穴が形成された円板状である。回転子20はこの穴を貫通するように配置される。また、各鋼板33の半径方向内側に内側溝34が形成され、外側には外側溝35が形成されている(図5)。   Although not shown in detail in the steel plate group 31, a plurality of steel plates 33 are laminated in the axial direction. The steel plate 33 has a disk shape with a hole formed in the center. The rotor 20 is disposed so as to pass through this hole. Moreover, the inner side groove | channel 34 is formed in the radial inside of each steel plate 33, and the outer side groove | channel 35 is formed in the outer side (FIG. 5).

内側溝34は、周方向に互いに等間隔に複数形成される。各鋼板33に形成された内側溝34は、鋼板33が積層されて鋼板群31を構成するときに、軸方向に連通する。さらに、各鋼板群31が軸方向に配列されたときに、各内周溝は軸方向に連通する。連通した内側溝34には、固定子巻線37が巻き回される。   A plurality of inner grooves 34 are formed at equal intervals in the circumferential direction. The inner groove 34 formed in each steel plate 33 communicates in the axial direction when the steel plates 33 are laminated to form the steel plate group 31. Furthermore, when each steel plate group 31 is arranged in the axial direction, each inner circumferential groove communicates in the axial direction. A stator winding 37 is wound around the inner groove 34 communicated.

外側溝35は、周方向に互いに等間隔に複数形成される。各鋼板33に形成された外側溝35は、鋼板33が積層されて鋼板群31を構成するときに、軸方向に連通する。さらに、各鋼板群31が軸方向に配列されたときに、各外周溝は軸方向に連通する。連通した外側溝35は、冷却空気の流路(軸方向通風路61)を形成する。   A plurality of outer grooves 35 are formed at equal intervals in the circumferential direction. The outer groove 35 formed in each steel plate 33 communicates in the axial direction when the steel plates 33 are laminated to form the steel plate group 31. Furthermore, when each steel plate group 31 is arranged in the axial direction, each outer peripheral groove communicates in the axial direction. The communicated outer groove 35 forms a cooling air flow path (axial ventilation path 61).

この外側溝35は、固定子枠40の内側で半径方向外側の開口が塞がれる。固定子枠40の構成は後で説明する。   The outer groove 35 is closed at the radially outer opening inside the stator frame 40. The configuration of the stator frame 40 will be described later.

ダクト板38は、軸方向に配列された鋼板群31の間にそれぞれ配置される。すなわち、鋼板群31およびダクト板38が、軸方向に交互に配列されている。これらダクト板38は、詳細な図示は省略するが、それぞれ中央に穴があいた円板状の板で、少なくとも一方の穴あき円板面に複数の棒材が取り付けられている。これらの棒材は、放射状に取り付けられている。各棒材の間は、冷却空気に流路(半径方向通風路62)を形成する。   The duct plates 38 are respectively disposed between the steel plate groups 31 arranged in the axial direction. That is, the steel plate groups 31 and the duct plates 38 are alternately arranged in the axial direction. Although not shown in detail, the duct plates 38 are disk-shaped plates each having a hole in the center, and a plurality of bar members are attached to at least one holed disk surface. These bars are attached radially. Between each bar, a flow path (radial air passage 62) is formed in the cooling air.

固定子枠40は、固定子鉄心30を半径方向外側から取り囲むように構成される。固定子枠40の内周は、固定子鉄心30の外周に接している。固定子枠40の内面により、上述の軸方向通風路61の半径方向外側の開口が塞がれる。   The stator frame 40 is configured to surround the stator core 30 from the outside in the radial direction. The inner periphery of the stator frame 40 is in contact with the outer periphery of the stator core 30. The opening on the radially outer side of the axial ventilation passage 61 is closed by the inner surface of the stator frame 40.

固定子枠40の外周面には、軸方向に長いフィン(図示せず)が複数取り付けられている。これらのフィンは、周方向に互いに間隔をあけて取り付けられている。   A plurality of fins (not shown) that are long in the axial direction are attached to the outer peripheral surface of the stator frame 40. These fins are attached at intervals in the circumferential direction.

この固定子枠40は、詳細な図示は省略しているが、軸部材10を固定している。また、固定子枠40には、外部から取り込まれて固定子枠40内を循環した空気が排気される排気口(図示せず)が形成されている。冷却用の空気の流れは、固定子枠40内にファン等を設けて発生させてもよい。   Although the detailed illustration of the stator frame 40 is omitted, the shaft member 10 is fixed. The stator frame 40 is formed with an exhaust port (not shown) through which air taken from outside and circulated through the stator frame 40 is exhausted. The air flow for cooling may be generated by providing a fan or the like in the stator frame 40.

続いて、本実施形態の作用について説明する。   Then, the effect | action of this embodiment is demonstrated.

固定子枠40内に吸気された空気の大部分は、回転子20に形成された回転子通風路70、固定子鉄心30に形成された軸方向通風路61および空隙61aのいずれかに流れ込む。   Most of the air sucked into the stator frame 40 flows into one of the rotor ventilation path 70 formed in the rotor 20, the axial ventilation path 61 formed in the stator core 30, and the gap 61a.

軸方向通風路61に流入した空気は、軸方向に、図1の左側に向かって流れる。空隙61aに流れ込んだ空気の一部は軸方向に流れ、一部はダクト板38の半径方向通風路62に流れ込む。半径方向通風路62を流れ出た空気は、固定子鉄心30の軸方向通風路61に流れ込み、軸方向に流れる。   The air that has flowed into the axial ventilation path 61 flows in the axial direction toward the left side of FIG. Part of the air flowing into the gap 61 a flows in the axial direction, and part flows into the radial ventilation path 62 of the duct plate 38. The air that has flowed out of the radial ventilation path 62 flows into the axial ventilation path 61 of the stator core 30 and flows in the axial direction.

このとき、軸方向通風路61を流れる空気の熱の一部は、固定子枠40の外面を介して固定子枠40の外側のフィン等から放熱される。   At this time, part of the heat of the air flowing through the axial ventilation path 61 is radiated from the fins or the like outside the stator frame 40 via the outer surface of the stator frame 40.

固定子鉄心30の下流側端部まで流れた空気は、固定子枠40の排気口から固定子枠40の外部に排出される。   The air that has flowed to the downstream end of the stator core 30 is discharged from the exhaust port of the stator frame 40 to the outside of the stator frame 40.

半径方向通風路62は一つのダクト板38に放射状に複数形成される。空隙61aの流路を一つの円環状の流路と捉えると、通常、ダクト板38がある軸方向位置では、半径方向通風路62の流路面積は、空隙61aの流路面積よりも大きい。   A plurality of radial ventilation paths 62 are formed radially on one duct plate 38. When the flow path of the gap 61a is regarded as one annular flow path, the flow area of the radial ventilation path 62 is usually larger than the flow area of the gap 61a at the axial position where the duct plate 38 is located.

半径方向通風路62が複数形成されるため、空隙61a内を流れる空気は、軸方向の通風量が減り、下流ではほとんど流れなくなる。このままでは、空隙61aの下流側付近では、固定子鉄心30の内周側等の冷却効果が、上流側に比べて低くなる。   Since a plurality of radial ventilation paths 62 are formed, the amount of air flowing in the gap 61a is reduced in the axial direction and hardly flows downstream. In this state, in the vicinity of the downstream side of the gap 61a, the cooling effect on the inner peripheral side of the stator core 30 is lower than that on the upstream side.

回転子通風路70に流れ込んだ空気は、上流側(図2の右側)では、ほぼ全て軸方向に図2の左側に向かって流れる。回転子通風路70を流れる空気の一部は、通風路用板材28に形成された通風用貫通穴71を通り抜けて、空隙61aに流れ出る。   The air that has flowed into the rotor ventilation path 70 flows almost in the axial direction toward the left side in FIG. 2 on the upstream side (right side in FIG. 2). Part of the air flowing through the rotor ventilation path 70 passes through the ventilation through hole 71 formed in the ventilation path plate 28 and flows out into the gap 61a.

上述のように、半径方向通風路62が複数形成されているため、軸方向の上流側では、半径方向通風路62に流れ込みやすい。これは、上述の通り空隙61aの流路断面積よりも半径方向通風路62の流路断面積の方が大きいので、流動抵抗が空隙61aよりも半径方向通風路62が小さいためである。また、これは、回転子20の回転のファン効果により、半径方向外側に流れやすいためでもある。   As described above, since a plurality of the radial ventilation paths 62 are formed, it is easy to flow into the radial ventilation path 62 on the upstream side in the axial direction. This is because the flow passage cross-sectional area of the radial ventilation path 62 is larger than the flow path cross-sectional area of the gap 61a as described above, and thus the flow resistance is smaller in the radial ventilation path 62 than the gap 61a. In addition, this is also because the fan 20 of rotation of the rotor 20 tends to flow outward in the radial direction.

通常、永久磁石23や台座22等の発熱は、固定子鉄心30の発熱よりも小さい。このため、通風用貫通穴71から流れ出る空気は、固定子鉄心30を冷却する効果がある。   Usually, the heat generation of the permanent magnet 23 and the pedestal 22 is smaller than the heat generation of the stator core 30. For this reason, the air flowing out from the ventilation through hole 71 has an effect of cooling the stator core 30.

空隙61aでは、軸方向に流れる空気の量よりも多量の空気が、半径方向通風路62に流れ込む。このため、空隙61aの下流側には、空隙61aの上流から流れ込む空気の量が少なくなる。これにより、空気が流れにくくなった分の空隙61aの下流側の空気の流量は、回転子通風路70の通風用貫通穴71から流れ出る空気によって補われることになる。その結果、軸方向通風路61や空隙61aを流れる空気量が軸方向の位置によってばらつくことは、抑制される。   In the gap 61 a, a larger amount of air than the amount of air flowing in the axial direction flows into the radial ventilation path 62. For this reason, the amount of air flowing from the upstream of the gap 61a is reduced downstream of the gap 61a. As a result, the flow rate of the air on the downstream side of the gap 61 a that is less likely to flow of air is supplemented by the air flowing out of the ventilation through hole 71 of the rotor ventilation path 70. As a result, variation in the amount of air flowing through the axial ventilation path 61 and the gap 61a depending on the position in the axial direction is suppressed.

以上の説明からわかるように本実施形態によれば、固定子鉄心30等を効率よく冷却することが可能になる。   As can be seen from the above description, according to this embodiment, the stator core 30 and the like can be efficiently cooled.

[第2の実施形態]
第2の実施形態について図6を用いて説明する。図6は、本実施形態の回転電機の回転子20を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。なお、本実施形態は、第1の実施形態(図1〜図5)の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。また、本実施形態の回転電機の全体の構成は、第1の実施形態で説明した図1と同様である。
[Second Embodiment]
A second embodiment will be described with reference to FIG. FIG. 6 is a schematic partial top view partially showing the rotor 20 of the rotating electrical machine of the present embodiment, and corresponds to FIG. 4 of the first embodiment. In addition, this embodiment is a modification of 1st Embodiment (FIGS. 1-5), Comprising: The same code | symbol is attached | subjected to the same part or similar part as 1st Embodiment, and duplication description is carried out. Omitted. Further, the overall configuration of the rotating electrical machine of the present embodiment is the same as that of FIG. 1 described in the first embodiment.

本実施形態の通風路用板材28の通風用貫通穴71は、それぞれ丸穴形状で、下流側寄りに5個形成されている。   The ventilation through holes 71 of the ventilation path plate material 28 of the present embodiment are each formed in a round hole shape, and five are formed closer to the downstream side.

これにより、半径方向通風路62に流れやすい部位に通風用貫通穴71を形成することが可能になる。例えば、半径方向通風路62と、各通風用貫通穴71の軸方向位置を揃えるとよい。   Thereby, the ventilation through hole 71 can be formed in a portion that easily flows in the radial ventilation path 62. For example, the radial direction ventilation path 62 and the axial position of each ventilation through hole 71 may be aligned.

よって、本実施形態によれば、第1の実施形態と同様の効果が得られると共に、空気の下流への流れ方を、設計段階で調整することができる。   Therefore, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and the way in which air flows downstream can be adjusted at the design stage.

[第3の実施形態]
第3の実施形態について図7を用いて説明する。図7は、本実施形態の回転電機の回転子20を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。なお、本実施形態は、第1の実施形態(図1〜図5)の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。また、本実施形態の回転電機の全体の構成は、第1の実施形態で説明した図1と同様である。
[Third Embodiment]
A third embodiment will be described with reference to FIG. FIG. 7 is a schematic partial top view partially showing the rotor 20 of the rotating electrical machine of the present embodiment, and corresponds to FIG. 4 of the first embodiment. In addition, this embodiment is a modification of 1st Embodiment (FIGS. 1-5), Comprising: The same code | symbol is attached | subjected to the same part or similar part as 1st Embodiment, and duplication description is carried out. Omitted. Further, the overall configuration of the rotating electrical machine of the present embodiment is the same as that of FIG. 1 described in the first embodiment.

本実施形態の通風路用板材28の通風用貫通穴71の周方向幅(図7の上下方向)は、下流側に向かうに従って除々に大きくなるように形成されている。これにより、第1の実施形態と同様の効果が得られると共に、より下流側に流れる空気量を多くすることが可能になる。   The circumferential width (vertical direction in FIG. 7) of the ventilation through hole 71 of the ventilation path plate member 28 of the present embodiment is formed so as to gradually increase toward the downstream side. As a result, the same effect as in the first embodiment can be obtained, and the amount of air flowing further downstream can be increased.

[第4の実施形態]
第4の実施形態について図8を用いて説明する。図8は、本実施形態の回転電機の回転子20を部分的に示した概略部分上面図であって、第1の実施形態の図4に対応する図である。なお、本実施形態は、第1の実施形態(図1〜図5)の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。また、本実施形態の回転電機の全体の構成は、第1の実施形態で説明した図1と同様である。
[Fourth Embodiment]
A fourth embodiment will be described with reference to FIG. FIG. 8 is a schematic partial top view partially showing the rotor 20 of the rotating electrical machine of the present embodiment, and corresponds to FIG. 4 of the first embodiment. In addition, this embodiment is a modification of 1st Embodiment (FIGS. 1-5), Comprising: The same code | symbol is attached | subjected to the same part or similar part as 1st Embodiment, and duplication description is carried out. Omitted. Further, the overall configuration of the rotating electrical machine of the present embodiment is the same as that of FIG. 1 described in the first embodiment.

本実施形態の通風路用板材28は、第2の実施形態の特徴に、第3の実施形態の特徴を組み合わせたものである。すなわち、下流側の穴直径を大きくすることによって、第3の実施形態の効果と同様の効果を得ることができる。   The ventilation path plate member 28 of this embodiment is a combination of the features of the third embodiment with the features of the second embodiment. That is, by increasing the downstream hole diameter, the same effect as that of the third embodiment can be obtained.

[その他の実施形態]
上記実施形態の説明は、本発明を説明するための例示であって、特許請求の範囲に記載の発明を限定するものではない。また、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
[Other Embodiments]
The description of the above embodiment is an example for explaining the present invention, and does not limit the invention described in the claims. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

また、上記実施形態では、軸部材は、軸受に回転可能に支持されているが、これに限らない。例えば、軸部材を固定して、この軸部材に軸受を取り付けて、この軸受の外周に支持部材21bを固定してもよい。この場合、回転中心を通風路として用いることも可能になる。この場合の軸受は、軸部材に接する側が固定されて、半径方向外側(外周面)が回転するように構成されている。この場合、軸部材の端部を開口させて、この開口から吸気して固定子枠40内に空気を取り込むように構成してもよい。   Moreover, in the said embodiment, although the shaft member is rotatably supported by the bearing, it is not restricted to this. For example, the shaft member may be fixed, a bearing may be attached to the shaft member, and the support member 21b may be fixed to the outer periphery of the bearing. In this case, the center of rotation can be used as a ventilation path. The bearing in this case is configured such that the side in contact with the shaft member is fixed and the radially outer side (outer peripheral surface) rotates. In this case, an end portion of the shaft member may be opened, and air may be taken into the stator frame 40 by sucking air from the opening.

1…回転中心軸
10…軸部材
20…回転子
21a…円環部材
21b…支持部材
22…台座
22a…座面
22b…固定溝
23…永久磁石
28…通風路用板材
30…固定子鉄心
31…鋼板群
33…鋼板
34…内側溝
35…外側溝
37…固定子巻線
38…ダクト板
40…固定子枠
61…軸方向通風路
61a…空隙
62…半径方向通風路
70…回転子通風路
71…通風用貫通穴
DESCRIPTION OF SYMBOLS 1 ... Rotation center axis | shaft 10 ... Shaft member 20 ... Rotor 21a ... Ring member 21b ... Support member 22 ... Base 22a ... Seat surface 22b ... Fixed groove 23 ... Permanent magnet 28 ... Plate material for ventilation path 30 ... Stator core 31 ... Steel plate group 33 ... Steel plate 34 ... Inner groove 35 ... Outer groove 37 ... Stator winding 38 ... Duct plate 40 ... Stator frame 61 ... Axial air passage 61a ... Air gap 62 ... Radial air passage 70 ... Rotor air passage 71 ... Through holes for ventilation

Claims (5)

所定の軸周りを回転自在な回転子と、
前記回転子を半径方向外側から取り囲む固定子鉄心と、
前記固定子鉄心を半径方向外側から取り囲むように構成された固定子枠と、
を有する回転電機において、
前記回転子は、
前記軸を半径方向外側から取り囲むように配置された円環状で、前記軸の周りを同軸に回転可能な円環部材と、
それぞれが軸方向に延びて、互いに周方向間隙を形成するように前記円環部材の半径方向外側の外周面に固定された複数の台座と、
前記各台座の半径方向外側にそれぞれ固定された複数の永久磁石と、
前記半径方向間隙の前記外周面に対向する板面が形成された板材で、周方向に隣り合う前記台座を跨ぎながら前記周方向間隙を半径方向外側から覆い軸方向に貫通する通風路を形成し、前記板面に少なくとも一つの貫通穴が形成された通風路用板材と、
を有し、
前記板面の表面積に対する前記貫通穴の開口面積が、前記通風路に流れる空気の上流側に比べて下流側が大きくなるように形成されていること、を特徴とする回転電機。
A rotor that can rotate around a predetermined axis;
A stator core that surrounds the rotor from outside in the radial direction;
A stator frame configured to surround the stator core from outside in the radial direction;
In a rotating electrical machine having
The rotor is
An annular member disposed so as to surround the shaft from the outside in the radial direction, and an annular member coaxially rotatable around the shaft;
A plurality of pedestals, each extending in the axial direction, fixed to the outer circumferential surface on the radially outer side of the annular member so as to form a circumferential gap with each other;
A plurality of permanent magnets respectively fixed to the outside in the radial direction of each pedestal;
A plate material having a plate surface facing the outer peripheral surface of the radial gap, and forms a ventilation path that covers the circumferential gap from the outside in the radial direction and penetrates in the axial direction while straddling the pedestal adjacent in the circumferential direction. A plate member for an air passage in which at least one through hole is formed on the plate surface;
Have
The rotating electrical machine, wherein an opening area of the through hole with respect to a surface area of the plate surface is formed so that a downstream side is larger than an upstream side of air flowing through the ventilation path.
前記通風路用板材は、軸方向に長い長方形状で、
前記貫通穴は、下流側寄りに形成された軸方向に長い矩形であること、
を特徴とする請求項1に記載の回転電機。
The plate material for the air passage is in a rectangular shape that is long in the axial direction,
The through-hole is a rectangle that is long in the axial direction formed on the downstream side,
The rotating electrical machine according to claim 1.
前記貫通穴の周方向幅は、下流側に向かうに従って除々に大きくなるように形成されていること、を特徴とする請求項2に記載の回転電機。   The rotating electrical machine according to claim 2, wherein the circumferential width of the through hole is formed so as to gradually increase toward the downstream side. 前記通風路用板材は軸方向に長い長方形状で、前記貫通穴は、前記下流側寄りに複数形成されていること、を特徴とする請求項1に記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein the ventilation path plate has a rectangular shape that is long in an axial direction, and a plurality of the through holes are formed closer to the downstream side. 前記通風路用板材は、軸方向に長い長方形状で、
前記貫通穴は、前記板面に複数形成された円形状で、前記各貫通穴の穴直径は下流側に向かうに従って除々に大きくなるように形成されていること、
を特徴とする請求項4に記載の回転電機。
The plate material for the air passage is in a rectangular shape that is long in the axial direction,
A plurality of the through holes are formed in a circular shape on the plate surface, and the diameter of each through hole is formed so as to gradually increase toward the downstream side;
The rotating electrical machine according to claim 4.
JP2011208951A 2011-09-26 2011-09-26 Rotary electric machine Pending JP2013070572A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011208951A JP2013070572A (en) 2011-09-26 2011-09-26 Rotary electric machine
CN201210362697.8A CN103023181B (en) 2011-09-26 2012-09-25 A rotating motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208951A JP2013070572A (en) 2011-09-26 2011-09-26 Rotary electric machine

Publications (1)

Publication Number Publication Date
JP2013070572A true JP2013070572A (en) 2013-04-18

Family

ID=47971424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208951A Pending JP2013070572A (en) 2011-09-26 2011-09-26 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP2013070572A (en)
CN (1) CN103023181B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3402046A1 (en) * 2017-05-10 2018-11-14 GE Renewable Technologies Wind B.V. Permanent magnet modules
CN110369736A (en) * 2019-08-20 2019-10-25 中国科学院合肥物质科学研究院 A kind of high-speed air floatation electro spindle
JP2019213282A (en) * 2018-05-31 2019-12-12 東芝三菱電機産業システム株式会社 Dynamo-electric machine and stator cooling structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559547U (en) * 1978-10-19 1980-04-23
US4306165A (en) * 1978-07-28 1981-12-15 Hitachi, Ltd. Cooling system for rotary electric machines
JPS576364U (en) * 1980-06-10 1982-01-13
JPH11146585A (en) * 1997-11-06 1999-05-28 Railway Technical Res Inst Rotor of permanent magnet type rotary machine
JP2001119878A (en) * 1999-10-20 2001-04-27 Mitsubishi Electric Corp Rotor for rotating electric machine
JP2002153041A (en) * 2000-11-14 2002-05-24 Mitsubishi Electric Corp Direct-acting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236439A (en) * 2003-01-30 2004-08-19 Hitachi Ltd Rotating electric machine
CN100356662C (en) * 2004-08-20 2007-12-19 东芝三菱电机产业系统株式会社 Full-closed external fan type rotating electrical machine
US7893576B2 (en) * 2009-05-05 2011-02-22 General Electric Company Generator coil cooling baffles
JP5260563B2 (en) * 2010-01-07 2013-08-14 株式会社日立製作所 Permanent magnet generator or motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306165A (en) * 1978-07-28 1981-12-15 Hitachi, Ltd. Cooling system for rotary electric machines
JPS5559547U (en) * 1978-10-19 1980-04-23
JPS576364U (en) * 1980-06-10 1982-01-13
JPH11146585A (en) * 1997-11-06 1999-05-28 Railway Technical Res Inst Rotor of permanent magnet type rotary machine
JP2001119878A (en) * 1999-10-20 2001-04-27 Mitsubishi Electric Corp Rotor for rotating electric machine
JP2002153041A (en) * 2000-11-14 2002-05-24 Mitsubishi Electric Corp Direct-acting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3402046A1 (en) * 2017-05-10 2018-11-14 GE Renewable Technologies Wind B.V. Permanent magnet modules
JP2019213282A (en) * 2018-05-31 2019-12-12 東芝三菱電機産業システム株式会社 Dynamo-electric machine and stator cooling structure
CN110369736A (en) * 2019-08-20 2019-10-25 中国科学院合肥物质科学研究院 A kind of high-speed air floatation electro spindle
CN110369736B (en) * 2019-08-20 2024-01-09 中国科学院合肥物质科学研究院 High-speed air-floatation motorized spindle

Also Published As

Publication number Publication date
CN103023181B (en) 2014-11-05
CN103023181A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5893462B2 (en) Rotating electric machine
JP2013066341A (en) Rotary electric machine
KR20150067039A (en) Rotor of rotating electrical machine and rotating electrical machine
JP5740416B2 (en) Rotating electric machine
CN116231932A (en) Totally-enclosed self-ventilation type motor cooling structure
JP5785521B2 (en) Rotating electric machine
JP2013070572A (en) Rotary electric machine
JP5065166B2 (en) Rotating electrical machine rotor
JP2016054591A (en) Totally-enclosed rotary electric machine
JP2012019623A (en) Rotor core
JP7210326B2 (en) Rotating electric machine
JP2014045606A (en) Rotary electric machine
JP5647961B2 (en) Rotating electric machine
JP7011616B2 (en) Synchronous rotary electric machine
JP5752569B2 (en) Rotating electric machine
JP5647962B2 (en) Rotating electric machine
JP5701235B2 (en) Rotating electric machine
JP2011250566A (en) Rotary electric machine
JP2006217764A (en) Axial gap rotating electric machine
JP2022091390A (en) Stator core and rotary electric machine
JP2023043483A (en) Rotary electric machine
JP2022156437A (en) Rotor of rotary electric machine
JP2018148775A (en) Rotary electric machine
JP2012070552A (en) Rotary electric machine
JP2014166083A (en) Permanent magnet dynamoelectric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616