JP2013069973A - Stationary induction apparatus - Google Patents

Stationary induction apparatus Download PDF

Info

Publication number
JP2013069973A
JP2013069973A JP2011208814A JP2011208814A JP2013069973A JP 2013069973 A JP2013069973 A JP 2013069973A JP 2011208814 A JP2011208814 A JP 2011208814A JP 2011208814 A JP2011208814 A JP 2011208814A JP 2013069973 A JP2013069973 A JP 2013069973A
Authority
JP
Japan
Prior art keywords
shield
surface member
iron core
nonmagnetic
lower clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011208814A
Other languages
Japanese (ja)
Other versions
JP5682892B2 (en
Inventor
Yasunori Ono
康則 大野
Yoshio Hamadate
良夫 浜館
Naoya Miyamoto
直哉 宮本
Yuzuru Suzuki
譲 鈴木
Kenichi Kawamura
憲一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011208814A priority Critical patent/JP5682892B2/en
Publication of JP2013069973A publication Critical patent/JP2013069973A/en
Application granted granted Critical
Publication of JP5682892B2 publication Critical patent/JP5682892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stationary induction apparatus capable of preventing local overheating of a lower fastening metal fitting, without causing an increase in size as a result of using a non-magnetic shield.SOLUTION: A lower fastening metal fitting 5 is shaped into a box having an insulation oil channel 10, which is made of a back surface member 5a, a bottom surface member 5b, a front surface member 5c and an upper surface member 5d. An oil through-hole 12 for insulation oil is formed on the upper surface member 5d of the lower fastening metal fitting 5. A non-magnetic shield 20 arranged between the lower fastening metal fitting 5 and a lower support insulator 8 for winding wires 4a and 4b is attached in a flat plate shape, as with the upper surface member 5d of the lower fastening metal fitting 5. Moreover, part of the flat plate shape of the non-magnetic shield 20 is elongated in a direction intersecting the surface of the upper surface member 5d of the lower fastening metal fitting 5.

Description

本発明は変圧器やリアクトル等の静止誘導電器に係り、特に鉄心の下部締付金具に非磁性の磁気シールドを設けた静止誘導電器に関する。   The present invention relates to a static induction electric device such as a transformer or a reactor, and more particularly to a static induction electric device in which a non-magnetic magnetic shield is provided on a lower fastening metal fitting of an iron core.

通常、静止誘導電器例えば変圧器は、図12に示す如く鉄心脚部及び鉄心継鉄部からなる鉄心2は、上下の鉄心継鉄部の両側に上部締付金具3及び下部締付金具5を配置して鉄心形状を保持して締め付け固定している。鉄心2の鉄心脚部に、同心状に配置されて絶縁筒7で離隔された高圧側巻線4a、低圧側巻線4bを巻装しており、各巻線4a、4bの上下に巻線支持用の上部支持絶縁物6と下部支持絶縁物8を配置し、上部締付金具3及び下部締付金具5間で各巻線4a、4bを支持させて変圧器本体を構成している。   Normally, as shown in FIG. 12, a static induction machine, for example, a transformer, has an iron core 2 composed of an iron core leg portion and an iron core yoke portion. An upper fastening metal fitting 3 and a lower fastening metal fitting 5 are provided on both sides of the upper and lower iron core yoke portions. The iron core shape is arranged and fixed by tightening. A high-voltage side winding 4a and a low-voltage side winding 4b that are concentrically arranged and separated by an insulating cylinder 7 are wound around the iron core leg of the iron core 2, and are supported above and below each of the windings 4a and 4b. The upper support insulator 6 and the lower support insulator 8 are disposed, and the windings 4a and 4b are supported between the upper clamp 3 and the lower clamp 5 to constitute a transformer body.

変圧器本体は、タンク1内に配置して絶縁油9を満たしており、また鉄心2の下部締付金具5は、その内部に絶縁油流路10が形成されており、絶縁油9を油導穴11から各巻線4a、4bに導入させて冷却するようにしている。   The transformer main body is disposed in the tank 1 and filled with the insulating oil 9, and the lower clamp 5 of the iron core 2 has an insulating oil passage 10 formed therein, and the insulating oil 9 is used as the oil. It is introduced into the windings 4a and 4b from the guide hole 11 and cooled.

上部締付金具3及び下部締付金具5は、十分な強度を有する鉄鋼やステンレス鋼等の金属材料を用いている。そして、各締付金具3、5は、高圧側巻線4aと低圧側巻線4bの両端付近に配置されるので、巻線からの漏れ磁束によって渦電流が流れて損失が増大し、局部加熱を引き起す恐れがある。最近の如く変圧器を小型化すると、漏れ磁束は高くなる傾向があるから、渦電流損失も大きくなり、局部過熱の問題が生ずる場合もある。   The upper clamp 3 and the lower clamp 5 are made of a metal material such as steel or stainless steel having sufficient strength. And each clamp | tightening metal fittings 3 and 5 are arrange | positioned in the both ends of the high voltage | pressure side coil | winding 4a and the low voltage | pressure side coil | winding 4b, Therefore An eddy current flows with the leakage magnetic flux from a coil | winding, loss increases, May cause. When transformers are downsized as recently, leakage flux tends to increase, so eddy current loss also increases, and local overheating may occur.

このため、従来では例えば特許文献1及び2に記載されている如く、各巻線4a、4bの上下端部に、磁気シールドとして珪素鋼板等の磁性体シールドを配置している。この磁性体シールドにより、巻線からの漏れ磁束を吸収して、局部的な渦電流損失の集中や温度上昇を低減することが行われている。   For this reason, conventionally, as described in Patent Documents 1 and 2, for example, magnetic shields such as silicon steel plates are arranged as magnetic shields at the upper and lower ends of the windings 4a and 4b. This magnetic shield absorbs leakage magnetic flux from the winding to reduce local eddy current loss concentration and temperature rise.

また、従来における別の漏れ磁束の対策として、例えば特許文献3及び4に記載されている如く下部締付金具5に銅板シールドの如き非磁性体シールドを取り付けることも行われている。一般に下部締付金具5は、図13(b)及び図14に示すように、下部継鉄部側に位置する奥面部材5aと、奥面部材5aに固定するタンク1底面側の底面部材5bと、底面部材5bに固定する前面部材5c、奥面部材5aと前面部材5cに固定する上面部材5dとによって箱状に構成し、絶縁油流路10を有するようにしている。しかも、下部締付金具5の上面部材5dは、油導穴11に対向する部分に通油孔12を形成し、油導穴11に対向しない破線で示す部分は除去されて奥面部材5aと底面部材5bの面がタンク1内に開口した完全開口部5eを形成している。   In addition, as another countermeasure against leakage magnetic flux in the past, as described in Patent Documents 3 and 4, for example, a non-magnetic shield such as a copper plate shield is attached to the lower clamp 5. In general, as shown in FIGS. 13B and 14, the lower clamp 5 is composed of a rear surface member 5a located on the lower yoke portion side and a bottom surface member 5b on the bottom surface side of the tank 1 fixed to the rear surface member 5a. And a front surface member 5c fixed to the bottom surface member 5b, a back surface member 5a, and a top surface member 5d fixed to the front surface member 5c. In addition, the upper surface member 5d of the lower clamp 5 is formed with an oil passage hole 12 in a portion facing the oil guide hole 11, and a portion indicated by a broken line not facing the oil guide hole 11 is removed to form the back surface member 5a. The surface of the bottom member 5 b forms a complete opening 5 e that opens into the tank 1.

このため、上記のように構成した下部締付金具5には、従来では図13(a)に示すように通油孔12を有する上面部材5dの形状面に合わせて作った幅Wの銅板の如き平板形の非磁性体シールド20を取り付けている。この非磁性体シールド20で、漏れ磁束を非磁性体シールド20及び下部締付金具底面部53等を還流する渦電流により減少することにより、集中的に発生する渦電流損失も低減することも行われている。   For this reason, the lower fastening metal fitting 5 configured as described above is conventionally made of a copper plate having a width W made in accordance with the shape surface of the upper surface member 5d having the oil passage holes 12 as shown in FIG. Such a flat nonmagnetic shield 20 is attached. With this nonmagnetic shield 20, the leakage flux is reduced by the eddy current flowing back through the nonmagnetic shield 20 and the bottom clamp bottom portion 53, etc., thereby reducing the eddy current loss that occurs intensively. It has been broken.

特開昭58−139415号公報JP 58-139415 A 特開平4−65809号公報JP-A-4-65809 特開2008−41929号公報JP 2008-41929 A 特開2009−76534号公報JP 2009-76534 A

上記した特許文献1、2で記載されている磁性体の磁気シールドを配置する構造では、局部的な渦電流損失の集中及び温度上昇の防止に有効である。しかし、磁気シールドは
漏れ磁束を還流させるためにある程度の体積にして設ける必要があるため、巻線上下端の構造物の高さが、磁気シールドを設けない場合よりも大きくなるから、鉄心寸法が高くなってしまい、タンクも大型になるという問題がある。
The structure in which the magnetic shield of the magnetic material described in Patent Documents 1 and 2 described above is effective in preventing local eddy current loss concentration and temperature rise. However, since it is necessary to provide the magnetic shield with a certain volume in order to recirculate the leakage magnetic flux, the height of the structure at the upper and lower ends of the winding is larger than when the magnetic shield is not provided. As a result, there is a problem that the tank becomes large.

これに対し、特許文献3、4で記載されている銅板の如き非磁性体シールド20を配置する構造にすると、非磁性体シールド20を流れる渦電流により、下部締付金具の一部に磁束が集中するのを避け、局部温度上昇を防止できる。しかし、下部締付金具5の上面部材5dには、通油孔5eや完全開口部5fの形状に合わせて作った平板形の非磁性体シールド20を取り付けているため、非磁性体シールドの一部に狭窄部が生じているから、狭窄部に渦電流が集中してしまって渦電流損失の集中が起こり、これに伴って局部的な温度上昇を生じるという問題を生ずる恐れがあった。   On the other hand, when the non-magnetic shield 20 such as the copper plate described in Patent Documents 3 and 4 is arranged, the eddy current flowing through the non-magnetic shield 20 causes a magnetic flux to be partially applied to the lower fastening bracket. Avoid concentration and prevent local temperature rise. However, a flat nonmagnetic shield 20 made in accordance with the shape of the oil passage hole 5e and the complete opening 5f is attached to the upper surface member 5d of the lower clamp 5 so that one nonmagnetic shield is provided. Since the constricted portion is formed in the portion, eddy currents are concentrated in the constricted portion, and eddy current loss is concentrated, which may cause a problem that a local temperature rise occurs.

本発明の目的は、非磁性体シールドを用いて大型化することなく下部締付金具の局部過熱を防止できる静止誘導電器を提供することにある。   An object of the present invention is to provide a static induction electric appliance capable of preventing local overheating of a lower clamp fitting without using a nonmagnetic shield to increase the size.

本発明は、鉄心脚部及び上下の鉄心継鉄部からなる鉄心と、前記各鉄心継鉄部に配置した上部締付金具と下部締付金具と、前記鉄心の鉄心脚部に巻装された高圧側巻線と低圧側巻線と、前記各巻線と前記上部締付金具及び前記下部締付金具の間に配置される支持絶縁物と、タンクを有し、前記下部締付金具は奥面部材と底面部材と前面部材と上面部材とにより絶縁油流路を有する箱状に構成すると共に、前記上面部材には通油孔を形成し、前記下部締付金具と前記下部支持絶縁物の間に非磁性体シールドを配置した静止誘導電器において、前記非磁性体シールドは、前記下部締付金具の上面部材と同じ平板状にして取り付けると共に、平板状の一部を上記下部締付金具の上面部材面と交差する方向に伸張させて構成したことを特徴としている。   The present invention is wound around an iron core consisting of an iron core leg portion and upper and lower iron core yoke portions, an upper fastening metal fitting and a lower fastening metal fitting arranged in each iron iron core yoke portion, and an iron core leg portion of the iron core. A high-voltage side winding, a low-voltage side winding, a supporting insulator disposed between each of the windings, the upper fastening bracket and the lower fastening bracket, and a tank; The member, the bottom member, the front member, and the top member constitute a box shape having an insulating oil flow path, and an oil passage hole is formed in the top member between the lower fastening bracket and the lower support insulator. The non-magnetic shield is attached to the non-magnetic shield in the same flat plate shape as the upper member of the lower clamp, and a part of the flat plate is attached to the upper surface of the lower clamp. It is characterized by being configured to extend in the direction intersecting the member surface.

好ましくは、前記非磁性体シールドは、上面部材と交差する方向の伸張させる部分の厚みを、下部締付金具と下部支持絶縁物との間に取り付ける部分の厚みと異ならせて構成したことを特徴としている。   Preferably, the non-magnetic shield is configured such that a thickness of a portion to be extended in a direction crossing the upper surface member is different from a thickness of a portion to be attached between the lower fastening bracket and the lower support insulator. It is said.

また好ましくは、前記非磁性体シールドは、上面部材と交差する方向に伸張させる部分を、前記下部締付金具の絶縁油流路内に突出させて構成したことを特徴としている。   Further preferably, the non-magnetic shield is characterized in that a portion extending in a direction intersecting with the upper surface member is projected into the insulating oil flow path of the lower fastening bracket.

本発明の静止誘導電器のように、下部締付金具と前記下部支持絶縁物の間に配置する非磁性体シールドを配置するとき、この非磁性体シールドは、前記下部締付金具の上面部材と同じ平板状にして取り付けると共に、平板状の一部を上記下部締付金具の上面部材面と交差する方向に伸張させて構成すると、非磁性体シールド中の実効的な断面積を増加させることにより渦電流密度を低減できから、局部的な温度上昇を回避して発生する渦電靡損失も従来に比べて大幅に低減させることができる。また、非磁性体シールドで発生した熱は、熱伝導率の良好な非磁性体シールドを伝導して広い面積で絶縁油に接して効率的に冷却ができる。更に、非磁性体シールドの一部を下部締付金具の上面部材面と交差する方向に伸張させているので、下部締付金具の上部材板に形成した通油孔を塞ぐことがないから、巻線側の冷却にも支障がないし、非磁性体シールドのために静止誘導電器が大型化することもなくなる。   When a nonmagnetic shield placed between the lower clamp and the lower support insulator is disposed as in the static induction appliance of the present invention, the nonmagnetic shield is connected to the upper member of the lower clamp. By mounting the same flat plate and extending a part of the flat plate in a direction intersecting the upper surface member surface of the lower clamp, the effective cross-sectional area in the nonmagnetic shield is increased. Since the eddy current density can be reduced, the eddy current loss generated by avoiding a local temperature rise can be greatly reduced as compared with the conventional case. Further, the heat generated in the nonmagnetic shield can be efficiently cooled by being conducted through the nonmagnetic shield with good thermal conductivity and contacting the insulating oil over a wide area. Furthermore, since a part of the non-magnetic shield is extended in a direction intersecting the upper surface member surface of the lower clamp, the oil passage hole formed in the upper member plate of the lower clamp is not blocked. There is no hindrance to the cooling of the winding side, and the static induction device is not increased in size due to the non-magnetic shield.

本発明を適用した変圧器の一実施例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one Example of the transformer to which this invention is applied. 図1の変圧器に使用する非磁性体シールドの詳細を示す斜視図である。It is a perspective view which shows the detail of the nonmagnetic material shield used for the transformer of FIG. 図1の変圧器の下部締付金具における非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield in the lower clamp | tightening metal fitting of the transformer of FIG. 図3の非磁性体シールドの展開図である。FIG. 4 is a development view of the nonmagnetic shield of FIG. 3. 図3の変形例である非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield which is a modification of FIG. 本発明の他の実施例である下部締付金具における非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield in the lower clamp | tightening metal fitting which is another Example of this invention. 図6の変形例である非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield which is a modification of FIG. 本発明の別の実施例である下部締付金具における非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield in the lower clamp | tightening metal fitting which is another Example of this invention. 非磁性体シールドの渦電電流密度分布図である。It is an eddy current density distribution map of a nonmagnetic shield. 非磁性体シールドの渦電流損失分布図である。It is an eddy current loss distribution map of a nonmagnetic shield. 各構造別のおける非磁性体シールドの最高温度を、絶縁油温からの上昇値で表した説明図である。It is explanatory drawing which represented the maximum temperature of the nonmagnetic body shield according to each structure with the raise value from insulating oil temperature. 従来の変圧器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional transformer. (a)は図12に適用する非磁性体シールドを示す斜視図、(b)は下部締付金具を示す斜視図である。(A) is a perspective view which shows the nonmagnetic body shield applied to FIG. 12, (b) is a perspective view which shows a lower clamp | tightening metal fitting. 図12に適用した下部締付金具における非磁性体シールドの取り付け状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the attachment state of the nonmagnetic body shield in the lower clamp | tightening metal fitting applied to FIG.

以下、図1から図11に示す本発明の静止誘導電器を、変圧器に適用して従来と同一部分に同符号を付した各実施例を用いて順に説明する。   Hereinafter, the static induction appliance of the present invention shown in FIG. 1 to FIG. 11 will be described in order using each embodiment in which the same reference numerals are given to the same parts as those in the past when applied to a transformer.

本発明を適用した変圧器は、図1に示すように従来と同様に構成されており、しかも下部支持絶縁物8と下部締付金具5の間に、非磁性体シールド20が設けられている。非磁性体シールド20は、図1から図11の本発明の実施例では、全て銅板シールドを用いた例で示している。   As shown in FIG. 1, the transformer to which the present invention is applied is configured in the same manner as in the prior art, and a nonmagnetic shield 20 is provided between the lower support insulator 8 and the lower clamp 5. . In the embodiment of the present invention shown in FIGS. 1 to 11, the nonmagnetic material shield 20 is shown as an example using a copper plate shield.

下部締付金具5は、従来と同様に図3に示した鉄心2側の奥面部材5aと、容器1の底面側の底面部材5bと、容器1の側面側の前面部材5cと、巻線4a、4b下部に位置する上面部材5dにより絶縁油流路10を有する箱状に形成している。下部締付金具5の上面部材5dには通油孔12を形成しており、絶縁油9を下部支持絶縁物8の油導穴11を通って各巻線4a、4b下部に導くようにしている。   As in the conventional case, the lower clamp 5 includes a back surface member 5a on the iron core 2 side, a bottom surface member 5b on the bottom surface side of the container 1, a front surface member 5c on the side surface side of the container 1, and a winding. 4a and 4b are formed in a box shape having an insulating oil flow path 10 by an upper surface member 5d located at the lower part. An oil passage hole 12 is formed in the upper surface member 5d of the lower clamp 5 so that the insulating oil 9 is guided to the lower portions of the windings 4a and 4b through the oil guide holes 11 of the lower support insulator 8. .

下部締付金具5の上面部材5d上には、上面部材5d面と同じ形の平板状にした非磁性体シールド20を取り付けている。非磁性体シールド20は、通油孔12に相当する部分と上面部材5d面が除去された完全開口部に相当する部分の寸法を、広げた特別な形状にしている。即ち、非磁性体シールド20は、広幅に形成した通油孔12に相当する部分及び完全開口部に相当する部分に、図4に示すように切込み21を入れ、上面部材5d上に位置する幅W1のシールド主板材20aと幅W2のシールド副板材20b及び幅W3のシールド副板材20cとなるように形成し、折り曲げ可能にしている。   On the upper surface member 5d of the lower clamp 5 is attached a non-magnetic shield 20 which is a flat plate having the same shape as the surface of the upper surface member 5d. The nonmagnetic shield 20 has a special shape in which the dimensions of the portion corresponding to the oil passage hole 12 and the portion corresponding to the complete opening from which the surface of the upper surface member 5d is removed are widened. That is, the nonmagnetic shield 20 has a width that is located on the upper surface member 5d by making a notch 21 as shown in FIG. 4 in a portion corresponding to the oil passage hole 12 formed in a wide width and a portion corresponding to the complete opening. W1 shield main plate material 20a, width W2 shield sub-plate material 20b, and width W3 shield sub-plate material 20c are formed and bendable.

そして、このように形成した非磁性体シールド20は、図2及び図3に示すように下部締付金具の上面部材5d面上に配置してから、広幅に形成した通油孔12に相当する部分及び完全開口部に相当する部分では、シールド副板材20bを上面部材5d面と交差する方向である通油孔12や完全開口部側に折り曲げて伸張させている。しかも、図3の例ではシールド副板材20cを、更に折り曲げて絶縁油流路10内の上面部材5d面を覆うように取り付けている。   The nonmagnetic shield 20 formed in this way corresponds to the oil passage hole 12 formed wide after being arranged on the surface of the upper surface member 5d of the lower clamp as shown in FIGS. In the portion corresponding to the portion and the complete opening, the shield sub-plate material 20b is bent and extended toward the oil passage hole 12 and the complete opening that are in the direction intersecting the surface of the upper surface member 5d. In addition, in the example of FIG. 3, the shield sub-plate material 20 c is further bent and attached so as to cover the upper surface member 5 d surface in the insulating oil flow path 10.

上記の如く図3に示す通油孔12を有する上面部材5dの部分は、シールド主板材20aの幅W1とシールド副板材20bの幅W2及びシールド副板材20cの幅W3からなる非磁性体シールド20を取り付けている。このため、図3に示す非磁性体シールド20の取り付け構造とを、図5に示す渦電流密度分布及び図6に示す渦電流損失分布で検討してみると、次のようになっている。なお、図3の非磁性体シールド20を取り付け構造の特性を、図9及び図10中に示した白丸を結ぶ「側面厚小」と表示している分布線で示している。   As described above, the portion of the upper surface member 5d having the oil passage holes 12 shown in FIG. 3 includes the non-magnetic shield 20 composed of the width W1 of the shield main plate 20a, the width W2 of the shield subplate 20b, and the width W3 of the shield subplate 20c. Is attached. Therefore, when the mounting structure of the nonmagnetic shield 20 shown in FIG. 3 is examined with the eddy current density distribution shown in FIG. 5 and the eddy current loss distribution shown in FIG. 6, the following is obtained. The characteristic of the structure for attaching the non-magnetic shield 20 of FIG. 3 is indicated by a distribution line labeled “thin side surface thickness” connecting the white circles shown in FIGS. 9 and 10.

従来の図14示す非磁性体シールド20の場合は、一点鎖線で示す幅Wまでの原点側に渦電流と損失が集中する。これに対して、本発明の図3非磁性体シールド20の取り付け構造は、鉄心側である原点から離れるにつれて徐々に減少し、幅W1のシールド主板材20aの領域に比べて、幅W2のシールド副板材20bや幅W3のシールド副板材20cの領域になると大幅に低下する。このため、本発明の図3に示した非磁性体シールド20の取り付け構造の場合は、渦電流と渦電流損失とも広い範囲に分布することになり、渦電流密度と渦電流損失のピーク値は大幅に低下する。   In the case of the conventional nonmagnetic shield 20 shown in FIG. 14, eddy currents and losses are concentrated on the origin side up to the width W indicated by the alternate long and short dash line. On the other hand, the attachment structure of the non-magnetic shield 20 of FIG. 3 of the present invention gradually decreases as it moves away from the origin on the iron core side, and the shield with the width W2 as compared with the region of the shield main plate 20a with the width W1. If it becomes the area | region of the shield subplate material 20c of the subplate material 20b and the width W3, it will fall significantly. Therefore, in the case of the nonmagnetic shield 20 mounting structure shown in FIG. 3 of the present invention, both eddy current and eddy current loss are distributed over a wide range, and the peak values of eddy current density and eddy current loss are Decrease significantly.

その上、本発明の非磁性体シールド20では、従来の取り付け構造に比較して、最高温度上昇を低減することができる。即ち、図11の各構造別のおける非磁性体シールドの絶縁油温からの最高温度上昇値で示すように、従来のシールド構造Aの最高温度に比べて、本発明の図3に示した非磁性体シールド20のシールド構造Bの最高温度上昇は、58%程度に低減される。   In addition, the nonmagnetic shield 20 of the present invention can reduce the maximum temperature rise as compared with the conventional mounting structure. That is, as shown by the maximum temperature rise value from the insulation oil temperature of the non-magnetic shield in each structure of FIG. 11, the non-temperature shown in FIG. 3 of the present invention is higher than the maximum temperature of the conventional shield structure A. The maximum temperature rise of the shield structure B of the magnetic shield 20 is reduced to about 58%.

図3に示す非磁性体シールド20の取り付け構造は、図5に示す変形した構造にして取り付けることができる。この構造は、非磁性体シールド20のシールド副板材20cを長くし、その先端部L形に折り曲げて奥面部材5aの内面に配置している。このようにすると、絶縁油9と接する非磁性体シールド20の面積を広くとることができる。このため、非磁性体シールド20の上面での渦電流損失が大きい場合でも、熱損失の多くを熱伝導により移動させて広い面積から放熱できるため、効率的な冷却が可能になる。この図5の非磁性体シールド20の取り付け構造では図11でシールド構造Cに示した如く、従来のシールド構造Aの最高温度上昇に比べて、58%程度に低減される。   The attachment structure of the nonmagnetic shield 20 shown in FIG. 3 can be attached in the modified structure shown in FIG. In this structure, the shield sub-plate material 20c of the non-magnetic shield 20 is lengthened, bent to the tip L shape, and disposed on the inner surface of the back surface member 5a. In this way, the area of the nonmagnetic shield 20 in contact with the insulating oil 9 can be increased. For this reason, even when the eddy current loss on the upper surface of the nonmagnetic shield 20 is large, most of the heat loss can be transferred by heat conduction to dissipate heat from a wide area, thereby enabling efficient cooling. In the attachment structure of the nonmagnetic shield 20 in FIG. 5, as shown in the shield structure C in FIG. 11, the maximum temperature rise of the conventional shield structure A is reduced to about 58%.

本発明のように変圧器を構成すれば、容器1や鉄心2を大型化することなく、非磁性体シールド20の狭窄部の温度上昇を低減でき、非磁性体シールド20の効果により下部締付金具5における局部温度上昇を防止できる。   If the transformer is configured as in the present invention, the increase in temperature of the constricted portion of the nonmagnetic shield 20 can be reduced without increasing the size of the container 1 and the iron core 2, and the lower tightening is achieved by the effect of the nonmagnetic shield 20. The local temperature rise in the metal fitting 5 can be prevented.

非磁性体シールド20の他の取り付け構造を図6に示している。この例では、非磁性体シールド20を、シールド主板材20aと、シールド副板材20bとシールド副板材20cの二つに分割したものである。シールド主板材20aは、下部締付金具5の上面部材5d部分にL形に折り曲げて配置し、シールド主板材20aに一部重ならせてシールド副板材20bを取り付けて厚みを増加させ、シールド副板材20cは上面部材5dの絶縁油流路10側の面に折り曲げて取り付けている。なお、二つに分割するシールド主板材20aとシールド副板材20b1及びシールド副板材20c1は、厚さをもの或いは異なる厚さのものを組み合わせても使用することができる。   Another mounting structure of the nonmagnetic shield 20 is shown in FIG. In this example, the non-magnetic shield 20 is divided into a shield main plate material 20a, a shield sub plate material 20b, and a shield sub plate material 20c. The shield main plate member 20a is arranged in an L-shaped manner at the upper surface member 5d portion of the lower clamp 5 and is attached to the shield main plate member 20a so as to partially overlap the shield main plate member 20a to increase the thickness. The plate member 20c is bent and attached to the surface of the upper surface member 5d on the insulating oil flow path 10 side. The shield main plate member 20a, the shield sub plate member 20b1, and the shield sub plate member 20c1 that are divided into two can be used even if they have different thicknesses or combinations of different thicknesses.

この図6に示す非磁性体シールド20の取り付ける構造では、二つに分割したシールド主板材20aとシールド副板材20b1を、一部が重なるように配置して厚みを増加させているため、次に述べる二つの効果ある。   In the structure for attaching the nonmagnetic shield 20 shown in FIG. 6, the shield main plate material 20a and the shield sub plate material 20b1 divided into two parts are arranged so as to partially overlap each other. There are two effects described.

まず、非磁性体シールド20に流れる渦電流をより広い範囲に分散させることにより、渦電流及び渦電流損失のピークを下げることができる。これは、図6の非磁性体シールド20を取り付け構造の特性が、図9及び図10中に示した白角を結ぶ「側面厚大」と表示した分布線で示した如く、幅W2の領域で図3の「側面厚小」で渦電流密度及び損失が急に低下するものよりも、低下が緩和されることからも明白である。また、非磁性体シールド20のシールド主板材20aから、シールド副板材20b1及びシールド副板材20c1へ熱伝導が促進されるから、より一層効率的な冷却を行うことができる。上記した二つの効果の結果、図6のように非磁性体シールド20を取り付けると図11にシールド構造Dで示した如く、従来のシールド構造Aの最高温度上昇に比べて、52%程度に低減される。したがって、この例においても実施例1と同様な効果が達成できる。   First, by dispersing the eddy current flowing through the nonmagnetic shield 20 in a wider range, the peak of eddy current and eddy current loss can be lowered. This is because the characteristic of the structure for attaching the nonmagnetic shield 20 in FIG. 6 is an area having a width W2 as indicated by a distribution line labeled “large side face” connecting the white corners shown in FIGS. Thus, it is clear from the fact that the decrease is mitigated rather than the one in which the eddy current density and loss suddenly decrease at “thin side surface thickness” in FIG. Further, since heat conduction is promoted from the shield main plate material 20a of the nonmagnetic shield 20 to the shield sub plate material 20b1 and the shield sub plate material 20c1, further efficient cooling can be performed. As a result of the above two effects, when the non-magnetic shield 20 is attached as shown in FIG. 6, as shown by the shield structure D in FIG. 11, the maximum temperature rise of the conventional shield structure A is reduced to about 52%. Is done. Therefore, also in this example, the same effect as in the first embodiment can be achieved.

非磁性体シールド20は、図6を変形した図7に示す構造にして取り付けることができる。この非磁性体シールド20の取り付け構造は、図6の例と同様に二つに分割したシールド主板材20aとシールド副板材20b1及びシールド副板材20c1を組み合せたものであるが、図5の例と同様にシールド副板材20c1の先端部を長くし、その先端部L形に折り曲げて奥面部材5aの内面に配置したものである。   The nonmagnetic shield 20 can be attached with the structure shown in FIG. 7 modified from FIG. The nonmagnetic shield 20 mounting structure is a combination of the shield main plate material 20a, the shield sub-plate material 20b1, and the shield sub-plate material 20c1, which are divided into two as in the example of FIG. Similarly, the front end portion of the shield sub-plate material 20c1 is lengthened, bent into the front end portion L shape, and disposed on the inner surface of the back surface member 5a.

この図7の場合も、絶縁油9と接する非磁性体シールド20の面積を広くできるため、同様に効率的な冷却が可能になる。この例の非磁性体シールド20の取り付け構造では、図11にシールド構造Eで示した如く、従来のシールド構造Aの最高温度上昇に比べると、47%程度に低減される。   In the case of FIG. 7 as well, since the area of the nonmagnetic shield 20 in contact with the insulating oil 9 can be increased, similarly efficient cooling is possible. In the mounting structure of the nonmagnetic shield 20 of this example, as shown by the shield structure E in FIG. 11, compared with the maximum temperature rise of the conventional shield structure A, it is reduced to about 47%.

非磁性体シールド20の別の取り付け構造例を図8に示している。この非磁性体シールド20は、下部締付金具5の上面部材5d面に配置したシールド主板材20aから、シールド副板材20b及びシールド副板材20cを、上面部材5d面と交差する方向である直角に折り曲げ、シールド副板材20c部分を絶縁油流路10内に突出させている。   Another example of the attachment structure of the nonmagnetic shield 20 is shown in FIG. The non-magnetic shield 20 is configured so that the shield sub-plate material 20b and the shield sub-plate material 20c are perpendicular to the upper surface member 5d surface from the shield main plate material 20a disposed on the upper surface member 5d surface of the lower clamp 5. The shield sub-plate material 20c is bent and protruded into the insulating oil flow path 10.

このようにすると、非磁性体シールド20のシールド副板材20cの両面が、絶縁油9に接する放熱面となるため、簡単な構造で非磁性体シールドの効率良い冷却が可能になる。その結果、図8の非磁性体シールド20の取り付け構造は、図11にシールド構造Fで示した如く、従来のシールド構造Aの最高温度上昇に比べて、47%程度に低減される。このため、この例においても実施例1と同様な効果が達成できる。   If it does in this way, since both surfaces of the shield sub-plate material 20c of the nonmagnetic shield 20 become the heat radiating surfaces in contact with the insulating oil 9, the nonmagnetic shield can be efficiently cooled with a simple structure. As a result, the attachment structure of the nonmagnetic shield 20 in FIG. 8 is reduced to about 47% as compared with the maximum temperature rise of the conventional shield structure A as shown by the shield structure F in FIG. For this reason, also in this example, the same effect as Example 1 can be achieved.

1…容器、2…鉄心、3…上部締付金具、4a…高圧側巻線、4b…低圧側巻線、5…下部締付金具、5a…奥面部材、5b…底面部材、5c…前面部材、5d…上面部材、8…下部支持絶縁物、9…絶縁油、10…絶縁油流路、12…通油孔、20…非磁性体シールド、20a…シールド主板材、20b、20c…シールド副板材。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Iron core, 3 ... Upper clamping metal fitting, 4a ... High voltage side winding, 4b ... Low voltage side winding, 5 ... Lower clamping metal fitting, 5a ... Back surface member, 5b ... Bottom member, 5c ... Front Members, 5d ... upper surface member, 8 ... lower support insulator, 9 ... insulating oil, 10 ... insulating oil flow path, 12 ... oil passage hole, 20 ... non-magnetic shield, 20a ... shield main plate material, 20b, 20c ... shield Sub board material.

Claims (3)

鉄心脚部及び上下の鉄心継鉄部からなる鉄心と、前記各鉄心継鉄部に配置した上部締付金具と下部締付金具と、前記鉄心の鉄心脚部に巻装された高圧側巻線と低圧側巻線と、前記各巻線と前記上部締付金具及び前記下部締付金具の間に配置される支持絶縁物と、タンクを有し、前記下部締付金具は奥面部材と底面部材と前面部材と上面部材とにより絶縁油流路を有する箱状に構成すると共に、前記上面部材には通油孔を形成し、前記下部締付金具と前記下部支持絶縁物の間に非磁性体シールドを配置した静止誘導電器において、前記非磁性体シールドは、前記下部締付金具の上面部材と同じ平板状にして取り付けると共に、平板状の一部を上記下部締付金具の上面部材面と交差する方向に伸張させて構成したことを特徴とする静止誘導電器。   An iron core composed of an iron core leg part and upper and lower iron core yoke parts, upper and lower fastening metal parts arranged in each iron core yoke part, and a high-voltage side winding wound around the iron core leg part of the iron core And a low-voltage side winding, a support insulator disposed between each of the windings, the upper fastening bracket and the lower fastening bracket, and a tank, and the lower fastening bracket includes a back member and a bottom member. And a front member and an upper surface member to form a box shape having an insulating oil flow path, an oil passage hole is formed in the upper surface member, and a non-magnetic material is provided between the lower clamp fitting and the lower support insulator. In the static induction appliance in which the shield is disposed, the nonmagnetic shield is attached in the same flat plate shape as the upper surface member of the lower clamp, and a part of the flat plate intersects with the upper member surface of the lower clamp. A static induction machine characterized by being configured to extend in the direction of movement. 請求項1において、前記非磁性体シールドは、上面部材と交差する方向の伸張させる部分の厚みを、下部締付金具と下部支持絶縁物との間に取り付ける部分の厚みと異ならせて構成したことを特徴とする静止誘導電器。   2. The non-magnetic shield according to claim 1, wherein a thickness of a portion to be extended in a direction intersecting with the upper surface member is made different from a thickness of a portion attached between the lower clamp fitting and the lower support insulator. Static induction electric machine characterized by. 請求項2又は3において、前記非磁性体シールドは、上面部材と交差する方向に伸張させる部分を、前記下部締付金具の絶縁油流路内に突出させて構成したことを特徴とする静止誘導電器。   4. The static induction according to claim 2, wherein the non-magnetic shield is configured such that a portion that extends in a direction intersecting the upper surface member protrudes into the insulating oil flow path of the lower fastening bracket. Electricity.
JP2011208814A 2011-09-26 2011-09-26 Static induction machine Active JP5682892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208814A JP5682892B2 (en) 2011-09-26 2011-09-26 Static induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208814A JP5682892B2 (en) 2011-09-26 2011-09-26 Static induction machine

Publications (2)

Publication Number Publication Date
JP2013069973A true JP2013069973A (en) 2013-04-18
JP5682892B2 JP5682892B2 (en) 2015-03-11

Family

ID=48475281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208814A Active JP5682892B2 (en) 2011-09-26 2011-09-26 Static induction machine

Country Status (1)

Country Link
JP (1) JP5682892B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146935U (en) * 1985-03-04 1986-09-10
JPH0426512U (en) * 1990-06-26 1992-03-03
JPH0799126A (en) * 1993-09-28 1995-04-11 Hitachi Ltd Stationary inducing electric device
JPH07106164A (en) * 1993-10-06 1995-04-21 Meidensha Corp Neutral point reactor
JPH07335454A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Stationary induction electrical equipment
JP2009076534A (en) * 2007-09-19 2009-04-09 Japan Ae Power Systems Corp Stationary induction apparatus
JP2009272522A (en) * 2008-05-09 2009-11-19 Japan Ae Power Systems Corp Three-phase transformer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146935U (en) * 1985-03-04 1986-09-10
JPH0426512U (en) * 1990-06-26 1992-03-03
JPH0799126A (en) * 1993-09-28 1995-04-11 Hitachi Ltd Stationary inducing electric device
JPH07106164A (en) * 1993-10-06 1995-04-21 Meidensha Corp Neutral point reactor
JPH07335454A (en) * 1994-06-14 1995-12-22 Hitachi Ltd Stationary induction electrical equipment
JP2009076534A (en) * 2007-09-19 2009-04-09 Japan Ae Power Systems Corp Stationary induction apparatus
JP2009272522A (en) * 2008-05-09 2009-11-19 Japan Ae Power Systems Corp Three-phase transformer

Also Published As

Publication number Publication date
JP5682892B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5333294B2 (en) Assembly of induction equipment
KR101764505B1 (en) Power transformer
TWI595517B (en) Ground induction electrical appliances
JP2010171313A (en) Stationary induction electrical apparatus
JP6158579B2 (en) Static induction machine
JP2008177325A (en) Stationary induction apparatus
JP3646595B2 (en) Static induction machine
JP7298199B2 (en) static induction electric machine
JP2012028642A (en) Transformer
JP5682892B2 (en) Static induction machine
JP2011023488A (en) Stationary induction apparatus
JPH11345724A (en) Magnetic leakage type high-frequency transformer and inverter circuit using the same
JP3713172B2 (en) Static induction machine
JP2006294787A (en) Reactor
JP2008041929A (en) Stationary induction electric appliance
JP2018107224A (en) Stationary induction electric apparatus
JP2013065701A (en) Static apparatus
CN112635177A (en) Transformer magnetic leakage shielding system and transformer
JP6739359B2 (en) Transformer
JP2018107325A (en) Reactor
WO2019044835A1 (en) Heat-sink-mounted inductor
JP2009088084A (en) Stationary induction apparatus
JP2008258339A (en) Static induction electrical apparatus
JPH11283848A (en) Stationary induction electric equipment
JP2008103416A (en) Stationary inductive electric apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5682892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150