JP2013069549A - Bipolar battery - Google Patents

Bipolar battery Download PDF

Info

Publication number
JP2013069549A
JP2013069549A JP2011207381A JP2011207381A JP2013069549A JP 2013069549 A JP2013069549 A JP 2013069549A JP 2011207381 A JP2011207381 A JP 2011207381A JP 2011207381 A JP2011207381 A JP 2011207381A JP 2013069549 A JP2013069549 A JP 2013069549A
Authority
JP
Japan
Prior art keywords
resin layer
metal layer
layered portion
bipolar
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011207381A
Other languages
Japanese (ja)
Other versions
JP5790368B2 (en
Inventor
Norihisa Waki
憲尚 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011207381A priority Critical patent/JP5790368B2/en
Publication of JP2013069549A publication Critical patent/JP2013069549A/en
Application granted granted Critical
Publication of JP5790368B2 publication Critical patent/JP5790368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent an occurrence of an abnormal condition of a battery due to internal short circuit.SOLUTION: A bipolar battery comprises: an outer packaging body (30); and a power generation element (10) housed in the outer packaging body, while the power generation element comprises: a bipolar electrode (11); and an electrolyte layer (12) which are laminated. In the bipolar battery, the bipolar electrode (11) comprises: a positive electrode (42); a negative electrode (43); and a collector (41) arranged between the positive electrode and the negative electrode. The collector (41) comprises: a first layered part (41a); and a second layered part (41b) which can be spatially separated each other in the lamination direction.

Description

本発明は、双極型の電極を有する双極型電池に関する。   The present invention relates to a bipolar battery having a bipolar electrode.

特許文献1の従来技術において、電池の軽量化のために、集電体の一部が樹脂層になっている。そして、樹脂層のみでは、イオンに対するバリア性が充分でないため、集電体において金属層が両側の樹脂層の中間に配置され、集電体の劣化が抑制できる。   In the prior art of Patent Document 1, a part of the current collector is a resin layer in order to reduce the weight of the battery. Since the barrier property against ions is not sufficient with only the resin layer, the metal layer is arranged in the middle of the resin layers on both sides of the current collector, and the deterioration of the current collector can be suppressed.

特開2010−92664号公報JP 2010-92664 A

しかし、内部短絡等の異常時には、電気抵抗の低い金属層が集電体に存在するために、短絡が生じた短絡部に電流が集中し、電池の発熱等の異常な状態が生じる。   However, in the event of an abnormality such as an internal short circuit, a metal layer having a low electrical resistance is present in the current collector, so that current concentrates on the short circuit part where the short circuit has occurred and an abnormal state such as heat generation of the battery occurs.

本発明は、このような従来の問題点に着目してなされたものであり、内部短絡によって電池の異常な状態が生じること防止することを目的とする。   The present invention has been made paying attention to such a conventional problem, and an object thereof is to prevent an abnormal state of a battery from being caused by an internal short circuit.

本発明のある態様に係る双極型電池は、外装体と前記外装体に収容された発電要素とを含み、前記発電要素は積層された双極型電極と電解質層とを備える。前記双極型電極は、正極と、負極と、前記正極と前記負極との間に配置される集電体と、を備える。前記集電体は、前記積層方向において空間的に離れ得る第一の層状部分と第二の層状部分を備える。   A bipolar battery according to an aspect of the present invention includes an exterior body and a power generation element accommodated in the exterior body, and the power generation element includes a stacked bipolar electrode and an electrolyte layer. The bipolar electrode includes a positive electrode, a negative electrode, and a current collector disposed between the positive electrode and the negative electrode. The current collector includes a first layered portion and a second layered portion that can be spatially separated in the stacking direction.

本発明によれば、短絡電流が抑制され、内部短絡によって電池の異常な状態が生じること防止できる。   According to the present invention, the short-circuit current is suppressed, and an abnormal state of the battery can be prevented from being caused by the internal short circuit.

各実施形態に係る双極型電池を示す縦断面図である。It is a longitudinal cross-sectional view which shows the bipolar battery which concerns on each embodiment. 第一実施形態に係る発電要素(積層体)の通常時の一部断面図である。It is a partial cross section figure at the normal time of the electric power generation element (laminated body) which concerns on 1st embodiment. 第一実施形態に係る発電要素(積層体)の異常時の一部断面図である。It is a partial cross section figure at the time of abnormality of the electric power generation element (laminated body) which concerns on 1st embodiment. 従来技術に係る発電要素の異常時の短絡電流の流れと等価回路を示す一部断面図である。It is a partial cross section figure which shows the flow of the short circuit current at the time of abnormality of the electric power generation element which concerns on a prior art, and an equivalent circuit. 第一実施形態に係る発電要素の異常時の短絡電流の流れと等価回路を示す一部断面図である。なお、等価回路において、電気抵抗が大きい場合にその抵抗の記号は大きく示されている。It is a partial cross section figure which shows the flow of the short circuit current at the time of abnormality of the electric power generation element which concerns on 1st embodiment, and an equivalent circuit. In the equivalent circuit, when the electrical resistance is large, the symbol of the resistance is greatly shown. 第二実施形態に係る発電要素の異常時の一部断面図である。It is a partial cross section figure at the time of abnormality of the electric power generation element which concerns on 2nd embodiment. 第二実施形態に係る発電要素の異常時の短絡電流の流れと等価回路を示す一部断面図である。なお、等価回路において、電気抵抗が大きい場合にその抵抗の記号は大きく示されている。It is a partial cross section figure which shows the flow of the short circuit current at the time of abnormality of the electric power generation element which concerns on 2nd embodiment, and an equivalent circuit. In the equivalent circuit, when the electrical resistance is large, the symbol of the resistance is greatly shown. 第三実施形態に係る発電要素の異常時の一部断面図である。It is a partial cross section figure at the time of abnormality of the electric power generation element which concerns on 3rd embodiment. 第三実施形態に係る発電要素の異常時の短絡電流の流れと等価回路を示す一部断面図である。なお、等価回路において、電気抵抗が大きい場合にその抵抗の記号は大きく示されている。It is a partial cross section figure which shows the flow of the short circuit current at the time of abnormality of the electric power generation element which concerns on 3rd embodiment, and an equivalent circuit. In the equivalent circuit, when the electrical resistance is large, the symbol of the resistance is greatly shown. 第三実施形態に係る集電体の第一の金属層と第二の金属層の間の面圧と電気抵抗(接触抵抗)の関係を示す。The relationship between the surface pressure and the electrical resistance (contact resistance) between the 1st metal layer and 2nd metal layer of the electrical power collector which concern on 3rd embodiment is shown. 比較例に係る双極型電池の構造を示す一部断面図である。It is a partial cross section figure which shows the structure of the bipolar battery which concerns on a comparative example. 第三実施形態と比較例の充放電時(通常時)の電池内部抵抗を示す図である。It is a figure which shows battery internal resistance at the time of charging / discharging (normal time) of 3rd embodiment and a comparative example.

以下では図面を参照して本発明を実施するための形態について、さらに詳しく説明する。   Hereinafter, embodiments for carrying out the present invention will be described in more detail with reference to the drawings.

<第一実施形態>
図1は、各実施形態に係る双極型電池を示す縦断面図である。双極型電池1は、発電を行う発電要素10と、電池外部との電流の入出力を行う端子である電極タブ20と、発電要素10を収容する外装体(ケース)30と、を含む。発電要素10は、双極型電極11と、隣り合う双極型電極11の間に配置される電解質層(セパレータ)12と、シール13と、を含む。発電要素10は、複数の双極型電極11と複数の電解質層12が積層された積層体である。以下、双極型電池1がリチウムイオン電池である場合を説明するが、他の種類の電池でもよい。
<First embodiment>
FIG. 1 is a longitudinal sectional view showing a bipolar battery according to each embodiment. The bipolar battery 1 includes a power generation element 10 that generates power, an electrode tab 20 that is a terminal that inputs and outputs current from the outside of the battery, and an exterior body (case) 30 that houses the power generation element 10. The power generation element 10 includes a bipolar electrode 11, an electrolyte layer (separator) 12 disposed between adjacent bipolar electrodes 11, and a seal 13. The power generation element 10 is a laminated body in which a plurality of bipolar electrodes 11 and a plurality of electrolyte layers 12 are laminated. Hereinafter, although the case where the bipolar battery 1 is a lithium ion battery will be described, other types of batteries may be used.

双極型電極11は、集電体41と、正極42と、負極43と、を含む。正極42は、集電体41の片側の面(図1では上面)に形成される。負極43は、集電体41の反対側の面(図1では下面)に形成される。従って、集電体41は、正極42と負極43との間に配置される。通常、正極42と負極43は、塗工によって集電体41の面上に形成される。正極42は、充電時にイオン(ここではリチウムイオン)を放出し放電時にイオンを吸蔵する材料を正極活物質として含む。負極43は、充電時にイオン(ここではリチウムイオン)を吸蔵し放電時にイオンを放出する材料を負極活物質として含む。イオンの種類は、特に限定されない。   The bipolar electrode 11 includes a current collector 41, a positive electrode 42, and a negative electrode 43. The positive electrode 42 is formed on one surface (the upper surface in FIG. 1) of the current collector 41. The negative electrode 43 is formed on the opposite surface of the current collector 41 (the lower surface in FIG. 1). Therefore, the current collector 41 is disposed between the positive electrode 42 and the negative electrode 43. Usually, the positive electrode 42 and the negative electrode 43 are formed on the surface of the current collector 41 by coating. The positive electrode 42 includes, as a positive electrode active material, a material that releases ions (here, lithium ions) during charging and occludes ions during discharging. The negative electrode 43 includes, as a negative electrode active material, a material that occludes ions (here, lithium ions) during charge and releases ions during discharge. The kind of ion is not particularly limited.

正極活物質の例としては、遷移金属とリチウムとの複合酸化物であるリチウム−遷移金属複合酸化物が挙げられる。具体的には、LiCoOなどのLi・Co系複合酸化物、LiNiOなどのLi・Ni系複合酸化物、スピネルLiMnなどのLi・Mn系複合酸化物、LiFeOなどのLi・Fe系複合酸化物およびこれらの遷移金属の一部を他の元素により置換したものなどである。このような正極活物質は、単独で使用されても、2種以上の混合物で使用されてもよい。 An example of the positive electrode active material is a lithium-transition metal composite oxide that is a composite oxide of a transition metal and lithium. Specifically, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, Li · such LiFeO 2 Fe-based composite oxides and those obtained by replacing some of these transition metals with other elements. Such a positive electrode active material may be used alone or in a mixture of two or more.

負極活物質の例としては、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料など、SiやSnなどの金属、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物が挙げられる。 Examples of the negative electrode active material include carbon materials such as natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, or hard carbon, metals such as Si and Sn, TiO, Ti 2 O 3 , TiO 2 , or metal oxides such as SiO 2 , SiO, SnO 2 , and composite oxides of lithium and transition metals such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN.

電解質層12は、例えば、電解液を保持する微多孔性のセパレータである。セパレータの例として、ポリエチレン樹脂やポリプロピレン樹脂を材料とする微多孔性の樹脂膜が挙げられる。電解質層12は、片側の面において正極42に接し、正極42と反対側の面において負極43に接する。電解液は、非水系の電解液であり、有機液体溶媒にリチウム塩の溶質を溶かしたものである。例えば、電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を混合した溶媒に、リチウム塩としてLiPFを溶解させたものが用いられてよい。 The electrolyte layer 12 is, for example, a microporous separator that holds an electrolytic solution. Examples of the separator include a microporous resin film made of polyethylene resin or polypropylene resin. The electrolyte layer 12 is in contact with the positive electrode 42 on one surface, and is in contact with the negative electrode 43 on the surface opposite to the positive electrode 42. The electrolytic solution is a nonaqueous electrolytic solution in which a solute of lithium salt is dissolved in an organic liquid solvent. For example, an electrolytic solution obtained by dissolving LiPF 6 as a lithium salt in a solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) may be used.

シール13は、上下の集電体41の間であって、正極42、負極43及び電解質層12の周囲に配置される。シール13は、集電体同士の接触や単電池層の端部における短絡を防止する。シール13の材料は、例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム、ナイロン樹脂等が挙げられる。   The seal 13 is disposed between the upper and lower current collectors 41 and around the positive electrode 42, the negative electrode 43, and the electrolyte layer 12. The seal 13 prevents contact between the current collectors and a short circuit at the end of the unit cell layer. Examples of the material of the seal 13 include acrylic resin, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber, nylon resin, and the like.

電極タブ20は、発電要素(積層体)10に当接する金属部21を含む。金属部21は、外力が作用するか否かによって変形可能な弾性部材であってもよい。電極タブ20の一端は、外装体30の外部に露出する。電極タブ20は、たとえば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金などで形成される。正極の電極タブ20及び負極の電極タブ20は、同一の材質であっても、異なる材質であってもよい。さらに材質の異なるものを多層に積層したものであってもよい。   The electrode tab 20 includes a metal portion 21 that abuts against the power generation element (laminated body) 10. The metal part 21 may be an elastic member that can be deformed depending on whether an external force is applied. One end of the electrode tab 20 is exposed to the outside of the exterior body 30. The electrode tab 20 is formed of, for example, aluminum, copper, titanium, nickel, stainless steel (SUS), or an alloy thereof. The positive electrode tab 20 and the negative electrode tab 20 may be made of the same material or different materials. Further, different materials may be laminated in multiple layers.

外装体30は、発電要素10を収容する。外装体30は、柔軟で変形可能である。外装体30の材料は、種々考えられるが、たとえば、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)を、ポリプロピレンフィルムで被覆した高分子−金属複合ラミネートフィルムのシート材である。外装体30は、発電要素10を収容した後、周囲が熱融着にて接合される。図1に示された組み立てられた状態では、外装体30の内部は、大気圧よりも低く、ほぼ真空である。   The exterior body 30 houses the power generation element 10. The exterior body 30 is flexible and deformable. Various materials can be considered for the outer package 30. For example, the outer package 30 is a sheet material of a polymer-metal composite laminate film in which a metal (including an alloy) such as aluminum, stainless steel, nickel, or copper is covered with a polypropylene film. After housing the power generating element 10, the exterior body 30 is joined to the periphery by thermal fusion. In the assembled state shown in FIG. 1, the interior of the exterior body 30 is lower than atmospheric pressure and is almost vacuum.

外装体30は、内部気圧が大気圧よりも低い状態、たとえばほぼ真空状態で密封されるため、外装体30には、外装体30の外部と内部との差圧(大気圧)が作用する。このため、双極型電池1の通常状態で、外装体30は、電極タブ20の金属部21を介して発電要素10に外力を付加して、積層方向最外面において発電要素10を押圧する。   Since the exterior body 30 is sealed in a state where the internal pressure is lower than the atmospheric pressure, for example, in a substantially vacuum state, a differential pressure (atmospheric pressure) between the outside and the inside of the exterior body 30 acts on the exterior body 30. For this reason, in the normal state of the bipolar battery 1, the exterior body 30 applies an external force to the power generation element 10 via the metal portion 21 of the electrode tab 20 and presses the power generation element 10 on the outermost surface in the stacking direction.

以下に、図2と図3を参照して本実施形態の特徴である集電体41の構成について説明する。   The configuration of the current collector 41, which is a feature of this embodiment, will be described below with reference to FIGS.

図2は、発電要素(積層体)10の一部断面図を示す。集電体41は、導電性を有する第一の樹脂層101と、導電性を有する第二の樹脂層102と、第一の樹脂層101と第二の樹脂層102との間に配置される金属層103とを備える。第一の樹脂層101は、双極型電極11の正極42に接する。本実施形態では、正極42の第一の樹脂層101への塗工によって、第一の樹脂層101と正極42は接合している。第二の樹脂層102は、双極型電極11の負極43に接する。本実施形態では、負極43の第二の樹脂層102への塗工によって、第二の樹脂層102と負極43は接合している。   FIG. 2 is a partial cross-sectional view of the power generation element (laminated body) 10. The current collector 41 is disposed between the first resin layer 101 having conductivity, the second resin layer 102 having conductivity, and the first resin layer 101 and the second resin layer 102. A metal layer 103. The first resin layer 101 is in contact with the positive electrode 42 of the bipolar electrode 11. In the present embodiment, the first resin layer 101 and the positive electrode 42 are joined by applying the positive electrode 42 to the first resin layer 101. The second resin layer 102 is in contact with the negative electrode 43 of the bipolar electrode 11. In the present embodiment, the second resin layer 102 and the negative electrode 43 are joined by applying the negative electrode 43 to the second resin layer 102.

第一の樹脂層101と第二の樹脂層102は、導電性フィラー(金属成分)が添加された樹脂を用いて形成されている。本実施形態では、第一の樹脂層101を構成する樹脂として、ポリイミドが使用され、第二の樹脂層102を構成する樹脂として、ポリオレフィンが使用される。第一の樹脂層101と第二の樹脂層102は、導電性フィラー(金属成分)を添加せず、導電性高分子樹脂で形成されてもよい。   The first resin layer 101 and the second resin layer 102 are formed using a resin to which a conductive filler (metal component) is added. In the present embodiment, polyimide is used as the resin constituting the first resin layer 101, and polyolefin is used as the resin constituting the second resin layer 102. The first resin layer 101 and the second resin layer 102 may be formed of a conductive polymer resin without adding a conductive filler (metal component).

上記の導電性フィラーとして、導電性カーボンや、銀やアルミニウムなどの金属またはその合金からなる金属フィラーが挙げられる。または、導電性フィラーとして、樹脂等の非導電性フィラーの表面を銀やアルミニウムなどの金属やその合金で被覆したフィラー等が挙げられる。   Examples of the conductive filler include conductive carbon, a metal filler made of a metal such as silver or aluminum, or an alloy thereof. Alternatively, examples of the conductive filler include a filler in which the surface of a non-conductive filler such as a resin is coated with a metal such as silver or aluminum or an alloy thereof.

図3のように、集電体41は、積層方向において空間的に互いに離れるように移動できる第一の層状部分41a(第一の板状部分)と第二の層状部分41b(第二の板状部分)とを備える。第一の層状部分41aは、第一の樹脂層101とこれに接合した金属層103から構成される。第二の層状部分41bは、第二の樹脂層102から構成される。   As shown in FIG. 3, the current collector 41 includes a first layered portion 41a (first plate-like portion) and a second layered portion 41b (second plate) that can move spatially away from each other in the stacking direction. Shaped portion). The first layered portion 41a is composed of a first resin layer 101 and a metal layer 103 bonded thereto. The second layered portion 41 b is composed of the second resin layer 102.

金属層103は、第一の樹脂層101上において正極42が形成された面とは反対側の面上で、金属(ここでは銅)のスパッタや蒸着などによって形成される。従って、第一の樹脂層101と金属層103は、物理的及び/又は化学的に接合されている。なお、金属層103の材料としては、安価で導電性の良い銅が使用されるが、他の金属(アルミニウムなど)が使用されてもよい。第二の樹脂層102は、形成してから金属層103に、負極43と反対側で重ねているだけであり、第二の樹脂層102と金属層103に物理的及び/又は化学的に接合されていない。従って、第一の層状部分41aと第二の層状部分41bは、金属層103と第二の樹脂層102との間で空間的に分離されて隙間を生じ、互いに非接触とすることができる。なお、図3は、異常時の集電体41の構成を示し、通常時において、金属層103と第二の樹脂層102は接している。   The metal layer 103 is formed by sputtering or vapor deposition of metal (here, copper) on the surface opposite to the surface on which the positive electrode 42 is formed on the first resin layer 101. Therefore, the first resin layer 101 and the metal layer 103 are physically and / or chemically bonded. In addition, as a material of the metal layer 103, inexpensive and highly conductive copper is used, but other metals (such as aluminum) may be used. The second resin layer 102 is only formed on the metal layer 103 on the side opposite to the negative electrode 43 after being formed, and is physically and / or chemically bonded to the second resin layer 102 and the metal layer 103. It has not been. Therefore, the first layered portion 41a and the second layered portion 41b are spatially separated between the metal layer 103 and the second resin layer 102 to form a gap, and can be made out of contact with each other. FIG. 3 shows the configuration of the current collector 41 at the time of abnormality, and the metal layer 103 and the second resin layer 102 are in contact with each other in a normal state.

外装体30の破損などの原因で外装体30の内部の圧力が増加する異常時において、外装体30の外部と内部との差圧が減少して、外装体30から発電要素10に加わる積層方向の外力が減少する。この場合、金属層103と第二の樹脂層102が空間的に分離され(非接触となり)、これらの間で隙間を生じ得る。特に、外装体30の内部の真空が破れて差圧がゼロになった場合、外装体30は膨張するため、金属層103と第二の樹脂層102は、空間的に離れ得る。   The stacking direction in which the differential pressure between the outside and inside of the exterior body 30 decreases and the power applied to the power generation element 10 from the exterior body 30 when there is an abnormality in which the pressure inside the exterior body 30 increases due to damage to the exterior body 30 or the like. The external force decreases. In this case, the metal layer 103 and the second resin layer 102 are spatially separated (not in contact), and a gap may be generated between them. In particular, when the vacuum inside the exterior body 30 is broken and the differential pressure becomes zero, the exterior body 30 expands, so that the metal layer 103 and the second resin layer 102 can be spatially separated.

樹脂層が変形して浮き上がる可能性を考慮して、外装体30の内部の真空が解除された後に、外装体30のサイズ(特に積層方向の長さ)は、発電要素10のサイズ(特に積層方向の長さ)よりも大きくなるようにしてよい。そうすれば、第一の層状部分41a(金属層103)と第二の層状部分41bの接触が外れやすくなる。また、外装体30と、電極タブ20の金属部21と、発電要素10とが、接合又は接着している場合には、外装体30が膨張すると、発電要素10の最外面が外装体30から引っ張られて、さらに第一の層状部分41a(金属層103)と第二の層状部分41bの接触が外れやすくなる。   In consideration of the possibility that the resin layer may be deformed and lifted, the size of the exterior body 30 (particularly the length in the stacking direction) is the size of the power generation element 10 (particularly the stacking direction) after the vacuum inside the exterior body 30 is released. (Length in the direction) may be larger. If it does so, it will become easy to remove | deviate the contact of the 1st layered part 41a (metal layer 103) and the 2nd layered part 41b. Further, when the exterior body 30, the metal portion 21 of the electrode tab 20, and the power generation element 10 are bonded or bonded, when the exterior body 30 expands, the outermost surface of the power generation element 10 is separated from the exterior body 30. By being pulled, the contact between the first layered portion 41a (metal layer 103) and the second layered portion 41b is easily released.

−作用効果−
以下に、本実施形態の作用効果をまとめて説明する。双極型電池1に内部短絡が生じる典型的な例は、双極型電池1に導電性を有する金属製の釘200が刺さる場合である。この場合、従来技術の構成では、集電体41において、第一の層状部分41a(金属層103)と第二の層状部分41b(第二の樹脂層102)が接合されており離れないため、異常時に図4のように短絡電流が流れて、電池は発熱する。
-Effect-
Below, the effect of this embodiment is demonstrated collectively. A typical example in which an internal short circuit occurs in the bipolar battery 1 is a case where a metallic nail 200 having conductivity is pierced into the bipolar battery 1. In this case, in the configuration of the conventional technique, in the current collector 41, the first layered portion 41a (metal layer 103) and the second layered portion 41b (second resin layer 102) are joined and not separated. When an abnormality occurs, a short-circuit current flows as shown in FIG. 4, and the battery generates heat.

しかし、本実施形態では、双極型電極11を構成する集電体41は、外装体30の内部の圧力が増加した場合に、積層方向において空間的に離れ得る第一の層状部分41aと第二の層状部分42bを備える。従って、図5のように、外装体30の破損などの原因で外装体30の内部の圧力が増加した場合に、集電体41において、第一の層状部分41aと第二の層状部分42bの間で接触抵抗(電気抵抗)が増加する。そして、内部短絡の短絡電流が大幅に減少して、電池の発熱等の異常な状態が生じることが防止できる。   However, in the present embodiment, the current collector 41 constituting the bipolar electrode 11 includes the first layered portion 41a and the second layered portion 41a that can be spatially separated in the stacking direction when the pressure inside the exterior body 30 increases. The layered portion 42b is provided. Therefore, as shown in FIG. 5, when the pressure inside the exterior body 30 increases due to damage to the exterior body 30, in the current collector 41, the first layered portion 41 a and the second layered portion 42 b Between them, the contact resistance (electrical resistance) increases. And it can prevent that the short circuit current of an internal short circuit reduces significantly, and abnormal states, such as heat_generation | fever of a battery, arise.

集電体41の第一の層状部分41aは、双極型電極11の正極42に接した導電性の第一の樹脂層101を備え、集電体の第二の層状部分41bは、双極型電極11の負極43に接した第二の樹脂層102を備える。そして、外装体30の内部の圧力が増加した場合に、第一の樹脂層101と第二の樹脂層102は積層方向において空間的に離れるよう移動する。この場合、第一の樹脂層101と第二の樹脂層102の間の電気抵抗が増大して、短絡電流を大幅に抑制でき、簡便に短絡電流によって電池の発熱等の異常な状態が生じることが防止できる。   The first layered portion 41a of the current collector 41 includes a conductive first resin layer 101 in contact with the positive electrode 42 of the bipolar electrode 11, and the second layered portion 41b of the current collector is a bipolar electrode. The second resin layer 102 is in contact with the negative electrode 43 of the eleventh electrode. And when the pressure inside the exterior body 30 increases, the 1st resin layer 101 and the 2nd resin layer 102 move so that it may space apart in the lamination direction. In this case, the electrical resistance between the first resin layer 101 and the second resin layer 102 is increased, so that the short circuit current can be significantly suppressed, and an abnormal state such as heat generation of the battery is easily caused by the short circuit current. Can be prevented.

集電体41の第一の層状部分41aは、第一の樹脂層101とこれに接合した金属層103を備える。第一の層状部分41aの金属層103と、第二の層状部分41bの第二の樹脂層102とが、積層方向において空間的に離れ得る。外装体30の内部の圧力が増加する異常時には、容易に、対向した正極42と負極43の絶縁が可能になり、短絡電流を抑制できる。なお、金属層103は銅から形成される場合、通常時の内部抵抗を小さく押さえることができ、かつ電池の低コスト化が可能となる。   The first layered portion 41a of the current collector 41 includes a first resin layer 101 and a metal layer 103 bonded thereto. The metal layer 103 of the first layered portion 41a and the second resin layer 102 of the second layered portion 41b can be spatially separated in the stacking direction. At the time of an abnormality in which the pressure inside the exterior body 30 increases, the opposing positive electrode 42 and negative electrode 43 can be easily insulated, and a short-circuit current can be suppressed. When the metal layer 103 is made of copper, the internal resistance during normal operation can be kept small, and the cost of the battery can be reduced.

<第二実施形態>
以下に、図6を参照して第二実施形態の特徴である集電体41の構成について説明する。第一実施形態と同じく、集電体41は、積層方向において空間的に互いに離れるように移動できる第一の層状部分41aと第二の層状部分41bとを備える。しかし、第一実施形態と異なり、第一の層状部分41aは、第一の樹脂層101から構成される。第二の層状部分41bは、第二の樹脂層102とこれに接合した金属層103から構成される。他の構成は、第一実施形態と同じであり、説明を省略する。
<Second embodiment>
Below, with reference to FIG. 6, the structure of the electrical power collector 41 which is the characteristics of 2nd embodiment is demonstrated. As in the first embodiment, the current collector 41 includes a first layered portion 41a and a second layered portion 41b that can move spatially away from each other in the stacking direction. However, unlike the first embodiment, the first layered portion 41 a is composed of the first resin layer 101. The second layered portion 41b is composed of a second resin layer 102 and a metal layer 103 bonded thereto. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

金属層103は、第二の樹脂層102上において負極43が形成された面とは反対側の面上で、金属(ここでは銅)のスパッタや蒸着などによって形成される。従って、第二の樹脂層102と金属層103は、物理的及び/又は化学的に接合されている。金属層103は、第一の樹脂層101と第二の樹脂層102との間に配置される。しかし、第一の樹脂層101は、形成してから金属層103に、正極42と反対側で重ねているだけであり、第一の樹脂層101と金属層103に物理的及び/又は化学的に接合されていない。従って、第一の層状部分41aと第二の層状部分41bは、金属層103と第一の樹脂層101との間で空間的に分離されて隙間を生じ、互いに非接触とすることができる。なお、図6は、異常時の集電体41の構成を示し、通常時において、金属層103と第一の樹脂層101は接している。   The metal layer 103 is formed on the second resin layer 102 on the surface opposite to the surface on which the negative electrode 43 is formed by sputtering or vapor deposition of metal (here, copper). Therefore, the second resin layer 102 and the metal layer 103 are physically and / or chemically joined. The metal layer 103 is disposed between the first resin layer 101 and the second resin layer 102. However, after the first resin layer 101 is formed, the first resin layer 101 is merely overlapped with the metal layer 103 on the side opposite to the positive electrode 42, and is physically and / or chemically overlapped with the first resin layer 101 and the metal layer 103. It is not joined to. Accordingly, the first layered portion 41a and the second layered portion 41b are spatially separated between the metal layer 103 and the first resin layer 101 to form a gap, and can be made non-contact with each other. FIG. 6 shows the configuration of the current collector 41 at the time of abnormality, and the metal layer 103 and the first resin layer 101 are in contact with each other at normal times.

外装体30の破損などの原因で外装体30の内部の圧力が増加した場合に、外装体30の外部と内部との差圧が減少して、外装体30から発電要素10に加わる積層方向の外力が減少する。この場合、金属層103と第一の樹脂層101は、空間的に分離され(非接触となり)、これらの間で隙間を生じ得る。特に、外装体30の内部の真空が破れて差圧がゼロになった場合、外装体30は膨張するため、金属層103と第一の樹脂層101は、空間的に離れ得る。   When the pressure inside the exterior body 30 increases due to damage to the exterior body 30 or the like, the differential pressure between the outside and inside of the exterior body 30 decreases, and the stacking direction applied from the exterior body 30 to the power generation element 10 increases. External force decreases. In this case, the metal layer 103 and the first resin layer 101 are spatially separated (not in contact), and a gap may be generated between them. In particular, when the vacuum inside the exterior body 30 is broken and the differential pressure becomes zero, the exterior body 30 expands, so that the metal layer 103 and the first resin layer 101 can be spatially separated.

第二実施形態によると、集電体41の第二の層状部分41bは、第二の樹脂層102とこれに接合した金属層103を備え、金属層103は、第一の樹脂層101と第二の樹脂層102の間に配置されている。そして、第二の層状部分41bの金属層103と、第一の層状部分41aの第一の樹脂層101とが、積層方向において空間的に離れ得る。このため、外装体30の内部の圧力が増加する異常時には、容易に、対向した正極42と負極43の絶縁が可能になり、短絡電流を抑制できる。   According to the second embodiment, the second layered portion 41b of the current collector 41 includes the second resin layer 102 and the metal layer 103 bonded thereto, and the metal layer 103 is formed with the first resin layer 101 and the first resin layer 101. It is disposed between the two resin layers 102. Then, the metal layer 103 of the second layered portion 41b and the first resin layer 101 of the first layered portion 41a can be spatially separated in the stacking direction. For this reason, when the pressure inside the exterior body 30 increases, it becomes possible to easily insulate the positive electrode 42 and the negative electrode 43 facing each other, and the short-circuit current can be suppressed.

<第三実施形態>
以下に、図8を参照して第三実施形態の特徴である集電体41の構成について説明する。第一実施形態と同じく、集電体41は、積層方向において空間的に互いに離れるように移動できる第一の層状部分41aと第二の層状部分41bとを備える。しかし、第一実施形態と異なり、第一の層状部分41aは、第一の樹脂層101とこれに接合した第一の金属層103から構成される。第二の層状部分41bは、第二の樹脂層102とこれに接合した第二の金属層104から構成される。第一の層状部分41aの第一の金属層103と、第二の層状部分41bの第二の金属層104は、第一の樹脂層101と第二の樹脂層102の間に配置され、積層方向において空間的に離れ得る。なお、図8は、異常時の集電体41の構成を示し、通常時において、第一の金属層103と第二の金属層104は接している。他の構成は、第一実施形態と同じであり、説明を省略する。
<Third embodiment>
Below, with reference to FIG. 8, the structure of the electrical power collector 41 which is the characteristics of 3rd embodiment is demonstrated. As in the first embodiment, the current collector 41 includes a first layered portion 41a and a second layered portion 41b that can move spatially away from each other in the stacking direction. However, unlike the first embodiment, the first layered portion 41a is composed of the first resin layer 101 and the first metal layer 103 bonded thereto. The second layered portion 41b includes a second resin layer 102 and a second metal layer 104 bonded thereto. The first metal layer 103 of the first layered portion 41a and the second metal layer 104 of the second layered portion 41b are disposed between the first resin layer 101 and the second resin layer 102 and laminated. Can be spatially separated in direction. FIG. 8 shows the configuration of the current collector 41 at the time of abnormality, and the first metal layer 103 and the second metal layer 104 are in contact with each other in a normal state. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

第一の金属層103は、第一の樹脂層101上において、正極42が形成された面と反対側の面上で、金属(ここでは銅)のスパッタや蒸着などによって形成され、第一の樹脂層101と金属層103は接合されている。第二の金属層104は、第二の樹脂層102上において、負極43が形成された面と反対側の面上で、金属(ここでは銅)のスパッタや蒸着などによって形成され、第二の樹脂層102と第二の金属層104は接合されている。しかし、第一の金属層103と第二の金属層104は、重ねているだけであり接合されていない。従って、第一の層状部分41aと第二の層状部分41bは、第一の金属層103と第二の金属層104との間で空間的に分離されて隙間を生じ、互いに非接触とすることができる。   The first metal layer 103 is formed on the surface of the first resin layer 101 opposite to the surface on which the positive electrode 42 is formed by sputtering or vapor deposition of metal (here, copper), The resin layer 101 and the metal layer 103 are joined. The second metal layer 104 is formed on the second resin layer 102 on the surface opposite to the surface on which the negative electrode 43 is formed by sputtering or vapor deposition of metal (here, copper). The resin layer 102 and the second metal layer 104 are joined. However, the first metal layer 103 and the second metal layer 104 only overlap and are not joined. Accordingly, the first layered portion 41a and the second layered portion 41b are spatially separated between the first metal layer 103 and the second metal layer 104 to form a gap and are not in contact with each other. Can do.

外装体30の破損などの原因で外装体30の内部の圧力が増加した場合に、外装体30の外部と内部との差圧が減少して、外装体30から発電要素10に加わる積層方向の外力が減少する。この場合、第一の金属層103と第二の金属層104は、空間的に分離され(非接触となり)、これらの間で隙間を生じ得る。特に、外装体30の内部の真空が破れて差圧がゼロになった場合、外装体30は膨張するため、第一の金属層103と第二の金属層104は空間的に離れ得る。   When the pressure inside the exterior body 30 increases due to damage to the exterior body 30 or the like, the differential pressure between the outside and inside of the exterior body 30 decreases, and the stacking direction applied from the exterior body 30 to the power generation element 10 increases. External force decreases. In this case, the first metal layer 103 and the second metal layer 104 are spatially separated (not in contact), and a gap may be generated between them. In particular, when the internal vacuum of the exterior body 30 is broken and the differential pressure becomes zero, the exterior body 30 expands, so that the first metal layer 103 and the second metal layer 104 can be spatially separated.

第三実施形態によると、集電体41の第一の層状部分41aは、第一の樹脂層101とこれに接合した第一の金属層103を備え、集電体41の第二の層状部分41bは、第二の樹脂層102とこれに接合した第二の金属層104を備える。そして、第一の層状部分の第一の金属層103と、第二の層状部分の第二の金属層104は、第一の樹脂層101と第二の樹脂層102の間に配置され、積層方向において空間的に離れ得る。従って、外装体30の内部の圧力が増加する異常時には、容易に、対向した正極42と負極43の絶縁が可能になり、短絡電流を抑制できる。   According to the third embodiment, the first layered portion 41 a of the current collector 41 includes the first resin layer 101 and the first metal layer 103 bonded thereto, and the second layered portion of the current collector 41. 41b is provided with the 2nd resin layer 102 and the 2nd metal layer 104 joined to this. The first metal layer 103 of the first layered portion and the second metal layer 104 of the second layered portion are disposed between the first resin layer 101 and the second resin layer 102 and laminated. Can be spatially separated in direction. Therefore, when the pressure inside the exterior body 30 increases, it becomes possible to easily insulate the positive electrode 42 and the negative electrode 43 facing each other and suppress a short-circuit current.

図10に、第三実施形態に係る集電体41の第一の金属層103と第二の金属層104との間に働く面圧と電気抵抗(接触抵抗)の関係を示す。外装体30の内部の圧力が増加した場合に、第一の層状部分41aの第一の金属層103と第二の層状部分41bの第二の金属層104が離れるように移動する。そして、第一の金属層103と第二の金属層104間で働く面圧が、通常時の圧力0.1Mpaから、異常時の0Mpaになると、電気抵抗(接触抵抗)は10倍以上に増加する。このように、外装体30の内部の真空が保持された通常時において、外装体30の内部と外部の差圧が大気圧相当の0.1Mpaであり、第一の金属層103と第二の金属層104は、面接触して電気抵抗が低く、充放電可能である。そして、外装体30の内部の真空が開放された異常時には、第一の金属層103と第二の金属層104の接触面積が小さくなり、電気抵抗が10倍以上に増加し、短絡電流が抑制される。   FIG. 10 shows the relationship between the surface pressure and the electrical resistance (contact resistance) acting between the first metal layer 103 and the second metal layer 104 of the current collector 41 according to the third embodiment. When the pressure inside the exterior body 30 increases, the first metal layer 103 of the first layered portion 41a moves away from the second metal layer 104 of the second layered portion 41b. When the surface pressure acting between the first metal layer 103 and the second metal layer 104 is changed from a normal pressure of 0.1 Mpa to an abnormal pressure of 0 Mpa, the electric resistance (contact resistance) increases by 10 times or more. To do. Thus, in a normal time when the vacuum inside the exterior body 30 is maintained, the differential pressure between the inside and the exterior of the exterior body 30 is 0.1 MPa corresponding to atmospheric pressure, and the first metal layer 103 and the second metal layer 103 The metal layer 104 is in surface contact and has low electrical resistance, and can be charged and discharged. When the vacuum inside the exterior body 30 is released, the contact area between the first metal layer 103 and the second metal layer 104 is reduced, the electrical resistance is increased 10 times or more, and the short circuit current is suppressed. Is done.

また、第三実施形態によると、第一の層状部分41aの第一の金属層103と、第二の層状部分41bの第二の金属層104は、外装体30の内部の真空が保持された通常時において、金属間の接触状態にある。このため、通常時においては、第一の金属層103と第二の金属層104の接触抵抗が小さく、内部抵抗を低く抑えることができる。   Further, according to the third embodiment, the first metal layer 103 of the first layered portion 41 a and the second metal layer 104 of the second layered portion 41 b are maintained in the vacuum inside the outer package 30. In a normal state, the metal is in contact. For this reason, in normal times, the contact resistance between the first metal layer 103 and the second metal layer 104 is small, and the internal resistance can be kept low.

図11に、比較例として、従来技術に係る双極型電池の構造を示す。図11の双極型電池は、第一実施形態の双極型電池1において、第二の樹脂層102と、第一の層状部分41aの金属層103がホットプレスで接合されたものに相当する。図12に、第三実施形態と比較例の充放電時(通常時)の電池内部抵抗を示す。第三実施形態と比較例の充放電時(通常時)の電池内部抵抗は同等である。このように、第三実施形態では、集電体41の金属層が物理的に分離した構造であっても、通常時において、双極型電池1の内部抵抗の増加を招くことがない。   FIG. 11 shows a structure of a bipolar battery according to the prior art as a comparative example. The bipolar battery of FIG. 11 corresponds to the bipolar battery 1 of the first embodiment in which the second resin layer 102 and the metal layer 103 of the first layered portion 41a are joined by hot pressing. FIG. 12 shows the battery internal resistance during charging / discharging (normal time) of the third embodiment and the comparative example. The battery internal resistance at the time of charging / discharging (normal time) of the third embodiment and the comparative example is the same. As described above, in the third embodiment, even if the metal layer of the current collector 41 is physically separated, the internal resistance of the bipolar battery 1 is not increased at normal times.

以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。   Without being limited to the embodiments described above, various modifications and changes are possible within the scope of the technical idea, and it is obvious that these are also included in the technical scope of the present invention.

例えば、第一の樹脂層101と第二の樹脂層102と金属層103を、第一、第二、第三の層状部分とし、集電体41は、互いに分離する第一、第二、第三の層状部分を備えてよい。金属層103をなくして、集電体41は、分離可能な第一の樹脂層101と第二の樹脂層102だけから構成してもよい。双極型電池はリチウムイオン電池以外の電池であっても、本発明を適用可能である。   For example, the first resin layer 101, the second resin layer 102, and the metal layer 103 are first, second, and third layered portions, and the current collector 41 is separated from each other. Three layered portions may be provided. Without the metal layer 103, the current collector 41 may be constituted only by the separable first resin layer 101 and second resin layer 102. Even if the bipolar battery is a battery other than the lithium ion battery, the present invention can be applied.

1 双極型電池
10 発電要素
11 双極型電極
12 電解質層(セパレータ)
13 シール
20 電極タブ
30 外装体(ケース)
41 集電体
41a 第一の層状部分
41b 第二の層状部分
42 正極
43 負極
101 第一の樹脂層
102 第二の樹脂層
103 金属層(第一の金属層)
104 第二の金属層
200 釘
DESCRIPTION OF SYMBOLS 1 Bipolar battery 10 Electric power generation element 11 Bipolar electrode 12 Electrolyte layer (separator)
13 Seal 20 Electrode Tab 30 Exterior Body (Case)
41 current collector 41a first layered portion 41b second layered portion 42 positive electrode
43 Negative electrode
101 First resin layer
102 Second resin layer
103 metal layer (first metal layer)
104 Second metal layer
200 nails

Claims (6)

外装体と前記外装体に収容された発電要素とを含み、前記発電要素は積層された双極型電極と電解質層とを備える双極型電池であって、
前記双極型電極は、正極と、負極と、前記正極と前記負極との間に配置される集電体と、を備え、
前記集電体は、前記積層方向において空間的に離れ得る第一の層状部分と第二の層状部分を備えることを特徴とする双極型電池。
A bipolar battery including an exterior body and a power generation element housed in the exterior body, the power generation element including a stacked bipolar electrode and an electrolyte layer,
The bipolar electrode comprises a positive electrode, a negative electrode, and a current collector disposed between the positive electrode and the negative electrode,
The bipolar battery according to claim 1, wherein the current collector includes a first layered portion and a second layered portion that can be spatially separated in the stacking direction.
前記集電体の前記第一の層状部分は、前記双極型電極の正極に接した導電性の前記第一の樹脂層を備え、
前記集電体の前記第二の層状部分は、前記双極型電極の負極に接した前記第二の樹脂層を備え、
前記第一の樹脂層と前記第二の樹脂層は前記積層方向において空間的に離れるよう移動できることを特徴とする請求項1に記載の双極型電池。
The first layered portion of the current collector includes the conductive first resin layer in contact with the positive electrode of the bipolar electrode,
The second layered portion of the current collector comprises the second resin layer in contact with the negative electrode of the bipolar electrode;
The bipolar battery according to claim 1, wherein the first resin layer and the second resin layer are movable so as to be spatially separated in the stacking direction.
前記集電体の前記第一の層状部分は、前記第一の樹脂層とこれに接合した金属層を備え、前記金属層は、前記第一の樹脂層と前記第二の樹脂層の間に配置され、
前記第一の層状部分の前記金属層と、前記第二の層状部分の前記第二の樹脂層とが、前記積層方向において空間的に離れ得ることを特徴とする請求項2に記載の双極型電池。
The first layered portion of the current collector includes the first resin layer and a metal layer bonded thereto, and the metal layer is interposed between the first resin layer and the second resin layer. Arranged,
The bipolar type according to claim 2, wherein the metal layer of the first layered portion and the second resin layer of the second layered portion can be spatially separated in the stacking direction. battery.
前記集電体の前記第二の層状部分は、前記第二の樹脂層とこれに接合した金属層を備え、前記金属層は、前記第一の樹脂層と前記第二の樹脂層の間に配置され、
前記第二の層状部分の前記金属層と、前記第一の層状部分の前記第一の樹脂層とが、前記積層方向において空間的に離れ得ることを特徴とする請求項2に記載の双極型電池。
The second layered portion of the current collector includes the second resin layer and a metal layer bonded thereto, and the metal layer is interposed between the first resin layer and the second resin layer. Arranged,
The bipolar type according to claim 2, wherein the metal layer of the second layered portion and the first resin layer of the first layered portion can be spatially separated in the stacking direction. battery.
前記集電体の前記第一の層状部分は、前記第一の樹脂層とこれに接合した第一の金属層を備え、
前記集電体の前記第二の層状部分は、前記第二の樹脂層とこれに接合した第二の金属層を備え、
前記第一の層状部分の前記第一の金属層と、前記第二の層状部分の前記第二の金属層は、前記第一の樹脂層と前記第二の樹脂層の間に配置され、前記積層方向において空間的に離れ得ることを特徴とする請求項2に記載の双極型電池。
The first layered portion of the current collector includes the first resin layer and a first metal layer bonded thereto,
The second layered portion of the current collector includes the second resin layer and a second metal layer bonded thereto,
The first metal layer of the first layered portion and the second metal layer of the second layered portion are disposed between the first resin layer and the second resin layer, The bipolar battery according to claim 2, wherein the bipolar battery can be spatially separated in the stacking direction.
前記金属層は、銅から形成されることを特徴とする請求項3から5のいずれか一つに記載の双極型電池。   The bipolar battery according to claim 3, wherein the metal layer is made of copper.
JP2011207381A 2011-09-22 2011-09-22 Bipolar battery Active JP5790368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011207381A JP5790368B2 (en) 2011-09-22 2011-09-22 Bipolar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207381A JP5790368B2 (en) 2011-09-22 2011-09-22 Bipolar battery

Publications (2)

Publication Number Publication Date
JP2013069549A true JP2013069549A (en) 2013-04-18
JP5790368B2 JP5790368B2 (en) 2015-10-07

Family

ID=48475007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207381A Active JP5790368B2 (en) 2011-09-22 2011-09-22 Bipolar battery

Country Status (1)

Country Link
JP (1) JP5790368B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158112A1 (en) * 2015-03-27 2016-10-06 ブラザー工業株式会社 Electrode unit and battery
KR20190060869A (en) * 2016-12-22 2019-06-03 가부시키가이샤 무라타 세이사쿠쇼 A bipolar secondary battery, and a battery pack including the same, an electric vehicle, an electric power storage system, a power tool, and an electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2010073421A (en) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd Bipolar electrode and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2010073421A (en) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd Bipolar electrode and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158112A1 (en) * 2015-03-27 2016-10-06 ブラザー工業株式会社 Electrode unit and battery
KR20190060869A (en) * 2016-12-22 2019-06-03 가부시키가이샤 무라타 세이사쿠쇼 A bipolar secondary battery, and a battery pack including the same, an electric vehicle, an electric power storage system, a power tool, and an electronic device
KR102198737B1 (en) * 2016-12-22 2021-01-05 가부시키가이샤 무라타 세이사쿠쇼 Bipolar secondary batteries, and battery packs including the same, electric vehicles, power storage systems, power tools, and electronic devices

Also Published As

Publication number Publication date
JP5790368B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
JP5219587B2 (en) Laminated battery and battery module including the laminated battery
US7858240B2 (en) Electrode assembly and pouch type lithium rechargeable battery having the same
JP6176743B2 (en) Lithium ion secondary battery and manufacturing method thereof
KR20110053835A (en) Lithium polymer secondary battery
JP6575557B2 (en) All-solid battery and method for producing all-solid battery
JP2008130360A (en) Nonaqueous electrolyte secondary battery
JP2018133201A (en) Power storage module
KR101175057B1 (en) lithium polymer secondary battery
WO2019073914A1 (en) Secondary battery and method for manufacturing secondary battery
JP6634671B2 (en) Secondary battery, electric vehicle, power storage system, and manufacturing method
CN107925121B (en) Secondary battery
EP3540840B1 (en) Pouch type secondary battery having structure for changing bidirectional cell into unidirectional cell
JP2008016263A (en) Electric storage apparatus
US11374291B2 (en) Secondary cell
JP5472284B2 (en) Film outer battery and battery pack
JP2017016812A (en) Nonaqueous electrolyte secondary battery
JP5790368B2 (en) Bipolar battery
WO2022085682A1 (en) Secondary battery
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
KR101243550B1 (en) Secondary battery improved safety characteristic using fixing element
JP2019102167A (en) Electrochemical device
KR20120038075A (en) Fixing apparatus for pouch type supercapacitor
JP2010251017A (en) Bipolar secondary battery, battery pack using the same, and vehicle
JP6681017B2 (en) Secondary battery having electrode body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R151 Written notification of patent or utility model registration

Ref document number: 5790368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151