JP2013069433A - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP2013069433A
JP2013069433A JP2011205396A JP2011205396A JP2013069433A JP 2013069433 A JP2013069433 A JP 2013069433A JP 2011205396 A JP2011205396 A JP 2011205396A JP 2011205396 A JP2011205396 A JP 2011205396A JP 2013069433 A JP2013069433 A JP 2013069433A
Authority
JP
Japan
Prior art keywords
storage container
fuel cell
heat insulating
bonding layer
cell device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011205396A
Other languages
Japanese (ja)
Inventor
Saneaki Akieda
実証 秋枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011205396A priority Critical patent/JP2013069433A/en
Publication of JP2013069433A publication Critical patent/JP2013069433A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell device that prevents convection heat transfer caused by external air so as to improve heat insulating effect of a heat insulating material.SOLUTION: A fuel cell device comprises: a fuel cell module 2; plate-like heat insulating members 4a, 4b, 4c, and 4d that are made of a heat insulating material and are provided so as to cover a housing container 2a; and an adhesive layer 6 that bonds together an outer surface of the housing container 2a and respective surfaces of the insulating members 4a, 4b, 4c, and 4d facing the housing container 2a and that has an outer peripheral bonding layer 6a and a dividing bonding layer 6b. The outer peripheral bonding layer 6a is provided along the outer periphery of at least one wall surface that forms the housing container 2a. The dividing bonding layer 6b is provided so as to divide a region surrounded by the outer peripheral bonding layer 6a.

Description

本発明は、燃料電池モジュールを断熱材によって外装してなる燃料電池装置に関する。   The present invention relates to a fuel cell device in which a fuel cell module is covered with a heat insulating material.

近年、次世代エネルギー生成装置として、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルを複数個配列してなるセルスタック、および天然ガス等の原燃料を燃料ガスに改質するための改質器等を収納容器内に収納してなる燃料電池モジュールが種々提案されている。   In recent years, as a next-generation energy generation device, a cell stack in which a plurality of fuel cells that can obtain electric power using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) are arranged, natural gas, etc. Various fuel cell modules have been proposed in which a reformer or the like for reforming the raw fuel into fuel gas is housed in a housing container.

燃料電池の中でも特に固体酸化物形燃料電池(SOFC)では、動作温度が600℃〜900℃と高温になるため、セル温度の効率的な上昇および安定化が発電効率に直結し、重要となる。そのため、燃料電池モジュールの収納容器の外表面を断熱材で被覆し、収納容器の外表面からの放熱を抑えることで、セル温度の効率的な上昇および安定化を促進する必要がある。   Among the fuel cells, in particular, in the solid oxide fuel cell (SOFC), the operating temperature is as high as 600 ° C. to 900 ° C. Therefore, efficient increase and stabilization of the cell temperature are directly connected to the power generation efficiency and are important. . Therefore, it is necessary to promote efficient increase and stabilization of the cell temperature by covering the outer surface of the storage container of the fuel cell module with a heat insulating material and suppressing heat dissipation from the outer surface of the storage container.

収納容器は、内部空間に燃料電池セルを収納する直方体形状の容器であり、収納容器の外表面は平坦である。断熱材は、複数の板状部材からなり、収納容器の外表面を各板状部材によってそれぞれ被覆するように組み付けられる。また、特許文献1には、一面が開口した箱状の断熱本体と蓋状部材とから形成される断熱体の内壁に、燃料電池モジュールの外面を密着して収納する燃料電池装置が開示されている。   The storage container is a rectangular parallelepiped container that stores fuel cells in the internal space, and the outer surface of the storage container is flat. A heat insulating material consists of a some plate-shaped member, and is assembled | attached so that the outer surface of a storage container may each coat | cover with each plate-shaped member. Further, Patent Document 1 discloses a fuel cell device that stores an outer surface of a fuel cell module in close contact with an inner wall of a heat insulating body formed by a box-shaped heat insulating main body and a cover-like member that are open on one side. Yes.

特許文献2には、ケーシングと断熱ボードとの間に隙間が発生しないように、接着剤で密着させる燃料電池装置が開示されている。   Patent Document 2 discloses a fuel cell device that is adhered with an adhesive so that no gap is generated between the casing and the heat insulating board.

特開2008−84657号公報JP 2008-84657 A 特開2001−176537号公報JP 2001-176537 A

断熱材を燃料電池モジュールに組み付ける場合、たとえば、ねじ止めによって収納容器に固定するが、ねじ止め位置から離れた箇所では断熱材と収納容器との間に隙間が生じやすく、この隙間と外部空間とが連通してしまう。   When the heat insulating material is assembled to the fuel cell module, for example, it is fixed to the storage container by screwing, but a gap is likely to be formed between the heat insulating material and the storage container at a location away from the screwing position. Will communicate.

特許文献2記載の燃料電池装置のように、接着剤で収納容器と断熱材とを貼り付ける場合、収納容器の材質の熱膨張率と断熱材の材質の熱膨張率との差によって、断熱材が収納容器から剥がれてしまい、剥がれた部分と外部空間と連通してしまう。   When the storage container and the heat insulating material are pasted with an adhesive, as in the fuel cell device described in Patent Document 2, the heat insulating material depends on the difference between the thermal expansion coefficient of the material of the storage container and the thermal expansion coefficient of the material of the heat insulating material. Is peeled off from the storage container, and the peeled portion communicates with the external space.

断熱材と収納容器との隙間および剥がれ部分では、外部空間との連通により、外部の空気が断熱材と収納容器との隙間や剥がれ部分を介して出入してしまい、外部空気による対流熱伝達が発生して、断熱材の断熱効果が不十分となってしまう。   At the gap and peeling part between the heat insulating material and the storage container, external air enters and exits through the gap and the peeling part between the heat insulating material and the storage container due to communication with the external space, and convective heat transfer by the external air is performed. It occurs and the heat insulating effect of the heat insulating material becomes insufficient.

本発明の目的は、外部空気による対流熱伝達の発生を抑えて、断熱材による断熱効果を向上させることができる燃料電池装置を提供することである。   An object of the present invention is to provide a fuel cell device that can suppress the occurrence of convective heat transfer due to external air and improve the heat insulating effect of the heat insulating material.

本発明は、直方体形状の収納容器および該収納容器に収納される燃料電池セルを有する燃料電池モジュールと、
断熱材料からなり、前記収納容器を覆うように設けられる、直方体形状の断熱体と、
前記収納容器の外表面と前記断熱体の収納容器に臨む側の面とを接合する、前記収納容器を構成する少なくとも1つの壁面の外郭に沿って設けられた外郭接合層と該外郭接合層で囲まれる領域を区画するように設けられた区画接合層とからなる接着剤層と、を含むことを特徴とする燃料電池装置である。
The present invention provides a fuel cell module having a rectangular parallelepiped storage container and a fuel cell stored in the storage container;
A rectangular parallelepiped heat insulator made of a heat insulating material and provided to cover the storage container;
An outer joint layer provided along an outer shell of at least one wall surface constituting the storage container, which joins an outer surface of the storage container and a surface facing the storage container of the heat insulator, and the outer joint layer An adhesive layer comprising a partition bonding layer provided so as to partition an enclosed region.

本発明によれば、接着剤層が、前記収納容器の外表面と、前記断熱体の収納容器に臨む側の面とを接合する。この接着剤層は、前記収納容器の外郭に沿って設けられた外郭接合層と該外郭接合層で囲まれる領域を区画するように設けられた区画接合層とからなる。   According to the present invention, the adhesive layer joins the outer surface of the storage container and the surface of the heat insulator facing the storage container. The adhesive layer is composed of an outer joint layer provided along the outer shell of the storage container and a partition joint layer provided so as to partition an area surrounded by the outer joint layer.

前記区画接合層によって区画された複数の領域においては、前記収納容器の外表面と前記断熱体とが接合されておらず、断熱材と収納容器との熱膨張率差による応力が緩和され、断熱材が収納容器から剥離することを抑制できる。さらには、断熱体と燃料電池モジュールとの間に外部空気が出入することを抑制できることから、外部空気による対流熱伝達の発生を抑え、熱の移動を抑制することで断熱体の断熱効果を向上させることができる。   In the plurality of regions partitioned by the partition bonding layer, the outer surface of the storage container and the heat insulator are not bonded, stress due to the difference in thermal expansion coefficient between the heat insulating material and the storage container is relieved, and heat insulation It can suppress that material peels from a storage container. Furthermore, since it is possible to suppress the entry and exit of external air between the heat insulator and the fuel cell module, the heat insulation effect of the heat insulator is improved by suppressing the occurrence of convective heat transfer due to the external air and suppressing the movement of heat. Can be made.

本発明の第1実施形態である燃料電池装置1の構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a fuel cell device 1 according to a first embodiment of the present invention. 燃料電池装置1の長手方向に直交する面で切断した断面図である。2 is a cross-sectional view taken along a plane orthogonal to the longitudinal direction of the fuel cell device 1. FIG. 収納容器2aを構成する1つの壁面の外表面における接着剤層6の形成部分を示す模式図である。It is a schematic diagram which shows the formation part of the adhesive bond layer 6 in the outer surface of one wall surface which comprises the storage container 2a. 空間5aの形状および凹部5の断熱体3における配置を示す図である。It is a figure which shows arrangement | positioning in the heat insulator 3 of the shape of the space 5a, and the recessed part 5. FIG. 接着剤層6の他の実施態様を示す模式図である。It is a schematic diagram which shows the other embodiment of the adhesive bond layer 6. FIG. 本発明の第2実施形態である燃料電池装置1Aの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of 1 A of fuel cell apparatuses which are 2nd Embodiment of this invention.

図1は、本発明の第1実施形態である燃料電池装置1の構成を示す分解斜視図である。
燃料電池装置1は、燃料電池モジュール2と断熱体3とからなる。
FIG. 1 is an exploded perspective view showing a configuration of a fuel cell device 1 according to a first embodiment of the present invention.
The fuel cell device 1 includes a fuel cell module 2 and a heat insulator 3.

本実施形態では、断熱体3は、6つの板状断熱部材4a,4b,4c,4d,4e,4fからなり、それぞれは直方体の6面を構成するものである。以下では、板状断熱部材を個別に示す場合は、参照符号にa〜fを付記し、板状断熱部材の全体を示す場合は、単に板状断熱部材4と記載する。   In the present embodiment, the heat insulator 3 is composed of six plate-like heat insulating members 4a, 4b, 4c, 4d, 4e, and 4f, and each constitutes six surfaces of a rectangular parallelepiped. Below, when showing a plate-shaped heat insulation member separately, af is appended to a reference sign, and when showing the whole plate-shaped heat insulation member, it describes as the plate-shaped heat insulation member 4 simply.

燃料電池モジュール2は、固体酸化物形の燃料電池モジュールであり、従来公知の燃料電池モジュールと形状の差異はなく、少なくとも直方体形状の収納容器2aと、収納容器2a内に収納される複数の燃料電池セルとを備える。なお、図1では、収納容器2aの側面の一部を取り外して示し、燃料電池セルの図示は省略した。   The fuel cell module 2 is a solid oxide fuel cell module, which has no difference in shape from a conventionally known fuel cell module, and has at least a rectangular parallelepiped storage container 2a and a plurality of fuels stored in the storage container 2a. A battery cell. In FIG. 1, a part of the side surface of the storage container 2a is removed, and the fuel cell is not shown.

断熱体3は、燃料電池モジュール2の収納容器2aの6面にそれぞれ6つの板状断熱部材4a,4b,4c,4d,4e,4fを貼り付けて構成される。板状断熱部材4aが収納容器2aの上面に貼り付けられ、板状断熱部材4bが収納容器2aの底面に貼り付けられ、板状断熱部材4c,4dが収納容器2aの互いに平行な2つの側面にそれぞれ貼り付けられ、板状断熱部材4e,4fが収納容器2aの互いに平行な他の2つの側面に貼り付けられる。   The heat insulator 3 is configured by attaching six plate-like heat insulating members 4a, 4b, 4c, 4d, 4e, and 4f to the six surfaces of the storage container 2a of the fuel cell module 2, respectively. The plate-like heat insulating member 4a is attached to the upper surface of the storage container 2a, the plate-like heat insulating member 4b is attached to the bottom surface of the storage container 2a, and the plate-like heat insulating members 4c and 4d are two parallel sides of the storage container 2a. The plate-like heat insulating members 4e and 4f are attached to the other two side surfaces of the storage container 2a that are parallel to each other.

したがって、収納容器2aの各面に貼り付けられた状態で、断熱体3は、略直方体形状となる。   Therefore, the heat insulation body 3 becomes a substantially rectangular parallelepiped shape in the state affixed on each surface of the storage container 2a.

図2は、燃料電池装置1の長手方向に直交する面で切断した断面図であり、図3は、収納容器2aを構成する1つの壁面の外表面における接着剤層6の形成部分を示す模式図である。図3は、断熱体3の1つの板状断熱部材、たとえば板状断熱部材4eを除去した際の収納容器2aの1つの壁面を、除去した板状断熱部材側から見た図である。板状断熱部材4は、一方の主面が収納容器2aの外表面に接するように設けられ、図2の断面図では、収納容器2aの周囲4面を覆うように設けられた状態を示す。   FIG. 2 is a cross-sectional view taken along a plane perpendicular to the longitudinal direction of the fuel cell device 1, and FIG. 3 is a schematic diagram showing a portion where the adhesive layer 6 is formed on the outer surface of one wall surface constituting the storage container 2a. FIG. FIG. 3 is a view of one wall surface of the storage container 2a when the one plate-like heat insulating member of the heat insulating body 3, for example, the plate-like heat insulating member 4e is removed, as viewed from the removed plate-like heat insulating member side. The plate-like heat insulating member 4 is provided so that one main surface is in contact with the outer surface of the storage container 2a, and the cross-sectional view of FIG. 2 shows a state where the plate-like heat insulating member 4 is provided so as to cover four surfaces around the storage container 2a.

板状断熱部材4には、収納容器2aに臨んで開口する凹部5が複数設けられる。板状断熱部材4は、一方の主面の開口の周囲の領域、すなわち開口を除く平坦部分の面が、収納容器2aの外表面に、接着剤層6によって気密に接合される。したがって、板状断熱部材4と収納容器2aとの間には、板状断熱部材4の凹部5と、収納容器2aの外表面と接着剤層6とで囲まれた空間5aが形成される。この空間5aには、気体が封入される。封入気体としては、空気、水素、窒素、酸素などの板状断熱部材4よりも熱伝導率の低い気体を用いることが望ましい。空間5aに封入される封入気体の圧力は、常温で約1気圧である。   The plate-like heat insulating member 4 is provided with a plurality of recesses 5 that open toward the storage container 2a. The plate-like heat insulating member 4 is airtightly bonded to the outer surface of the storage container 2a by the adhesive layer 6 in the area around the opening of one main surface, that is, the surface of the flat portion excluding the opening. Therefore, a space 5 a surrounded by the recess 5 of the plate-like heat insulating member 4, the outer surface of the storage container 2 a and the adhesive layer 6 is formed between the plate-like heat insulating member 4 and the storage container 2 a. Gas is enclosed in this space 5a. As the sealed gas, it is desirable to use a gas having a lower thermal conductivity than the plate-like heat insulating member 4 such as air, hydrogen, nitrogen, and oxygen. The pressure of the sealed gas sealed in the space 5a is about 1 atmosphere at room temperature.

接着剤層6は、収納容器2aを構成する1つの壁面の外郭に沿って設けられた外郭接合層6aと外郭接合層6aで囲まれる領域を区画するように設けられた区画接合層6bとからなる。図2の断面図においては、角部に設けられた部分が、外郭接合層6aであり、凹部5と凹部5との間で接合する部分が区画接合層6bに相当する。   The adhesive layer 6 includes an outer bonding layer 6a provided along the outer wall of one wall surface constituting the storage container 2a and a partition bonding layer 6b provided so as to partition a region surrounded by the outer bonding layer 6a. Become. In the cross-sectional view of FIG. 2, the portion provided at the corner is the outer joining layer 6a, and the portion joined between the recess 5 and the recess 5 corresponds to the partition joining layer 6b.

区画接合層6bによって区画された複数の領域、すなわち凹部5に対応する領域においては、収納容器2aの外表面と板状断熱部材4とが接合されておらず板状断熱部材4と収納容器2aとの熱膨張率差による応力が緩和され、板状断熱部材4が収納容器2aから剥離することを抑制でき、外部空気による対流熱伝達を抑制できる。   In a plurality of regions partitioned by the partition bonding layer 6b, that is, in regions corresponding to the recesses 5, the outer surface of the storage container 2a and the plate-like heat insulating member 4 are not joined, and the plate-like heat insulating member 4 and the storage container 2a. The stress due to the difference in thermal expansion coefficient between the plate-like heat insulating member 4 and the plate-like heat insulating member 4 can be prevented from peeling off from the storage container 2a, and convective heat transfer by external air can be suppressed.

さらに、各凹部5内に気体を封入した空間を設けることにより、断熱体3と燃料電池モジュール2との間に発生する、外部空気による対流熱伝達を抑え、熱の移動を抑制することで断熱体3の断熱効果を向上させることができる。   Further, by providing a space in which gas is sealed in each recess 5, convective heat transfer due to external air generated between the heat insulator 3 and the fuel cell module 2 is suppressed, and heat transfer is suppressed by suppressing heat transfer. The heat insulation effect of the body 3 can be improved.

本実施形態では、図2に示すように、板状断熱部材4に複数設けられる凹部5は、全て同じ大きさであり、複数設けられる凹部5のうち、1つの板状断熱部材4に設けられる凹部5については、互いに隣り合う凹部5同士の間隔は同じである。すなわち、1つの板状断熱部材4を厚み方向からみたときに、凹部5が各格子点に位置するように設けられる。   In the present embodiment, as shown in FIG. 2, the plurality of recessed portions 5 provided in the plate-like heat insulating member 4 are all the same size, and the plurality of recessed portions 5 are provided in one plate-like heat insulating member 4. About the recessed part 5, the space | interval of the mutually adjacent recessed parts 5 is the same. That is, when one plate-like heat insulating member 4 is viewed from the thickness direction, the recess 5 is provided so as to be positioned at each lattice point.

また、本実施形態では、凹部5の内表面の断面形状は矩形状であり、凹部5と収納容器2aの外表面で囲まれる空間5aの形状は直方体または立方体形状である。   Moreover, in this embodiment, the cross-sectional shape of the inner surface of the recessed part 5 is a rectangular shape, and the shape of the space 5a enclosed by the outer surface of the recessed part 5 and the storage container 2a is a rectangular parallelepiped or a cube shape.

空間5aの形状が直方体形状の場合、矩形状の開口寸法、凹部5の深さなどは、燃料電池装置1の動作条件や燃料電池装置1の大きさなどに応じて、効果を奏するように適宜設定すればよい。   In the case where the shape of the space 5a is a rectangular parallelepiped shape, the rectangular opening size, the depth of the recess 5 and the like are appropriately determined so as to have an effect according to the operating conditions of the fuel cell device 1, the size of the fuel cell device 1, and the like. You only have to set it.

また、1つの板状断熱部材4に設けられる凹部5における互いに隣り合う凹部5同士の間隔についても、燃料電池装置1の動作条件や燃料電池装置1の大きさなどに応じて、効果を奏するように適宜設定すればよい。ここで、間隔は隣り合う凹部の中心間の距離を示す。   Further, the spacing between the adjacent recesses 5 in the recess 5 provided in one plate-like heat insulating member 4 is also effective depending on the operating conditions of the fuel cell device 1 and the size of the fuel cell device 1. May be set as appropriate. Here, the space | interval shows the distance between the centers of adjacent recessed parts.

さらに、1つの板状断熱部材4に設けられる凹部5の数も、燃料電池装置1の動作条件や燃料電池装置1の大きさなどに応じて、効果を奏するように適宜設定すればよい。   Furthermore, the number of the recesses 5 provided in one plate-like heat insulating member 4 may be appropriately set so as to produce an effect according to the operating conditions of the fuel cell device 1 and the size of the fuel cell device 1.

空間5aに封入される気体を、上記のように板状断熱部材4よりも熱伝導率の低い気体とすることで、凹部5で囲まれた空間5aに封入された気体が断熱材として働くので、断熱効果をさらに向上させることができる。   Since the gas sealed in the space 5a is a gas having a lower thermal conductivity than the plate-like heat insulating member 4 as described above, the gas sealed in the space 5a surrounded by the recess 5 serves as a heat insulating material. The heat insulation effect can be further improved.

断熱体3を構成する断熱材料は、燃料電池モジュール2が固体酸化物形であること、すなわち、動作温度が600℃〜900℃と高温になることを考慮して、このような高温であっても耐性を有する耐熱性の高い断熱材料を用いることが好ましい。耐熱性が高い断熱材料としては、多孔質セラミックス材料を用いることができる。多孔質セラミックス材料としては、たとえば、SiO、Al、TiOを主成分とするセラミックス材料を用いることができる。多孔質セラミックス材料の熱伝導率は、0.1W/m・K以下が好ましく、より好ましくは0.01W/m・K以下である。 The heat insulating material constituting the heat insulator 3 is such a high temperature in consideration that the fuel cell module 2 is in a solid oxide form, that is, the operating temperature is as high as 600 ° C. to 900 ° C. It is preferable to use a heat-resistant heat-resistant material having high resistance. As the heat insulating material having high heat resistance, a porous ceramic material can be used. As the porous ceramic material, for example, a ceramic material mainly composed of SiO 2 , Al 2 O 3 , or TiO 2 can be used. The thermal conductivity of the porous ceramic material is preferably 0.1 W / m · K or less, more preferably 0.01 W / m · K or less.

また、燃料電池モジュール2の動作温度を考慮して、断熱体3と燃料電池モジュール2とを貼り合わせるための接着剤層6として、耐熱性が高い接着剤を用いることが好ましい。耐熱性が高い接着剤としては、たとえば、高純度アルミナをベース成分としたセラミック系接着剤などが挙げられる。   In consideration of the operating temperature of the fuel cell module 2, it is preferable to use an adhesive with high heat resistance as the adhesive layer 6 for bonding the heat insulator 3 and the fuel cell module 2 together. Examples of the adhesive having high heat resistance include a ceramic adhesive having high purity alumina as a base component.

燃料電池動作時には、空間5aに封入される気体の温度が上昇し、内圧が上昇するため、断熱材料として、多孔質セラミックス材料を用いる場合、封入される気体の一部が、板状断熱部材4を厚み方向に透過するおそれがある。このような気体の透過を抑制するためには、凹部5の内面にコーティング膜7を設けることが好ましい。コーティング膜7は、たとえば、セラミックスファイバー(主成分はAl,ZnO,SiOなど)と無機バインダーを湿式混合したペーストを凹部5の内面に塗布することで形成される。 When the fuel cell is operated, the temperature of the gas sealed in the space 5a increases and the internal pressure increases. Therefore, when a porous ceramic material is used as the heat insulating material, a part of the sealed gas is part of the plate-shaped heat insulating member 4. May penetrate in the thickness direction. In order to suppress such gas permeation, it is preferable to provide the coating film 7 on the inner surface of the recess 5. The coating film 7 is formed, for example, by applying a paste obtained by wet mixing ceramic fibers (main components are Al 2 O 3 , ZnO, SiO 2, etc.) and an inorganic binder to the inner surface of the recess 5.

収納容器2aの外表面に、熱の輻射を抑制するための塗料を塗布し、塗膜8を設けることが好ましい。上記のように燃料電池動作時の動作温度は非常に高温となり、収納容器2から接着剤層6を介して断熱体3に熱移動し、さらに断熱体3を外方に向かって熱移動する熱伝導経路に加えて、収納容器2aの外表面が断熱体3に接触していない部分、すなわち空間5aに臨む部分において、輻射による熱の放出がある。収納容器2aの外表面からの輻射熱は、凹部5の内面を加熱し、凹部5内面から外方に向かって断熱体3を熱移動する。   It is preferable to apply a coating for suppressing heat radiation to provide the coating film 8 on the outer surface of the storage container 2a. As described above, the operating temperature during the operation of the fuel cell is very high, and heat is transferred from the storage container 2 to the heat insulator 3 through the adhesive layer 6 and further heat transferred to the heat insulator 3 outward. In addition to the conduction path, heat is released by radiation at a portion where the outer surface of the storage container 2a is not in contact with the heat insulator 3, that is, a portion facing the space 5a. Radiant heat from the outer surface of the storage container 2a heats the inner surface of the recess 5 and heat-transfers the heat insulator 3 outward from the inner surface of the recess 5.

白色または淡彩色の塗料を塗布して塗膜8を形成することで、収納容器2aの外表面からの輻射熱による熱移動を抑制することができる。燃料電池動作時に収納容器2aの温度が高温となることを考慮して、塗膜8も高い耐熱性を有することが好ましい。輻射熱を抑制するためには、塗料の発する色も重要であり、白色または淡彩色を発する塗料であって、高い耐熱性を有する塗料を用いることができる。   By applying a white or light-colored paint to form the coating film 8, heat transfer due to radiant heat from the outer surface of the storage container 2a can be suppressed. Considering that the temperature of the storage container 2a becomes high during the operation of the fuel cell, it is preferable that the coating film 8 also has high heat resistance. In order to suppress radiant heat, the color emitted by the paint is also important, and a paint that emits white or pale color and has high heat resistance can be used.

図4は、空間5aの形状および凹部5の断熱体3における配置を示す図である。
図4(a)および図4(b)は、空間5aが三角錐形状である場合を示し、図4(c)および図4(d)は、空間5aが三角柱形状である場合を示し、図4(e)および図4(f)は、空間5aが半球状である場合を示す。
FIG. 4 is a diagram showing the shape of the space 5 a and the arrangement of the recess 5 in the heat insulator 3.
4 (a) and 4 (b) show the case where the space 5a has a triangular pyramid shape, and FIGS. 4 (c) and 4 (d) show the case where the space 5a has a triangular prism shape. 4 (e) and FIG. 4 (f) show a case where the space 5a is hemispherical.

図4(a)に示すように、空間5aが三角錐形状の四面体である場合、凹部5は、図4(b)に示すように、開口形状が、三角錐の底面に相当する三角形状であり、最も深い部分が三角錐の頂点となるように形成される。   When the space 5a is a triangular pyramid tetrahedron as shown in FIG. 4A, the recess 5 has a triangular shape corresponding to the bottom of the triangular pyramid as shown in FIG. 4B. And the deepest part is formed to be the apex of the triangular pyramid.

図4(c)に示すように、空間5aが三角柱形状の五面体である場合、凹部5は、図4(d)に示すように、開口形状が、三角柱の一方の底面に相当する三角形状であり、最も深い底面が三角柱の他方の底面となるように形成される。   When the space 5a is a triangular prism-shaped pentahedron as shown in FIG. 4C, the recess 5 has a triangular shape whose opening shape corresponds to one bottom surface of the triangular prism as shown in FIG. And the deepest bottom surface is formed to be the other bottom surface of the triangular prism.

図4(e)に示すように、空間5aが半球状である場合、凹部5は、図4(f)に示すように、開口形状が、底面に相当する円形状であり、最も深い部分が半球の頂部となるように形成される。半球状の場合は、凹部の内面が全て曲面であるので、凹部の面内の熱応力を抑制する効果がより向上する。開口形状は、真円よりも楕円とするほうが、空間5a内で温度分布が生じにくくなり、熱応力を抑制する効果がさらに向上する。   As shown in FIG. 4 (e), when the space 5a is hemispherical, the recess 5 has a circular shape corresponding to the bottom as shown in FIG. It is formed to be the top of the hemisphere. In the case of a hemispherical shape, since the inner surface of the recess is entirely curved, the effect of suppressing thermal stress in the surface of the recess is further improved. When the opening shape is an ellipse rather than a perfect circle, the temperature distribution is less likely to occur in the space 5a, and the effect of suppressing thermal stress is further improved.

図5は、接着剤層6の他の実施態様を示す模式図である。
接着剤層6は、外郭接合層6aと区画接合層6bとからなる。本実施態様では、外郭接合層6aは、収納容器2aを構成する1つの壁面の外表面において、外郭に沿って設けられることで、矩形状を成している。図5(a)に示す態様では、区画接合層6bは、外郭接合層6aの矩形を4つの領域に区画するように設けられており、具体的には、矩形の対向する2辺の中央部にわたって設けられる2つの帯状接合層からなり、2つの帯状接合層は、矩形中央で交差している。
FIG. 5 is a schematic view showing another embodiment of the adhesive layer 6.
The adhesive layer 6 includes an outer bonding layer 6a and a partition bonding layer 6b. In this embodiment, the outer joint layer 6a has a rectangular shape by being provided along the outer shell on the outer surface of one wall surface constituting the storage container 2a. In the embodiment shown in FIG. 5A, the partition bonding layer 6b is provided so as to partition the rectangle of the outer bonding layer 6a into four regions, and specifically, the central portions of two opposing sides of the rectangle. It consists of two strip-shaped joining layers provided over the two, and the two strip-like joining layers intersect at the center of the rectangle.

また図5(b)に示す態様では、区画接合層6bは、複数の帯状接合層が格子状に設けられる。具体的には、矩形の対向する2辺の中央部にわたって、それぞれ3つの帯状接合層が設けられる。3つの帯状接合層は、矩形の各辺において、中央部に密に設けられ、角部では疎に設けられるので、区画接合層6bによって区画された複数の領域、すなわち、帯状接合層によって区画された複数の領域は、収納容器2aを構成する1つの壁面の外表面中央部における領域の面積が、外表面周縁部における領域の面積よりも小さくなる。   In the embodiment shown in FIG. 5B, the partition bonding layer 6b is provided with a plurality of band-shaped bonding layers in a lattice shape. Specifically, three belt-like bonding layers are provided over the central portions of two opposite sides of the rectangle. The three belt-like bonding layers are densely provided at the central part and sparsely provided at the corners on each side of the rectangle, and are thus divided by a plurality of regions partitioned by the partition bonding layer 6b, that is, the belt-like bonding layers. In the plurality of regions, the area of the region in the central portion of the outer surface of one wall surface constituting the storage container 2a is smaller than the area of the region in the peripheral portion of the outer surface.

収納容器2aを構成する1つの壁面の1つの外表面においては、その中央部が周縁部に比べて高温となりやすい。外表面中央部の領域の面積を、外表面周縁部の領域の面積よりも小さくすることは、すなわち中央部での帯状接合層による接合面積を、周辺部での帯状接合層による接合面積よりも大きくすることになるので、中央部での接合強度を大きくして板状断熱部材4が収納容器2aから剥離することを抑制できる。   On one outer surface of one wall surface constituting the storage container 2a, the central portion is likely to be hotter than the peripheral portion. Making the area of the central portion of the outer surface smaller than the area of the peripheral portion of the outer surface means that the bonding area of the belt-like bonding layer in the central portion is smaller than the bonding area of the belt-like bonding layer in the peripheral portion. Since it enlarges, the joining strength in a center part can be enlarged and it can suppress that the plate-shaped heat insulation member 4 peels from the storage container 2a.

なお、図5(a)、(b)では、接着剤層6について記載しているだけで、凹部5については記載していないが、板状断熱部材4において、外郭接合層6aと区画接合層6bとで区画される複数の領域に対応する部分に、この区画される複数の領域に対応する大きさの凹部5を形成することができる。   In FIGS. 5A and 5B, only the adhesive layer 6 is described, and the recess 5 is not described. However, in the plate-like heat insulating member 4, the outer bonding layer 6a and the partition bonding layer In the portion corresponding to the plurality of regions partitioned by 6b, the concave portions 5 having a size corresponding to the plurality of partitioned regions can be formed.

図6は、本発明の第2実施形態である燃料電池装置1Aの構成を示す分解斜視図である。燃料電池装置1は、燃料電池モジュール2と断熱体3Aとからなる。第1実施形態と第2実施形態とでは、断熱体の構成が異なるだけで他の構成は同一であるので、説明は省略する。   FIG. 6 is an exploded perspective view showing the configuration of the fuel cell device 1A according to the second embodiment of the present invention. The fuel cell device 1 includes a fuel cell module 2 and a heat insulator 3A. In the first embodiment and the second embodiment, only the configuration of the heat insulator is different, and the other configurations are the same, and thus the description thereof is omitted.

第1実施形態の断熱体3は、6つの板状断熱部材4a,4b,4c,4d,4e,4fからなるものであったが、第2実施形態の断熱体3Aは、一面が開口した直方体状の断熱筐体4gと、この開口を塞ぐ蓋状部材4hとからなる。断熱筐体4gは、たとえば、燃料電池モジュール2の上面に対応する面が開口しており、蓋状部材4hは、この開口を塞ぎ、燃料電池モジュール2の上面を覆う。   The heat insulator 3 of the first embodiment is composed of six plate-like heat insulating members 4a, 4b, 4c, 4d, 4e, and 4f, but the heat insulator 3A of the second embodiment is a rectangular parallelepiped with one side opened. 4g of a heat-insulating housing 4g and a lid-like member 4h that closes the opening. For example, a surface corresponding to the upper surface of the fuel cell module 2 is opened in the heat insulating casing 4g, and the lid-like member 4h closes the opening and covers the upper surface of the fuel cell module 2.

断熱筐体4gおよび蓋状部材4hには、それぞれ第1実施形態の板状断熱部材4と同様に凹部5が設けられ、断熱筐体4gおよび蓋状部材4hと、燃料電池モジュール2とは接着剤層6によって接合される。   The heat insulating housing 4g and the lid-like member 4h are each provided with a recess 5 similarly to the plate-like heat insulating member 4 of the first embodiment, and the heat-insulating housing 4g and the lid-like member 4h are bonded to the fuel cell module 2. Bonded by the agent layer 6.

第2実施形態も第1実施形態と同様に、凹部5と収納容器2aとの間に気体を封入した空間が設けられることにより、断熱体3Aと燃料電池モジュール2との間に発生する、外部空気の流入および流出による対流熱伝達を抑え、熱の移動を抑制することで断熱体3Aの断熱効果を向上させることができる。   Similarly to the first embodiment, the second embodiment also has an external space generated between the heat insulator 3A and the fuel cell module 2 by providing a space filled with gas between the recess 5 and the storage container 2a. The heat insulating effect of the heat insulating body 3A can be improved by suppressing the convective heat transfer due to the inflow and outflow of air and suppressing the movement of heat.

また、第2実施形態は、第1実施形態と同様に、凹部5の内面にコーティング膜7を設けることが好ましく、燃料電池モジュール2の収納容器2aの外表面には、塗料による塗膜8を形成することが好ましい。   Further, in the second embodiment, as in the first embodiment, it is preferable to provide a coating film 7 on the inner surface of the recess 5, and a coating film 8 made of paint is applied to the outer surface of the storage container 2 a of the fuel cell module 2. It is preferable to form.

断熱体3における凹部5の形成方法は、断熱材用が多孔質セラミックス材料の場合は、予め板状または箱状の焼成体を形成しておき、内表面側から研削などによって凹部5を形成してもよいし、焼成前の成形時に予め凸部を有する金型などを用いて凹部が形成された成形体とし、成形体を焼結して断熱体3を得ることもできる。   When the insulating material 3 is made of a porous ceramic material, the recessed portion 5 is formed in advance by forming a plate-like or box-like fired body and then forming the recessed portion 5 by grinding or the like from the inner surface side. Alternatively, it is possible to obtain a heat insulating body 3 by sintering a molded body in which a concave portion is formed using a mold having a convex portion in advance during molding before firing.

上記図2では、凹部5の形状が、全て同じ形状、同じ大きさの場合について説明したが、これに限らず、同じ形状で大きさが異なる凹部5が混在してもよく、設ける位置によって大きさを異なるようにしてもよい。また、全て同じ形状でなくてもよく、空間5a形状が直方体、立方体となるものと、図4に示すような、空間5aの形状が、三角錐形状、三角柱形状および半球状となるような凹部5が混在するように設けてもよい。   In FIG. 2 described above, the concave portions 5 have the same shape and the same size. However, the present invention is not limited to this. You may make it differ. Moreover, it does not need to be the same shape, and the space 5a shape is a rectangular parallelepiped or a cube, and the concave portion such that the shape of the space 5a is a triangular pyramid shape, a triangular prism shape, and a hemispherical shape as shown in FIG. You may provide so that 5 may be mixed.

なお、上記各形態では、板状断熱部材4において、外郭接合層6aと区画接合層6bとで区画される複数の領域に対応する部分に、この区画される複数の領域に対応する大きさの凹部5を形成しているが、凹部5を形成しない場合であっても、板状断熱部材4と収納容器2aとの間には、収納容器2aの外表面と板状断熱部材4の収納容器2a外表面に対向する表面と接着剤層6とで囲まれた空間を形成できるため、断熱体3と燃料電池モジュール2との間に発生する、外部空気による対流熱伝達をある程度抑えることができる。凹部5を形成する場合と、凹部5を形成しない場合とでは、凹部5を形成するほうが、空間5aが大きく、収納容器2a外表面から凹部5の内面までの距離が遠いので、収納容器2a外表面からの輻射熱をより抑制できるので好ましい。   In addition, in each said form, in the plate-shaped heat insulation member 4, the part corresponding to the some area | region divided by the outer joining layer 6a and the division joining layer 6b is a magnitude | size corresponding to this some divided | segmented area | region. Although the recess 5 is formed, even when the recess 5 is not formed, the outer surface of the storage container 2a and the storage container of the plate heat insulation member 4 are provided between the plate-shaped heat insulation member 4 and the storage container 2a. 2a Since a space surrounded by the surface facing the outer surface and the adhesive layer 6 can be formed, convective heat transfer caused by external air generated between the heat insulator 3 and the fuel cell module 2 can be suppressed to some extent. . When the recess 5 is formed and when the recess 5 is not formed, the space 5a is larger and the distance from the outer surface of the storage container 2a to the inner surface of the recess 5 is longer when the recess 5 is formed. This is preferable because radiant heat from the surface can be further suppressed.

また、上記各形態では、帯状の区画接合層6bの幅を同一幅とした形態について説明したが、収納容器を構成する少なくとも1つの壁面の外表面中央部の帯状接合層の幅を、外表面周縁部の帯状接合層の幅よりも細くすることができる。この場合には、外表面中央部での熱膨張による変形を許容し、断熱材が収納容器から剥離することを防止できる。   Moreover, although each said form demonstrated the form which made the width | variety of the strip | belt-shaped division joining layer 6b the same width, the width | variety of the strip | belt-shaped joining layer of the outer-surface center part of the at least 1 wall surface which comprises a storage container is made into an outer surface. It can be made thinner than the width of the belt-like bonding layer at the peripheral edge. In this case, deformation due to thermal expansion at the center portion of the outer surface is allowed, and the heat insulating material can be prevented from peeling off from the storage container.

さらに、上記各形態では、区画接合層によって区画された複数の領域は、収納容器を構成する1つの壁面の外表面における外形状が、四角形の形態について説明したが、円形、楕円形または五角形以上の多角形であっても良い。この場合には、接合層に与える応力を小さくすることができ、断熱材が収納容器から剥離することを抑制することができる。   Further, in each of the above embodiments, the plurality of regions partitioned by the partition bonding layer has been described as having a quadrangular shape on the outer surface of one wall surface constituting the storage container. However, a circular shape, an elliptical shape, or a pentagonal shape or more is described. It may be a polygon. In this case, the stress applied to the bonding layer can be reduced, and the heat insulating material can be prevented from peeling from the storage container.

また、上記各形態では、収納容器2aの6つの壁面に、外郭接合層6aと区画接合層6bとからなる接着剤層6を設けているが、要求される断熱特性に応じて、たとえば、収納容器2aのいずれか1つの壁面のみに外郭接合層6aと区画接合層6bとからなる接着剤層6を設けても良く、2〜5の壁面に外郭接合層6aと区画接合層6bとからなる接着剤層6を設けても良い。   Moreover, in each said form, although the adhesive bond layer 6 which consists of the outer shell joining layer 6a and the division joining layer 6b is provided in six wall surfaces of the storage container 2a, according to the heat insulation characteristic requested | required, for example, accommodation The adhesive layer 6 composed of the outer joint layer 6a and the partition joint layer 6b may be provided on only one wall surface of the container 2a, and the outer joint layer 6a and the partition joint layer 6b are formed on two to five wall surfaces. An adhesive layer 6 may be provided.

1,1A 燃料電池装置
2 燃料電池モジュール
2a 収納容器
3,3A 断熱体
4 板状断熱部材
5 凹部
5a 空間
6 接着剤層
7 コーティング膜
8 塗膜
DESCRIPTION OF SYMBOLS 1,1A Fuel cell apparatus 2 Fuel cell module 2a Storage container 3,3A Thermal insulator 4 Plate-shaped heat insulation member 5 Recessed part 5a Space 6 Adhesive layer 7 Coating film 8 Coating film

Claims (6)

直方体形状の収納容器および該収納容器に収納される燃料電池セルを有する燃料電池モジュールと、
断熱材料からなり、前記収納容器を覆うように設けられる、直方体形状の断熱体と、
前記収納容器の外表面と前記断熱体の収納容器に臨む側の面とを接合する、前記収納容器を構成する少なくとも1つの壁面の外郭に沿って設けられた外郭接合層と該外郭接合層で囲まれる領域を区画するように設けられた区画接合層とからなる接着剤層と、を含むことを特徴とする燃料電池装置。
A rectangular parallelepiped storage container and a fuel cell module having a fuel cell stored in the storage container;
A rectangular parallelepiped heat insulator made of a heat insulating material and provided to cover the storage container;
An outer joint layer provided along an outer shell of at least one wall surface constituting the storage container, which joins an outer surface of the storage container and a surface facing the storage container of the heat insulator, and the outer joint layer A fuel cell device comprising: an adhesive layer formed of a partition bonding layer provided so as to partition an enclosed region.
前記収納容器を構成する少なくとも1つの壁面の外表面において、前記区画接合層によって区画された複数の領域は、外表面中央部の領域の面積が、外表面周縁部の領域の面積よりも小さくなるように構成されることを特徴とする請求項1記載の燃料電池装置。   In the plurality of regions partitioned by the partition bonding layer on the outer surface of at least one wall surface constituting the storage container, the area of the central portion of the outer surface is smaller than the area of the peripheral portion of the outer surface. The fuel cell device according to claim 1, wherein the fuel cell device is configured as described above. 前記区画接合層は、格子状に設けられる複数の帯状接合層からなり、前記収納容器を構成する少なくとも1つの壁面の外表面において、外表面中央部の帯状接合層の幅が、外表面周縁部の帯状接合層の幅よりも細くなるように構成されることを特徴とする請求項1記載の燃料電池装置。   The partition bonding layer is composed of a plurality of band-shaped bonding layers provided in a lattice shape, and the width of the band-shaped bonding layer at the center of the outer surface of the outer surface of at least one wall surface constituting the storage container The fuel cell device according to claim 1, wherein the fuel cell device is configured to be narrower than a width of the belt-like bonding layer. 前記区画接合層によって区画された前記収納容器を構成する少なくとも1つの壁面の外表面における複数の領域は、外形状が円形、楕円形または五角形以上の多角形であることを特徴とする請求項1記載の燃料電池装置。   The plurality of regions on the outer surface of at least one wall surface constituting the storage container partitioned by the partition bonding layer are characterized in that the outer shape is a circle, an ellipse, or a pentagon or more polygon. The fuel cell device according to the description. 前記区画接合層によって区画された前記収納容器を構成する少なくとも1つの壁面の外表面における複数の領域にそれぞれ臨んで開口する凹部が前記断熱体に複数設けられ、前記凹部と前記収納容器の外表面との間の空間には、空気、水素、窒素および酸素のうち少なくともいずれか1種の気体が封入されていることを特徴とする請求項1記載の燃料電池装置。   The heat insulator is provided with a plurality of recesses that open to face a plurality of regions on the outer surface of at least one wall surface that constitutes the storage container partitioned by the partition bonding layer, and the recesses and the outer surface of the storage container 2. The fuel cell device according to claim 1, wherein at least one gas selected from the group consisting of air, hydrogen, nitrogen, and oxygen is sealed in the space between the two. 前記断熱材料は、多孔性セラミックス材料であり、
前記断熱体は、前記凹部の内面に設けられ、前記断熱材料の気体透過性よりも低い気体透過性を有するコーティング膜を有することを特徴とする請求項5記載の燃料電池装置。
The heat insulating material is a porous ceramic material,
6. The fuel cell device according to claim 5, wherein the heat insulator includes a coating film provided on an inner surface of the recess and having a gas permeability lower than that of the heat insulating material.
JP2011205396A 2011-09-20 2011-09-20 Fuel cell device Withdrawn JP2013069433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011205396A JP2013069433A (en) 2011-09-20 2011-09-20 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011205396A JP2013069433A (en) 2011-09-20 2011-09-20 Fuel cell device

Publications (1)

Publication Number Publication Date
JP2013069433A true JP2013069433A (en) 2013-04-18

Family

ID=48474924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011205396A Withdrawn JP2013069433A (en) 2011-09-20 2011-09-20 Fuel cell device

Country Status (1)

Country Link
JP (1) JP2013069433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11962052B2 (en) 2019-02-25 2024-04-16 Mitsubishi Heavy Industries, Ltd. Fuel cell module and power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11962052B2 (en) 2019-02-25 2024-04-16 Mitsubishi Heavy Industries, Ltd. Fuel cell module and power generation system

Similar Documents

Publication Publication Date Title
JP6685003B2 (en) Battery module
KR101757382B1 (en) Cooling member of improved cooling performance and battery module comprising the same
JP7292812B2 (en) pack batteries
JP2012138315A (en) Lithium ion battery module
JP2013157111A (en) Cooling and heating structure of battery pack
KR102503269B1 (en) Hexagonal prism-shaped battery cell and Method for manufacturing the same, and Battery module comprising the same
JP2019186199A (en) Pouch case, and secondary battery and secondary battery pack using the same
JP2007042453A (en) Aligned structure of storage body cell
KR101233624B1 (en) Secondary Battery Pack
CN112952249B (en) Battery pack
JP2012160315A (en) Battery
US20200067037A1 (en) Battery module
TW201438325A (en) Heat-conduction structure
JP2023123816A (en) Battery cell and battery module
EP3907817A1 (en) Battery cell carrying box
KR20130089614A (en) Outer case for lithium secondary battery and lithium secondary battery comprising the same
JP2010108782A (en) Battery module
JP2014235863A (en) Solid-state secondary battery
JP2013069433A (en) Fuel cell device
JP2018092772A (en) All-solid battery
JPWO2016013661A1 (en) Power generator with secondary battery
JP2004179166A5 (en)
WO2015008750A1 (en) Laminate-cell unit, battery module, laminate-cell-unit production method, and battery-module production method
KR102208998B1 (en) Rechargeable battery and module of the same
JP5839281B2 (en) Power storage device and method for manufacturing power storage device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202