JP2013068186A - Diesel engine - Google Patents

Diesel engine Download PDF

Info

Publication number
JP2013068186A
JP2013068186A JP2011208554A JP2011208554A JP2013068186A JP 2013068186 A JP2013068186 A JP 2013068186A JP 2011208554 A JP2011208554 A JP 2011208554A JP 2011208554 A JP2011208554 A JP 2011208554A JP 2013068186 A JP2013068186 A JP 2013068186A
Authority
JP
Japan
Prior art keywords
dpf
value
control means
estimated
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011208554A
Other languages
Japanese (ja)
Inventor
Masahiko Sugimoto
雅彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011208554A priority Critical patent/JP2013068186A/en
Publication of JP2013068186A publication Critical patent/JP2013068186A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a diesel engine capable of suppressing unnecessary post injection after the completion of substantial DPF regeneration.SOLUTION: In the diesel engine, a control means performs the operation S7 of a PM deposit estimated value on the basis of a temperature estimated value of a DPF and a fuel injection amount, and when the PM deposit estimated value of the DPF reaches a prescribed regeneration completion determination value, the control means performs the completion S9 of the regeneration processing of the DPF performed by post injection. The control means performs an operation S6 of the temperature estimated value of the DPF on the basis of a DPF inlet exhaust temperature and a slip estimated value of post-injection fuel which sneaks through a DOC.

Description

本発明は、ディーゼルエンジンに関し、詳しくは、実質的なDPF再生の完了後の無駄なポスト噴射を抑制することができるディーゼルエンジンに関する。この明細書及び特許請求の範囲で、DOCとはディーゼル酸化触媒、DPFとはディーゼルパティキュレートフィルタ、PMとは粒子状物質をいう。   The present invention relates to a diesel engine, and more particularly to a diesel engine that can suppress useless post injection after completion of substantial DPF regeneration. In this specification and claims, DOC refers to a diesel oxidation catalyst, DPF refers to a diesel particulate filter, and PM refers to a particulate material.

従来、ディーゼルエンジンとして、排気経路にDOCとDPFとを配置し、DPFのPM堆積推定値が所定の再生要求値に至った後、制御手段がDPF再生手段にポスト噴射によるDPFの再生処理を実施させ、排気中に未燃燃料を混入させることにより、DOCでの未燃燃料の触媒燃焼で排気温度を上昇させて、DPFに堆積したPMを焼却させ、制御手段がDPFの温度推定値を演算し、このDPFの温度推定値と燃料噴射量に基づいて、制御手段がPM堆積値を演算し、このDPFのPM堆積推定値が所定の再生完了判定値に至ったら、制御手段がポスト噴射によるDPFの再生処理を完了させるものがある(例えば、特許文献1参照)。
この種のディーゼルエンジンによれば、DPFを再生して再利用することができる利点がある。
しかし、この従来技術では、DPFの温度推定値の演算にDOCをすり抜けるポスト噴射燃料のDPFでの燃焼が反映されていないため、問題がある。
Conventionally, as a diesel engine, DOC and DPF are arranged in the exhaust path, and after the estimated PM accumulation value of the DPF reaches a predetermined regeneration required value, the control means performs DPF regeneration processing by post injection on the DPF regeneration means By mixing the unburned fuel into the exhaust gas, the exhaust temperature is raised by catalytic combustion of the unburned fuel in the DOC, the PM accumulated in the DPF is incinerated, and the control means calculates the estimated DPF temperature. Then, based on the estimated DPF temperature and the fuel injection amount, the control means calculates the PM accumulation value. When the estimated PM accumulation value of the DPF reaches a predetermined regeneration completion determination value, the control means performs post injection. There is one that completes the regeneration process of the DPF (for example, see Patent Document 1).
According to this type of diesel engine, there is an advantage that the DPF can be regenerated and reused.
However, this conventional technique has a problem because the calculation of the estimated DPF temperature does not reflect the combustion of the post-injected fuel passing through the DOC in the DPF.

特開2005−155575号公報(図1参照)Japanese Patent Laying-Open No. 2005-155575 (see FIG. 1)

《問題》 実質的なDPF再生の完了後も無駄なポスト噴射が長く実施されるおそれがある。
DPFの温度推定値の演算にDOCをすり抜けるポスト噴射燃料のDPFでの燃焼が反映されていないため、DPFの温度推定値が実質的に低めに推定され、ひいてはPM堆積推定値が実質的に多めに推定されることにより、DPFの再生が実質的に完了していても、DPFのPM堆積推定値が再生完了判定値に至る時期が大幅に遅れ、実質的なDPF再生完了後も無駄なポスト噴射が長く実施されるおそれがある。
<< Problem >> Even after substantial DPF regeneration is completed, there is a possibility that wasteful post-injection may be carried out for a long time.
Since the post-injection fuel passing through the DOC does not reflect the combustion in the DPF in the calculation of the DPF temperature estimate, the DPF temperature estimate is estimated to be substantially lower, and the PM deposition estimate is substantially higher. Therefore, even when the regeneration of the DPF is substantially completed, the time until the estimated PM accumulation value of the DPF reaches the regeneration completion determination value is greatly delayed, and a wasteful post after the substantial completion of the DPF regeneration is achieved. There is a possibility that the injection is carried out for a long time.

本発明の課題は、実質的なDPF再生の完了後の無駄なポスト噴射を抑制することができるディーゼルエンジンを提供することにある。   The subject of this invention is providing the diesel engine which can suppress the useless post injection after completion of substantial DPF regeneration.

請求項1に係る発明の発明特定事項は、次の通りである。
図1、図2に例示するように、排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射によるDPF(2)の再生処理を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、制御手段(3)がDPF(2)の温度推定値を演算し、このDPF(2)の温度推定値と燃料噴射量に基づいて、制御手段(3)がPM堆積推定値を演算(S7)し、このDPF(2)のPM堆積推定値が所定の再生完了判定値に至ったら、制御手段(3)がポスト噴射によるDPF(2)の再生処理を完了(S9)させるようにしたディーゼルエンジンにおいて、
図1、図2に例示するように、DPF(2)の温度推定値の演算(S6)を、DPF入口排気温度とDOC(1)をすり抜けるポスト噴射のスリップ推定値とに基づいて、制御手段(3)が演算する、ことを特徴とするディーゼルエンジン。
Invention specific matters of the invention according to claim 1 are as follows.
As shown in FIGS. 1 and 2, the DOC (1) and the DPF (2) are arranged in the exhaust path, and after the PM accumulation estimated value of the DPF (2) reaches a predetermined regeneration request value, the control means (3) causes the DPF regeneration means (4) to perform the regeneration process of the DPF (2) by post injection (S4), and mixes unburned fuel into the exhaust (5), so that the unreacted fuel in the DOC (1) The exhaust temperature is raised by catalytic combustion of the fuel, the PM deposited on the DPF (2) is incinerated, the control means (3) calculates the estimated temperature value of the DPF (2), and the temperature of the DPF (2) Based on the estimated value and the fuel injection amount, the control means (3) calculates the PM accumulation estimated value (S7), and when the PM accumulation estimated value of the DPF (2) reaches a predetermined regeneration completion determination value, the control means In the diesel engine in which (3) completes the regeneration process of DPF (2) by post injection (S9),
As illustrated in FIG. 1 and FIG. 2, the control means for calculating the temperature estimation value (S6) of the DPF (2) based on the DPF inlet exhaust temperature and the post injection slip estimation value passing through the DOC (1). A diesel engine characterized in that (3) calculates.

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 実質的なDPF再生完了後の無駄なポスト噴射を抑制することができる。
図1、図2に例示するように、DPF(2)の温度推定値の演算(S6)を、DPF入口排気温度とDOC(1)をすり抜けるポスト噴射燃料のスリップ推定値とに基づいて、制御手段(3)が演算するので、DPF(2)の温度推定値がDOC(1)をすり抜けるポスト噴射燃料のDPF(2)での燃焼を反映した正確なものとなり、ひいてはこのDPF(2)の温度推定値に基づくPM堆積推定値の推定も正確なものとなり、DPF(2)のPM堆積推定値が再生完了判定値に至る時期が実質的なDPF再生完了の時期から大幅に遅れることがなくなり、実質的なDPF再生の完了後の無駄なポスト噴射を抑制することができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<< Effect >> Wasteful post-injection after substantial DPF regeneration is completed can be suppressed.
As illustrated in FIGS. 1 and 2, the calculation (S6) of the estimated temperature value of the DPF (2) is controlled based on the DPF inlet exhaust temperature and the estimated slip value of the post-injected fuel passing through the DOC (1). Since the means (3) calculates, the estimated temperature value of the DPF (2) becomes accurate reflecting the combustion of the post-injected fuel passing through the DOC (1) in the DPF (2). The estimation of the PM deposition estimated value based on the temperature estimated value is also accurate, and the time when the PM deposition estimated value of the DPF (2) reaches the regeneration completion determination value is not significantly delayed from the substantial DPF regeneration completion timing. In addition, useless post injection after completion of substantial DPF regeneration can be suppressed.

本発明の実施形態に係るディーゼルエンジンの模式図である。It is a mimetic diagram of a diesel engine concerning an embodiment of the present invention. 図1のエンジンの制御手段による処理のフローチャートである。It is a flowchart of the process by the control means of the engine of FIG.

図1、図2は本発明の実施形態に係るディーゼルエンジンを説明する図であり、この実施形態では、コモンレール式の水冷立形直列多気筒ディーゼルエンジンについて説明する。   1 and 2 are diagrams for explaining a diesel engine according to an embodiment of the present invention. In this embodiment, a common rail type water-cooled vertical in-line multi-cylinder diesel engine will be described.

このディーゼルエンジンは、次のように構成されている。
シリンダブロック(6)の上部にシリンダヘッド(7)を組み付け、シリンダブロック(6)の前部にエンジン冷却ファン(8)を配置し、シリンダブロック(6)の後部にフライホイール(9)を配置している。シリンダヘッド(7)の横一側には排気マニホルド(10)を組み付け、排気マニホルド(10)に過給機(11)を組み付け、過給機(11)の下流の排気経路に排気処理装置(12)を配置している。
This diesel engine is configured as follows.
The cylinder head (7) is assembled to the top of the cylinder block (6), the engine cooling fan (8) is arranged at the front of the cylinder block (6), and the flywheel (9) is arranged at the rear of the cylinder block (6). doing. An exhaust manifold (10) is assembled to one side of the cylinder head (7), a supercharger (11) is assembled to the exhaust manifold (10), and an exhaust treatment device ( 12) is arranged.

燃料タンク(13)に燃料サプライポンプ(14)を介してコモンレール(15)を接続し、コモンレール(15)に各気筒毎の燃料インジェクタ(16)を接続している。
フライホイール(9)にパルサロータ(17)を取り付け、動弁カム軸(18)にカム軸ロータ(19)を取り付け、パルサロータ(17)にピックアップコイル(20)を対向させ、カム軸ロータ(19)に気筒判別センサ(21)を対向させ、ピックアップコイル(20)でエンジン実回転数とクランク角度とを検出し、気筒判別センサ(21)で所定の気筒の上死点が圧縮上死点であるか排気上死点であるか等、各気筒の燃焼行程を検出する。目標回転数検出センサ(23)で調速レバー(22)の調速位置、すなわちエンジン目標回転数を検出する。
ピックアップコイル(20)と気筒判別センサ(21)と目標回転数検出センサ(23)とを制御手段(3)を介して燃料インジェクタ(16)の電磁弁(30)に連携させている。
制御手段(3)は、エンジン目標回転数とエンジン実回転数とに基づいて燃料噴射量(メイン噴射量)を演算し、クランク角度に基づいて、所定タイミングで燃料インジェクタ(16)の電磁弁(30)を開閉し、燃料インジェクタ(16)から所定タイミングで所定量のメイン噴射を行う。制御手段(3)は、マイコンである。
A common rail (15) is connected to the fuel tank (13) via a fuel supply pump (14), and a fuel injector (16) for each cylinder is connected to the common rail (15).
The pulsar rotor (17) is attached to the flywheel (9), the camshaft rotor (19) is attached to the valve camshaft (18), the pickup coil (20) is opposed to the pulsar rotor (17), and the camshaft rotor (19) The cylinder discrimination sensor (21) is opposed to the engine, the actual engine speed and the crank angle are detected by the pickup coil (20), and the top dead center of a predetermined cylinder is the compression top dead center by the cylinder discrimination sensor (21). The combustion stroke of each cylinder is detected, such as whether it is exhaust top dead center. The target rotational speed detection sensor (23) detects the speed control position of the speed control lever (22), that is, the engine target speed.
A pickup coil (20), a cylinder discrimination sensor (21), and a target rotational speed detection sensor (23) are linked to the electromagnetic valve (30) of the fuel injector (16) via the control means (3).
The control means (3) calculates a fuel injection amount (main injection amount) based on the target engine speed and the actual engine speed, and based on the crank angle, the solenoid valve (16) of the fuel injector (16) at a predetermined timing. 30) is opened and closed, and a predetermined amount of main injection is performed at a predetermined timing from the fuel injector (16). The control means (3) is a microcomputer.

排気処理装置(12)の構成は、次の通りである。
ケーシング(24)内にDOC(1)とDPF(2)とを収容している。上流にDOC(1)を配置し、下流にDPF(2)を配置している。
DOC(1)は、セラミックのハニカム担体で、酸化触媒を担持させ、セル(1a)の両端を開口したフロースルータイプで、セル(1a)の内部を排気(5)が通過するようになっている。
DPF(2)は、セラミックのハニカム担体で、隣合うセル(2a)の端部を交互に目封じたウォールフロータイプである。セル(2a)の内部とセル(2a)の壁(1b)を排気が通過し、セル(2a)の壁(2b)でPMを捕捉する。
The configuration of the exhaust treatment device (12) is as follows.
The DOC (1) and the DPF (2) are accommodated in the casing (24). The DOC (1) is arranged upstream, and the DPF (2) is arranged downstream.
The DOC (1) is a ceramic honeycomb carrier that supports the oxidation catalyst and is a flow-through type in which both ends of the cell (1a) are opened. The exhaust (5) passes through the inside of the cell (1a). Yes.
The DPF (2) is a ceramic honeycomb carrier and is a wall flow type in which the ends of adjacent cells (2a) are alternately plugged. The exhaust gas passes through the inside of the cell (2a) and the wall (1b) of the cell (2a), and captures PM by the wall (2b) of the cell (2a).

DOC(1)の入口側にはDOC入口側温度センサ(25)を配置し、DOC(1)とDPF(2)との間にDFF入口側温度センサ(26)を配置している。また、DOC(1)とDPF(2)との間にDPF入口側排気圧センサ(27)を配置し、DPF(2)の入口側と出口側との間に入口側と出口側の排気圧の差圧を検出する差圧センサ(28)を配置している。
DOC入口側温度センサ(25)とDFF入口側温度センサ(26)とDPF入口側排気圧センサ(27)と差圧センサ(28)とは制御手段(3)を介して燃料インジェクタ(16)の電磁弁(30)に連携させている。
A DOC inlet side temperature sensor (25) is arranged on the inlet side of the DOC (1), and a DFF inlet side temperature sensor (26) is arranged between the DOC (1) and the DPF (2). Further, a DPF inlet side exhaust pressure sensor (27) is disposed between the DOC (1) and the DPF (2), and the inlet side and outlet side exhaust pressures are arranged between the inlet side and the outlet side of the DPF (2). A differential pressure sensor (28) for detecting the differential pressure is arranged.
The DOC inlet side temperature sensor (25), the DFF inlet side temperature sensor (26), the DPF inlet side exhaust pressure sensor (27), and the differential pressure sensor (28) are connected to the fuel injector (16) via the control means (3). The electromagnetic valve (30) is linked.

制御手段(3)は、燃料噴射量とDPF入口温度とに基づいてDPF(2)の第1のPM堆積推定値を演算するとともに、DPF入口側排気圧とDPF(2)の入口側と出口側の差圧に基づいてDPF(2)の第2のPM堆積推定値を演算する。第1のPM堆積推定値と第2のPM堆積推定値のいずれかが所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にDPF(2)の再生処理を実施させ、DPF(2)の再生を完了させる。DPF再生手段(4)は、コモンレールシステム(29)とDOC(1)との組み合わせからなり、DPF(2)の再生処理は燃料インジェクタ(16)からメイン噴射の後にポスト噴射を行い、その未燃燃料をDOC(1)で触媒燃焼させることにより行う。   The control means (3) calculates the first PM accumulation estimated value of the DPF (2) based on the fuel injection amount and the DPF inlet temperature, and also the DPF inlet side exhaust pressure, the DPF (2) inlet side and the outlet Based on the pressure difference on the side, the second estimated PM deposition value of the DPF (2) is calculated. After either the first PM deposition estimated value or the second PM deposition estimated value reaches a predetermined regeneration request value, the control means (3) causes the DPF regeneration means (4) to regenerate the DPF (2). And the regeneration of the DPF (2) is completed. The DPF regeneration means (4) comprises a combination of the common rail system (29) and the DOC (1), and the regeneration process of the DPF (2) is performed after the main injection from the fuel injector (16) and post-injection. This is performed by catalytic combustion of the fuel with DOC (1).

図1、図2に示すように、排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射によるDPF(2)の再生処理を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、制御手段(3)がDPF(2)の温度推定値を演算し、このDPF(2)の温度推定値と燃料噴射量に基づいて、制御手段(3)がPM堆積推定値を演算(S7)し、このDPF(2)のPM堆積推定値が所定の再生完了判定値に至ったら、制御手段(3)がポスト噴射によるDPF(2)の再生処理を完了(S9)させるようにしている。   As shown in FIGS. 1 and 2, the DOC (1) and the DPF (2) are arranged in the exhaust path, and after the estimated PM deposition value of the DPF (2) reaches a predetermined regeneration request value, the control means ( 3) The DPF regeneration means (4) performs the regeneration process of the DPF (2) by post injection (S4), and the unburned fuel is mixed into the exhaust (5), thereby unburned in the DOC (1). The exhaust temperature is raised by catalytic combustion of the fuel, the PM deposited on the DPF (2) is incinerated, the control means (3) calculates the estimated temperature of the DPF (2), and the temperature of the DPF (2) is estimated. Based on the value and the fuel injection amount, the control means (3) calculates the PM accumulation estimated value (S7), and when the PM accumulation estimated value of the DPF (2) reaches a predetermined regeneration completion determination value, the control means ( 3) completes the regeneration process of the DPF (2) by post injection (S9).

図1、図2に示すように、DPF(2)の温度推定値の演算(S6)を、DPF入口排気温度とDOC(1)をすり抜けるポスト噴射燃料のスリップ推定値とに基づいて、制御手段(3)が演算する。   As shown in FIG. 1 and FIG. 2, the control means for calculating the estimated temperature value (S6) of the DPF (2) is based on the DPF inlet exhaust temperature and the estimated slip value of the post-injected fuel passing through the DOC (1). (3) calculates.

制御手段(3)による処理の流れは次の通りである。
図2に示すように、ステップ(S1)ではDPF(2)のPM堆積推定値がDPF再生要求値に至ったか否かが判定され、判定が否定である場合には、判定が肯定されるまでステップ(S1)を繰り返す。
ステップ(S1)での判定が肯定されると、ステップ(S2)でDOC(1)の推定温度が活性化温度に至っているか否かが判定され、判定が否定である場合には、判定が肯定されるまでステップ(S2)を繰り返す。
ステップ(S2)での判定が肯定されると、ステップ(S3)でポスト噴射量を演算し、ステップ(S4)でポスト噴射によるDPFの再生処理を実施する。
The flow of processing by the control means (3) is as follows.
As shown in FIG. 2, in step (S1), it is determined whether the PM accumulation estimated value of DPF (2) has reached the DPF regeneration request value. If the determination is negative, the determination is affirmed. Step (S1) is repeated.
If the determination in step (S1) is affirmed, it is determined in step (S2) whether or not the estimated temperature of DOC (1) has reached the activation temperature. If the determination is negative, the determination is affirmative. Step (S2) is repeated until
If the determination in step (S2) is affirmed, the post injection amount is calculated in step (S3), and the DPF regeneration process by post injection is performed in step (S4).

次に、ステップ(S5)でDOC(1)をすり抜けるポスト噴射燃料のスリップ推定値を演算し、ステップ(S6)でDPF入口排気温度とDOC(1)をすり抜けるポスト噴射燃料のスリップ推定値等に基づいてDPF(2)の温度推定値を演算し、ステップ(S7)でDPF(2)の温度推定値と燃料噴射量等に基づいてDPF(2)のPM堆積推定値を演算し、ステップ(S8)でDPF(2)のPM堆積推定値がDPF(2)の再生完了値に至ったか否かが判定され、判定が肯定されると、ステップ(S9)でポスト噴射によるDPF(2)の再生処理を完了する。ステップ(S8)での判定が否定されると、ステップ(S2)に戻る。   Next, in step (S5), an estimated slip value of post-injected fuel that passes through DOC (1) is calculated. Based on the estimated temperature value of the DPF (2) based on the temperature estimated value of the DPF (2) and the fuel injection amount in step (S7), the estimated PM deposition value of the DPF (2) is calculated. In S8), it is determined whether or not the PM accumulation estimated value of the DPF (2) has reached the regeneration completion value of the DPF (2). If the determination is affirmative, in Step (S9), the DPF (2) by post injection is determined. Complete the playback process. If the determination in step (S8) is negative, the process returns to step (S2).

DOC(1)の推定温度は、DOC入口排気温度、DOC(1)の比熱、DOC(1)からの放熱等に基づいて制御手段(3)が演算する。
DOC(2)の活性化温度は250℃とする。
ポスト噴射量は、DPF入口排気温度の目標温度を600℃とし、DPF入口排気温度、DOC入口排気温度、排気流量に基づいて、制御手段(3)が演算する。
排気流量は吸気流量とメイン噴射量とDOC入口排気温度に基づいて、制御手段(3)が演算する。
ポスト噴射は、コモンレールシステム(29)のインジェクタ(16)から、圧縮上死点付近でのメイン噴射の後、排気行程中に行う。
DOC(1)をすり抜けるポスト噴射燃料のスリップ推定値は、DOC入口排気温度、ポスト噴射量、DOCの未燃燃料浄化率に基づいて、制御手段(3)が演算する
DPF(2)の温度推定値は、DPF入口排気温度、排気流量、DOC(1)のポスト噴射スリップ推定値、PM燃焼の熱量に基づいて、制御手段(3)が演算する。
DPF(2)のPM堆積推定値は、メイン噴射量とポスト噴射量とエンジン回転数とDPF(2)の温度推定値に基づいて実験的に求められたPM生成消失マップにより、制御手段(3)が単位時間当たりのPMの生成量と消失量を演算し、これを積算して求める。
The estimated temperature of the DOC (1) is calculated by the control means (3) based on the DOC inlet exhaust temperature, the specific heat of the DOC (1), the heat radiation from the DOC (1), and the like.
The activation temperature of DOC (2) is 250 ° C.
The post-injection amount is calculated by the control means (3) based on the DPF inlet exhaust temperature, the DOC inlet exhaust temperature, and the exhaust flow rate, with the target temperature of the DPF inlet exhaust temperature being 600 ° C.
The exhaust flow rate is calculated by the control means (3) based on the intake flow rate, the main injection amount, and the DOC inlet exhaust temperature.
Post injection is performed during the exhaust stroke after the main injection near the compression top dead center from the injector (16) of the common rail system (29).
The slip estimated value of the post-injection fuel that passes through the DOC (1) is the temperature estimation of the DPF (2) calculated by the control means (3) based on the DOC inlet exhaust temperature, the post-injection amount, and the unburned fuel purification rate of the DOC. The value is calculated by the control means (3) based on the DPF inlet exhaust temperature, the exhaust flow rate, the estimated post-injection slip value of DOC (1), and the amount of heat of PM combustion.
The PM accumulation estimated value of the DPF (2) is calculated by the control means (3) based on the PM generation disappearance map experimentally obtained based on the main injection amount, the post injection amount, the engine speed, and the temperature estimated value of the DPF (2). ) Calculates the amount of production and disappearance of PM per unit time, and integrates them.

(1) DOC
(2) DPF
(3) 制御手段
(4) DPF再生手段
(5) 排気
(S4) 再生処理を実施
(S6) DPFの温度推定値の演算
(S7) PM堆積推定値を演算
(S9) 再生処理を完了
(1) DOC
(2) DPF
(3) Control means
(4) DPF regeneration means
(5) Exhaust
(S4) Perform playback processing
(S6) Calculation of estimated DPF temperature
(S7) Calculate PM deposition estimate
(S9) Complete playback process

Claims (1)

排気経路にDOC(1)とDPF(2)とを配置し、DPF(2)のPM堆積推定値が所定の再生要求値に至った後、制御手段(3)がDPF再生手段(4)にポスト噴射によるDPF(2)の再生処理を実施(S4)させ、排気(5)中に未燃燃料を混入させることにより、DOC(1)での未燃燃料の触媒燃焼で排気温度を上昇させて、DPF(2)に堆積したPMを焼却させ、制御手段(3)がDPF(2)の温度推定値を演算し、このDPF(2)の温度推定値と燃料噴射量に基づいて、制御手段(3)がPM堆積推定値を演算(S7)し、このDPF(2)のPM堆積推定値が所定の再生完了判定値に至ったら、制御手段(3)がポスト噴射によるDPF(2)の再生処理を完了(S9)させるようにしたディーゼルエンジンにおいて、
DPF(2)の温度推定値の演算(S6)を、DPF入口排気温度とDOC(1)をすり抜けるポスト噴射燃料のスリップ推定値とに基づいて、制御手段(3)が演算する、ことを特徴とするディーゼルエンジン。
After the DOC (1) and the DPF (2) are arranged in the exhaust path, and the estimated PM accumulation value of the DPF (2) reaches a predetermined regeneration request value, the control means (3) is connected to the DPF regeneration means (4). The regeneration process of DPF (2) by post injection is performed (S4), and unburnt fuel is mixed into the exhaust (5), so that the exhaust temperature is raised by catalytic combustion of unburned fuel in DOC (1). Then, the PM deposited on the DPF (2) is incinerated, and the control means (3) calculates the estimated temperature value of the DPF (2), and controls based on the estimated temperature value of the DPF (2) and the fuel injection amount. The means (3) calculates the PM accumulation estimated value (S7), and when the PM accumulation estimated value of the DPF (2) reaches a predetermined regeneration completion determination value, the control means (3) causes the post-injection DPF (2). In the diesel engine that completes the regeneration process (S9),
The control means (3) calculates the temperature estimation value (S6) of the DPF (2) based on the DPF inlet exhaust temperature and the estimated slip value of the post-injected fuel passing through the DOC (1). Diesel engine.
JP2011208554A 2011-09-26 2011-09-26 Diesel engine Pending JP2013068186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208554A JP2013068186A (en) 2011-09-26 2011-09-26 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208554A JP2013068186A (en) 2011-09-26 2011-09-26 Diesel engine

Publications (1)

Publication Number Publication Date
JP2013068186A true JP2013068186A (en) 2013-04-18

Family

ID=48474132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208554A Pending JP2013068186A (en) 2011-09-26 2011-09-26 Diesel engine

Country Status (1)

Country Link
JP (1) JP2013068186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041292A1 (en) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 Diagnostic device
WO2015050206A1 (en) * 2013-10-04 2015-04-09 いすゞ自動車株式会社 Diagnostic device
JP2021124043A (en) * 2020-02-04 2021-08-30 いすゞ自動車株式会社 Control device for exhaust emission control device, exhaust emission control device and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316732A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2006316735A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2010265844A (en) * 2009-05-15 2010-11-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2011027111A (en) * 2009-07-28 2011-02-10 Internatl Engine Intellectual Property Co Llc Method for monitoring hydrocarbon level of diesel particulate filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316732A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2006316735A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2010265844A (en) * 2009-05-15 2010-11-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2011027111A (en) * 2009-07-28 2011-02-10 Internatl Engine Intellectual Property Co Llc Method for monitoring hydrocarbon level of diesel particulate filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041292A1 (en) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 Diagnostic device
JP2015059475A (en) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 Diagnostic system
WO2015050206A1 (en) * 2013-10-04 2015-04-09 いすゞ自動車株式会社 Diagnostic device
JP2021124043A (en) * 2020-02-04 2021-08-30 いすゞ自動車株式会社 Control device for exhaust emission control device, exhaust emission control device and vehicle

Similar Documents

Publication Publication Date Title
JP2013068184A (en) Diesel engine
JP6664312B2 (en) Diesel engine exhaust treatment device
JP6641238B2 (en) diesel engine
JP2007205223A (en) Control method for exhaust emission control system and exhaust emission control system
JP2007247595A (en) Exhaust emission control system and method for controlling the same
KR101665134B1 (en) Exhaust-gas processing device for a diesel engine
JP4371045B2 (en) Exhaust gas purification device for internal combustion engine
US9458753B2 (en) Diesel engine with reduced particulate material accumulation and related method
JP2013068186A (en) Diesel engine
JP2010169052A (en) Exhaust emission control device for internal combustion engine
WO2013047270A1 (en) Diesel engine
JP2013068183A (en) Diesel engine
US8931264B2 (en) Exhaust gas processing device for diesel engine
JP5913158B2 (en) diesel engine
JP5256093B2 (en) Diesel engine exhaust treatment equipment
JP5913159B2 (en) diesel engine
JP6148636B2 (en) engine
JP2011069325A (en) Exhaust gas processing device for diesel engine
JP2020204308A (en) diesel engine
JP2020204306A (en) diesel engine
JP2006214312A (en) Exhaust emission control device of internal combustion engine
JP5136465B2 (en) Exhaust gas purification device for internal combustion engine
JP5386465B2 (en) Exhaust gas purification device in internal combustion engine
JP2014177890A (en) Exhaust emission control device for diesel engine
JP2016173037A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125