JP5913158B2 - diesel engine - Google Patents
diesel engine Download PDFInfo
- Publication number
- JP5913158B2 JP5913158B2 JP2013047709A JP2013047709A JP5913158B2 JP 5913158 B2 JP5913158 B2 JP 5913158B2 JP 2013047709 A JP2013047709 A JP 2013047709A JP 2013047709 A JP2013047709 A JP 2013047709A JP 5913158 B2 JP5913158 B2 JP 5913158B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- lower limit
- limit temperature
- exhaust
- dpf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002347 injection Methods 0.000 claims description 114
- 239000007924 injection Substances 0.000 claims description 114
- 239000000446 fuel Substances 0.000 claims description 57
- 230000008929 regeneration Effects 0.000 claims description 26
- 238000011069 regeneration method Methods 0.000 claims description 26
- UCQFCFPECQILOL-UHFFFAOYSA-N diethyl hydrogen phosphate Chemical compound CCOP(O)(=O)OCC UCQFCFPECQILOL-UHFFFAOYSA-N 0.000 claims description 20
- 238000009825 accumulation Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 7
- 238000000746 purification Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910017435 S2 In Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
本発明は、ディーゼルエンジンに関し、詳しくは、DPFのPM堆積量が過剰になる不具合を防止することができるディーゼルエンジンに関する。
この明細書、特許請求の範囲、及び図面で用いられる用語のうち、DPFはディーゼル・パティキュレート・フィルタの略称、PMは排気に含まれる粒子状物質の略称、DOCはディーゼル酸化触媒の略称である。
The present invention relates to a diesel engine, and more particularly, to a diesel engine that can prevent a problem that an amount of PM accumulated in a DPF is excessive.
Among terms used in this specification, claims, and drawings, DPF is an abbreviation for diesel particulate filter, PM is an abbreviation for particulate matter contained in exhaust, and DOC is an abbreviation for diesel oxidation catalyst. .
従来、ディーゼルエンジンとして次のようなものがある(例えば、特許文献1参照)。
排気経路に配置されたDPFと、DPFのPM堆積量の推定装置と、コモンレール式燃料噴射装置と、コモンレール式燃料噴射装置の燃料噴射を制御する燃料噴射制御装置と、DPFの上流側に配置されたDOCとが設けられ、
DPFのPM堆積量の推定値が所定のDPF再生モード開始値に至った場合には、DPF再生モードが開始され、DPF再生モードでは、DOC入口排気温度が所定のポスト噴射下限温度以上の場合に、燃料噴射制御装置の指令でコモンレール式燃料噴射装置によるメイン噴射後のポスト噴射が実施され、
排気に混入された未燃燃料がDOCで触媒燃焼され、排気の昇温で、DPFに堆積したPMが焼却除去される、ディーゼルエンジン。
この種のディーゼルエンジンによれば、DPFに堆積したPMの焼却除去により、DPFを再生して利用することができる利点がある。
Conventionally, there are the following diesel engines (for example, see Patent Document 1).
DPF disposed in the exhaust path, DPF PM accumulation amount estimation device, common rail fuel injection device, fuel injection control device for controlling fuel injection of the common rail fuel injection device, and upstream of the DPF DOC is provided,
When the estimated value of the PM accumulation amount of the DPF reaches a predetermined DPF regeneration mode start value, the DPF regeneration mode is started. In the DPF regeneration mode, when the DOC inlet exhaust temperature is equal to or higher than the predetermined post injection lower limit temperature. The post-injection after the main injection by the common rail fuel injection device is carried out by the command of the fuel injection control device,
A diesel engine in which unburned fuel mixed in exhaust is catalytically combusted in DOC, and PM accumulated in the DPF is incinerated and removed by raising the temperature of the exhaust.
According to this type of diesel engine, there is an advantage that the DPF can be regenerated and used by incineration removal of PM deposited on the DPF.
しかし、この種のディーゼルエンジンでは、ポスト噴射下限温度がDOC活性化温度以上の一定値に定められているため、問題がある。 However, this type of diesel engine has a problem because the post injection lower limit temperature is set to a constant value equal to or higher than the DOC activation temperature.
《問題点》 DPFのPM堆積量が過剰になるおそれがある。
ポスト噴射下限温度がDOC活性化温度以上の一定値に定められているため、DPF再生モードで、軽負荷運転が継続される場合には、DOC入口排気温度がポスト噴射下限温度に到達する頻度が少なく、ポスト噴射の機会が失われ、DPFのPM堆積量が過剰になるおそれがある。
<< Problem >> There is a possibility that the amount of PM accumulated in the DPF becomes excessive.
Since the post-injection lower limit temperature is set to a constant value equal to or higher than the DOC activation temperature, the frequency at which the DOC inlet exhaust temperature reaches the post-injection lower limit temperature when the light load operation is continued in the DPF regeneration mode. Therefore, there is a risk that the post-injection opportunity is lost and the amount of PM accumulated in the DPF becomes excessive.
本発明の課題は、DPFのPM堆積量が過剰になる不具合を防止することができるディーゼルエンジンを提供することにある。 The subject of this invention is providing the diesel engine which can prevent the malfunction which the PM deposit amount of DPF becomes excessive.
ポスト噴射下限温度がDOC活性化温度以上の一定値に定められているのは、ポスト噴射時のDOC入口排気温度をできるだけ高くし、DOCの酸化機能を十分に活性化させ、DOCをすり抜ける未燃燃料のスリップ割合を小さくすることが考慮されているためである。
しかし、本発明の発明者らは、研究の結果、排気流量が少ない場合には、DOC入口排気温度が比較的低い温度であっても、DOCの酸化効率が高まり、DOCをすり抜ける未燃燃料のスリップ割合が少なくなることを発見し、この発明に至った。
The post-injection lower limit temperature is set to a constant value higher than the DOC activation temperature because the DOC inlet exhaust temperature at the time of post-injection is made as high as possible, the DOC oxidation function is fully activated, and the unburned through the DOC This is because it is considered to reduce the fuel slip ratio.
However, the inventors of the present invention have found that, as a result of research, when the exhaust gas flow rate is small, the oxidation efficiency of DOC increases even when the DOC inlet exhaust temperature is relatively low, and the unburned fuel that passes through the DOC increases. It was discovered that the slip ratio was reduced, and the present invention was achieved.
請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、排気経路(1)に配置されたDPF(2)と、DPF(2)のPM堆積量の推定装置(3)と、コモンレール式燃料噴射装置(4)と、コモンレール式燃料噴射装置(4)の燃料噴射を制御する燃料噴射制御装置(5)と、DPF(2)の上流側に配置されたDOC(6)とが設けられ、
図2(A)に例示するように、DPF(2)のPM堆積量の推定値(P)が所定のDPF再生モード開始値(P1)に至った場合には、DPF再生モードが開始(S2)され、DPF再生モードでは、DOC入口排気温度(T)が所定のポスト噴射下限温度(TN)以上の場合に、燃料噴射制御装置(5)の指令でコモンレール式燃料噴射装置(4)によるメイン噴射後のポスト噴射が実施(S6)され、
図1に例示するように、排気(7)に混入された未燃燃料がDOC(6)で触媒燃焼され、排気(7)の昇温で、DPF(2)に堆積したPMが焼却除去される、ディーゼルエンジンにおいて、
図1例示するように、排気流量の推定装置(8)とポスト噴射下限温度(TN)の設定装置(9)とが設けられ、
図1,図2(A)(B)に例示するように、吸気経路には吸気流量センサが設けられ、吸気流量センサの検出値と燃料噴射量とDOC入口排気温度センサ(33)とDPF入口排気温度センサ(30)とDPF入口排気圧センサ(31)の検出値に基づいて、排気流量の推定装置(8)で、DOC(6)を通過する排気流量の推定値(E)が推定され、排気流量の推定値(E)に基づいて、ポスト噴射下限温度(TN)の設定装置(9)で、ポスト噴射下限温度(TN)の設定が行われ、
図2(A)(B)に例示するように、排気流量の推定値(E)が所定の基準流量(E1)の場合には、ポスト噴射下限温度(TN)が所定の基準下限温度(T1)に設定(S4)され、排気流量の推定値(E)が上記基準流量(E1)未満の少ない流量(E0)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)され、
排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)よりも高い下限温度(T2)に設定(S11)される、ことを特徴とするディーゼルエンジン。
Invention specific matters of the invention according to
As illustrated in FIG. 1, the DPF (2) disposed in the exhaust path (1), the PM deposition amount estimation device (3) of the DPF (2), the common rail fuel injection device (4), and the common rail A fuel injection control device (5) for controlling the fuel injection of the fuel injection device (4), and a DOC (6) disposed on the upstream side of the DPF (2),
As illustrated in FIG. 2A, when the estimated value (P) of the PM accumulation amount of the DPF (2) reaches a predetermined DPF regeneration mode start value (P1), the DPF regeneration mode is started (S2 In the DPF regeneration mode, when the DOC inlet exhaust temperature (T) is equal to or higher than a predetermined post-injection lower limit temperature (TN), the main rail by the common rail fuel injection device (4) is instructed by the fuel injection control device (5). Post-injection after injection is performed (S6),
As illustrated in FIG. 1, unburned fuel mixed in the exhaust (7) is catalytically combusted in the DOC (6), and PM accumulated in the DPF (2) is incinerated and removed by raising the temperature of the exhaust (7). In diesel engines,
As illustrated in FIG. 1, an exhaust flow rate estimating device (8) and a post injection lower limit temperature (TN) setting device (9) are provided.
As illustrated in FIGS. 1, 2A, and 2B, an intake flow rate sensor is provided in the intake path, and a detected value of the intake flow rate sensor, a fuel injection amount, a DOC inlet exhaust temperature sensor (33), and a DPF inlet Based on the detected values of the exhaust temperature sensor (30) and the DPF inlet exhaust pressure sensor (31), the exhaust flow rate estimation device (8) estimates the exhaust flow rate estimated value (E) passing through the DOC (6). Based on the estimated value (E) of the exhaust flow rate, the post injection lower limit temperature (TN) is set by the post injection lower limit temperature (TN) setting device (9) ,
2A and 2B, when the estimated value (E) of the exhaust flow rate is a predetermined reference flow rate (E1), the post injection lower limit temperature (TN) is set to the predetermined reference lower limit temperature (T1). ) Is set (S4), and the estimated value (E) of the exhaust flow rate is a low flow rate (E0) less than the reference flow rate (E1), the post injection lower limit temperature (TN) is set to the reference lower limit temperature (T1). Is set to a lower lower limit temperature (T0) less than (S10) ,
In the case of a large flow rate (E2) where the estimated value (E) of the exhaust flow rate exceeds the reference flow rate (E1), the lower limit temperature (T2) where the post injection lower limit temperature (TN) is higher than the reference lower limit temperature (T1). A diesel engine characterized by being set to (S11).
(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 DPFのPM堆積量が過剰になる不具合を防止することができる。
図2(A)(B)に例示するように、排気流量の推定値(E)が基準流量(E1)未満の少ない流量(E0)の場合には、ポスト噴射下限温度(TN)が基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)されるので、DPF再生モードで、軽負荷運転が継続する場合でも、DOC入口排気温度(T)がポスト噴射下限温度(TN)に到達する頻度を多くすることができ、DPF(2)のPM堆積量が過剰になる不具合を防止することができる。
(Invention of Claim 1)
The invention according to
<Effect> It is possible to prevent a problem that the amount of PM accumulated in the DPF becomes excessive.
As illustrated in FIGS. 2 (A) and 2 (B), when the estimated value (E) of the exhaust flow rate is a low flow rate (E0) less than the reference flow rate (E1), the post injection lower limit temperature (TN) is the reference lower limit. Since the lower lower limit temperature (T0) lower than the temperature (T1) is set (S10), even when the light load operation continues in the DPF regeneration mode, the DOC inlet exhaust temperature (T) becomes the post injection lower limit temperature (TN). Can be increased, and a problem that the amount of PM accumulated in the DPF (2) becomes excessive can be prevented.
《効果》 ポスト噴射下限温度が基準下限温度より低い下限温度に設定されても、DOCをすり抜ける未燃燃料のスリップ割合は小さく維持することができる。
図2(A)(B)に例示するように、排気流量の推定値(E)が基準流量(E1)未満の少ない流量(E0)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)されても、DOC(6)をすり抜ける未燃燃料のスリップ割合は小さく維持することができる。
その理由は、排気流量が少ない場合には、排気(7)の流速が遅く、DOC(6)と排気(7)中の未燃燃料の接触時間が長くなるため、DOC(6)の酸化効率が高まる傾向があり、ポスト噴射下限温度(TN)が基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)されても、DOC(6)の酸化効率の高まりで、DOC(6)の酸化能力が必要な高さに保たれるためと推定される。
《効果》 排気流量が多い場合でも、DOCをすり抜ける未燃燃料のスリップ割合を小さくすることができる。
排気流量が多い場合でも、DOC(6)をすり抜ける未燃燃料のスリップ割合を小さくすることができる。
その理由は、排気流量が多い場合には、排気(7)の流速が速く、DOC(6)と排気(7)中の未燃燃料の接触時間が短くなるため、DOC(6)の酸化効率が低下する傾向にあるが、図2(A)(B)に例示するように、排気流量の推定値(E)が基準流量(E1)を超える多い流量(E2)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)よりも高い下限温度(T2)に設定(S11)されるので、高い温度によるDOC(6)の酸化機能の活性化で、DOC(6)の酸化能力が必要な高さに保たれるためと推定される。
<Effect> Even when the post-injection lower limit temperature is set to a lower limit temperature lower than the reference lower limit temperature, the slip ratio of unburned fuel that passes through the DOC can be kept small.
As illustrated in FIGS. 2A and 2B, when the estimated value (E) of the exhaust flow rate is a low flow rate (E0) less than the reference flow rate (E1), the post-injection lower limit temperature (TN) is the above reference value. Even when the lower limit temperature (T0) lower than the lower limit temperature (T1) is set (S10), the slip ratio of unburned fuel that passes through the DOC (6) can be kept small.
The reason is that when the exhaust gas flow rate is small, the flow rate of the exhaust gas (7) is slow and the contact time between the DOC (6) and the unburned fuel in the exhaust gas (7) becomes long. Even if the post-injection lower limit temperature (TN) is set to a lower lower limit temperature (T0) lower than the reference lower limit temperature (T1) (S10), the oxidation efficiency of DOC (6) increases and DOC (6 It is estimated that the oxidation ability of 6) is maintained at a necessary height.
<Effect> Even when the exhaust gas flow rate is large, the slip ratio of unburned fuel passing through the DOC can be reduced.
Even when the exhaust gas flow rate is large, the slip ratio of unburned fuel passing through the DOC (6) can be reduced.
The reason is that when the exhaust gas flow rate is large, the flow rate of the exhaust gas (7) is high and the contact time between the DOC (6) and the unburned fuel in the exhaust gas (7) is shortened. However, as shown in FIGS. 2A and 2B, when the estimated value (E) of the exhaust flow rate is a large flow rate (E2) exceeding the reference flow rate (E1), post injection is performed. Since the lower limit temperature (TN) is set to the lower limit temperature (T2) higher than the reference lower limit temperature (T1) (S11), the activation of the oxidation function of the DOC (6) by the high temperature causes the DOC (6) to It is estimated that the oxidation capacity is maintained at a necessary height.
(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 排気流量に応じてポスト噴射下限温度を最適化することができる。
図2(A)(B)に例示するように、排気流量の推定値(E)が基準流量(E1)未満の少ない流量(E0)の場合には、排気流量の推定値(E)が少ないほど、ポスト噴射下限温度(TN)に設定(S10)される下限温度(T0)が低くなるので、排気流量に応じてポスト噴射下限温度(TN)を最適化することができる。
(Invention of Claim 2)
The invention according to
<Effect> The post injection lower limit temperature can be optimized according to the exhaust gas flow rate.
As illustrated in FIGS. 2A and 2B, when the estimated value (E) of the exhaust flow rate is a small flow rate (E0) less than the reference flow rate (E1), the estimated value (E) of the exhaust flow rate is small. As the lower limit temperature (T0) set (S10) to the post injection lower limit temperature (TN) becomes lower, the post injection lower limit temperature (TN) can be optimized according to the exhaust gas flow rate.
(請求項3に係る発明)
請求項3に係る発明は、請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 排気流量に応じてポスト噴射下限温度を最適化することができる。
図2(A)(B)に例示するように、排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、排気流量の推定値(E)が多いほど、ポスト噴射下限温度(TN)に設定(S11)される下限温度(T2)が高くなるので、排気流量に応じてポスト噴射下限温度(TN)を最適化することができる。
(Invention of Claim 3)
The invention according to
<Effect> The post injection lower limit temperature can be optimized according to the exhaust gas flow rate.
As illustrated in FIGS. 2 (A) and 2 (B), when the estimated value (E) of the exhaust flow rate is a large flow rate (E2) exceeding the reference flow rate (E1), the estimated value (E) of the exhaust flow rate is As the amount increases, the lower limit temperature (T2) set (S11) to the post-injection lower limit temperature (TN) becomes higher, so that the post-injection lower limit temperature (TN) can be optimized according to the exhaust gas flow rate.
図1〜図2は本発明の実施形態に係るディーゼルエンジンを説明する図であり、この実施形態では、立形の直列多気筒ディーゼルエンジンについて説明する。 1 to 2 are diagrams illustrating a diesel engine according to an embodiment of the present invention. In this embodiment, a vertical in-line multi-cylinder diesel engine will be described.
このディーゼルエンジンは、次のように構成されている。
図1に示すように、シリンダブロック(10)の上部にシリンダヘッド(11)が組み付けられ、シリンダブロック(10)の前部にエンジン冷却ファン(12)が配置され、シリンダブロック(10)の後部にフライホイール(13)が配置されている。シリンダヘッド(11)の横一側には排気マニホルド(14)が組み付けられ、排気マニホルド(14)に過給機(15)が組み付けられ、過給機(15)の下流の排気経路(1)に排気浄化装置(16)が配置されている。シリンダヘッド(11)にはコモンレール式燃料噴射装置(4)が取り付けられている。
This diesel engine is configured as follows.
As shown in FIG. 1, the cylinder head (11) is assembled to the upper part of the cylinder block (10), the engine cooling fan (12) is arranged at the front part of the cylinder block (10), and the rear part of the cylinder block (10). A flywheel (13) is arranged on the side. An exhaust manifold (14) is assembled to one side of the cylinder head (11), a supercharger (15) is assembled to the exhaust manifold (14), and an exhaust path (1) downstream of the supercharger (15). An exhaust purification device (16) is disposed in the front. A common rail fuel injection device (4) is attached to the cylinder head (11).
コモンレール式燃料噴射装置(4)の構成は、次の通りである。
図1に示すように、燃料タンク(17)に燃料サプライポンプ(18)を介してコモンレール(19)が接続され、コモンレール(19)に各気筒の燃料インジェクタ(20)が接続されている。
フライホイール(13)にパルサロータ(21)が取り付けられ、パルサロータ(21)にピックアップコイル(22)が対向され、動弁カム軸(34)にカム軸ロータ(23)が取り付けられ、カム軸ロータ(23)に気筒判別センサ(24)が対向され、ピックアップコイル(22)でエンジン実回転数とクランク角度とが検出され、気筒判別センサ(24)で所定の気筒の上死点が圧縮上死点か排気上死点であるか等、各気筒の燃焼行程が検出される。目標回転数検出センサ(25)で調速レバー(26)の調速位置、すなわちエンジン目標回転数が検出される。
The configuration of the common rail fuel injection device (4) is as follows.
As shown in FIG. 1, a common rail (19) is connected to a fuel tank (17) via a fuel supply pump (18), and a fuel injector (20) for each cylinder is connected to the common rail (19).
The pulsar rotor (21) is attached to the flywheel (13), the pickup coil (22) is opposed to the pulsar rotor (21), the camshaft rotor (23) is attached to the valve camshaft (34), and the camshaft rotor ( 23) is opposed to the cylinder discrimination sensor (24), the pickup engine (22) detects the actual engine speed and the crank angle, and the cylinder discrimination sensor (24) detects the top dead center of the predetermined cylinder as the compression top dead center. The combustion stroke of each cylinder is detected, such as whether it is exhaust top dead center. A target speed detection sensor (25) detects the speed control position of the speed control lever (26), that is, the engine target speed.
図1に示すように、ピックアップコイル(22)と気筒判別センサ(24)と目標回転数検出センサ(25)とが、燃料噴射制御装置(5)を介して燃料インジェクタ(20)の電磁弁(27)に連携されている。
燃料噴射制御装置(5)により、エンジン目標回転数とエンジン実回転数との偏差に基づいて、燃料噴射量(メイン噴射量)が演算され、クランク角度に基づく所定のタイミングで燃料インジェクタ(20)から所定量のメイン噴射が行われる。
燃料噴射制御装置(5)はエンジンECU(28)の演算処理部である。エンジンECUはエンジン電子制御ユニットの略称である。
As shown in FIG. 1, a pickup coil (22), a cylinder discrimination sensor (24), and a target rotational speed detection sensor (25) are connected to a solenoid valve (20) of a fuel injector (20) via a fuel injection control device (5). 27).
The fuel injection control device (5) calculates a fuel injection amount (main injection amount) based on the deviation between the target engine speed and the actual engine speed, and at a predetermined timing based on the crank angle, the fuel injector (20). A predetermined amount of main injection is performed.
The fuel injection control device (5) is an arithmetic processing unit of the engine ECU (28). Engine ECU is an abbreviation for engine electronic control unit.
排気浄化装置(16)の構成は、次の通りである。
図1に示すように、排気経路(1)に配置されたDPF(2)と、DPF(2)のPM堆積量の推定装置(3)と、コモンレール式燃料噴射装置(4)と、コモンレール式燃料噴射装置(4)の燃料噴射を制御する燃料噴射制御装置(5)と、DPF(2)の上流側に配置されたDOC(6)とが設けられている。
コモンレール式燃料噴射装置(4)とコモンレール式燃料噴射装置(4)の燃料噴射を制御する燃料噴射制御装置(5)とは、排気浄化装置(16)の構成要素としても機能する。
The configuration of the exhaust purification device (16) is as follows.
As shown in FIG. 1, the DPF (2) disposed in the exhaust path (1), the PM deposition amount estimation device (3) of the DPF (2), the common rail fuel injection device (4), and the common rail type A fuel injection control device (5) for controlling the fuel injection of the fuel injection device (4) and a DOC (6) disposed on the upstream side of the DPF (2) are provided.
The common rail fuel injection device (4) and the fuel injection control device (5) for controlling the fuel injection of the common rail fuel injection device (4) also function as components of the exhaust purification device (16).
排気浄化装置(16)の構成要素の内容は、次の通りである。
図1に示すように、DPF(2)とDOC(6)とは、排気浄化ケース(29)内に収容されている。
DPF(2)は、円柱形のセラミックフィルタであり、内部はハニカム構造で、軸長方向に伸びる複数のセル(2a)(2a)を備え、隣合うセル(2a)(2a)の入口と出口が交互に目封じされ、セル(2a)(2a)間の多孔質壁(2b)に排気(7)を通過させ、多孔質壁(2b)で排気(7)中のPMを捕捉するウォールフロー型のものである。
DOC(6)は、円柱形のセラミック担体に酸化触媒成分を担持させたもので、担体の内部はハニカム構造で、軸長方向に貫通状に伸びる複数のセル(6a)を備え、セル(6a)内に酸化触媒成分が担持され、セル(6a)内に排気(7)を通過させるスルーフロー型のものである。
The contents of the components of the exhaust emission control device (16) are as follows.
As shown in FIG. 1, the DPF (2) and the DOC (6) are accommodated in the exhaust purification case (29).
The DPF (2) is a cylindrical ceramic filter having a honeycomb structure inside and a plurality of cells (2a) (2a) extending in the axial length direction, and inlets and outlets of adjacent cells (2a) (2a). Is alternately sealed, and the exhaust (7) is passed through the porous wall (2b) between the cells (2a) and (2a), and the PM in the exhaust (7) is captured by the porous wall (2b). Of the type.
The DOC (6) is a cylindrical ceramic carrier on which an oxidation catalyst component is supported. The inside of the carrier has a honeycomb structure and includes a plurality of cells (6a) extending in the axial length direction. ) Is a through-flow type in which an oxidation catalyst component is supported and exhaust gas (7) is passed through the cell (6a).
図1に示すように、DPF(2)のPM堆積量の推定装置(3)は、エンジンECU(28)の演算処理部である。排気浄化ケース(29)には、DPF入口排気温度センサ(30)と、DPF入口排気圧センサ(31)と、DPF入口と出口の差圧を検出する差圧センサ(32)が設けられ、これらセンサ(30)(31)(32)の検出値とDPFでのPM堆積量の相関マップに基づいて、DPF(2)のPM堆積量の推定装置(3)により、DPF(2)のPM堆積量が推定される。他に、燃料噴射量とDPF入口排気温度とDPFでのPM堆積量の相関マップに基づいて、更には、エンジン運転時間とDPFでのPM堆積量の相関マップに基づいて、DPF(2)のPM堆積量の推定装置(3)により、DPF(2)のPM堆積量が推定される。
排気浄化ケース(29)には、DOC入口排気温度センサ(33)も設けられている。吸気経路(図示せず)には吸気スロットル弁(図示せず)が設けられ、DOC入口排気温度(T)が所定のポスト噴射下限温度(TN)未満の場合には、吸気スロットルの開度を小さくして、DOC入口排気温度(T)が高められる。
As shown in FIG. 1, the PM accumulation amount estimation device (3) of the DPF (2) is an arithmetic processing unit of the engine ECU (28). The exhaust purification case (29) is provided with a DPF inlet exhaust temperature sensor (30), a DPF inlet exhaust pressure sensor (31), and a differential pressure sensor (32) for detecting a differential pressure between the DPF inlet and the outlet. Based on the correlation map between the detected values of the sensors (30), (31), and (32) and the PM deposition amount in the DPF, the PM deposition amount in the DPF (2) is estimated by the PM deposition amount estimation device (3) in the DPF (2). The quantity is estimated. In addition, based on the correlation map of the fuel injection amount, the DPF inlet exhaust temperature, and the PM accumulation amount at the DPF, and further, based on the correlation map of the engine operation time and the PM accumulation amount at the DPF, the DPF (2) The PM accumulation amount of the DPF (2) is estimated by the PM accumulation amount estimation device (3).
The exhaust purification case (29) is also provided with a DOC inlet exhaust temperature sensor (33). An intake throttle valve (not shown) is provided in the intake path (not shown), and when the DOC inlet exhaust temperature (T) is lower than a predetermined post-injection lower limit temperature (TN), the intake throttle opening is set. As a result, the DOC inlet exhaust temperature (T) is increased.
DPF再生処理の概要は、次の通りである。
図2(A)に示すように、DPF(2)のPM堆積量の推定値(P)が所定のDPF再生モード開始値(P1)に至った場合には、DPF再生モードが開始(S2)され、DPF再生モードでは、DOC入口排気温度(T)が所定のポスト噴射下限温度(TN)以上の場合に、燃料噴射制御装置(5)の指令でコモンレール式燃料噴射装置(4)によるメイン噴射後のポスト噴射が実施(S6)される。
図1に示すように、排気(7)に混入された未燃燃料がDOC(6)で触媒燃焼され、排気(7)の昇温で、DPF(2)に堆積したPMが焼却除去されるように構成されている。
The outline of the DPF regeneration process is as follows.
As shown in FIG. 2A, when the estimated value (P) of the PM accumulation amount of the DPF (2) reaches a predetermined DPF regeneration mode start value (P1), the DPF regeneration mode is started (S2). In the DPF regeneration mode, when the DOC inlet exhaust temperature (T) is equal to or higher than a predetermined post-injection lower limit temperature (TN), the main injection by the common rail fuel injection device (4) is instructed by the command of the fuel injection control device (5). Subsequent post injection is performed (S6).
As shown in FIG. 1, unburned fuel mixed in the exhaust (7) is catalytically combusted in the DOC (6), and PM accumulated in the DPF (2) is incinerated and removed by raising the temperature of the exhaust (7). It is configured as follows.
メイン噴射とポスト噴射の時期は、次の通りである。
メイン噴射は、クランク角度でその気筒の圧縮上死点0°±5°の範囲内で開始される。
ポスト噴射は、クランク角度でその気筒の圧縮上死点後100°±40°の範囲内で開始される。
The timing of main injection and post injection is as follows.
The main injection is started within the range of 0 ° ± 5 ° of compression top dead center of the cylinder at the crank angle.
Post injection is started within a range of 100 ° ± 40 ° after the compression top dead center of the cylinder at a crank angle.
図1に示すように、排気流量の推定装置(8)とポスト噴射下限温度(TN)の設定装置(9)とが設けられている。
図2(A)(B)に示すように、排気流量の推定値(E)が所定の基準流量(E1)の場合には、ポスト噴射下限温度(TN)が所定の基準下限温度(T1)に設定(S4)され、排気流量の推定値(E)が上記基準流量(E1)未満の少ない流量(E0)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)される。
As shown in FIG. 1, an exhaust flow rate estimating device (8) and a post injection lower limit temperature (TN) setting device (9) are provided.
As shown in FIGS. 2A and 2B, when the estimated value (E) of the exhaust flow rate is the predetermined reference flow rate (E1), the post injection lower limit temperature (TN) is the predetermined reference lower limit temperature (T1). Is set (S4), and when the estimated value (E) of the exhaust flow rate is a low flow rate (E0) less than the reference flow rate (E1), the post injection lower limit temperature (TN) is lower than the reference lower limit temperature (T1). Is set to a lower lower limit temperature (T0) (S10).
図1に示すように、排気流量の推定装置(8)とポスト噴射下限温度(TN)の設定装置(9)は、いずれもエンジンECU(28)の演算処理部である。吸気経路(図示せず)には吸気流量センサ(図示せず)が設けられ、吸気流量センサの検出値と燃料噴射量とDOC入口排気温度センサ(33)とDPF入口排気温度センサ(30)とDPF入口排気圧センサ(31)の検出値に基づいて、排気流量の推定がなされ、排気流量の推定値(E)に基づいてポスト噴射下限温度(TN)の設定が行われる。排気流量の推定装置(8)では、DOC(6)を通過する排気流量の推定値(E)を推定する。基準下限温度(T1)は250°Cとされている。ポスト噴射下限温度(TN)の設定は、ポスト噴射下限温度(TN)の設定装置(9)で行われる。
As shown in FIG. 1, both the exhaust flow rate estimating device (8) and the post injection lower limit temperature (TN) setting device (9) are arithmetic processing units of the engine ECU (28). An intake flow rate sensor (not shown) is provided in the intake path (not shown), and a detected value of the intake flow rate sensor, a fuel injection amount, a DOC inlet exhaust temperature sensor (33), a DPF inlet exhaust temperature sensor (30), The exhaust flow rate is estimated based on the detected value of the DPF inlet exhaust pressure sensor (31), and the post injection lower limit temperature (TN) is set based on the estimated value (E) of the exhaust flow rate. The exhaust flow rate estimation device (8) estimates an estimated value (E) of the exhaust flow rate that passes through the DOC (6). The reference lower limit temperature (T1) is 250 ° C. The post injection lower limit temperature (TN) is set by a post injection lower limit temperature (TN) setting device (9).
図2(B)に示すように、排気流量の推定値(E)が上記基準流量(E1)未満の少ない流量(E0)の場合には、排気流量の推定値(E)が少ないほど、ポスト噴射下限温度(TN)に設定(S10)される下限温度(T0)が低くなる。 As shown in FIG. 2 (B), when the estimated value (E) of the exhaust flow rate is a small flow rate (E0) less than the reference flow rate (E1), the smaller the estimated value (E) of the exhaust flow rate, The lower limit temperature (T0) set (S10) to the injection lower limit temperature (TN) is lowered.
図2(A)(B)に示すように、排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)よりも高い下限温度(T2)に設定(S11)される。 As shown in FIGS. 2A and 2B, when the estimated value (E) of the exhaust flow rate is a large flow rate (E2) exceeding the reference flow rate (E1), the post-injection lower limit temperature (TN) is the above reference flow rate. A lower limit temperature (T2) higher than the lower limit temperature (T1) is set (S11).
図2(B)に示すように、排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、排気流量の推定値(E)が多いほど、ポスト噴射下限温度(TN)に設定(S11)される下限温度(T2)が高くなる。 As shown in FIG. 2 (B), in the case where the estimated value (E) of the exhaust flow rate is a large flow rate (E2) exceeding the reference flow rate (E1), the post value increases as the estimated value (E) of the exhaust flow rate increases. The lower limit temperature (T2) set (S11) to the injection lower limit temperature (TN) becomes higher.
燃料噴射制御装置(5)による処理の流れは、図2(A)に示す通りである。
ステップ(S1)では、DPF(2)でのPM堆積量の推定値(P)がDPF再生モード開始値(P1)に至ったか否かが判定され、判定が肯定されると、ステップ(S2)に進む。
ステップ(S2)では、DPF再生モードが開始され、ステップ(S3)で排気流量の推定値(E)が所定の基準流量(E1)と一致するか否かが判定され、判定が肯定されると、ステップ(S4)に進む。
ステップ(S4)では、ポスト噴射下限温度(TN)が所定の基準下限温度(T1)に設定され、ステップ(S5)に進む。
The flow of processing by the fuel injection control device (5) is as shown in FIG.
In step (S1), it is determined whether or not the estimated value (P) of the PM accumulation amount in the DPF (2) has reached the DPF regeneration mode start value (P1). If the determination is affirmative, step (S2) Proceed to
In step (S2), the DPF regeneration mode is started. In step (S3), it is determined whether or not the estimated value (E) of the exhaust flow rate matches the predetermined reference flow rate (E1). The process proceeds to step (S4).
In step (S4), the post injection lower limit temperature (TN) is set to a predetermined reference lower limit temperature (T1), and the process proceeds to step (S5).
ステップ(S5)では、DOC入口排気温度(T)がポスト噴射下限温度(TN)以上か否かが判定され、判定が肯定の場合には、ステップ(S6)に進む。
ステップ(S6)では、メイン噴射後のポスト噴射が実施され、ステップ(S7)に進む。
ステップ(S7)では、DPF再生モードの終了条件が満たされたか否かが判定され、判定が肯定の場合には、ステップ(S8)に進む。DPF再生モードの終了条件は、DPF再生モードが開始(S2)されてから、所定温度以上のDPF入口排気温度(T)が所定時間継続することである。DPF再生モードの終了条件は、DPF(2)のPM堆積量の推定値(P)がDPF再生モード開始値(P1)よりも低い値(P0)に至ることであってもよい。
ステップ(S8)では、DPF再生モードが終了され、ステップ(S1)に戻る。
In step (S5), it is determined whether or not the DOC inlet exhaust temperature (T) is equal to or higher than the post injection lower limit temperature (TN). If the determination is affirmative, the process proceeds to step (S6).
In step (S6), post injection after the main injection is performed, and the process proceeds to step (S7).
In step (S7), it is determined whether or not the DPF regeneration mode end condition is satisfied. If the determination is affirmative, the process proceeds to step (S8). The condition for ending the DPF regeneration mode is that the DPF inlet exhaust temperature (T) equal to or higher than a predetermined temperature continues for a predetermined time after the DPF regeneration mode is started (S2). The termination condition of the DPF regeneration mode may be that the estimated value (P) of the PM accumulation amount of the DPF (2) reaches a value (P0) lower than the DPF regeneration mode start value (P1).
In step (S8), the DPF regeneration mode is terminated, and the process returns to step (S1).
ステップ(S5)やステップ(S7)での判定が否定の場合には、ステップ(S3)に戻る。
ステップ(S3)での判定が否定の場合には、ステップ(S9)に進む。
ステップ(S9)では、排気流量の推定値(E)が前記基準流量(E1)未満か否かが判定され、判定が肯定されると、ステップ(S10)に進む。
ステップ(S10)では、ポスト噴射下限温度(TN)が前記基準温度(T1)未満の低い下限温度(T0)に設定され、ステップ(S5)に進む。
ステップ(S9)での判定が否定の場合には、ステップ(S11)に進む。
ステップ(S11)では、ポスト噴射下限温度(TN)が前記基準温度(T1)を超える高い下限温度(T2)に設定され、ステップ(S5)に進む。
If the determination in step (S5) or step (S7) is negative, the process returns to step (S3).
If the determination in step (S3) is negative, the process proceeds to step (S9).
In step (S9), it is determined whether the estimated value (E) of the exhaust flow rate is less than the reference flow rate (E1). If the determination is affirmed, the process proceeds to step (S10).
In step (S10), the post injection lower limit temperature (TN) is set to a lower lower limit temperature (T0) lower than the reference temperature (T1), and the process proceeds to step (S5).
If the determination in step (S9) is negative, the process proceeds to step (S11).
In step (S11), the post injection lower limit temperature (TN) is set to a higher lower limit temperature (T2) that exceeds the reference temperature (T1), and the process proceeds to step (S5).
ステップ(S1)での判定が否定の場合には、ステップ(S12)に進む。
ステップ(S12)では通常運転モードが設定され、ステップ(S1)に戻る。
通常運転モードでは、DPF再生モードとは異なり、メイン噴射後のポスト噴射は実施されない。
If the determination in step (S1) is negative, the process proceeds to step (S12).
In step (S12), the normal operation mode is set, and the process returns to step (S1).
In the normal operation mode, unlike the DPF regeneration mode, post-injection after main injection is not performed.
(1) 排気経路
(2) DPF
(3) PM堆積量の推定装置
(4) コモンレール式燃料噴射装置
(5) 燃料噴射制御装置
(6) DOC
(7) 排気
(8) 排気流量の推定装置
(9) ポスト噴射下限温度の設定装置
(P) PM堆積量の推定値
(P1) DPF再生モード開始値
(T) DOC入口排気温度
(TN) ポスト噴射下限温度
(T1) 基準下限温度
(T0) T1未満の低い下限温度
(T2) T1を超える高い下限温度
(E) 排気流量の推定値
(E1) 基準流量
(E0) E1未満の少ない流量
(E2) E1を超える多い流量
(S2) DPF再生モードが開始
(S4) TNがT1に設定
(S7) ポスト噴射が実施
(S10) TNがT0に設定
(S11) TNがT2に設定
(1) Exhaust route
(2) DPF
(3) PM deposition amount estimation device
(4) Common rail fuel injection system
(5) Fuel injection control device
(6) DOC
(7) Exhaust
(8) Exhaust flow rate estimation device
(9) Post injection lower limit temperature setting device
(P) Estimated amount of PM deposition
(P1) DPF regeneration mode start value
(T) DOC inlet exhaust temperature
(TN) Post injection lower limit temperature
(T1) Reference lower limit temperature
(T0) Lower minimum temperature less than T1
(T2) High minimum temperature exceeding T1
(E) Estimated exhaust flow rate
(E1) Standard flow rate
(E0) Small flow rate less than E1
(E2) High flow rate exceeding E1
(S2) DPF regeneration mode starts
(S4) TN is set to T1
(S7) Post injection
(S10) TN is set to T0
(S11) TN set to T2
Claims (3)
DPF(2)のPM堆積量の推定値(P)が所定のDPF再生モード開始値(P1)に至った場合には、DPF再生モードが開始(S2)され、DPF再生モードでは、DOC入口排気温度(T)が所定のポスト噴射下限温度(TN)以上の場合に、燃料噴射制御装置(5)の指令でコモンレール式燃料噴射装置(4)によるメイン噴射後のポスト噴射が実施(S6)され、
排気(7)に混入された未燃燃料がDOC(6)で触媒燃焼され、排気(7)の昇温で、DPF(2)に堆積したPMが焼却除去される、ディーゼルエンジンにおいて、
排気流量の推定装置(8)とポスト噴射下限温度(TN)の設定装置(9)とが設けられ、
吸気経路には吸気流量センサが設けられ、吸気流量センサの検出値と燃料噴射量とDOC入口排気温度センサ(33)とDPF入口排気温度センサ(30)とDPF入口排気圧センサ(31)の検出値に基づいて、排気流量の推定装置(8)で、DOC(6)を通過する排気流量の推定値(E)が推定され、排気流量の推定値(E)に基づいて、ポスト噴射下限温度(TN)の設定装置(9)で、ポスト噴射下限温度(TN)の設定が行われ、
排気流量の推定値(E)が所定の基準流量(E1)の場合には、ポスト噴射下限温度(TN)が所定の基準下限温度(T1)に設定(S4)され、排気流量の推定値(E)が上記基準流量(E1)未満の少ない流量(E0)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)未満の低い下限温度(T0)に設定(S10)され、
排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、ポスト噴射下限温度(TN)が上記基準下限温度(T1)よりも高い下限温度(T2)に設定(S11)される、ことを特徴とするディーゼルエンジン。 The DPF (2) disposed in the exhaust path (1), the PM accumulation amount estimation device (3) of the DPF (2), the common rail fuel injection device (4), and the common rail fuel injection device (4) A fuel injection control device (5) for controlling fuel injection, and a DOC (6) disposed upstream of the DPF (2);
When the estimated value (P) of the PM accumulation amount of the DPF (2) reaches a predetermined DPF regeneration mode start value (P1), the DPF regeneration mode is started (S2). In the DPF regeneration mode, the DOC inlet exhaust is performed. When the temperature (T) is equal to or higher than a predetermined post-injection lower limit temperature (TN), post-main injection is performed after the main injection by the common rail fuel injection device (4) in response to a command from the fuel injection control device (5) (S6). ,
In a diesel engine in which unburned fuel mixed in the exhaust (7) is catalytically combusted in the DOC (6), and PM accumulated in the DPF (2) is incinerated and removed by raising the temperature of the exhaust (7).
An exhaust flow rate estimating device (8) and a post injection lower limit temperature (TN) setting device (9) are provided,
An intake flow rate sensor is provided in the intake path, and the detection value of the intake flow rate sensor, the fuel injection amount, the detection of the DOC inlet exhaust temperature sensor (33), the DPF inlet exhaust temperature sensor (30), and the DPF inlet exhaust pressure sensor (31). Based on the value, the exhaust flow rate estimating device (8) estimates the exhaust flow rate estimated value (E) passing through the DOC (6), and based on the exhaust flow rate estimated value (E), the post injection lower limit temperature The (TN) setting device (9) sets the post-injection lower limit temperature (TN),
When the estimated value (E) of the exhaust flow rate is the predetermined reference flow rate (E1), the post injection lower limit temperature (TN) is set to the predetermined reference lower limit temperature (T1) (S4), and the estimated value of the exhaust flow rate ( If E) is less flow rate of less than the reference flow rate (E1) (E0) is post-injection the lower limit temperature (TN) are set (S10) to the lower limit temperature (T0) lower than the reference lower limit temperature (T1) ,
In the case of a large flow rate (E2) where the estimated value (E) of the exhaust flow rate exceeds the reference flow rate (E1), the lower limit temperature (T2) where the post injection lower limit temperature (TN) is higher than the reference lower limit temperature (T1). A diesel engine characterized by being set to (S11).
排気流量の推定値(E)が上記基準流量(E1)未満の少ない流量(E0)の場合には、排気流量の推定値(E)が少ないほど、ポスト噴射下限温度(TN)に設定(S10)される下限温度(T0)が低くなる、ことを特徴とするディーゼルエンジン。 The diesel engine according to claim 1,
When the estimated value (E) of the exhaust flow rate is a small flow rate (E0) less than the reference flow rate (E1), the lower the estimated value (E) of the exhaust flow rate is set to the post injection lower limit temperature (TN) (S10 ) Diesel engine characterized by lowering the lower limit temperature (T0).
排気流量の推定値(E)が上記基準流量(E1)を超える多い流量(E2)の場合には、排気流量の推定値(E)が多いほど、ポスト噴射下限温度(TN)に設定(S11)される下限温度(T2)が高くなる、ことを特徴とするディーゼルエンジン。 In the diesel engine according to claim 1 or 2 ,
When the estimated value (E) of the exhaust flow rate is a large flow rate (E2) exceeding the reference flow rate (E1), the post-injection lower limit temperature (TN) is set as the estimated value (E) of the exhaust flow rate increases (S11). Diesel engine characterized in that the lower limit temperature (T2) is increased.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047709A JP5913158B2 (en) | 2013-03-11 | 2013-03-11 | diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047709A JP5913158B2 (en) | 2013-03-11 | 2013-03-11 | diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014173516A JP2014173516A (en) | 2014-09-22 |
JP5913158B2 true JP5913158B2 (en) | 2016-04-27 |
Family
ID=51695013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013047709A Expired - Fee Related JP5913158B2 (en) | 2013-03-11 | 2013-03-11 | diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5913158B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5913159B2 (en) * | 2013-03-11 | 2016-04-27 | 株式会社クボタ | diesel engine |
JP6423332B2 (en) | 2015-11-25 | 2018-11-14 | ヤンマー株式会社 | Engine equipment |
JP6631786B2 (en) * | 2015-12-28 | 2020-01-15 | 三菱自動車工業株式会社 | Exhaust aftertreatment system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4673226B2 (en) * | 2006-01-27 | 2011-04-20 | いすゞ自動車株式会社 | Exhaust gas purification method and exhaust gas purification system |
JP4894535B2 (en) * | 2007-01-24 | 2012-03-14 | マツダ株式会社 | Diesel engine exhaust purification system |
JP2010151058A (en) * | 2008-12-25 | 2010-07-08 | Mitsubishi Heavy Ind Ltd | Exhaust emission control device for diesel engine |
JP2013044238A (en) * | 2011-08-22 | 2013-03-04 | Toyota Industries Corp | Exhaust emission control device |
JP5913159B2 (en) * | 2013-03-11 | 2016-04-27 | 株式会社クボタ | diesel engine |
-
2013
- 2013-03-11 JP JP2013047709A patent/JP5913158B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2014173516A (en) | 2014-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8793984B2 (en) | Control of diesel particulate filter regeneration duration | |
JP4709220B2 (en) | Particulate filter regeneration method | |
US8388712B2 (en) | Particulate matter retaining and purging system | |
JP6641238B2 (en) | diesel engine | |
US20150204224A1 (en) | Exhaust purification system of internal combustion engine | |
US20160160723A1 (en) | Method and system for removing ash within a particulate filter | |
JP2006029239A (en) | Exhaust emission control filter overheat prevention device | |
JP2013068184A (en) | Diesel engine | |
JP2006316733A (en) | Exhaust emission control device of internal combustion engine | |
JP2010196498A (en) | Pm emission estimation device | |
CN101208505A (en) | Exhaust gas purification system in internal combustion engine | |
JP5913158B2 (en) | diesel engine | |
JP2005325812A (en) | Failure determining device for filter | |
JP2005240719A (en) | Regeneration time detecting device for filter and regeneration control device for filter | |
US9458753B2 (en) | Diesel engine with reduced particulate material accumulation and related method | |
JP5913159B2 (en) | diesel engine | |
JP7087801B2 (en) | Internal combustion engine control device | |
JP2013068183A (en) | Diesel engine | |
JP5990094B2 (en) | Diesel engine exhaust treatment equipment | |
US9255505B2 (en) | Exhaust purification device for internal combustion engine | |
WO2013047270A1 (en) | Diesel engine | |
EP1726807B1 (en) | Engine output control system for internal combustion engine | |
KR102630317B1 (en) | Engine working machine | |
EP1647688B1 (en) | Fuel injection control device for internal combustion engine | |
JP5374214B2 (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5913158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |