JP2013065585A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP2013065585A
JP2013065585A JP2011201740A JP2011201740A JP2013065585A JP 2013065585 A JP2013065585 A JP 2013065585A JP 2011201740 A JP2011201740 A JP 2011201740A JP 2011201740 A JP2011201740 A JP 2011201740A JP 2013065585 A JP2013065585 A JP 2013065585A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
thermoelectric
naco
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201740A
Other languages
Japanese (ja)
Other versions
JP5270736B2 (en
Inventor
Michiyuki Nakamura
倫之 中村
Masahiro Minowa
昌啓 箕輪
Kimiki Kobayashi
公樹 小林
Yasuo Hikichi
康雄 引地
Sakiko Okada
彩起子 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2011201740A priority Critical patent/JP5270736B2/en
Publication of JP2013065585A publication Critical patent/JP2013065585A/en
Application granted granted Critical
Publication of JP5270736B2 publication Critical patent/JP5270736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element capable of achieving both thermoelectric performance and reliability/durability.SOLUTION: A columnar thermoelectric conversion element for converting thermal energy into electrical energy or electrical energy into thermal energy by utilizing a temperature difference between one end surface and other end surface in the axial direction has a constitution including a fist thermoelectric conversion section forming a central layer and a second thermoelectric conversion section forming a coating layer formed with a predetermined thickness on a peripheral surface of the first thermoelectric conversion section. The first thermoelectric conversion section comprises NaCo-based oxide, and the second thermoelectric conversion section comprises CaCo-based oxide.

Description

本発明は、熱電変換モジュールに用いられる熱電変換素子に関する。   The present invention relates to a thermoelectric conversion element used in a thermoelectric conversion module.

従来、熱電変換素子のゼーベック効果又はペルチェ効果を利用して、熱エネルギーを電気エネルギーに、又は電気エネルギーを熱エネルギーに直接変換する熱電変換モジュールが知られている。
一般的な熱電変換モジュールの構成を図1に示す。図1に示すように、熱電変換モジュール1は、p型半導体からなる熱電変換素子11とn型半導体からなる熱電変換素子12を金属電極13によって「π」型に接続した熱電素子対10を、多数集合させて電気的に直列に接続し、2枚の絶縁基板(例えばセラミックス基板)14、15で狭持した構成を有する。
Conventionally, a thermoelectric conversion module that directly converts thermal energy into electrical energy or electrical energy into thermal energy using the Seebeck effect or Peltier effect of a thermoelectric conversion element is known.
The structure of a general thermoelectric conversion module is shown in FIG. As shown in FIG. 1, the thermoelectric conversion module 1 includes a thermoelectric element pair 10 in which a thermoelectric conversion element 11 made of a p-type semiconductor and a thermoelectric conversion element 12 made of an n-type semiconductor are connected to a “π” type by a metal electrode 13. A large number are assembled and electrically connected in series, and sandwiched between two insulating substrates (for example, ceramic substrates) 14 and 15.

この平板状の熱電変換モジュール1を、一方の面(例えば絶縁基板14)が高温側、他方の面(例えば絶縁基板15)が低温側となるように配置して両面間に温度差を与えると、起電力が生じる。この電力は、熱電変換モジュール1に接続された電流リード16、17を介して取り出される。逆に、電流リード16、17を介して熱電変換モジュール1に電流を流すと、一方の面(例えば絶縁基板14)で発熱が生じ、他方の面(例えば絶縁基板15)で吸熱が生じる。   When the flat thermoelectric conversion module 1 is arranged so that one surface (for example, the insulating substrate 14) is on the high temperature side and the other surface (for example, the insulating substrate 15) is on the low temperature side, a temperature difference is given between both surfaces. An electromotive force is generated. This electric power is taken out through current leads 16 and 17 connected to the thermoelectric conversion module 1. Conversely, when a current is passed through the thermoelectric conversion module 1 via the current leads 16 and 17, heat is generated on one surface (for example, the insulating substrate 14) and heat is generated on the other surface (for example, the insulating substrate 15).

熱電変換モジュール1に用いられる熱電変換素子11、12は、一端が高温(〜900℃程度)、他端が常温とされた状態で長時間使用されるため、熱電性能が高いことはもちろんのこと、高い信頼性と耐久性が要求される。   The thermoelectric conversion elements 11 and 12 used in the thermoelectric conversion module 1 are used for a long time in a state where one end is at a high temperature (about 900 ° C.) and the other end is at a normal temperature, so that the thermoelectric performance is high. High reliability and durability are required.

熱電変換材料の性能評価には、下式(1)で表される無次元性能指数ZTが用いられる。無次元性能指数ZTが高いほど、熱電性能に優れた熱電変換材料となる。式(1)より、無次元性能指数ZTを高くするためには、ゼーベック定数Sが大きい(ゼーベック効果が大きい)こと、抵抗率ρが小さい(ジュール熱損失が小さい)こと、熱伝導率κが小さい(温度差が維持される)ことが望ましい。   The dimensionless figure of merit ZT represented by the following formula (1) is used for the performance evaluation of the thermoelectric conversion material. The higher the dimensionless figure of merit ZT, the better the thermoelectric conversion material with excellent thermoelectric performance. From equation (1), in order to increase the dimensionless figure of merit ZT, the Seebeck constant S is large (the Seebeck effect is large), the resistivity ρ is small (the Joule heat loss is small), and the thermal conductivity κ is It is desirable to be small (a temperature difference is maintained).

ZT=(S2/(ρ・κ))・T ・・・(1)
ZT:無次元性能指数
S:ゼーベック定数(V/K)
ρ:抵抗率(Ω・m)
κ:熱伝導率(W/m・K)
T:絶対温度(K)
ZT = (S 2 / (ρ · κ)) · T (1)
ZT: dimensionless figure of merit S: Seebeck constant (V / K)
ρ: resistivity (Ω · m)
κ: Thermal conductivity (W / m · K)
T: Absolute temperature (K)

熱電変換材料には、大きく分けて金属系材料と酸化物系材料がある。金属系材料としては、ビスマス・テルル系材料、シリサイド系材料等が挙げられる。これらの金属系材料は、酸化物系材料に比較して無次元性能指数ZTが高いが、稀少元素・有毒元素を含むこと、600℃以上の高温大気中で酸化等による素子劣化が生じやすく使用環境が制限されること等、いくつかの欠点がある。   Thermoelectric conversion materials are roughly classified into metal-based materials and oxide-based materials. Examples of metal materials include bismuth / tellurium materials and silicide materials. These metal-based materials have a dimensionless figure of merit ZT compared to oxide-based materials, but they contain rare and toxic elements, and are prone to device degradation due to oxidation in high-temperature air at 600 ° C or higher. There are several disadvantages such as limited environment.

一方、酸化物系材料は、金属系材料に比較して無次元性能指数ZTは低いが、873K(600℃)以上の高温で安定な物質が多い。なかでも単結晶の層状コバルト酸化物は、700〜1000K(427〜727℃)で無次元性能指数ZTが1を超えるため、高温大気中で使用可能な熱電変換材料として有望である。   On the other hand, oxide-based materials have a low dimensionless figure of merit ZT compared to metal-based materials, but many materials are stable at high temperatures of 873 K (600 ° C.) or higher. Among these, a single-crystal layered cobalt oxide is promising as a thermoelectric conversion material that can be used in a high-temperature atmosphere because the dimensionless figure of merit ZT exceeds 1 at 700 to 1000 K (427 to 727 ° C.).

しかし、層状コバルト酸化物は異方性を有するため、物性値が結晶子の配向性に依存する。つまり、層状コバルト酸化物であっても、結晶子がランダムに配向した多結晶では、無次元性能指数ZTが数分の1に低下する。
そこで、本発明者等は、熱電変換材料として層状コバルト酸化物を用いることに着目して鋭意検討を重ね、層状コバルト酸化物の結晶子の配向性を向上させるべく、押出成形を利用して熱電変換素子を作製することを提案している(例えば特許文献1)。
However, since the layered cobalt oxide has anisotropy, the physical property value depends on the orientation of the crystallite. That is, even in the case of a layered cobalt oxide, the dimensionless figure of merit ZT is reduced to a fraction of that of a polycrystal having crystallites randomly oriented.
Therefore, the present inventors have made extensive studies focusing on the use of layered cobalt oxide as a thermoelectric conversion material, and using extrusion molding to improve the orientation of the crystallites of the layered cobalt oxide. It has been proposed to produce a conversion element (for example, Patent Document 1).

特開2010−245089号公報JP 2010-245089 A

ところで、層状コバルト酸化物としては、NaCo系酸化物(例えばNaCo24)、CaCo系酸化物(例えばCa3Co49)が挙げられる。何れも単結晶では、無次元性能指数ZTが955K(682℃)において1以上であり、優れた熱電性能を有する。 By the way, examples of the layered cobalt oxide include NaCo-based oxides (for example, NaCo 2 O 4 ) and CaCo-based oxides (for example, Ca 3 Co 4 O 9 ). In any case, the single crystal has a dimensionless figure of merit ZT of 1 or more at 955 K (682 ° C.), and has excellent thermoelectric performance.

特に、NaCo系酸化物は、多結晶でも無次元性能指数ZTが955K(982℃)において0.5〜0.7であり、熱電性能に優れる。しかしながら、Naを含むために湿気に弱く、大気中に放置しておくと表面が劣化して電極が剥離したり、材料自体に亀裂が入ったりするため安定性に欠ける。
一方、CaCo系酸化物は、NaCo系酸化物よりも大気中で安定であるが、異方性が高いために多結晶での無次元性能指数ZTは973〜1123K(700〜850℃
)において0.1〜0.3程度に留まる。また、特許文献1に記載の手法を利用した場合でも、無次元性能指数ZTは973〜1123K(700〜850℃)において0.1〜0.2程度であり、NaCo系酸化物よりも低い。
このように、単体の層状コバルト酸化物からなる熱電変換素子では、熱電性能と信頼性・耐久性を両立させることは困難となっている。
In particular, NaCo-based oxides are polycrystalline and have a dimensionless figure of merit ZT of 0.5 to 0.7 at 955 K (982 ° C.), and are excellent in thermoelectric performance. However, since it contains Na, it is vulnerable to moisture, and if left in the atmosphere, the surface deteriorates and the electrode peels off or cracks in the material itself, resulting in poor stability.
On the other hand, CaCo-based oxides are more stable in the atmosphere than NaCo-based oxides, but because of their high anisotropy, the dimensionless figure of merit ZT for polycrystals is 973-1123 K (700-850 ° C.
) At about 0.1 to 0.3. Even when the technique described in Patent Document 1 is used, the dimensionless figure of merit ZT is about 0.1 to 0.2 at 973 to 1123 K (700 to 850 ° C.), which is lower than the NaCo-based oxide.
Thus, in a thermoelectric conversion element made of a single layered cobalt oxide, it is difficult to achieve both thermoelectric performance and reliability / durability.

本発明は、上記課題を解決するためになされたもので、熱電性能と信頼性・耐久性を両立できる熱電変換素子を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thermoelectric conversion element that can achieve both thermoelectric performance and reliability / durability.

本発明に係る熱電変換素子は、軸方向の一端面と他端面の温度差を利用して熱エネルギーを電気エネルギーに、又は電気エネルギーを熱エネルギーに変換するための柱状の熱電変換素子であって、
心材となる第1の熱電変換部と、前記第1の熱電変換部の周面に所定の厚さで形成された被覆層となる第2の熱電変換部とを有し、
前記第1の熱電変換部がNaCo系酸化物で構成され、
前記第2の熱電変換部がCaCo系酸化物で構成されていることを特徴とする。
A thermoelectric conversion element according to the present invention is a columnar thermoelectric conversion element for converting thermal energy into electrical energy or electrical energy into thermal energy using a temperature difference between one end face and the other end face in the axial direction. ,
A first thermoelectric conversion part serving as a core material, and a second thermoelectric conversion part serving as a coating layer formed with a predetermined thickness on the peripheral surface of the first thermoelectric conversion part,
The first thermoelectric converter is composed of a NaCo-based oxide;
The second thermoelectric conversion part is made of a CaCo-based oxide.

本発明において、心材となる第1の熱電変換部は大気中で不安定であるが、大気中で安定な第2の熱電変換部で被覆されているので、直接大気中に曝されない。したがって、熱電変換素子の劣化は効果的に抑制される。
また、熱電性能の高いNaCo系酸化物で心材が構成されている上、被覆層となる第2の熱電変換部も熱電変換に寄与するため、高い熱電性能が確保される。
すなわち、本発明によれば、熱電性能と信頼性・耐久性を両立できる熱電変換素子が実現される。
In the present invention, the first thermoelectric conversion portion serving as the core material is unstable in the atmosphere, but is covered with the second thermoelectric conversion portion that is stable in the atmosphere, and thus is not directly exposed to the atmosphere. Therefore, deterioration of the thermoelectric conversion element is effectively suppressed.
In addition, the core material is made of NaCo-based oxide having high thermoelectric performance, and the second thermoelectric conversion portion serving as the coating layer also contributes to thermoelectric conversion, so that high thermoelectric performance is ensured.
That is, according to this invention, the thermoelectric conversion element which can make thermoelectric performance and reliability and durability compatible is implement | achieved.

熱電変換モジュールの構成を示す図である。It is a figure which shows the structure of a thermoelectric conversion module. 実施の形態に係る熱電変換素子の構造を示す図である。It is a figure which shows the structure of the thermoelectric conversion element which concerns on embodiment. 押出成形法を利用した熱電変換素子の作製方法について示す図である。It is a figure shown about the preparation methods of the thermoelectric conversion element using an extrusion method.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
実施の形態に係る熱電変換素子は、例えば軸方向の一端面と他端面の温度差を利用して熱エネルギーを電気エネルギーに変換する熱電変換モジュール1において、p型の熱電変換素子11として用いられるものである(図1参照)。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The thermoelectric conversion element according to the embodiment is used as the p-type thermoelectric conversion element 11 in the thermoelectric conversion module 1 that converts thermal energy into electric energy using, for example, a temperature difference between one end face and the other end face in the axial direction. (See FIG. 1).

図2は、本実施の形態に係る熱電変換素子の構成を示す図である。図2に示すように、熱電変換素子11は、円柱状の部材であり、心材となる第1の熱電変換部11Aと、第1の熱電変換部11Aの周面に所定の厚さで形成された被覆層となる第2の熱電変換部11Bとを有する。すなわち、熱電変換素子11は、異なる熱電変換材料を同心状に形成した二層構造を有する。   FIG. 2 is a diagram illustrating a configuration of the thermoelectric conversion element according to the present embodiment. As shown in FIG. 2, the thermoelectric conversion element 11 is a columnar member, and is formed with a predetermined thickness on the first thermoelectric conversion portion 11 </ b> A serving as a core material and the peripheral surface of the first thermoelectric conversion portion 11 </ b> A. And a second thermoelectric conversion portion 11B that serves as a coating layer. That is, the thermoelectric conversion element 11 has a two-layer structure in which different thermoelectric conversion materials are formed concentrically.

第1の熱電変換部11Aは、大気中で不安定であるが、高い熱電性能(多結晶での無次元性能指数ZTが955K(682℃)において0.5〜0.7)を有するNaCo系酸化物で構成される。NaCo系酸化物とは、層状コバルト酸化物のうち、Naを含む物質であり、NaxCo24(1.0≦x≦2.0)で表される。NaCo系酸化物の中でもNaxCo24(1.0≦x≦1.4)が、第1の熱電変換部11Aとして好適である。Na原子のランダム欠損により、小さい熱伝導率を有するためである。また、この中でもNaCo24は、熱伝導率が最も小さい点で、さらに好適である。 11A of 1st thermoelectric conversion parts are unstable in air | atmosphere, but have high thermoelectric performance (The dimensionless figure of merit ZT in a polycrystal is 955K (682 degreeC) 0.5-0.7). Consists of oxides. The NaCo-based oxide is a substance containing Na among the layered cobalt oxide, and is represented by Na x Co 2 O 4 (1.0 ≦ x ≦ 2.0). Among the NaCo-based oxides, Na x Co 2 O 4 (1.0 ≦ x ≦ 1.4) is suitable as the first thermoelectric conversion unit 11A. This is because it has a small thermal conductivity due to random defects of Na atoms. Of these, NaCo 2 O 4 is more preferred because it has the lowest thermal conductivity.

第2の熱電変換部11Bは、大気中で安定であるが、NaCo系酸化物に比較して熱電性能が低いCaCo系酸化物で構成される。CaCo系酸化物とは、層状コバルト酸化物のうち、Caを含む物質であり、Ca3-yyCo49(A:Bi、Sr、Mg、Gd、Y、K、Naのうちの一種又は二種の元素、0≦y≦0.6)で表される。CaCo系酸化物の中でもCa2.6Bi0.4Co49、Ca2.7Sr0.3Co49、Ca3Co49が、第2の熱電変換部11Bとして好適である。これらの材料は、焼結したときの密度が高く、抵抗値ρが小さくなる、すなわち熱電性能(無次元性能指数ZT)が高くなるためである。特に、Ca2.6Bi0.4Co49は、無次元性能指数ZTが973〜1123K(700〜850℃)において0.2〜0.3で最も高いので、最適といえる。 The second thermoelectric conversion unit 11B is composed of a CaCo-based oxide that is stable in the atmosphere but has a lower thermoelectric performance than the NaCo-based oxide. The CaCo-based oxide is a material containing Ca among the layered cobalt oxides, and Ca 3−y A y Co 4 O 9 (A: Bi, Sr, Mg, Gd, Y, K, Na) One or two elements, 0 ≦ y ≦ 0.6). Among the CaCo-based oxides, Ca 2.6 Bi 0.4 Co 4 O 9 , Ca 2.7 Sr 0.3 Co 4 O 9 , and Ca 3 Co 4 O 9 are suitable as the second thermoelectric conversion unit 11B. This is because these materials have a high density when sintered and a low resistance value ρ, that is, a high thermoelectric performance (dimensionless figure of merit ZT). In particular, Ca 2.6 Bi 0.4 Co 4 O 9 is optimal because the dimensionless figure of merit ZT is highest at 0.2 to 0.3 at 973 to 1123 K (700 to 850 ° C.).

第1の熱電変換部11Aの直径、及び第2の熱電変換部11Bの厚さは、熱電変換素子11に要求される熱電性能を満たすように設計される。熱電変換素子11の外径を一定とした場合、第1の熱電変換部11Aの直径が大きいほど(第2の熱電変換部11Bの厚さが薄いほど)、熱電性能が向上する。しかし、第1の熱電変換部11Aの直径が大きすぎると、第2の熱電変換部11Bの厚さが薄くなりすぎるため、第2の熱電変換部11Bによる大気中の安定性が損なわれる虞がある。   The diameter of the first thermoelectric conversion unit 11 </ b> A and the thickness of the second thermoelectric conversion unit 11 </ b> B are designed to satisfy the thermoelectric performance required for the thermoelectric conversion element 11. When the outer diameter of the thermoelectric conversion element 11 is constant, the thermoelectric performance is improved as the diameter of the first thermoelectric conversion unit 11A is larger (the thickness of the second thermoelectric conversion unit 11B is thinner). However, if the diameter of the first thermoelectric conversion part 11A is too large, the thickness of the second thermoelectric conversion part 11B becomes too thin, and the stability in the atmosphere by the second thermoelectric conversion part 11B may be impaired. is there.

そのため、第2の熱電変換部11Bの厚さは、150〜1100μmとするのが望ましい。第2の熱電変換部11Bの厚さを150μm以上とすることにより、熱電変換素子11の大気中での安定性が確保される。一方で、第2の熱電変換部11Bの厚さが厚くなりすぎると、大気中での安定性は過剰となり、熱電性能が相対的に低下することになるので、第2の熱電変換部11Bの厚さは1100μm以下とするのが望ましい。   Therefore, it is desirable that the thickness of the second thermoelectric conversion unit 11B is 150 to 1100 μm. By setting the thickness of the second thermoelectric conversion part 11B to 150 μm or more, the stability of the thermoelectric conversion element 11 in the atmosphere is ensured. On the other hand, if the thickness of the second thermoelectric conversion part 11B becomes too thick, the stability in the atmosphere becomes excessive and the thermoelectric performance is relatively lowered. The thickness is desirably 1100 μm or less.

熱電変換素子11は、例えば押出成形法を利用して作製される。押出成形法では、押出方向に結晶子が配向するので、熱電変換素子11の軸方向(押出方向)の抵抗率ρが小さくなる。すなわち、押出成形法を利用することにより、高い熱電性能(無次元性能指数ZT)を有する熱電変換素子11を作製することができる。
また、押出成形法は、連続的に押出成形体を作製することができるので、量産性の観点からも好適である。さらには、押出成形体を押出方向に直交する方向で切り分けるだけで熱電変換素子11の完成品を得ることができるので、加工面からも好適である。
The thermoelectric conversion element 11 is produced using, for example, an extrusion method. In the extrusion molding method, since the crystallites are oriented in the extrusion direction, the resistivity ρ in the axial direction (extrusion direction) of the thermoelectric conversion element 11 becomes small. That is, the thermoelectric conversion element 11 having high thermoelectric performance (dimensionalless figure of merit ZT) can be produced by using the extrusion method.
In addition, the extrusion molding method is preferable from the viewpoint of mass productivity because an extrusion molded body can be continuously produced. Furthermore, the finished product of the thermoelectric conversion element 11 can be obtained simply by cutting the extruded product in a direction perpendicular to the extrusion direction, which is also preferable from the processing surface.

具体的には、図3に示すように、第1の熱電変換部11Aを形成するための第1のダイス101と、第2の熱電変換部11Bを形成するための第2のダイス102とからなる二重ダイス100を備えた押出機により、熱電変換素子11を作製することができる。第1のダイス101に形成された貫通孔101aが第1の熱電変換部11Aの原料の流路となり、第1のダイス101と第2のダイス102で挟まれた空間102aが第2の熱電変換部11Bの原料の流路となる。   Specifically, as shown in FIG. 3, from the first die 101 for forming the first thermoelectric conversion unit 11A and the second die 102 for forming the second thermoelectric conversion unit 11B. The thermoelectric conversion element 11 can be produced by an extruder equipped with the double die 100. The through hole 101a formed in the first die 101 serves as a raw material flow path of the first thermoelectric conversion unit 11A, and the space 102a sandwiched between the first die 101 and the second die 102 is the second thermoelectric conversion. It becomes the flow path of the raw material of the part 11B.

熱電変換素子11を作製するに際し、まず、第1の熱電変換部11Aの原料として、NaCo系の原料粉末、結合材(例えば有機バインダー)、及び可塑剤(例えば水)を混練して、NaCo系混和物(コンパウンド)を生成する。また、第2の熱電変換部11Bの原料として、CaCo系の原料粉末、結合材(例えば有機バインダー)、及び可塑剤(例えば水)を混練して、CaCo系混和物(コンパウンド)を生成する。   When producing the thermoelectric conversion element 11, first, as a raw material of the first thermoelectric conversion part 11A, a NaCo-based raw material powder, a binder (for example, an organic binder), and a plasticizer (for example, water) are kneaded to form a NaCo-based. An admixture (compound) is produced. Further, as a raw material of the second thermoelectric conversion unit 11B, a CaCo-based raw material powder, a binder (for example, an organic binder), and a plasticizer (for example, water) are kneaded to generate a CaCo-based mixture (compound).

第1のダイス101の押出方向上流側からNaCo系混和物を導入し、所定の押出圧力で押し出すと、第1の熱電変換部11Aが押出成形される。第1の熱電変換部11Aの断面形状は、第1のダイス101の押出口101bの形状(例えば円形)とほぼ同一となる。
同様に、第2のダイス102の押出方向上流側からCaCo系混和物を導入し、所定の押出圧力で押し出す。すると、第1の熱電変換部11Aと第2のダイス102の押出口102bとのクリアランスからCaCo系混和物が押し出され、第1の熱電変換部11Aの周面に第2の熱電変換部11Bが所定の厚さで押出成形される。
NaCo系混和物、CaCo系混和物ともに粘土状なので、熱電変換素子11の押出成形体における両者の密着性は極めて良好である。
When a NaCo-based mixture is introduced from the upstream side in the extrusion direction of the first die 101 and extruded at a predetermined extrusion pressure, the first thermoelectric conversion portion 11A is extrusion molded. The cross-sectional shape of the first thermoelectric conversion unit 11A is substantially the same as the shape (for example, a circle) of the extrusion port 101b of the first die 101.
Similarly, a CaCo-based mixture is introduced from the upstream side of the second die 102 in the extrusion direction and extruded at a predetermined extrusion pressure. Then, the CaCo-based mixture is pushed out from the clearance between the first thermoelectric conversion unit 11A and the extrusion port 102b of the second die 102, and the second thermoelectric conversion unit 11B is formed on the peripheral surface of the first thermoelectric conversion unit 11A. Extruded with a predetermined thickness.
Since both the NaCo-based admixture and the CaCo-based admixture are in the form of clay, the adhesion between them in the extruded body of the thermoelectric conversion element 11 is extremely good.

そして、押出成形体から可塑剤である水を蒸発させ(乾燥工程)、有機バインダーを熱分解して気化させた後(脱脂工程)、高温で熱処理して焼結させる(焼結工程、例えば950℃×20時間)。第1の熱電変換部11A、第2の熱電変換部11Bともに層状コバルト酸化物で構成されているので、以上の工程(特に焼結工程)において両者の界面に歪み等が生じることもない。すなわち、熱電変換素子11の焼結成形体においては、第1の熱電変換部11Aと第2の熱電変換部11Bは良好に接合されており、極めて安定な状態となっている。
作製された熱電変換素子11の焼結成形体は、所定の長さ(例えば5mm)に切り分けられ、熱電変換モジュール1用として用いられる。
And after evaporating the water which is a plasticizer from an extrusion molding (drying process), pyrolyzing and vaporizing an organic binder (degreasing process), it heat-processes at high temperature and sinters (sintering process, for example, 950) ° C x 20 hours). Since both the first thermoelectric conversion part 11A and the second thermoelectric conversion part 11B are composed of a layered cobalt oxide, no distortion or the like occurs at the interface between them in the above process (especially the sintering process). That is, in the sintered compact of the thermoelectric conversion element 11, the first thermoelectric conversion part 11A and the second thermoelectric conversion part 11B are well bonded and are in an extremely stable state.
The produced sintered compact of the thermoelectric conversion element 11 is cut into a predetermined length (for example, 5 mm) and used for the thermoelectric conversion module 1.

このように、実施の形態の熱電変換素子11は、軸方向の一端面と他端面の温度差を利用して熱エネルギーを電気エネルギーに、又は電気エネルギーを熱エネルギーに変換するための柱状の熱電変換素子であって、心材となる第1の熱電変換部11Aと、第1の熱電変換部11Aの周面に所定の厚さで形成された被覆層となる第2の熱電変換部11Bとを有する。そして、第1の熱電変換部11AがNaCo系酸化物で構成され、第2の熱電変換部11BがCaCo系酸化物で構成されている。   As described above, the thermoelectric conversion element 11 according to the embodiment uses the temperature difference between one end surface and the other end surface in the axial direction to convert thermal energy into electrical energy or columnar thermoelectric for converting electrical energy into thermal energy. 11A of 1st thermoelectric conversion parts which are conversion elements and become a core material, and 2nd thermoelectric conversion part 11B used as the coating layer formed in the surrounding surface of 11 A of 1st thermoelectric conversion parts by predetermined thickness Have. And the 1st thermoelectric conversion part 11A is comprised with the NaCo type oxide, and the 2nd thermoelectric conversion part 11B is comprised with the CaCo type oxide.

熱電変換素子11において、心材となる第1の熱電変換部11Aは大気中で不安定であるが、大気中で安定な第2の熱電変換部11Bで被覆されているので、直接大気中に曝されない。このため、第1の熱電変換部11Aには、大気中での安定性は要求されない。したがって、熱電変換素子11の劣化は効果的に抑制される。
また、熱電性能の高いNaCo系酸化物で心材が構成されている上、被覆層となる第2の熱電変換部11Bも熱電変換に寄与するため、高い熱電性能が確保される。
すなわち、熱電変換素子11においては、熱電性能と信頼性・耐久性が両立される。
In the thermoelectric conversion element 11, the first thermoelectric conversion part 11A serving as the core material is unstable in the atmosphere, but is covered with the second thermoelectric conversion part 11B that is stable in the atmosphere, so that it is directly exposed to the atmosphere. Not. For this reason, the first thermoelectric converter 11A is not required to be stable in the atmosphere. Therefore, deterioration of the thermoelectric conversion element 11 is effectively suppressed.
In addition, the core material is made of NaCo-based oxide having high thermoelectric performance, and the second thermoelectric conversion portion 11B serving as the coating layer also contributes to thermoelectric conversion, so that high thermoelectric performance is ensured.
That is, in the thermoelectric conversion element 11, thermoelectric performance and reliability / durability are compatible.

[実施例]
実施例1〜3では、第1の熱電変換部11Aの原料粉末として、粒径:1〜3μmのNaCo24を用いた。また、第2の熱電変換部11Bの原料粉末として、粒径:5〜10μmのCa3Co49を用いた。
そして、上述した押出形成法を利用して熱電変換素子11を作製した。このとき、熱電変換素子11の外径は5.0mmで一定とし、第2の熱電変換部11Bの厚さを200μm(実施例1)、500μm(実施例2)、1000μm(実施例3)と変化させた。
実施例4〜6では、第1の熱電変換部11Aとして実施例1と同一の原料粉末を用い、第2の熱電変換部11Bの原料粉末として、粒径:5〜10μmのCa2.6Bi0.4Co49を用いて熱電変換素子11を作製した。
実施例7〜9では、第1の熱電変換部11Aとして実施例1と同一の原料粉末を用い、第2の熱電変換部11Bの原料粉末として、粒径:5〜10μmのCa2.7Sr0.3Co49を用いて熱電変換素子11を作製した。
[Example]
In Examples 1 to 3, NaCo 2 O 4 having a particle size of 1 to 3 μm was used as the raw material powder of the first thermoelectric conversion unit 11A. Further, Ca 3 Co 4 O 9 having a particle size of 5 to 10 μm was used as the raw material powder for the second thermoelectric conversion part 11B.
And the thermoelectric conversion element 11 was produced using the extrusion forming method mentioned above. At this time, the outer diameter of the thermoelectric conversion element 11 is constant at 5.0 mm, and the thickness of the second thermoelectric conversion portion 11B is 200 μm (Example 1), 500 μm (Example 2), and 1000 μm (Example 3). Changed.
In Examples 4 to 6, the same raw material powder as in Example 1 was used as the first thermoelectric conversion part 11A, and Ca 2.6 Bi 0.4 Co having a particle diameter of 5 to 10 μm was used as the raw material powder of the second thermoelectric conversion part 11B. Thermoelectric conversion element 11 was fabricated using 4 O 9 .
In Examples 7 to 9, the same raw material powder as in Example 1 was used as the first thermoelectric conversion part 11A, and the Ca 2.7 Sr 0.3 Co having a particle diameter of 5 to 10 μm was used as the raw material powder of the second thermoelectric conversion part 11B. Thermoelectric conversion element 11 was fabricated using 4 O 9 .

比較例1では、粒径:1〜3μmのNaCo24を用いて、実施例と同様の方法により、単体のNaCo系酸化物からなる熱電変換素子11を作製した。また、比較例2〜4では、粒径:5〜10μmのCa3Co49(比較例2)、Ca2.6Bi0.4Co49(比較例3)、Ca2.7Sr0.3Co49(比較例4)を用いて、同様の方法により、単体のCaCo系酸化物からなる熱電変換素子11を作製した。 In Comparative Example 1, a thermoelectric conversion element 11 made of a single NaCo-based oxide was produced by the same method as in the example using NaCo 2 O 4 having a particle size of 1 to 3 μm. In Comparative Examples 2 to 4, the particle diameters of Ca 3 Co 4 O 9 (Comparative Example 2), Ca 2.6 Bi 0.4 Co 4 O 9 (Comparative Example 3), and Ca 2.7 Sr 0.3 Co 4 O 9 are 5 to 10 μm. Using (Comparative Example 4), a thermoelectric conversion element 11 made of a single CaCo-based oxide was produced by the same method.

実施例1〜9、及び比較例1〜4の熱電変換素子11を用いて、図1に示す熱電変換モジュール1を作製し、それぞれの熱電性能を評価した。具体的には、熱電変換モジュール1の絶縁基板15側を水冷して室温に維持しつつ、絶縁基板14側を室温から900K(627℃)まで連続的に上昇させたときの、700K(427℃)及び900K(627℃)におけるゼーベック定数S、抵抗率ρ、熱伝導率κを測定し、無次元性能指数ZT(表1,2におけるZTの初期値(A))を算出した。その後、熱電変換モジュール1を室温大気中に放置して、絶縁基板14側が室温になるまで冷却した。   The thermoelectric conversion module 1 shown in FIG. 1 was produced using the thermoelectric conversion element 11 of Examples 1-9 and Comparative Examples 1-4, and each thermoelectric performance was evaluated. Specifically, 700 K (427 ° C.) when the insulating substrate 14 side is continuously raised from room temperature to 900 K (627 ° C.) while the insulating substrate 15 side of the thermoelectric conversion module 1 is cooled to water and maintained at room temperature. ) And 900K (627 ° C.), the Seebeck constant S, the resistivity ρ, and the thermal conductivity κ were measured, and the dimensionless figure of merit ZT (the initial value (A) of ZT in Tables 1 and 2) was calculated. Thereafter, the thermoelectric conversion module 1 was left in the room temperature atmosphere and cooled until the insulating substrate 14 side reached room temperature.

上記測定後、さらに絶縁基板15側を水冷して室温に維持しつつ、絶縁基板14側を室温から950K(677℃)まで連続的に上昇させ、この状態で約5時間放置した。そして、熱電変換モジュール1を室温大気中に放置して絶縁基板14側が室温になるまで冷却することによって、室温から950K(677℃)の温度履歴を加え、これを10回繰り返した。
その後、上述と同一の方法で、室温から900K(627℃)まで連続的に上昇させたときたときの、700K(427℃)及び900K(627℃)におけるゼーベック定数S、抵抗率ρ、熱伝導率κを再度測定し、無次元性能指数ZT(表1,2におけるZTの熱履歴後の値(B))を算出して、熱履歴による影響を調べた。
After the measurement, the insulating substrate 15 side was further cooled from water to maintain the room temperature, while the insulating substrate 14 side was continuously raised from room temperature to 950 K (677 ° C.) and left in this state for about 5 hours. Then, by leaving the thermoelectric conversion module 1 in the room temperature atmosphere and cooling the insulating substrate 14 side to room temperature, a temperature history from room temperature to 950 K (677 ° C.) was added, and this was repeated 10 times.
Thereafter, Seebeck constant S, resistivity ρ, heat conduction at 700 K (427 ° C.) and 900 K (627 ° C.) when continuously raised from room temperature to 900 K (627 ° C.) in the same manner as described above. The rate κ was measured again, the dimensionless figure of merit ZT (value after thermal history of ZT in Tables 1 and 2 (B)) was calculated, and the influence of thermal history was examined.

その結果を表1,2に示す。なお、無次元性能指数ZTの値(A、B)は、700K(427℃)においては0.20以上、900K(627℃)においては0.25以上であることが望ましく、ZTの変化量(C=(B−A)/A・100[%])の値は−20%以上であることが望ましい。   The results are shown in Tables 1 and 2. The dimensionless figure of merit ZT (A, B) is preferably 0.20 or more at 700K (427 ° C.) and 0.25 or more at 900K (627 ° C.). The value of C = (B−A) / A · 100 [%]) is desirably −20% or more.

Figure 2013065585
Figure 2013065585

Figure 2013065585
Figure 2013065585

表1に示すように、熱電変換素子11を第1の熱電変換部11A(内層)と第2の熱電変換部11B(外層)の二層構造とし、かつ第2の熱電変換部11B(外層)の厚さを150〜1100μmとすることにより、700K(427℃)及び900K(627℃)における無次元性能指数ZT(A,B)、及びZTの変化量(C)について、良好な結果が得られた(実施例1〜9)。
特に、第2の熱電変換部11B(外層)の厚さを300〜700μmとした場合、熱履歴後の無次元性能指数ZT(B)は初期値(A)に比較してほとんど変化せず(−3≦C≦3)、熱電性能の劣化が極めて小さい熱電変換素子11が得られた(実施例2,5,8)。
As shown in Table 1, the thermoelectric conversion element 11 has a two-layer structure of a first thermoelectric conversion unit 11A (inner layer) and a second thermoelectric conversion unit 11B (outer layer), and a second thermoelectric conversion unit 11B (outer layer). With the thickness of 150 to 1100 μm, good results are obtained for the dimensionless figure of merit ZT (A, B) at 700K (427 ° C.) and 900 K (627 ° C.) and the amount of change (C) in ZT. (Examples 1-9).
In particular, when the thickness of the second thermoelectric converter 11B (outer layer) is set to 300 to 700 μm, the dimensionless figure of merit ZT (B) after the thermal history hardly changes compared to the initial value (A) ( −3 ≦ C ≦ 3), the thermoelectric conversion element 11 having extremely small deterioration in thermoelectric performance was obtained (Examples 2, 5, and 8).

一方、表2に示すように、熱電変換素子11をNaCo系酸化物のみの単層構造とした場合には、無次元性能指数ZTの初期値は良好な値となるものの、ZTの変化量Cが大きく、熱履歴を加えることで熱電性能が著しく劣化することが確認された(比較例1)。また、熱電変換素子11をCaCo系酸化物のみの単層構造とした場合には、無次元性能指数ZTは初期値(A)及び熱履歴後(B)の何れにおいても小さく、実用上問題があることが確認された(比較例2〜4)。   On the other hand, as shown in Table 2, when the thermoelectric conversion element 11 has a single-layer structure made only of NaCo-based oxide, the initial value of the dimensionless figure of merit ZT is a good value, but the change amount C of ZT It was confirmed that the thermoelectric performance was significantly deteriorated by adding heat history (Comparative Example 1). Further, when the thermoelectric conversion element 11 has a single-layer structure made only of CaCo-based oxides, the dimensionless figure of merit ZT is small both in the initial value (A) and after the thermal history (B), and there is a problem in practical use. It was confirmed (Comparative Examples 2 to 4).

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、熱電変換素子11は、円柱状ではなく、多角柱状であってもよい。また、第1の熱電変換部11Aと第2の熱電変換部11Bの一方を円柱状、他方を多角柱状としてもよい。
押出成形を利用する場合、製造工程における応力集中を防止できるため、熱電変換素子11を円柱状とするのが望ましい。一方、熱電変換素子11を多角柱状(特に四角柱)とすれば、熱電変換モジュール1における熱電変換素子11の占積率を高めることができる。
また、熱電変換素子11の製法としては、押出成形法以外に、ホットプレス法を利用することもできる。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, the thermoelectric conversion element 11 may have a polygonal column shape instead of a cylindrical shape. Further, one of the first thermoelectric conversion unit 11A and the second thermoelectric conversion unit 11B may have a cylindrical shape, and the other may have a polygonal column shape.
When using extrusion molding, it is desirable to make the thermoelectric conversion element 11 cylindrical in order to prevent stress concentration in the manufacturing process. On the other hand, if the thermoelectric conversion element 11 has a polygonal column shape (particularly a quadrangular prism), the space factor of the thermoelectric conversion element 11 in the thermoelectric conversion module 1 can be increased.
Moreover, as a manufacturing method of the thermoelectric conversion element 11, a hot press method can also be utilized besides the extrusion molding method.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 熱電変換モジュール
10 熱電素子対
11、12 熱電変換素子
11A 第1の熱電変換部
11B 第2の熱電変換部
13 金属電極
14、15 絶縁基板
16、17 電流リード
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 10 Thermoelectric element pair 11, 12 Thermoelectric conversion element 11A 1st thermoelectric conversion part 11B 2nd thermoelectric conversion part 13 Metal electrodes 14, 15 Insulating substrate 16, 17 Current lead

Claims (9)

軸方向の一端面と他端面の温度差を利用して熱エネルギーを電気エネルギーに、又は電気エネルギーを熱エネルギーに変換するための柱状の熱電変換素子であって、
心材となる第1の熱電変換部と、前記第1の熱電変換部の周面に所定の厚さで形成された被覆層となる第2の熱電変換部とを有し、
前記第1の熱電変換部がNaCo系酸化物で構成され、
前記第2の熱電変換部がCaCo系酸化物で構成されていることを特徴とする熱電変換素子。
A columnar thermoelectric conversion element for converting thermal energy into electrical energy or electrical energy into thermal energy using a temperature difference between one end face and the other end face in the axial direction,
A first thermoelectric conversion part serving as a core material, and a second thermoelectric conversion part serving as a coating layer formed with a predetermined thickness on the peripheral surface of the first thermoelectric conversion part,
The first thermoelectric converter is composed of a NaCo-based oxide;
The thermoelectric conversion element, wherein the second thermoelectric conversion part is made of a CaCo-based oxide.
前記第1の熱電変換部及び前記第2の熱電変換部が、押出成形により形成されることを特徴とする請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the first thermoelectric conversion unit and the second thermoelectric conversion unit are formed by extrusion molding. 前記NaCo系酸化物が、NaxCo24(1.0≦x≦2.0)であり、
前記CaCo系酸化物が、Ca3-yyCo49(0≦y≦0.6,A:Bi,Sr,Mg,Gd,Y,K,Naのうちの一種又は二種の元素)であることを特徴とする請求項1又は2に記載の熱電変換素子。
The NaCo-based oxide is Na x Co 2 O 4 (1.0 ≦ x ≦ 2.0),
The CaCo-based oxide is Ca 3-y Ay Co 4 O 9 (0 ≦ y ≦ 0.6, A: one or two elements of Bi, Sr, Mg, Gd, Y, K, Na) The thermoelectric conversion element according to claim 1 or 2, wherein
前記NaCo系酸化物が、NaxCo24(1.0≦x≦1.4)であることを特徴とする請求項3に記載の熱電変換素子。 The thermoelectric conversion element according to claim 3, wherein the NaCo-based oxide is Na x Co 2 O 4 (1.0 ≦ x ≦ 1.4). 前記NaCo系酸化物が、NaCo24であり、
前記CaCo系酸化物が、Ca2.6Bi0.4Co49、Ca2.7Sr0.3Co49、Ca3Co49の何れかであることを特徴とする請求項3又は4に記載の熱電変換素子。
The NaCo-based oxide is NaCo 2 O 4 ;
The thermoelectric according to claim 3 or 4, wherein the CaCo-based oxide is one of Ca 2.6 Bi 0.4 Co 4 O 9 , Ca 2.7 Sr 0.3 Co 4 O 9 , and Ca 3 Co 4 O 9. Conversion element.
前記第2の熱電変換部の厚さが、150〜1100μmであることを特徴とする請求項1から5の何れか一項に記載の熱電変換素子。   6. The thermoelectric conversion element according to claim 1, wherein a thickness of the second thermoelectric conversion unit is 150 to 1100 μm. 前記第2の熱電変換部の厚さが、300〜700μmであることを特徴とする請求項6に記載の熱電変換素子。   The thermoelectric conversion element according to claim 6, wherein a thickness of the second thermoelectric conversion portion is 300 to 700 μm. 軸方向に垂直な断面形状が、略円形であることを特徴とする請求項1から7の何れか一項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 7, wherein a cross-sectional shape perpendicular to the axial direction is substantially circular. 軸方向に垂直な断面形状が、略正方形又は略長方形であることを特徴とする請求項1から7の何れか一項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 7, wherein a cross-sectional shape perpendicular to the axial direction is substantially square or substantially rectangular.
JP2011201740A 2011-09-15 2011-09-15 Thermoelectric conversion element Active JP5270736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201740A JP5270736B2 (en) 2011-09-15 2011-09-15 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201740A JP5270736B2 (en) 2011-09-15 2011-09-15 Thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2013065585A true JP2013065585A (en) 2013-04-11
JP5270736B2 JP5270736B2 (en) 2013-08-21

Family

ID=48188864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201740A Active JP5270736B2 (en) 2011-09-15 2011-09-15 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5270736B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222397A (en) * 2005-02-14 2006-08-24 Tokyo Institute Of Technology Thermoelectric transformation-layered cobalt oxide and method for synthesizing the same
WO2009013918A1 (en) * 2007-07-25 2009-01-29 Kyocera Corporation Thermoelectric element, thermoelectric module, and method for manufacturing thermoelectric element
JP2012069880A (en) * 2010-09-27 2012-04-05 Kyocera Corp Thermoelectric element and thermoelectric module equipped with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222397A (en) * 2005-02-14 2006-08-24 Tokyo Institute Of Technology Thermoelectric transformation-layered cobalt oxide and method for synthesizing the same
WO2009013918A1 (en) * 2007-07-25 2009-01-29 Kyocera Corporation Thermoelectric element, thermoelectric module, and method for manufacturing thermoelectric element
JP2012069880A (en) * 2010-09-27 2012-04-05 Kyocera Corp Thermoelectric element and thermoelectric module equipped with the same

Also Published As

Publication number Publication date
JP5270736B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
KR102067647B1 (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
US9722164B2 (en) Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
WO2011013529A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
WO2005036661A1 (en) Conductive paste for connecting thermoelectric conversion material
EP4099411A1 (en) Thermoelectric conversion module
WO2004105144A1 (en) Thermoelectric material and method for producing same
JP2016184636A (en) Nitride thermoelectric conversion material, manufacturing method therefor and thermoelectric conversion element
KR20080003875A (en) Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
WO2007083576A1 (en) Thermoelectric material, thermoelectric converter using same, and electronic device and cooling device comprising such thermoelectric converter
JP5270736B2 (en) Thermoelectric conversion element
JP2013179130A (en) Thermoelectric conversion module
US10937939B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
US10529905B2 (en) Method for manufacturing thermoelectric material having high efficiency
JP6467740B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5218285B2 (en) Thermoelectric conversion material
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2007149996A (en) Layered oxide thermoelectric material having delafossite structure
Liu et al. Thermoelectric properties of Ni doped P-type BiCuSeO oxyselenides
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP2010228927A (en) Cobalt-manganese compound oxide
Kuriyama et al. High-temperature thermoelectric properties of delafossite oxide CuRh1-xMgxO2
KR101874391B1 (en) CaMnO₃ BASED THERMOELECTRIC MATERIAL AND PRODUCING METHOD OF THE SAME
JP6384672B2 (en) Nitride thermoelectric conversion material, method for producing the same, and thermoelectric conversion element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250