JP2013064559A - Dual refrigeration cycle apparatus - Google Patents

Dual refrigeration cycle apparatus Download PDF

Info

Publication number
JP2013064559A
JP2013064559A JP2011203983A JP2011203983A JP2013064559A JP 2013064559 A JP2013064559 A JP 2013064559A JP 2011203983 A JP2011203983 A JP 2011203983A JP 2011203983 A JP2011203983 A JP 2011203983A JP 2013064559 A JP2013064559 A JP 2013064559A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature side
refrigeration cycle
high temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203983A
Other languages
Japanese (ja)
Other versions
JP5761857B2 (en
Inventor
Shun Asari
峻 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011203983A priority Critical patent/JP5761857B2/en
Publication of JP2013064559A publication Critical patent/JP2013064559A/en
Application granted granted Critical
Publication of JP5761857B2 publication Critical patent/JP5761857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dual refrigeration cycle apparatus in which an installing area of a casing can be reduced and a space efficiency can be enhanced because a volume and a weight are large, an apparatus itself tends to become large, and the installing area tends to become large for securing heat exchanging performance in a cascade heat exchanger, a high temperature side heat exchanger, and a low temperature side heat exchanger used in a dual refrigeration cycle apparatus, and although a general dual refrigeration cycle apparatus in which cascade heat exchangers being a heavy load or other heat exchangers are arranged side by side are known.SOLUTION: The cascade heat exchanger 5 is arranged above a using side heat exchanger 7 in the dual refrigeration cycle apparatus having two compressors, a heat source side heat exchanger, the cascade heat exchanger, and the using side heat exchanger.

Description

本発明の実施の形態は、二元冷凍サイクル装置に関する。   Embodiments of the present invention relate to a binary refrigeration cycle apparatus.

空気調和機やヒートポンプ給湯機などの冷凍サイクル装置には、低温側冷凍サイクルと高温側冷凍サイクルを備えた二元冷凍サイクル装置がある。この二元冷凍サイクル装置は、単元冷凍サイクル装置に比べ、より高温の熱を供給できることが知られている。
二元冷凍サイクル装置の低温側冷凍サイクルと高温側冷凍サイクルは、それぞれ圧縮機や膨張装置を有し、高温側冷媒配管、低温側冷媒配管によりそれぞれ接続されている。そして、高温側冷凍サイクルと低温側冷凍サイクルは、カスケード熱交換器によって熱交換可能に接続されている。
これにより、低温側冷凍サイクルによって汲み上げた熱を、高温側冷凍サイクルにより、さらに汲み上げて高温の熱として利用側機器に供給する。
Refrigeration cycle apparatuses such as air conditioners and heat pump water heaters include a dual refrigeration cycle apparatus including a low temperature side refrigeration cycle and a high temperature side refrigeration cycle. It is known that this binary refrigeration cycle apparatus can supply higher-temperature heat than a single refrigeration cycle apparatus.
The low temperature side refrigeration cycle and the high temperature side refrigeration cycle of the binary refrigeration cycle apparatus each have a compressor and an expansion device, and are connected by a high temperature side refrigerant pipe and a low temperature side refrigerant pipe, respectively. And the high temperature side refrigerating cycle and the low temperature side refrigerating cycle are connected by the cascade heat exchanger so that heat exchange is possible.
As a result, the heat pumped up by the low temperature side refrigeration cycle is further pumped up by the high temperature side refrigeration cycle and supplied to the use side device as high temperature heat.

特開2002−346403号公報JP 2002-346403 A

上述した二元冷凍サイクル装置に用いられるカスケード熱交換器や利用側熱交換器及び熱源側熱交換器は、熱交換性能を確保するため体積や重量が大きいため、装置自体が大きくなり、設置面積も大きくなる傾向にある。さらに、一般的な二元冷凍サイクル装置は重量物であるカスケード熱交換器やその他の熱交換器を横並びに配置したものが知られている。
しかし、カスケード熱交換器やその他の熱交換器を横並びに配置する従来のものでは設置面積が大きく、狭い室内などへの設置が困難であった。
Cascade heat exchangers, use side heat exchangers, and heat source side heat exchangers used in the above-described two-stage refrigeration cycle apparatus are large in volume and weight to ensure heat exchange performance. Tend to be larger. Further, a general binary refrigeration cycle apparatus is known in which a cascade heat exchanger and other heat exchangers, which are heavy objects, are arranged side by side.
However, the conventional system in which cascade heat exchangers and other heat exchangers are arranged side by side has a large installation area and is difficult to install in a narrow room.

本実施形態に記載の二元冷凍サイクル装置は上記課題を解決するためになされたものであり、2つの圧縮機と、熱源側熱交換器と、カスケード熱交換器と、利用側熱交換器を有する二元冷凍サイクル装置において、カスケード熱交換器は、前記利用側熱交換器の上方に配置されている。   The two-stage refrigeration cycle apparatus described in the present embodiment is made to solve the above problems, and includes two compressors, a heat source side heat exchanger, a cascade heat exchanger, and a use side heat exchanger. In the binary refrigeration cycle apparatus having the cascade heat exchanger, the cascade heat exchanger is disposed above the use side heat exchanger.

第1の実施形態に係る二元冷凍サイクル装置の概略図。1 is a schematic diagram of a dual refrigeration cycle apparatus according to a first embodiment. 第1の実施形態に係る二元冷凍サイクル装置の筐体内部図。The housing | casing internal view of the binary refrigerating-cycle apparatus which concerns on 1st Embodiment. 第2の実施形態に係る二元冷凍サイクル装置の筐体内部図。The housing | casing internal view of the binary refrigeration cycle apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る二元冷凍サイクル装置の概略図。Schematic of the dual refrigeration cycle apparatus according to the third embodiment. 第3の実施形態に係る二元冷凍サイクル装置の筐体内部図。The housing | casing internal view of the binary refrigeration cycle apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る二元冷凍サイクル装置のP−h線図。The Ph diagram of the two-stage refrigerating cycle device concerning a 3rd embodiment. 第4の実施形態に係る二元冷凍サイクル装置の概略図。Schematic of the dual refrigeration cycle apparatus according to the fourth embodiment. 第4の実施形態に係る二元冷凍サイクル装置の筐体内部図。The housing | casing internal view of the binary refrigeration cycle apparatus which concerns on 4th Embodiment.

図面を用いて本発明の実施形態について説明を行う。
(第1の実施形態)
第1の実施形態について図1及び図2を用いて説明する。
図1に示すように、本実施形態の二元冷凍サイクル装置100は、内部を低温側冷媒が流動する低温側冷凍サイクルaと、内部を高温側冷媒が流動する高温側冷凍サイクルbを有している。低温側冷凍サイクルaと高温側冷凍サイクルbは、低温側冷媒と高温側冷媒とを熱交換させるためのカスケード熱交換器5によって接続されている。
Embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, a binary refrigeration cycle apparatus 100 of the present embodiment includes a low temperature side refrigeration cycle a in which a low temperature side refrigerant flows and a high temperature side refrigeration cycle b in which a high temperature side refrigerant flows. ing. The low temperature side refrigeration cycle a and the high temperature side refrigeration cycle b are connected by a cascade heat exchanger 5 for exchanging heat between the low temperature side refrigerant and the high temperature side refrigerant.

低温側冷凍サイクルaは、低温側圧縮機1aと、低温側圧縮機1aに接続された低温側四方弁2aと、カスケード熱交換器5の低温側冷媒流路と、低温側膨張装置4aと、外部熱源である室外空気と熱交換する熱源側熱交換器3が、低温側冷媒配管6aにより順次接続されて構成されている。
熱源側熱交換器3には送風機11が設けられており、室外空気との熱交換を促進させるようになっている。
The low temperature side refrigeration cycle a includes a low temperature side compressor 1a, a low temperature side four-way valve 2a connected to the low temperature side compressor 1a, a low temperature side refrigerant flow path of the cascade heat exchanger 5, a low temperature side expansion device 4a, A heat source side heat exchanger 3 that exchanges heat with outdoor air that is an external heat source is sequentially connected by a low temperature side refrigerant pipe 6a.
The heat source side heat exchanger 3 is provided with a blower 11 to promote heat exchange with outdoor air.

高温側冷凍サイクルbは、高温側圧縮機1bと、高温側圧縮機1bに接続された高温側四方弁2bと、カスケード熱交換器5の高温側冷媒流路と、高温側膨張装置4bと、利用側熱交換器7とが、順次高温側冷媒配管6bで接続されて構成されている。
利用側熱交換器7には、二元冷凍サイクル装置100によって汲み上げられた熱を利用する熱利用機器へ、熱を供給するための利用側配管18が接続されている。
利用側配管18内には熱利用機器へ、水やブラインなどの利用側流体が封入され、汲み上げられた熱を供給するようになっている。
利用側配管18内には送流ポンプ10によって送流される利用側流体が流動している。
The high temperature side refrigeration cycle b includes a high temperature side compressor 1b, a high temperature side four-way valve 2b connected to the high temperature side compressor 1b, a high temperature side refrigerant flow path of the cascade heat exchanger 5, a high temperature side expansion device 4b, The use side heat exchanger 7 is configured to be sequentially connected by a high temperature side refrigerant pipe 6b.
The use side heat exchanger 7 is connected to a use side pipe 18 for supplying heat to a heat use device that uses the heat pumped up by the dual refrigeration cycle apparatus 100.
In the use side pipe 18, a use side fluid such as water or brine is sealed into the heat use device, and the pumped heat is supplied.
In the use side pipe 18, the use side fluid fed by the feed pump 10 flows.

低温側冷凍サイクルaと高温側冷凍サイクルbには、それぞれ特性の異なる冷媒が封入されている。
封入される冷媒の種類は二元冷凍サイクル装置100の用途によって異なるが、例えば、利用側熱交換器7を水熱交換器とし90℃近い高温の湯を生成するための高温ヒートポンプ給湯機である場合、低温側冷凍サイクルaに使用される低温側冷媒には、R410Aのような―15℃程度の低外気温においても良好な性能を有する冷媒が好ましく、高温側冷凍サイクルbに用いられる高温側冷媒にはR134aのような95℃程度の高温において良好な熱交換性能を有する冷媒が好ましい。
Refrigerants having different characteristics are sealed in the low temperature side refrigeration cycle a and the high temperature side refrigeration cycle b, respectively.
The type of refrigerant to be enclosed varies depending on the use of the binary refrigeration cycle apparatus 100. For example, the refrigerant is a high-temperature heat pump water heater that uses the use-side heat exchanger 7 as a water heat exchanger and generates hot water close to 90 ° C. In this case, the low temperature side refrigerant used in the low temperature side refrigeration cycle a is preferably a refrigerant having good performance even at a low outside temperature of about −15 ° C. such as R410A, and the high temperature side used in the high temperature side refrigeration cycle b. The refrigerant is preferably a refrigerant having good heat exchange performance at a high temperature of about 95 ° C. such as R134a.

二元冷凍サイクル装置100には運転を制御するための電気部品箱22が備えられている。電気部品箱22には、運転制御手段である制御器23が設けられている。制御器23は、低温側圧縮機1a及び高温側圧縮機1bを駆動する図示しないインバータ回路の動作や、低温側膨張装置4a及び高温側膨張装置4bの開度や、低温側四方弁2a及び高温側四方弁2bの切替えを制御する。これらインバータ回路及び制御器23によって、低温側冷凍サイクルaと高温側冷凍サイクルbは最適な運転条件で運転される。   The dual refrigeration cycle apparatus 100 is provided with an electrical component box 22 for controlling operation. The electrical component box 22 is provided with a controller 23 as operation control means. The controller 23 operates an inverter circuit (not shown) that drives the low temperature side compressor 1a and the high temperature side compressor 1b, the opening degree of the low temperature side expansion device 4a and the high temperature side expansion device 4b, the low temperature side four-way valve 2a, and the high temperature. The switching of the side four-way valve 2b is controlled. By these inverter circuit and controller 23, the low temperature side refrigeration cycle a and the high temperature side refrigeration cycle b are operated under optimum operating conditions.

二元冷凍サイクル装置100の運転時の冷媒の流れを図1に実線矢印で示す。
低温側冷凍サイクルaと高温側冷凍サイクルbを運転すると、低温側冷凍サイクルaにおいて、低温側冷媒は、低温側圧縮機1aから低温側四方弁2a、カスケード熱交換器5の低温側流路、低温側膨張装置4a及び熱源側熱交換器3を順次通過し、低温側四方弁2aから低温側圧縮機1aへと戻る。
同様に高温側冷凍サイクルbにおいて、高温側圧縮機1bで圧縮された高温側冷媒が、高温側四方弁2b、利用側熱交換器7、高温側膨張装置4b及びカスケード熱交換器5の高温側流路を順次通過し、高温側四方弁2bから高温側圧縮機1bへと戻る。
このとき、低温側冷媒は熱源側熱交換器3で蒸発し、カスケード熱交換器5の低温側流路で凝縮する。また、高温側冷媒は、利用側熱交換器7において、利用側配管18内を流動する水等の利用側流体に温熱を供給しつつ凝縮する。そして、カスケード熱交換器5の高温側流路において、高温側膨張装置4bによって減圧された液状の高温側冷媒は蒸発し、蒸発熱として低温側冷媒の凝縮熱を吸収する。
The refrigerant flow during operation of the dual refrigeration cycle apparatus 100 is shown by solid line arrows in FIG.
When the low temperature side refrigeration cycle a and the high temperature side refrigeration cycle b are operated, in the low temperature side refrigeration cycle a, the low temperature side refrigerant flows from the low temperature side compressor 1a to the low temperature side four-way valve 2a, the low temperature side flow path of the cascade heat exchanger 5, It passes through the low temperature side expansion device 4a and the heat source side heat exchanger 3 in sequence, and returns from the low temperature side four-way valve 2a to the low temperature side compressor 1a.
Similarly, in the high temperature side refrigeration cycle b, the high temperature side refrigerant compressed by the high temperature side compressor 1b is converted into the high temperature side of the high temperature side four-way valve 2b, the use side heat exchanger 7, the high temperature side expansion device 4b, and the cascade heat exchanger 5. It passes through the flow path sequentially and returns from the high temperature side four-way valve 2b to the high temperature side compressor 1b.
At this time, the low temperature side refrigerant evaporates in the heat source side heat exchanger 3 and condenses in the low temperature side flow path of the cascade heat exchanger 5. Further, the high temperature side refrigerant condenses in the usage side heat exchanger 7 while supplying warm temperature to the usage side fluid such as water flowing in the usage side piping 18. And in the high temperature side flow path of the cascade heat exchanger 5, the liquid high temperature side refrigerant decompressed by the high temperature side expansion device 4b evaporates, and absorbs the condensation heat of the low temperature side refrigerant as evaporation heat.

本実施形態の二元冷凍サイクル装置100は、図示しないが、内部に低温側冷凍サイクルa及び高温側冷凍サイクルbを収容した筐体を有している。
筐体内部には、図2に示すように、支持台20が備えられており、支持台20の上方にカスケード熱交換器5が配置されており、下方には利用側熱交換器7が支持台20の脚部に囲まれるようにして配置されている。
Although not shown, the binary refrigeration cycle apparatus 100 of the present embodiment includes a housing that houses therein a low temperature side refrigeration cycle a and a high temperature side refrigeration cycle b.
As shown in FIG. 2, a support base 20 is provided inside the housing, and the cascade heat exchanger 5 is disposed above the support base 20, and the use side heat exchanger 7 is supported below. It arrange | positions so that it may be enclosed by the leg part of the base 20. FIG.

利用側熱交換器7には、縦長方形状のプレート式熱交換器が用いられており、側面から高温側冷媒配管6bを接続可能なように配置されている。
カスケード熱交換器5は縦長長方形状のプレート式熱交換器であり、側面に2対の接続口を有している。この2対の接続口の内、一方の対には低温側冷凍サイクルaの低温側冷媒配管6aが接続されており、他方の対には高温側冷凍サイクルbの高温側冷媒配管6bが接続されている。高温側冷凍サイクルbの利用側熱交換器7と、カスケード熱交換器5を接続するための高温側膨張装置4bはパルスモータバルブであり、パルスモータ部分を上方とし、下方と側方の夫々に延出する配管部分を有する、略L字形状となっている。
The usage-side heat exchanger 7 is a vertical rectangular plate-type heat exchanger, and is arranged so that the high-temperature side refrigerant pipe 6b can be connected from the side.
The cascade heat exchanger 5 is a vertically long plate heat exchanger having two pairs of connection ports on the side surface. Of the two pairs of connection ports, one pair is connected to the low temperature side refrigerant pipe 6a of the low temperature side refrigeration cycle a, and the other pair is connected to the high temperature side refrigerant pipe 6b of the high temperature side refrigeration cycle b. ing. The use side heat exchanger 7 of the high temperature side refrigeration cycle b and the high temperature side expansion device 4b for connecting the cascade heat exchanger 5 are pulse motor valves, and the pulse motor portion is the upper side, and the lower side and the side respectively. It has a substantially L shape with a pipe portion extending.

高温側膨張装置4bの下方に延出する配管部分には、高温側冷媒配管6bにより利用側熱交換器7と接続されており、側方に延出する配管部分には、高温側冷媒配管6bによりカスケード熱交換器5が接続されている。高温側冷媒配管6bの、高温側膨張装置4bとカスケード熱交換器5とを接続している部分は、曲げの無い直管状に形成された直管状部分9となっている。
このように、高温側膨張装置4bとカスケード熱交換器5が曲げの無い直管状部分9を介して接続されることにより、高温側膨張装置4bから吐出し撹拌された状態の気液二相冷媒が、配管の曲げに基因する遠心力等の影響を受けることなく、冷媒配管内を良好な気液分布状態で流動することができる。さらに、直管状部分9の長さは、重力の影響により内部を流動する冷媒の気相と液相が偏った状態とならないように、最適な長さに設定されるのが好ましい。
The pipe portion extending below the high temperature side expansion device 4b is connected to the use side heat exchanger 7 by the high temperature side refrigerant pipe 6b, and the high temperature side refrigerant pipe 6b is connected to the pipe portion extending sideways. Thus, the cascade heat exchanger 5 is connected. A portion of the high temperature side refrigerant pipe 6b connecting the high temperature side expansion device 4b and the cascade heat exchanger 5 is a straight tubular portion 9 formed in a straight tubular shape without bending.
In this way, the high-temperature side expansion device 4b and the cascade heat exchanger 5 are connected via the straight tubular portion 9 without bending, whereby the gas-liquid two-phase refrigerant discharged from the high-temperature side expansion device 4b and stirred. However, it is possible to flow in the refrigerant pipe in a good gas-liquid distribution state without being affected by the centrifugal force or the like due to the bending of the pipe. Further, the length of the straight tubular portion 9 is preferably set to an optimum length so that the gas phase and the liquid phase of the refrigerant flowing inside are not biased due to the influence of gravity.

プレート式熱交換器であるカスケード熱交換器5は縦長の略長方形状であり、利用側熱交換器7の上方に縦長に配置することで、筐体の設置面積を低減でき、スペース効率の向上を図ることができる。
また、内部で2種類の冷媒が気液状態変化しつつ熱交換を行なうカスケード熱交換器に比べ、常時液体である利用側流体が流動する利用側熱交換器7は重量が重い。
利用側熱交換器7に接続される利用側配管18も、内部に利用側流体が流動するため重く、利用側熱交換器7が筐体の下方に配置されることで、装置全体の安定性とメンテナンス性が向上する。
Cascade heat exchanger 5, which is a plate heat exchanger, has a substantially rectangular shape that is vertically long. By placing the heat exchanger 7 vertically above the use-side heat exchanger 7, the installation area of the housing can be reduced, and space efficiency is improved. Can be achieved.
Further, the use side heat exchanger 7 in which the use side fluid that is always liquid flows is heavier than the cascade heat exchanger that performs heat exchange while changing the gas-liquid state of the two refrigerants inside.
The use side pipe 18 connected to the use side heat exchanger 7 is also heavy because the use side fluid flows inside, and the use side heat exchanger 7 is arranged below the casing, so that the stability of the entire apparatus is improved. And maintainability is improved.

上述のように、設置面積の大きなカスケード熱交換器5と利用側熱交換器7を縦に配置することで、装置全体の据付面積を抑えることができ、狭い室内等にも設置することができる。
さらに、カスケード熱交換器5内には、高温側冷媒又は低温側冷媒のみ流動するのに対して、利用側熱交換器7には利用側の用途により、水や洗浄剤など、不特定の様々な流体が用いられる。このため、利用側熱交換器7内部には、汚れの沈着や腐食の発生が起こり、定期的なメンテナンスを必要とするが、本実施形態のように、利用側熱交換器7をカスケード熱交換器5の下方に配置することで、利用側熱交換器7の着脱や、メンテナンスの作業性が良好となる。
さらに、高温側膨張装置4bとカスケード熱交換器5とを接続している高温側冷媒配管6bを、直管とすることで、高温側膨張装置4bからカスケード熱交換器5へ流動する冷媒の気相と液相が、良好な分流状態となる。これにより、カスケード熱交換器5内の高温側冷媒の蒸発温度と、低温側冷媒の凝縮温度の温度差が低減され、熱交換性能が良好となり二元冷凍サイクル装置100の成績係数(COP)が向上する。
As described above, by arranging the cascade heat exchanger 5 and the use side heat exchanger 7 having a large installation area vertically, the installation area of the entire apparatus can be suppressed, and the apparatus can be installed in a narrow room or the like. .
Furthermore, while only the high-temperature side refrigerant or the low-temperature side refrigerant flows in the cascade heat exchanger 5, the use-side heat exchanger 7 has various unspecified factors such as water and cleaning agents depending on the use-side application. Fluid is used. For this reason, dirt deposits and corrosion occur inside the use side heat exchanger 7, and regular maintenance is required. However, as in the present embodiment, the use side heat exchanger 7 is cascade-heat exchanged. By disposing the unit 5 below, the use-side heat exchanger 7 can be attached and detached and maintenance workability can be improved.
Further, the high-temperature side refrigerant pipe 6b connecting the high-temperature side expansion device 4b and the cascade heat exchanger 5 is a straight pipe, so that the refrigerant gas flowing from the high-temperature side expansion device 4b to the cascade heat exchanger 5 can be obtained. The phase and the liquid phase are in a good diversion state. Thereby, the temperature difference between the evaporation temperature of the high temperature side refrigerant in the cascade heat exchanger 5 and the condensation temperature of the low temperature side refrigerant is reduced, the heat exchange performance is improved, and the coefficient of performance (COP) of the dual refrigeration cycle apparatus 100 is reduced. improves.

(第2の実施形態)
第2の実施形態について、図3を用いて説明する。尚、第1の実施形態と同様の構成については説明を省略する。
本第2の実施形態では、高温側冷凍サイクルbの高温側膨張装置4bは、受液器11を介して利用側熱交換器7に接続されている。受液器11は略円筒形状のタンクであり、内部に高温側冷媒が貯留されるようになっている。また、この受液器11の高さは、支持台20の高さと略同一か、又はそれよりも低く形成されており、受液器11と高温側膨張装置4bとカスケード熱交換器5を接続している高温側冷媒配管6bは、湾曲することなく直管で形成されている。
高温側冷凍サイクルbの高温側冷媒の量が多く、受液器11が必要な場合に、上述のように、高温側冷媒管6bの高温側膨張装置4bと利用側熱交換器7の間に接続することで、設置面積を大きく必要とせず、スペース効率が良い。
(Second Embodiment)
A second embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment is omitted.
In the second embodiment, the high temperature side expansion device 4 b of the high temperature side refrigeration cycle b is connected to the use side heat exchanger 7 via the liquid receiver 11. The liquid receiver 11 is a substantially cylindrical tank in which a high temperature side refrigerant is stored. The height of the liquid receiver 11 is substantially the same as or lower than the height of the support 20, and connects the liquid receiver 11, the high temperature side expansion device 4 b, and the cascade heat exchanger 5. The high temperature side refrigerant | coolant piping 6b currently formed is formed in the straight pipe | tube, without curving.
When the amount of the high-temperature side refrigerant in the high-temperature side refrigeration cycle b is large and the liquid receiver 11 is necessary, as described above, the high-temperature side refrigerant pipe 6b is interposed between the high-temperature side expansion device 4b and the use-side heat exchanger 7. By connecting, a large installation area is not required and space efficiency is good.

(第3の実施形態)
次に、第3の実施形態について、図4、図5、図6を用いて説明する。尚、第1の実施形態と同様の構成については説明を省略する。
図4、図5に示すように、本第3の実施形態において、高温側冷凍サイクルbの高温側膨張装置4bは、過冷却熱交換器12を介して利用側熱交換器7に接続されている。
過冷却熱交換器12は、縦長円筒状に形成されており、内部に一次側流路12aと二次側流路12bを有している。過冷却熱交換器12の上端と下端には、高温側冷媒配管6bが接続されており、利用側熱交換器7と一次側流路12aと高温側膨張装置4bとが連通するように接続されている。
また、過冷却熱交換器12と高温側膨張装置4bが接続されている高温側冷媒配管6bの中途部から分岐した管には、膨張弁16が接続されている。この膨張弁16は、過冷却熱交換器12の上方側面に接続され、二次側流路12bと連通している。さらに、過冷却熱交換器12の下方側面からは、二次側流路12bと高温側圧縮機1bの圧縮機構部に接続されるためのインジェクション回路17が接続されている。
一次側流路12aから吐出された液状の高温側冷媒は、膨張弁16により減圧され気液二相冷媒となり、二次側流路12bに流動する。そして、一次側流路12a内を流動する冷媒を冷却し、インジェクション回路17から高温側圧縮機1bの圧縮機構部へと流動する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. 4, 5, and 6. The description of the same configuration as that of the first embodiment is omitted.
As shown in FIGS. 4 and 5, in the third embodiment, the high temperature side expansion device 4 b of the high temperature side refrigeration cycle b is connected to the use side heat exchanger 7 via the supercooling heat exchanger 12. Yes.
The supercooling heat exchanger 12 is formed in a vertically long cylindrical shape, and has a primary side flow path 12a and a secondary side flow path 12b therein. A high temperature side refrigerant pipe 6b is connected to the upper end and the lower end of the supercooling heat exchanger 12, and the use side heat exchanger 7, the primary side flow path 12a, and the high temperature side expansion device 4b are connected to communicate with each other. ing.
An expansion valve 16 is connected to a pipe branched from a middle portion of the high temperature side refrigerant pipe 6b to which the supercooling heat exchanger 12 and the high temperature side expansion device 4b are connected. The expansion valve 16 is connected to the upper side surface of the supercooling heat exchanger 12 and communicates with the secondary side flow path 12b. Further, an injection circuit 17 is connected from the lower side surface of the supercooling heat exchanger 12 to be connected to the secondary side flow path 12b and the compression mechanism portion of the high temperature side compressor 1b.
The liquid high-temperature side refrigerant discharged from the primary side flow path 12a is decompressed by the expansion valve 16, becomes a gas-liquid two-phase refrigerant, and flows into the secondary side flow path 12b. And the refrigerant | coolant which flows through the inside of the primary side flow path 12a is cooled, and flows from the injection circuit 17 to the compression mechanism part of the high temperature side compressor 1b.

図6に第3の実施形態の二元冷凍サイクル装置100のP−h線図を示す。
lは高温側圧縮機1bの吸込み部、mは高温側凝縮器である利用側熱交換器7の高温側冷媒流路の入口部、cは利用側熱交換器7の高温側冷媒流路の出口部(インジェクション回路17の入口部)、dは過冷却熱交換器12の一次側流路12aの出口部、eはカスケード熱交換器5の高温側流路の入口部、fは過冷却熱交換器12の二次側流路12bの入口部、gは上記過冷却熱交換器12の二次側流路12bで蒸発した中間圧の冷媒が注入される高温側圧縮機1bの圧縮行程中の中間圧の圧縮室の冷媒の状態を表している。
FIG. 6 shows a Ph diagram of the binary refrigeration cycle apparatus 100 of the third embodiment.
l is a suction portion of the high temperature side compressor 1b, m is an inlet portion of a high temperature side refrigerant flow path of the use side heat exchanger 7 which is a high temperature side condenser, and c is a high temperature side refrigerant flow path of the use side heat exchanger 7. An outlet part (an inlet part of the injection circuit 17), d is an outlet part of the primary side flow path 12a of the supercooling heat exchanger 12, e is an inlet part of the high temperature side flow path of the cascade heat exchanger 5, and f is the supercooling heat. The inlet part of the secondary side flow path 12b of the exchanger 12, g is during the compression stroke of the high temperature side compressor 1b into which the intermediate pressure refrigerant evaporated in the secondary side flow path 12b of the supercooling heat exchanger 12 is injected. Represents the state of the refrigerant in the compression chamber of the intermediate pressure.

また、hは低温側圧縮機3の入口部、iはカスケード熱交換器5の低温側流路の入口部、jはカスケード熱交換器5の低温側流路5bの出口部、kは低温側蒸発器8の入口部の冷媒の状態を表している。   In addition, h is an inlet portion of the low temperature side compressor 3, i is an inlet portion of a low temperature side flow path of the cascade heat exchanger 5, j is an outlet portion of the low temperature side flow path 5b of the cascade heat exchanger 5, and k is a low temperature side. The state of the refrigerant | coolant of the inlet_port | entrance part of the evaporator 8 is represented.

図6から明らかなように、過冷却熱交換器12の一次側流路12aの冷媒は、二次側流路12bの冷媒の蒸発潜熱(図2のΔh´)によって冷却され(図2のΔh)、過冷却度が増加する。また、インジェクション回路17に冷媒が分流される分だけ、高温側膨張装置4bに流れる液冷媒の量が減少して液冷媒の流速が低下して圧力損失が減少する。そのため、高温側膨張装置4bの入口部に流入する液冷媒にフラッシュガスが生じることを防止することができる。したがって、高温側膨張装置4bの制御性が低下したり、高温側膨張装置4bを大型化する必要がない。   As is apparent from FIG. 6, the refrigerant in the primary flow path 12a of the supercooling heat exchanger 12 is cooled by the latent heat of vaporization (Δh ′ in FIG. 2) of the refrigerant in the secondary flow path 12b (Δh in FIG. 2). ), The degree of supercooling increases. Further, the amount of liquid refrigerant flowing to the high temperature side expansion device 4b is reduced by the amount of refrigerant diverted to the injection circuit 17, the flow rate of the liquid refrigerant is lowered, and the pressure loss is reduced. Therefore, it is possible to prevent flash gas from being generated in the liquid refrigerant flowing into the inlet portion of the high temperature side expansion device 4b. Therefore, the controllability of the high temperature side expansion device 4b is not lowered, and the high temperature side expansion device 4b does not need to be enlarged.

さらに、二次側流路12bに分流される分だけ、カスケード熱交換器5へ流動する冷媒量が減少し、且つ、冷媒の乾き度が低下するため、カスケード熱交換器5の高温側冷凍サイクルb側流路内での二相冷媒の分流がさらに改善され高温側冷媒の蒸発温度と、低温側冷媒の凝縮温度の差が低減し、二元冷凍サイクル装置100の成績係数(COP)がさらに向上する。
また、高温側圧縮機1bが吸込み圧力からインジェクション回路17を介して供給される冷媒の圧力になるまで圧縮する冷媒量が減少するため、高温側圧縮機1bの仕事量が減少する。
なお、インジェクション回路17を介して高温側圧縮機1bの圧縮行程中の中間圧の圧縮室に注入される冷媒により、高温側圧縮機1bから吐出される冷媒の温度が若干低下するが、圧縮室に注入される冷媒の過熱度を制御することにより、抑制することができる。また、高温側圧縮機1bから吐出される冷媒量は減少しない。
Further, since the amount of refrigerant flowing to the cascade heat exchanger 5 is reduced by the amount diverted to the secondary side flow path 12b and the dryness of the refrigerant is lowered, the high temperature side refrigeration cycle of the cascade heat exchanger 5 is reduced. The branch flow of the two-phase refrigerant in the b-side flow path is further improved, the difference between the evaporation temperature of the high-temperature refrigerant and the condensation temperature of the low-temperature refrigerant is reduced, and the coefficient of performance (COP) of the dual refrigeration cycle apparatus 100 is further increased. improves.
Further, since the amount of refrigerant compressed by the high temperature side compressor 1b from the suction pressure to the pressure of the refrigerant supplied through the injection circuit 17 is reduced, the work amount of the high temperature side compressor 1b is reduced.
The refrigerant injected into the intermediate pressure compression chamber during the compression stroke of the high temperature side compressor 1b via the injection circuit 17 slightly reduces the temperature of the refrigerant discharged from the high temperature side compressor 1b. This can be suppressed by controlling the degree of superheat of the refrigerant injected into the tank. Further, the amount of refrigerant discharged from the high temperature side compressor 1b does not decrease.

(第4の実施形態)
次に、第4の実施形態について、図7、図8を用いて説明する。尚、第1の実施形態と同様の構成については説明を省略する。
本第4の実施形態では、高温側冷凍サイクルbの高温側膨張装置4bは、液ガス熱交換器13を介して利用側熱交換器7に接続されている。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. The description of the same configuration as that of the first embodiment is omitted.
In the fourth embodiment, the high temperature side expansion device 4 b of the high temperature side refrigeration cycle b is connected to the use side heat exchanger 7 via the liquid gas heat exchanger 13.

ここで、高温側冷媒配管6bの、圧縮機1bと利用側熱交換器7と膨張装置4bを接続している区間を高圧側配管6baとし、膨張装置4bとカスケード熱交換器5と四方弁2bを接続している区間を低圧側配管6bbとすると、高圧側配管6ba内は、圧縮機1bの吐出圧力と同様の圧力となっており、低圧側配管6bb内は、膨張装置4bにより減圧された圧力となっている。液ガス熱交換器13は、高圧側配管6baの膨張装置4bと利用側熱交換器7の間の区間に接続された高圧側流路13aと、低圧側配管6bbのカスケード熱交換器5と高温側四方弁2bの間の区間に接続された低圧側流路13bを、熱交換可能に接合したものである。
ここで、低圧側配管6bbの膨張装置4bとカスケード熱交換器5とを接続している部分は、第1の実施形態同様に直間状部分9となっている。
なお、図8に示すように、液ガス熱交換器13の高圧側流路13aと低圧側流路13bは、上下方向へ直立した配管を平行に接合されて形成されている。また、カスケード熱交換器5の下方側に高温側膨張装置4bが配置され、さらに高温側膨張装置4bの下方側に利用側熱交換器7が配置されているため、液ガス熱交換器13は高温側膨張装置4bの下方で、高圧側流路13aが上方へ向かう流れで、低圧側流路13bが下方へ向かう流れである対交流となるように接続されている。
Here, a section of the high temperature side refrigerant pipe 6b connecting the compressor 1b, the use side heat exchanger 7 and the expansion device 4b is referred to as a high pressure side pipe 6ba, and the expansion device 4b, the cascade heat exchanger 5 and the four-way valve 2b. Is a low pressure side pipe 6bb, the pressure inside the high pressure side pipe 6ba is the same as the discharge pressure of the compressor 1b, and the pressure inside the low pressure side pipe 6bb is reduced by the expansion device 4b. It is pressure. The liquid gas heat exchanger 13 includes a high pressure side passage 13a connected to a section between the expansion device 4b of the high pressure side pipe 6ba and the use side heat exchanger 7, and the high temperature of the cascade heat exchanger 5 of the low pressure side pipe 6bb. The low pressure side flow path 13b connected to the section between the side four-way valves 2b is joined so that heat exchange is possible.
Here, the portion connecting the expansion device 4b and the cascade heat exchanger 5 of the low-pressure side pipe 6bb is a direct portion 9 as in the first embodiment.
In addition, as shown in FIG. 8, the high-pressure side flow path 13a and the low-pressure side flow path 13b of the liquid gas heat exchanger 13 are formed by connecting pipes standing up and down in the vertical direction in parallel. Moreover, since the high temperature side expansion apparatus 4b is arrange | positioned under the cascade heat exchanger 5, and the utilization side heat exchanger 7 is arrange | positioned further under the high temperature side expansion apparatus 4b, the liquid gas heat exchanger 13 is Below the high-temperature side expansion device 4b, the high-pressure side flow path 13a is connected so as to be in an upward flow and the low-pressure side flow path 13b is in a downward flow.

このように配置することにより、余分に湾曲した高温側冷媒配管を用いることなく、より省スペース化を行いつつ、良好な分流状態としより効果的な熱交換を行なうことができる。
尚、上記実施形態では液ガス熱交換器13は、2本の冷媒配管を平行に接合したものについて説明したが、上記実施形態に限らず、二重管熱交換器など、対向流となる種々の熱交換器を用いてよい。
By arranging in this way, a more effective heat exchange can be performed with a good diversion state while further saving space without using an excessively curved high temperature side refrigerant pipe.
In the above-described embodiment, the liquid gas heat exchanger 13 has been described in which two refrigerant pipes are joined in parallel. The heat exchanger may be used.

なお、第1乃至第4の実施形態において低温側圧縮機及び、高温側圧縮機は夫々四方弁を介して冷媒配管に接続されているが、四方弁を介さずに冷媒配管に接続されても良い。
また、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
In the first to fourth embodiments, the low-temperature side compressor and the high-temperature side compressor are each connected to the refrigerant pipe via the four-way valve, but may be connected to the refrigerant pipe without going through the four-way valve. good.
Further, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

1a…低温側圧縮機、1b…高温側圧縮機、2a…低温側四方弁、2b…高温側四方弁、3…熱源側熱交換器、4a…低温側膨張装置、4b…高温側膨張装置、5…カスケード熱交換器、6a…低温側冷媒配管、6b…高温側冷媒配管、7…利用側熱交換器、9…直管状部分、10…送流ポンプ、11…受液器、12…過冷却熱交換器、13…液ガス熱交換器、16…膨張弁、17…インジェクション回路、18…利用側配管、20…支持台、22…電気部品箱、23…制御器、100…二元冷凍サイクル装置、a…低温側冷凍サイクル、b…高温側冷凍サイクル
DESCRIPTION OF SYMBOLS 1a ... Low temperature side compressor, 1b ... High temperature side compressor, 2a ... Low temperature side four way valve, 2b ... High temperature side four way valve, 3 ... Heat source side heat exchanger, 4a ... Low temperature side expansion device, 4b ... High temperature side expansion device, DESCRIPTION OF SYMBOLS 5 ... Cascade heat exchanger, 6a ... Low temperature side refrigerant | coolant piping, 6b ... High temperature side refrigerant | coolant piping, 7 ... Usage side heat exchanger, 9 ... Straight pipe part, 10 ... Feed pump, 11 ... Liquid receiver, 12 ... Excess Cooling heat exchanger, 13 ... liquid gas heat exchanger, 16 ... expansion valve, 17 ... injection circuit, 18 ... use side piping, 20 ... support base, 22 ... electric component box, 23 ... controller, 100 ... dual refrigeration Cycle device, a ... low temperature side refrigeration cycle, b ... high temperature side refrigeration cycle

Claims (5)

2つの圧縮機と、熱源側熱交換器と、カスケード熱交換器と、利用側熱交換器を有する二元冷凍サイクル装置において、
前記カスケード熱交換器と前記利用側熱交換器は、膨張装置を介して冷媒配管により接続されており、前記カスケード熱交換器は、前記利用側熱交換器の上方に配置されることを特徴とする二元冷凍サイクル装置。
In a two-stage refrigeration cycle apparatus having two compressors, a heat source side heat exchanger, a cascade heat exchanger, and a use side heat exchanger,
The cascade heat exchanger and the use side heat exchanger are connected by a refrigerant pipe through an expansion device, and the cascade heat exchanger is disposed above the use side heat exchanger. Dual refrigeration cycle equipment.
前記膨張装置と前記カスケード熱交換器を接続している冷媒配管が直管であることを特徴とする請求項1に記載の二元冷凍サイクル装置。   The two-way refrigeration cycle apparatus according to claim 1, wherein the refrigerant pipe connecting the expansion device and the cascade heat exchanger is a straight pipe. 前記利用側熱交換器と前記膨張装置は、受液器を介して、冷媒配管により接続されていることを特徴とする請求項1に記載の二元冷凍サイクル装置。   The two-way refrigeration cycle apparatus according to claim 1, wherein the use side heat exchanger and the expansion device are connected by a refrigerant pipe via a liquid receiver. 前記利用側熱交換器と前記膨張装置は、過冷却熱交換器を介して、冷媒配管により接続されていることを特徴とする請求項1に記載の二元冷凍サイクル装置。   The dual refrigeration cycle apparatus according to claim 1, wherein the use side heat exchanger and the expansion device are connected by a refrigerant pipe through a supercooling heat exchanger. 前記利用側熱交換器と前記膨張装置は、液ガス熱交換器を介して、冷媒配管により接続されていることを特徴とする請求項1に記載の二元冷凍サイクル装置。
The dual refrigeration cycle apparatus according to claim 1, wherein the use side heat exchanger and the expansion device are connected by a refrigerant pipe through a liquid gas heat exchanger.
JP2011203983A 2011-09-19 2011-09-19 Dual refrigeration cycle equipment Active JP5761857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203983A JP5761857B2 (en) 2011-09-19 2011-09-19 Dual refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203983A JP5761857B2 (en) 2011-09-19 2011-09-19 Dual refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2013064559A true JP2013064559A (en) 2013-04-11
JP5761857B2 JP5761857B2 (en) 2015-08-12

Family

ID=48188215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203983A Active JP5761857B2 (en) 2011-09-19 2011-09-19 Dual refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5761857B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020684A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Heat generation unit
JP2017032184A (en) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 Heat generation unit
KR102042353B1 (en) * 2018-07-24 2019-11-07 한국해양대학교 산학협력단 Refrigerator
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
KR20220154037A (en) 2021-05-12 2022-11-21 가부시키가이샤 에바라 세이사꾸쇼 Multi-refrigeration-cycle apparatus
CN116507865A (en) * 2020-12-01 2023-07-28 大金工业株式会社 Refrigeration cycle system
CN116601443A (en) * 2020-12-01 2023-08-15 大金工业株式会社 Refrigeration cycle system
WO2024070423A1 (en) * 2022-09-26 2024-04-04 サンデン株式会社 Refrigerant unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114878U (en) * 1989-02-27 1990-09-13
JPH0518647A (en) * 1991-07-11 1993-01-26 Daikin Ind Ltd Defrost device for cooling device having two-dimensional refrigeration cycle
JPH07269988A (en) * 1994-03-31 1995-10-20 Toshiba Corp Refrigerating cycle
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat
JP2003247760A (en) * 2002-02-22 2003-09-05 Ee I Tec:Kk Dual refrigerator
JP2005077042A (en) * 2003-09-02 2005-03-24 Yukinobu Ikemoto Cooling system, and construction method of cooling system
JP3820714B2 (en) * 1997-12-12 2006-09-13 ダイキン工業株式会社 Showcase refrigeration equipment
JP2009150620A (en) * 2007-12-21 2009-07-09 Toshiba Carrier Corp Dual heat pump type air conditioning system
JP2009236396A (en) * 2008-03-27 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply device
US20100147006A1 (en) * 2007-06-04 2010-06-17 Taras Michael F Refrigerant system with cascaded circuits and performance enhancement features
JP2011085331A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Air-conditioning hot water supply system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114878U (en) * 1989-02-27 1990-09-13
JPH0518647A (en) * 1991-07-11 1993-01-26 Daikin Ind Ltd Defrost device for cooling device having two-dimensional refrigeration cycle
JPH07269988A (en) * 1994-03-31 1995-10-20 Toshiba Corp Refrigerating cycle
JP3820714B2 (en) * 1997-12-12 2006-09-13 ダイキン工業株式会社 Showcase refrigeration equipment
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat
JP2003247760A (en) * 2002-02-22 2003-09-05 Ee I Tec:Kk Dual refrigerator
JP2005077042A (en) * 2003-09-02 2005-03-24 Yukinobu Ikemoto Cooling system, and construction method of cooling system
US20100147006A1 (en) * 2007-06-04 2010-06-17 Taras Michael F Refrigerant system with cascaded circuits and performance enhancement features
JP2009150620A (en) * 2007-12-21 2009-07-09 Toshiba Carrier Corp Dual heat pump type air conditioning system
JP2009236396A (en) * 2008-03-27 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply device
JP2011085331A (en) * 2009-10-16 2011-04-28 Hitachi Ltd Air-conditioning hot water supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020684A (en) * 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 Heat generation unit
JP2017032184A (en) * 2015-07-30 2017-02-09 パナソニックIpマネジメント株式会社 Heat generation unit
KR102042353B1 (en) * 2018-07-24 2019-11-07 한국해양대학교 산학협력단 Refrigerator
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
JP7469583B2 (en) 2019-06-12 2024-04-17 ダイキン工業株式会社 air conditioner
CN116507865A (en) * 2020-12-01 2023-07-28 大金工业株式会社 Refrigeration cycle system
CN116601443A (en) * 2020-12-01 2023-08-15 大金工业株式会社 Refrigeration cycle system
KR20220154037A (en) 2021-05-12 2022-11-21 가부시키가이샤 에바라 세이사꾸쇼 Multi-refrigeration-cycle apparatus
WO2024070423A1 (en) * 2022-09-26 2024-04-04 サンデン株式会社 Refrigerant unit

Also Published As

Publication number Publication date
JP5761857B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5761857B2 (en) Dual refrigeration cycle equipment
CN103328909B (en) Air-conditioning device
CN104321597A (en) Freezer
CN102844630A (en) Air conditioning and hot-water supply composite system
CN103221759A (en) Air conditioner
CN104011471A (en) Air conditioner
US9816736B2 (en) Air-conditioning apparatus
CN103930744B (en) Double-wall-tube heat exchanger and comprise the aircondition of this Double-wall-tube heat exchanger
JP2015141009A (en) Heat exchanger for heat source unit of refrigeration device and heat source unit including the same
EP2541170A1 (en) Air-conditioning hot-water-supply system
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
JP2008196777A (en) Heat exchange apparatus for water
JP5681787B2 (en) Two-way refrigeration cycle equipment
CN104285110A (en) Freezer
JP2022528063A (en) Air regulator
JP5202726B2 (en) Load-side relay unit and combined air conditioning and hot water supply system
EP3124890B1 (en) Heat-generating unit
KR20080093279A (en) High efficence heat pump system
JP2013185741A (en) Heat pump type water heater
KR20100046365A (en) Heat pump system
KR101372146B1 (en) Multi air conditioner improved air heating efficiency
JP2009162403A (en) Air conditioner
JP2014122770A (en) Heat exchanger
JP6242289B2 (en) Refrigeration cycle equipment
US20200340688A1 (en) Outdoor unit of gas heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5761857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250