JP2013064176A - Titanium cutting tool material, titanium cutting tool, and method of manufacturing them - Google Patents

Titanium cutting tool material, titanium cutting tool, and method of manufacturing them Download PDF

Info

Publication number
JP2013064176A
JP2013064176A JP2011203101A JP2011203101A JP2013064176A JP 2013064176 A JP2013064176 A JP 2013064176A JP 2011203101 A JP2011203101 A JP 2011203101A JP 2011203101 A JP2011203101 A JP 2011203101A JP 2013064176 A JP2013064176 A JP 2013064176A
Authority
JP
Japan
Prior art keywords
titanium
powder
blade
cutter
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203101A
Other languages
Japanese (ja)
Other versions
JP5858398B2 (en
Inventor
Hirokazu Fukuoka
廣一 福岡
Tsubasa Tsubokawa
翼 坪川
Junsaku Nakajima
準作 中島
Katsuhiko Araki
克彦 荒木
Kenki Inoue
賢紀 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKEFU TOKUSHU KOZAI KK
Japan Atomic Energy Agency
Original Assignee
TAKEFU TOKUSHU KOZAI KK
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKEFU TOKUSHU KOZAI KK, Japan Atomic Energy Agency filed Critical TAKEFU TOKUSHU KOZAI KK
Priority to JP2011203101A priority Critical patent/JP5858398B2/en
Publication of JP2013064176A publication Critical patent/JP2013064176A/en
Application granted granted Critical
Publication of JP5858398B2 publication Critical patent/JP5858398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve a cutting tool that can cut not only soft food materials but also hard food materials, is sharp, can maintain sharpness for a long time, is tough, is resistant to corrosion, and is inexpensive.SOLUTION: A titanium cutting tool is obtained by: filling a MA material, obtained by mixing titanium powder and silicon carbide powder and subjecting the mixture to mechanical alloying (MA) processing, into a case formed with a titanium plate and sealing the MA material; hot-rolling it to make a titanium cutting tool material; and blade-sharpening it by grinding after a titanium powder cutting tool material (MA material) that composes the titanium cutting tool material is sintered, wherein the titanium powder cutting tool material composed of the MA material has titanium-side plates by the titanium plate arranged on both sides of the titanium powder cutting tool material.

Description

本発明は、チタン粉末を基材にしたチタン刃物材、チタン刃物及びその製造方法に関する。   The present invention relates to a titanium blade material based on titanium powder, a titanium blade, and a method for manufacturing the same.

刃物は、切れ味が良く、切れ味が永く持続し、折れ難く、曲がり難く、錆難い、ことが望まれ、チタンクラッド鋼刃物が提案されている。   It is desired that the blade has a good sharpness, lasts for a long time, is not easily broken, is not easily bent, and is not easily rusted, and a titanium clad steel blade has been proposed.

刃物が良く切れるためには、刃先になる刃物鋼は、できるだけ高硬度であることが望ましい。しかしながら、チタンには、刃物の刃先に使えるほど高硬度の材料が存在しないことから、チタンとステンレス刃物鋼のクラッドが提案されている。   In order to cut the cutter well, it is desirable that the cutter steel serving as the cutting edge is as hard as possible. However, since titanium does not have a material that is so hard that it can be used for the cutting edge of a blade, a clad of titanium and stainless blade steel has been proposed.

近年、チタン粉末を焼結して作るチタン刃物が提案されている。このチタン刃物は、チタン粉末に硬質粉末を混合した後に圧縮成形し、真空炉中で1200℃〜1300℃で焼結し、その後、研削して刃付けした構成である。しかし、このチタン刃物は、刃先が柔らかいことから、硬い食材を切るには不向きであり、比較的に柔らかい野菜等を切る刃物として使用されている。   In recent years, titanium blades made by sintering titanium powder have been proposed. This titanium blade has a structure in which a hard powder is mixed with titanium powder and then compression-molded, sintered in a vacuum furnace at 1200 ° C. to 1300 ° C., and then ground by grinding. However, this titanium blade is not suitable for cutting hard food because it has a soft cutting edge, and is used as a blade for cutting relatively soft vegetables.

特開2005−48276号公報JP 2005-48276 A 特開2008−264116号公報JP 2008-264116 A 特開2007−143956号公報JP 2007-143958 A

石山新太郎 「核融合炉用高熱伝導セラミックス製ダイバータプレートモデル試験体に関する基礎的研究」、日本原子力学会和文論文誌、Vol.3, No.3(2004),p56〜p65Shintaro Ishiyama "Fundamental study on divertor plate model specimen made of high thermal conductive ceramics for fusion reactor", Japanese Atomic Energy Society Journal, Vol.3, No.3 (2004), p56-p65 竹腰久仁雄 「刃物の切れ味劣化のメカニズムについて」 砥粒加工学会学術講演会講演論文集 2000巻 307頁〜312頁 2000.09.12発行Kunio Takekoshi “Mechanism of sharpness degradation of blades” Proceedings of Academic Lecture Meeting of the Japan Society for Abrasive Technology 2000 307-312 2000.09.12

本発明の目的は、柔らかい食材はもちろん、硬い食材も切ることができ、良い切れ味が永く持続し、折れ難く、錆難い安価な刃物を得るためのチタン刃物材及びチタン刃物を実現することにある。   An object of the present invention is to realize a titanium blade material and a titanium blade for obtaining an inexpensive blade that can cut not only a soft food but also a hard food, has a good sharpness for a long time, is not easily broken, and is not easily rusted. .

本発明のチタン刃物は、チタン粉末と硬質粉末としての炭化ケイ素粉末を混合してMA処理(Mechanical Alloying:機械的合金化処理)したMA材を、チタン板で形成した筐体に充填して密封し、これを熱間圧延してチタン刃物材とし、このチタン刃物材を使用して刃物形状体を形成し、この刃物形状体を構成するチタン粉末刃物材(MA材)を焼結硬化した後に研削することにより刃付けしてチタン刃物とするものであり、前記MA材によって構成されるチタン粉末刃物材の両側面には前記チタン板によるチタン側板が配された構成とするものである。   The titanium blade of the present invention is filled with a MA material obtained by mixing MA powder (mechanical alloying) by mixing titanium powder and silicon carbide powder as a hard powder into a case formed of a titanium plate and sealed. Then, this is hot-rolled to form a titanium blade material, a blade shaped body is formed using the titanium blade material, and the titanium powder blade material (MA material) constituting the blade shaped body is sintered and hardened. The titanium blade is made by grinding to form a titanium blade, and titanium side plates made of the titanium plate are arranged on both side surfaces of the titanium powder blade material made of the MA material.

本発明によれば、比較的安価で入手し易い炭化ケイ素粉末を硬質粉末としてチタン粉末に混合してMA処理したMA材をチタン板の筐体に充填して密封し、これを熱間圧延してチタン刃物材とし、このチタン刃物材を使用して刃物形状体を形成し、焼結、研削してチタン刃物としたことにより、柔らかい食材はもちろん、硬い食材も切ることができ、しかも、良い切れ味を永く持続することができ、折れ難く、錆難い安価な刃物材及び刃物を実現することができる。   According to the present invention, a MA material obtained by mixing a relatively inexpensive and easily available silicon carbide powder as a hard powder with titanium powder and performing MA treatment is filled and sealed in a titanium plate casing, which is hot-rolled. Titanium cutlery material, using this titanium cutlery material to form a cutlery shape, sintering and grinding to make a titanium cutlery, not only soft ingredients but also hard ingredients can be cut, and good The sharpness can be maintained for a long time, and it is possible to realize an inexpensive blade material and blade that are difficult to break and rust.

MA材のX線回折測定結果を示す特性曲線図である。It is a characteristic curve figure which shows the X-ray-diffraction measurement result of MA material. チタン刃物製造の工程図である。It is process drawing of titanium cutter manufacture. チタン刃物の側面図である。It is a side view of a titanium blade. 実施例1における熱間圧延後のMA材(焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。FIG. 3 is a drawing-substituting photograph when a cross-sectional view of the MA material (sintered material) after hot rolling in Example 1 is observed with a structure using an optical microscope. 実施例1における熱間圧延後のMA材(焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。FIG. 3 is a drawing-substituting photograph when a cross-sectional view of the MA material (sintered material) after hot rolling in Example 1 is observed with a structure using an optical microscope. 実施例1における熱間圧延後のMA材(焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。FIG. 3 is a drawing-substituting photograph when a cross-sectional view of the MA material (sintered material) after hot rolling in Example 1 is observed with a structure using an optical microscope. 実施例1における熱間圧延後のMA材(焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。FIG. 3 is a drawing-substituting photograph when a cross-sectional view of the MA material (sintered material) after hot rolling in Example 1 is observed with a structure using an optical microscope. 熱間圧延後のMA材(未焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。It is a drawing substitute photograph when the structure of the cut section of the MA material (unsintered material) after hot rolling is observed using an optical microscope. 熱間圧延後のMA材(1100℃焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。It is a drawing substitute photograph when the structure of the cut cross section of the MA material (1100 ° C. sintered material) after hot rolling is observed using an optical microscope. 熱間圧延後のMA材(1150℃焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。It is a drawing substitute photograph when the structure of the cut section of the MA material (1150 ° C. sintered material) after hot rolling is observed using an optical microscope. 熱間圧延後のMA材(1200℃焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの図面代用写真である。It is a drawing substitute photograph when structure | tissue observation is carried out using the optical microscope for the cut cross section of MA material (1200 degreeC sintered material) after hot rolling.

本発明のチタン刃物は、刃部を形成するMA材をチタン粉末と硬質粉末(炭化ケイ素粉末)とを混合してMA処理することによって構成し、このMA材をチタン板で形成した筐体に充填して密封し、これを熱間圧延してチタン刃物材とし、このチタン刃物材をチタン刃物形状に成形してチタン粉末刃物材(MA材部)を研削することにより刃付けしてチタン刃物とし、又はこのチタン刃物材を刃物形状に成形した後に該チタン刃物材を構成するチタン粉末刃物材を焼結した後に研削することにより刃付けしてチタン刃物とするものであり、前記MA材によって構成されるチタン粉末刃物材の両側面に前記チタン板によるチタン側板が配された構成である。   The titanium blade of the present invention is constituted by mixing MA material forming a blade part with titanium powder and hard powder (silicon carbide powder) and subjecting to MA treatment, and this MA material is formed into a casing formed of a titanium plate. Fill and seal, hot-roll it into a titanium blade material, shape this titanium blade material into a titanium blade shape and grind the titanium powder blade material (MA material part) to cut the titanium blade Or after the titanium blade material is formed into a blade shape, the titanium powder blade material constituting the titanium blade material is sintered and then ground to form a titanium blade, and the MA material It is the structure by which the titanium side plate by the said titanium plate was distribute | arranged to the both sides | surfaces of the titanium powder cutter material comprised.

目的とするチタン刃物の製造に好適な次のような材料を選定した。   The following materials suitable for the production of the target titanium blade were selected.

先ず、チタン刃物材を構成するチタン粉末と硬質粉末の選定は、次の通りである。   First, selection of the titanium powder and the hard powder constituting the titanium blade material is as follows.

チタン粉末として、バランスの良い刃物材としての特性を示すトーホーテック株式会社製 チタン合金粉末(a)(Ti−64粉末)である 64合金粉末 ACA150 及び安価で入手が容易な東邦チタニウム株式会社製 スポンジチタン粉末(b)(ロットNo.:T−09015008)を選定した。これらのチタン粉末の組成は、表1、表2に示す通りである(カタログ値)。   Titanium alloy powder (a) (Ti-64 powder) made of Tohotech Co., Ltd., which shows the characteristics as a well-balanced blade material as titanium powder, and 64 sponge powder ACA150, and sponge available from Toho Titanium Co., Ltd. Titanium powder (b) (Lot No .: T-09015008) was selected. The compositions of these titanium powders are as shown in Tables 1 and 2 (catalog values).

Figure 2013064176
Figure 2013064176

Figure 2013064176
Figure 2013064176

また、硬質粉末として使用する炭化ケイ素粉末は、平均粒径2.5μm〜14μmのものを体積比で5%又は10%混合する。具体的には、比較的安価で熱拡散性の良い屋久島電工株式会社製の炭化ケイ素粉末を選定した。そして、表3に示すような平均粒径(カタログ値)で2.5μm〜14μmの4品種を選定した。   Further, the silicon carbide powder used as the hard powder is mixed with 5% or 10% by volume of those having an average particle diameter of 2.5 μm to 14 μm. Specifically, silicon carbide powder manufactured by Yakushima Electric Works, Ltd., which is relatively inexpensive and has good thermal diffusivity was selected. And 4 types of 2.5 micrometers-14 micrometers were selected by the average particle diameter (catalog value) as shown in Table 3.

Figure 2013064176
Figure 2013064176

次に、MA処理は、ポットミル(径:φ135mm又はφ180mm)、セラミックボール(径:φ25mmとφ30mm)を使用して、回転数を80rpmで所定時間実行し、付加処理を行うことにより、MA処理の徹底を行った。すなわち、硬質粉末として炭化ケイ素粉末(GC−4000F)を体積比でチタン合金粉末に対して10%混合し、表4に示す各条件で実行した。   Next, the MA process is performed by performing a predetermined time at a rotational speed of 80 rpm using a pot mill (diameter: φ135 mm or φ180 mm) and ceramic balls (diameter: φ25 mm and φ30 mm). Thoroughly performed. That is, silicon carbide powder (GC-4000F) as a hard powder was mixed at a volume ratio of 10% with respect to the titanium alloy powder, and executed under the conditions shown in Table 4.

Figure 2013064176
Figure 2013064176

このMA処理効果を確認するためMA処理後の粉末(MA材)を表5に示す条件でX線回折測定を行った。   In order to confirm this MA treatment effect, X-ray diffraction measurement was performed on the powder (MA material) after the MA treatment under the conditions shown in Table 5.

Figure 2013064176
Figure 2013064176

図1は、MA処理eのX線回折測定結果を示す特性曲線図である(MA処理a〜dの特性曲線については図示を省略)。この場合、粉末への投入エネルギーが大きくなると、結晶格子のひずみ量が大きくなるので、X線回折特性ピークがブロードになる(裾野の幅が広がる)傾向がある。従って、前記MA処理a〜eを比較すると、処理a〜cよりもポットミル径が大きい処理d,eの方が投入エネルギーが大きく、各々の特性曲線から混合状態の改善が見られ、Tiのピークもブロードになっている。また、処理eの粉末は、処理dの粉末よりも付加処理による均質混合、MA化が促進され、特性ピークがブロードになっている。チタン刃物の製作のためのMA処理時要件としては、a〜eの中では、eが最適であることがわかる。   FIG. 1 is a characteristic curve diagram showing the X-ray diffraction measurement results of MA treatment e (illustration is omitted for the characteristic curves of MA treatments a to d). In this case, when the input energy to the powder is increased, the amount of strain in the crystal lattice is increased, so that the X-ray diffraction characteristic peak tends to be broad (the width of the base is widened). Therefore, when the MA treatments a to e are compared, the treatments d and e having a pot mill diameter larger than the treatments a to c have a larger input energy, and the mixed state is improved from the respective characteristic curves. Is also broad. Further, the powder of the treatment e is more homogeneously mixed and MAized by the addition treatment than the powder of the treatment d, and the characteristic peak is broad. It can be seen that e is optimal among a to e as the MA processing requirements for manufacturing the titanium blade.

次に、本発明のチタン刃物の概略的な製造方法について、図2を参照して説明する。   Next, a schematic manufacturing method of the titanium blade of the present invention will be described with reference to FIG.

ステップS1
チタン粉末刃物材を構成する素材であるチタン粉末を準備した。チタン粉末は、チタン合金粉末(a)又はスポンジチタン粉末(b)である。
Step S1
Titanium powder, which is a material constituting the titanium powder cutter material, was prepared. The titanium powder is titanium alloy powder (a) or sponge titanium powder (b).

ステップS2
硬質粉末として、炭化ケイ素粉末を準備した。
Step S2
Silicon carbide powder was prepared as a hard powder.

ステップS3
チタン粉末と硬質粉末を混合して所定のMA処理条件でMA処理(e)することによりMA材を得た。MA材は、チタン粉末に対して炭化ケイ素粉末を体積比で5%又は10%混合してMA処理した粉末である。
Step S3
MA material was obtained by mixing titanium powder and hard powder and performing MA treatment (e) under predetermined MA treatment conditions. The MA material is a powder obtained by performing MA treatment by mixing 5% or 10% by volume of silicon carbide powder with respect to titanium powder.

ステップS4
MA材を充填して熱間圧延すると共に後にチタン側板となるチタン筐体を作製する素材として厚さ3mmと20mmのチタン板(チタン合金粉末(a)には純チタン板(TP340)aを、またスポンジチタン粉末(b)にはチタン合金板(Ti−64)b)を準備した。
Step S4
As a material for filling a MA material and hot-rolling and manufacturing a titanium casing which will later become a titanium side plate, a titanium plate having a thickness of 3 mm and 20 mm (a pure titanium plate (TP340) a for the titanium alloy powder (a)), Further, a titanium alloy plate (Ti-64) b) was prepared for the sponge titanium powder (b).

ステップS5
チタン板を用いてチタン筐体を作製した。因みに、チタン筐体は、直方体であり、その外形寸法は、厚さ26mm、幅115mm、長さ150mm及び厚さ60mm、幅225mm、長さ320mmの2種類である。
Step S5
A titanium case was produced using a titanium plate. Incidentally, the titanium case is a rectangular parallelepiped, and there are two types of external dimensions: a thickness of 26 mm, a width of 115 mm, a length of 150 mm, a thickness of 60 mm, a width of 225 mm, and a length of 320 mm.

ステップS6
チタン筐体にMA材をプレス機で加圧しながら充填した。
Step S6
The titanium casing was filled with MA material while being pressed with a press.

ステップS7
MA材を充填したチタン筐体を電子ビーム溶接して密封した。
Step S7
The titanium case filled with MA material was sealed by electron beam welding.

ステップS8
MA材を充填したチタン筐体を熱間圧延した。この熱間圧延は、加熱温度950℃、加熱時間60分で圧延し、10mmの厚さまで圧延した後に再加熱して、更に2mmまで熱間圧延して残留気孔を除去したチタン刃物材を得た。
Step S8
A titanium case filled with MA material was hot-rolled. This hot rolling was performed at a heating temperature of 950 ° C. and a heating time of 60 minutes, rolled to a thickness of 10 mm, re-heated, and further hot-rolled to 2 mm to obtain a titanium blade material from which residual pores were removed. .

ステップS9
チタン筐体にMA材を充填して熱間圧延して作製したチタン刃物材について、熱処理した後に刃物形状体を作製した。
Step S9
The titanium blade material prepared by filling a titanium housing with MA material and hot rolling was heat-treated, and a blade-shaped body was prepared.

ステップS10
チタン刃物材で作製した刃物形状体を1100℃(チタン粉末)又は1200℃(スポンジチタン粉末)で焼結硬化処理してチタン粉末刃物材とした。
Step S10
A blade-shaped body made of a titanium blade material was sintered and hardened at 1100 ° C. (titanium powder) or 1200 ° C. (sponge titanium powder) to obtain a titanium powder blade material.

ステップS11
焼結硬化後のチタン粉末刃物材を研削して刃付けすることにより、図3に示すようなチタン刃物2とした。因みに、2aはチタン粉末刃物材、2bはチタン側板である。
Step S11
The titanium powder cutter material after sintering and hardening was ground and attached to a titanium cutter 2 as shown in FIG. Incidentally, 2a is a titanium powder blade material, and 2b is a titanium side plate.

このような製造方法で製造したチタン刃物2は、炭化ケイ素粉末の脱落もなく、従来のチタン刃物に対して格段に優れた切れ味を示した。しかも、良い切れ味を永く持続することができ、抗折強度試験でも折れ難く、曲がり難い特性が得られ、また、耐食性評価の塩水噴霧試験においても錆難い特性を示した。   The titanium blade 2 manufactured by such a manufacturing method did not drop off the silicon carbide powder, and showed a sharpness that was remarkably superior to conventional titanium blades. In addition, good sharpness can be sustained for a long time, and it is difficult to bend even in the bending strength test, and it is difficult to bend, and in the salt spray test for corrosion resistance evaluation, it is resistant to rust.

以下にチタン素材の組み合わせを変えて2種類のチタン刃物の製造を説明する。   Hereinafter, the production of two types of titanium blades will be described by changing the combination of titanium materials.

チタン刃物のチタン粉末刃物材を形成するMA材を、チタン粉末としてチタン合金粉末を使用し、硬質粉末として炭化ケイ素を使用して構成するチタン刃物の製造について説明する。   A description will be given of the manufacture of a titanium cutter that uses the MA material forming the titanium powder cutter material of the titanium cutter using titanium alloy powder as the titanium powder and silicon carbide as the hard powder.

この実施例において製造するチタン刃物は、前述した製造方法を適用して製造するものであり、チタン合金粉末(図2を参照して説明したステップS1におけるチタン合金粉末a)と炭化ケイ素粉末とを混合してMA処理したMA材(図2を参照して説明したステップS3におけるMA材a)を使用して形成したチタン粉末刃物材の両側面にチタン側板を配した構成とする。チタン合金粉末と炭化ケイ素粉末の各種組み合わせ、表6に示すように選定してチタン刃物の試料を作製した。   The titanium blade manufactured in this example is manufactured by applying the above-described manufacturing method, and includes titanium alloy powder (titanium alloy powder a in step S1 described with reference to FIG. 2) and silicon carbide powder. It is set as the structure which has arrange | positioned the titanium side plate on the both sides | surfaces of the titanium powder cutter material formed using MA material (MA material a in step S3 demonstrated with reference to FIG. 2) which mixed and MA-processed. Various combinations of titanium alloy powder and silicon carbide powder were selected as shown in Table 6 to prepare titanium blade samples.

試料No.1〜4は、チタン合金粉末に平均粒径の異なる炭化ケイ素粉末を体積比で5%混合したMA材a、試料No.5〜8は、同チタン合金粉末に平均粒径の異なる炭化ケイ素粉末を体積比で10%混合したMA材aである。   Sample No. 1 to 4 are MA materials a, sample Nos. 5 and 5 in which silicon carbide powders having different average particle diameters are mixed with titanium alloy powders at a volume ratio of 5%. 5-8 are MA materials a in which silicon carbide powders having different average particle diameters are mixed with the titanium alloy powders at a volume ratio of 10%.

Figure 2013064176
Figure 2013064176

チタン筐体を次のように作製した。この筐体は、MA材aを充填して密封して熱間圧延するために使用し、後にチタン刃物材の両側に残ってチタン側板となる部材である。このチタン筐体は、純チタン板(TP340)をTig溶接して作製した。このチタン筐体の寸法は、純チタン板の厚さは3mm、筐体の外形寸法は、厚さを26mm、幅を115mm、長さを150mmとした。   A titanium case was produced as follows. This case is a member used for filling the MA material a, sealing it, and performing hot rolling, and later remaining on both sides of the titanium blade material to become a titanium side plate. This titanium casing was produced by Tig welding a pure titanium plate (TP340). As for the dimensions of the titanium case, the thickness of the pure titanium plate was 3 mm, and the outer dimensions of the case were 26 mm in thickness, 115 mm in width, and 150 mm in length.

チタン筐体に対するMA材の充填と密封は、チタン筐体に表6に示した素材を処理したMA材をプレス機で押しながら十分に充填し、MA材を充填したチタン筐体の開口をチタン板で蓋をして電子ビーム溶接で行った。   Filling and sealing the MA material with respect to the titanium case is performed by sufficiently filling the MA material obtained by processing the materials shown in Table 6 into the titanium case while pressing it with a press machine, and opening the titanium case filled with the MA material with titanium. The cover was covered with a plate, and electron beam welding was performed.

MA材を充填したチタン筐体を加熱温度950℃で60分間加熱処理し、熱間圧延してチタン刃物材とした。   The titanium case filled with the MA material was heat-treated at a heating temperature of 950 ° C. for 60 minutes and hot-rolled to obtain a titanium blade material.

熱間圧延後のチタン刃物材は再圧延を行って厚さ2mmとした。   The titanium blade material after hot rolling was re-rolled to a thickness of 2 mm.

熱処理後のチタン刃物材を使用して刃物形状体を形成し、焼結硬化処理を行った後に研削することにより刃付けしてチタン刃物を製造した。このチタン刃物(チタン粉末刃物材)のビッカース硬度測定、抗折強度測定、組織観察、切れ味試験を行った。   A titanium blade was manufactured by forming a blade-shaped body using the titanium blade material after the heat treatment, performing a sintering hardening treatment, and then grinding the blade to produce a titanium blade. This titanium blade (titanium powder blade material) was subjected to Vickers hardness measurement, bending strength measurement, structure observation, and sharpness test.

表7は、このチタン刃物のビッカース硬度測定結果を示している。   Table 7 shows the Vickers hardness measurement results of this titanium blade.

Figure 2013064176
Figure 2013064176

この結果、市販されている包丁はビッカース硬度で350〜550であるが、この実施例での焼結後のチタン刃物のビッカース硬度(平均値)は430〜564であり、ばらつきはあるもののいずれも一般の包丁の硬度に近い値を示す。特に、試料No.1(チタン合金粉末にGC−4000Fの炭化ケイ素粉末を5%混合したMA材)、試料No.7,8(チタン合金粉末にGC−4000F又はGC−1500Fの炭化ケイ素粉末を10%混合したMA材)においては、一般家庭で使用する包丁として十分な硬さを備えている。   As a result, although the commercially available kitchen knife has a Vickers hardness of 350 to 550, the Vickers hardness (average value) of the titanium knife after sintering in this example is 430 to 564, and there are variations. The value is close to the hardness of a general knife. In particular, sample no. 1 (MA material in which 5% of GC-4000F silicon carbide powder is mixed with titanium alloy powder), sample No. 1 In 7.8 (MA material obtained by mixing 10% of silicon carbide powder of GC-4000F or GC-1500F with titanium alloy powder), it has sufficient hardness as a kitchen knife used in a general household.

また、抗折強度測定の結果を表8に示す。   Table 8 shows the results of the bending strength measurement.

Figure 2013064176
Figure 2013064176

この結果、硬質粒子SiCの5%混入系試料(No.1〜4)の方が、10%混入系試料(No.5〜8)よりも大きな値を示す傾向にあり、特にSiCの平均粒子径の小さいNo.1の試料では最大値を示し、折り曲げに強い特性を示した。   As a result, the hard particle SiC 5% mixed sample (Nos. 1 to 4) tends to have a larger value than the 10% mixed sample (Nos. 5 to 8). No. with small diameter The sample 1 showed the maximum value and exhibited a strong characteristic against bending.

なお、チタン粉末刃物材2aの両側面に配したチタン側板2bは、チタン刃物を折れ難く、曲がり難くする機能を有している。   The titanium side plates 2b disposed on both side surfaces of the titanium powder cutter material 2a have a function of making the titanium cutter difficult to bend and bend.

また、熱間圧延後のMA材(未焼結材及び焼結後の焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの写真の一例を図4〜図7に示す。観察結果より、試料No.1〜4はSiCの脱粒は認められないが、試料No.5、No.7〜No.8はいずれもSiCの脱粒が認められ、刃材として不適であることがわかる。   Moreover, an example of a photograph when the structure of the cut cross section of the MA material (unsintered material and sintered material after sintering) after hot rolling is observed using an optical microscope is shown in FIGS. From the observation results, sample No. In Nos. 1 to 4, no degranulation of SiC was observed. 5, no. 7-No. In all cases, SiC degranulation was observed, indicating that it was unsuitable as a blade.

さらに、SiCの熱拡散性を評価するためにEPMAの測定を行った。ここでは、炭素粒子の拡散性を評価するため、SiC粒子混入量が多い試料No.8を用いた。これにより、SiCの炭素CがTi合金層へ拡散し、その結果、Ti合金中に、より硬質で安定なTiCとして強固に存在していることが確認された。   Furthermore, EPMA was measured in order to evaluate the thermal diffusivity of SiC. Here, in order to evaluate the diffusibility of the carbon particles, Sample No. 8 was used. Thereby, the carbon C of SiC diffused into the Ti alloy layer, and as a result, it was confirmed that the Ti alloy was firmly present as a harder and more stable TiC.

また、切れ味評価の測定結果を表9に示す。   Table 9 shows the measurement results of the sharpness evaluation.

この測定方法は、本多式切れ味試験機(非特許文献2)にて行った。試験対刃物を固定し、7.5mm幅の新聞紙相当の紙を重ねて約750gの加重をかけながら、20mmの往復運動をさせ、1往復の1切断回数として、17回の切断操作を行い、切断された紙の枚数で評価する試験方法である。   This measuring method was performed with the Honda sharpness tester (Non-Patent Document 2). The test blade was fixed, and a paper equivalent to 7.5 mm wide newspaper was piled up and a weight of about 750 g was applied, a reciprocating motion of 20 mm was performed, and a cutting operation was performed 17 times as one cutting time per reciprocation. This is a test method for evaluating the number of cut papers.

Figure 2013064176
Figure 2013064176

測定値のバラツキが見られるが、未焼結材及び焼結材ともにSiCの粒度が大きくなると切れ味が悪くなり、SiCの混入量が多くなると切れ味が良くなる傾向を示す。焼結熱処理によって切断枚数は上昇傾向にあり、切れ味が高まる。また、簡易的に刃付けを行ったものの、試料No.1、6及び8は、いずれも本法による刃物切れ味評価基準枚数の50枚を超えた切断枚数を示す材料があることから、刃物としての使用は十分可能なレベルであることを確認した。   Although variations in the measured values are observed, both the unsintered material and the sintered material have a tendency that the sharpness is deteriorated when the grain size of SiC is increased, and the sharpness is improved when the mixed amount of SiC is increased. The number of cuts tends to increase due to the sintering heat treatment, and sharpness increases. In addition, although the blade was simply attached, the sample No. Since all of Nos. 1, 6 and 8 have materials showing the number of cut sheets exceeding the cutting edge evaluation reference number of sheets according to this method, it was confirmed that the use as a cutting tool is at a sufficiently possible level.

以上のことから、試料No.1のチタン刃物材は、バランスのとれた刃物材料特性を示す。すなわち、これは、チタン合金粉末と炭化ケイ素粉末をMA処理したMA材を使用して熱間圧延及び焼結により得られるチタン粉末刃物材であり、その両側面に配した純チタン側板によってチタン刃物を構成することが望ましいことが分かる。   In view of the above, sample no. 1 titanium blade material exhibits balanced blade material properties. In other words, this is a titanium powder blade material obtained by hot rolling and sintering using MA material obtained by MA treatment of titanium alloy powder and silicon carbide powder, and the titanium blade is cut by pure titanium side plates disposed on both sides thereof. It can be seen that it is desirable to construct

以上のことを考慮して行ったチタン刃物の製造について説明する。   The manufacture of a titanium blade performed in consideration of the above will be described.

この実施例において製造するチタン刃物は、前述の実施例1と同様にして製造するものであり、チタン粉末と硬質粉末とを混合してMA処理したMA材を使用して構成したチタン粉末刃物材の両側面にチタン側板を配した構成とする。   The titanium blade manufactured in this example is manufactured in the same manner as in Example 1 described above, and the titanium powder blade material is configured by using an MA material obtained by mixing and mixing titanium powder and hard powder. It is set as the structure which has arrange | positioned the titanium side plate on both sides | surfaces.

図2に示した製造方法におけるステップS1のチタン粉末準備において、チタン粉末bとして本実施例では安価なスポンジチタン粉末b(表2)を準備した。また、ステップS2の硬質粉末準備において、炭化ケイ素粉末(GC−4000F)を準備した。   In the preparation of the titanium powder in step S1 in the manufacturing method shown in FIG. 2, an inexpensive sponge titanium powder b (Table 2) was prepared as the titanium powder b in this example. Moreover, silicon carbide powder (GC-4000F) was prepared in the hard powder preparation of step S2.

次に、ステップS3において、チタン粉末と硬質粉末を混合してMA処理条件eでMA処理することにより、MA材bを得た。すなわち、MA材bは、スポンジチタン粉末に炭化ケイ素粉末(GC−4000F)を体積比で5%混合してMA処理した粉末である。   Next, in step S3, MA material b was obtained by mixing titanium powder and hard powder and performing MA treatment under MA treatment condition e. That is, the MA material b is a powder obtained by MA treatment by mixing 5% by volume of silicon carbide powder (GC-4000F) with sponge titanium powder.

このMA材bを充填して熱間圧延すると共に後にチタン側板となるチタン筐体を作製する素材として厚さ20mmのチタン合金板(Ti−64)を準備した(ステップS4)。   The MA material b was filled and hot rolled, and a titanium alloy plate (Ti-64) having a thickness of 20 mm was prepared as a material for producing a titanium casing to be a titanium side plate later (step S4).

そしてチタン合金板を用いた直方体のチタン筐体を作製した。その外形寸法は、厚さ60mm、幅225mm、長さ320mmとした(ステップS5)。   A rectangular titanium case using a titanium alloy plate was produced. The external dimensions were 60 mm thick, 225 mm wide, and 320 mm long (step S5).

そして、このチタン筐体にMA材bをプレス機で加圧しながら充填した(ステップS6)。   The titanium case was filled with the MA material b while being pressed with a press (step S6).

MA材bを充填した各チタン筐体を実施例1と同様に電子ビーム溶接して密封した(ステップS7)。   Each titanium case filled with the MA material b was sealed by electron beam welding in the same manner as in Example 1 (step S7).

次に、MA材を充填したチタン筐体を熱間圧延する。この熱間圧延は、加熱温度950℃、加熱時間60分で10mmの厚さまで圧延した後に更に2mmまで熱間圧延してチタン刃物材bとした(ステップS8)。   Next, the titanium case filled with the MA material is hot-rolled. In this hot rolling, a titanium blade material b was obtained by rolling to a thickness of 10 mm at a heating temperature of 950 ° C. and a heating time of 60 minutes, and further hot rolling to 2 mm (step S8).

さらに、熱処理した後に刃物形状体を作製し(ステップS9)、次いで1200℃で焼結硬化処理してチタン粉末刃物材を作製した(ステップS10)。   Further, after the heat treatment, a blade-shaped body was prepared (step S9), and then sintered and cured at 1200 ° C. to prepare a titanium powder blade material (step S10).

その後、焼結硬化後のチタン粉末刃物材を研削して刃付けすることにより、図3に示すようなチタン刃物2とした(ステップS11)。   Then, the titanium powder cutter material after sintering and hardening was ground and attached to form a titanium cutter 2 as shown in FIG. 3 (step S11).

図9〜図12は、この実施例2において熱間圧延した未焼結チタン粉末刃物材の組織及び焼結温度(1100〜1200℃)の相違による脱粒状況を示す図面代用顕微鏡写真である。   FIGS. 9 to 12 are photomicrographs in place of drawings showing the structure of the unsintered titanium powder blade material hot-rolled in Example 2 and the degranulation status depending on the sintering temperature (1100 to 1200 ° C.).

図9〜図11のチタン粉末刃物材では炭化ケイ素の脱粒が認められるが、図12の1200℃焼結温度条件では、殆ど脱粒が認められないことから、最適焼結温度を1200℃とした。また、焼結条件が表面硬度(ビッカース硬度)に及ぼす影響を調べた。   In the titanium powder blade material of FIGS. 9 to 11, silicon carbide degranulation was observed, but under the 1200 ° C. sintering temperature condition in FIG. 12, almost no degranulation was observed, so the optimum sintering temperature was set to 1200 ° C. In addition, the influence of the sintering conditions on the surface hardness (Vickers hardness) was investigated.

Figure 2013064176
Figure 2013064176

実施例1と同様に、表面硬度は、焼結硬化処理による硬度上昇傾向が認められるが、焼結前後の硬度は実施例1より低い値を示す。焼結温度1100℃以上では硬度のばらつき(焼結硬化むら)がみられるが、1100℃、1200℃では硬度の最大値が400以上の値を示しており、焼結硬化の影響が大きく実用性が高い。   As in Example 1, the surface hardness shows a tendency to increase in hardness due to the sintering hardening treatment, but the hardness before and after sintering is lower than that in Example 1. When the sintering temperature is 1100 ° C. or higher, hardness variation (sintered hardening unevenness) is observed, but at 1100 ° C. and 1200 ° C., the maximum hardness value is 400 or higher, and the effect of sintering hardening is large and practical. Is expensive.

一方、切れ味測定(実施例1と同じ方法)の結果を表11に示す。   On the other hand, Table 11 shows the results of the sharpness measurement (the same method as in Example 1).

Figure 2013064176
Figure 2013064176

切れ味測定の結果を考察すると、焼結硬化処理効果が現れており、特に1200℃焼結では基準枚数50枚より大きな値となっている。さらに、未焼結材包丁と1200℃焼結材包丁及びセラミック包丁(市販品)を比較すると、1200℃焼結材により作製した包丁は切れ味試験における切断枚数が120〜150枚と焼結材刃物の枚数の約2倍の非常に大きな値を示すが、切れ味の低下も比較的早い傾向にある。また、未焼結材により作製した包丁も同様に未焼結材刃物の約2倍の枚数を示しており、セラミック包丁(市販品)よりも優れた切れ味の包丁が得られた。   Considering the result of the sharpness measurement, the effect of the sintering hardening treatment appears, and in particular, the value is larger than the reference number of 50 sheets at 1200 ° C. sintering. Furthermore, when comparing a non-sintered material knife with a 1200 ° C sintered material knife and a ceramic knife (commercially available), a knife made with a 1200 ° C sintered material has a cutting number of 120 to 150 in a sharpness test and a sintered material knife. It shows a very large value of about twice the number of sheets, but the sharpness tends to decrease relatively quickly. Similarly, the kitchen knife made from the unsintered material showed approximately twice as many sheets as the unsintered material knife, and a sharper kitchen knife than the ceramic knife (commercially available) was obtained.

また、抗折強度測定結果を表12に示す。測定方法、条件は前述の実施例1と同様である。   Table 12 shows the bending strength measurement results. The measurement method and conditions are the same as in Example 1 described above.

Figure 2013064176
Figure 2013064176

この測定結果を考察すると、焼結硬化処理の焼結温度が高くなることにより抗折強度は低下する傾向を示すことがわかる。このため、刃物側板に高強度材のTi−64のチタン合金板を使用することにより、刃物として折れ難く、曲がり難い強度特性が得られる。   Considering this measurement result, it can be seen that the bending strength tends to decrease as the sintering temperature of the sintering hardening process increases. For this reason, the use of a Ti-64 titanium alloy plate, which is a high-strength material, as the blade side plate provides strength characteristics that make it difficult to bend and bend as a blade.

また、作製した刃物の耐食性を評価するため、JIS Z2371に準拠して塩水噴霧試験を実施した。試験機にはスガ試験機株式会社製「塩乾湿複合サイクル試験機CYP−90」を用い、塩水組成は5%NaCl水溶液(pH7、中性)、塩水噴霧温度、圧力は35±1℃、98kPaで試験時間24時間で実施した。試験結果は刃部及び側板には錆の発生は無く、全く異常はなかった。   Moreover, in order to evaluate the corrosion resistance of the produced cutter, the salt spray test was implemented based on JISZ2371. As a tester, “Salt Dry Wet Combined Cycle Tester CYP-90” manufactured by Suga Test Instruments Co., Ltd. is used. The salt water composition is 5% NaCl aqueous solution (pH 7, neutral), salt spray temperature, pressure is 35 ± 1 ° C., 98 kPa. The test time was 24 hours. As a result of the test, there was no rust on the blade and side plates, and there was no abnormality.

このようにして作製したチタン刃物2は、炭化ケイ素粉末の脱粒もなく、従来のチタン刃物に対して格段に優れた切れ味を示した。しかも、良い切れ味を永く持続することができ、抗折強度測定でもチタン合金側板が機能して折れ難く、曲がり難い特性が得られ、また、塩水噴霧試験においても錆難い特性を示した。   The titanium blade 2 produced in this way showed no sharpness of the silicon carbide powder, and showed a sharpness superior to that of the conventional titanium blade. Moreover, a good sharpness can be maintained for a long time, and the titanium alloy side plate functions and does not break easily even in the bending strength measurement, and it is difficult to bend. In the salt spray test, it is also resistant to rust.

1…チタン筐体、2…チタン刃物、2a…チタン粉末刃物材、2b…チタン側板。   DESCRIPTION OF SYMBOLS 1 ... Titanium housing | casing, 2 ... Titanium cutter, 2a ... Titanium powder cutter material, 2b ... Titanium side plate.

この結果、市販されている包丁はビッカース硬度で350〜550であるが、この実施例での焼結後のチタン刃物のビッカース硬度(平均値)は430〜564であり、ばらつきはあるもののいずれも一般の包丁の硬度に近い値を示す。特に、試料No.1(チタン合金粉末にGC−4000Fの炭化ケイ素粉末を5%混合したMA材)、試料No.5,6(チタン合金粉末にGC−4000F又はGC−1500Fの炭化ケイ素粉末を10%混合したMA材)においては、一般家庭で使用する包丁として十分な硬さを備えている。 As a result, although the commercially available kitchen knife has a Vickers hardness of 350 to 550, the Vickers hardness (average value) of the titanium knife after sintering in this example is 430 to 564, and there are variations. The value is close to the hardness of a general knife. In particular, sample no. 1 (MA material in which 5% of GC-4000F silicon carbide powder is mixed with titanium alloy powder), sample No. 1 5,6 (MA material obtained by mixing 10% of silicon carbide powder of GC-4000F or GC-1500F with titanium alloy powder) has sufficient hardness as a kitchen knife used in a general household.

Figure 2013064176
Figure 2013064176

また、熱間圧延後のMA材(未焼結材及び焼結後の焼結材)の切断断面を光学顕微鏡を使用して組織観察したときの写真の一例を図4〜図7に示す。観察結果より、試料No.1〜4はSiCの脱粒は認められないが、試料No.5〜No.8はいずれもSiCの脱粒が認められ、刃材として不適であることがわかる。 Moreover, an example of a photograph when the structure of the cut cross section of the MA material (unsintered material and sintered material after sintering) after hot rolling is observed using an optical microscope is shown in FIGS. From the observation results, sample No. In Nos. 1 to 4, no degranulation of SiC was observed . 5-No. In all cases, SiC degranulation was observed, indicating that it was unsuitable as a blade.

この測定方法は、本多式切れ味試験機(非特許文献2)にて行った。試験刃物を固定し、7.5mm幅の新聞紙相当の紙を重ねて約750gの加重をかけながら、20mmの往復運動をさせ、1往復の1切断回数として、17回の切断操作を行い、切断された紙の枚数で評価する試験方法である。 This measuring method was performed with the Honda sharpness tester (Non-Patent Document 2). While fixing the test body blade, applying a weight of about 750 g with a 7.5 mm width newspaper equivalent paper, reciprocating 20 mm, and performing 17 cutting operations as one round trip, This is a test method for evaluating the number of cut papers.

Claims (22)

チタン粉末と炭化ケイ素粉末とを混合してMA処理(機械的合金化処理)したMA材を、チタン板で形成した筐体に充填して密封し、これを熱間圧延してチタン刃物材とし、
このチタン刃物材を使用して刃物形状体を形成し、この刃物形状体を構成するチタン粉末刃物材を焼結した後に研削して刃付けすることにより、前記MA材によって構成されるチタン粉末刃物材の両側面には前記チタン板によるチタン側板が配された構成とするチタン刃物の製造方法。
MA material (mechanical alloying treatment) mixed with titanium powder and silicon carbide powder is filled and sealed in a casing formed of a titanium plate, and this is hot-rolled to form a titanium blade material. ,
Titanium powder cutter composed of the MA material is formed by using this titanium cutter material to form a cutter-shaped body, and then sintering and grinding the titanium powder cutter material constituting the cutter-shaped body. A method for manufacturing a titanium blade, wherein a titanium side plate made of the titanium plate is disposed on both side surfaces of a material.
請求項1において、前記炭化ケイ素粉末は、平均粒径2.5μm〜14μmのものを体積比で5%又は10%混合することを特徴とするチタン刃物の製造方法。   2. The method for producing a titanium blade according to claim 1, wherein the silicon carbide powder has a mean particle size of 2.5 μm to 14 μm mixed at a volume ratio of 5% or 10%. 請求項1又は2において、前記MA処理は、ポットミルを使用して実行することを特徴とするチタン刃物の製造方法。   3. The method for manufacturing a titanium blade according to claim 1, wherein the MA treatment is performed using a pot mill. 請求項1〜3の1項において、刃物の側板となる前記チタン筐体には、純チタン板又はチタン合金板を使用することを特徴とするチタン刃物の製造方法。   The titanium cutter manufacturing method according to claim 1, wherein a pure titanium plate or a titanium alloy plate is used for the titanium casing serving as a side plate of the cutter. 請求項1〜4の1項において、前記焼結の温度は、1100℃又は1200℃とすることを特徴とするチタン刃物の製造方法。   5. The method for manufacturing a titanium blade according to claim 1, wherein the sintering temperature is 1100 ° C. or 1200 ° C. 5. 請求項1〜5の1項において、前記チタン粉末は、チタン合金粉末又はスポンジチタン粉末であることを特徴とするチタン刃物の製造方法。   6. The method of manufacturing a titanium blade according to claim 1, wherein the titanium powder is a titanium alloy powder or a sponge titanium powder. チタン粉末と炭化ケイ素粉末とを混合してMA処理(機械的合金化処理)したMA材を焼結したチタン粉末刃物材と、このチタン粉末刃物材の両側面に配されたチタン側板を備えたことを特徴とするチタン刃物。   Titanium powder cutter material obtained by sintering MA material (mechanical alloying treatment) mixed with titanium powder and silicon carbide powder, and titanium side plates disposed on both sides of the titanium powder cutter material Titanium blade characterized by that. 請求項7において、前記炭化ケイ素粉末は、平均粒径2.5μm〜14μmのものを体積比で5%又は10%混合したものであることを特徴とするチタン刃物。   8. The titanium blade according to claim 7, wherein the silicon carbide powder is obtained by mixing 5% or 10% by volume of particles having an average particle diameter of 2.5 μm to 14 μm. 請求項7又は8において、前記MA材は、ポットミルを使用して実行したものであることを特徴とするチタン刃物。   9. The titanium blade according to claim 7, wherein the MA material is executed using a pot mill. 請求項7〜9の1項において、チタン側板は、純チタン板又はチタン合金板であることを特徴とするチタン刃物。   10. The titanium blade according to claim 7, wherein the titanium side plate is a pure titanium plate or a titanium alloy plate. 請求項7〜10の1項において、前記チタン粉末刃物材は、1100℃又は1200℃で焼結されたものであることを特徴とするチタン刃物。   11. The titanium blade according to claim 7, wherein the titanium powder blade material is sintered at 1100 ° C. or 1200 ° C. 11. 請求項7〜10の1項において、前記チタン粉末は、チタン合金粉末又はスポンジチタン粉末であることを特徴とするチタン刃物。   The titanium blade according to claim 7, wherein the titanium powder is a titanium alloy powder or a sponge titanium powder. チタン粉末と炭化ケイ素粉末とを混合してMA処理(機械的合金化処理)したMA材を、チタン板で形成した筐体に充填して密封し、
これを熱間圧延してチタン刃物材とすることを特徴とするチタン刃物材の製造方法。
MA material mixed with titanium powder and silicon carbide powder and subjected to MA treatment (mechanical alloying treatment) is filled and sealed in a case formed of a titanium plate,
A method for producing a titanium blade material, which is hot-rolled into a titanium blade material.
請求項12において、前記炭化ケイ素粉末は、平均粒径2.5μm〜14μmのものを体積比で5%又は10%混合することを特徴とするチタン刃物材の製造方法。   13. The method for producing a titanium blade material according to claim 12, wherein the silicon carbide powder has a mean particle size of 2.5 μm to 14 μm mixed in a volume ratio of 5% or 10%. 請求項13又は14において、前記MA処理は、ポットミルを使用して実行することを特徴とするチタン刃物材の製造方法。   The method of manufacturing a titanium blade material according to claim 13 or 14, wherein the MA treatment is performed using a pot mill. 請求項13〜15の1項において、刃物の側板となる前記チタン筐体には、純チタン板又はチタン合金板を使用することを特徴とするチタン刃物材の製造方法。   16. The method for manufacturing a titanium cutter material according to claim 13, wherein a pure titanium plate or a titanium alloy plate is used for the titanium case serving as a side plate of the cutter. 請求項13〜16の1項において、前記チタン粉末は、チタン合金粉末又はスポンジチタン粉末であることを特徴とするチタン刃物材の製造方法。   The method of manufacturing a titanium blade material according to claim 13, wherein the titanium powder is a titanium alloy powder or a sponge titanium powder. チタン板の筐体に充填して熱間圧延されたチタン粉末と炭化ケイ素粉末のMA材を備えたことを特徴とするチタン刃物材。   A titanium cutter material comprising a titanium powder and silicon carbide powder MA material filled in a titanium plate casing and hot-rolled. 請求項18において、前記炭化ケイ素粉末は、平均粒径2.5μmm〜14μmのものを体積比で5%又は10%混合したものであることを特徴とするチタン刃物材。   19. The titanium blade material according to claim 18, wherein the silicon carbide powder is a mixture of 5% or 10% by volume of particles having an average particle diameter of 2.5 μm to 14 μm. 請求項18又は19において、前記MA材は、ポットミルを使用して実行したものであることを特徴とするチタン刃物材。   The titanium cutter material according to claim 18 or 19, wherein the MA material is executed using a pot mill. 請求項18〜20の1項において、チタン側板は、純チタン板又はチタン合金板であることを特徴とするチタン刃物材。   21. The titanium blade material according to claim 18, wherein the titanium side plate is a pure titanium plate or a titanium alloy plate. 請求項18〜21の1項において、前記チタン粉末は、チタン合金粉末又はスポンジチタン粉末であることを特徴とするチタン刃物材。   The titanium blade material according to claim 18, wherein the titanium powder is a titanium alloy powder or a sponge titanium powder.
JP2011203101A 2011-09-16 2011-09-16 Titanium blade material, titanium blade and method for manufacturing the same Active JP5858398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203101A JP5858398B2 (en) 2011-09-16 2011-09-16 Titanium blade material, titanium blade and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203101A JP5858398B2 (en) 2011-09-16 2011-09-16 Titanium blade material, titanium blade and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013064176A true JP2013064176A (en) 2013-04-11
JP5858398B2 JP5858398B2 (en) 2016-02-10

Family

ID=48187929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203101A Active JP5858398B2 (en) 2011-09-16 2011-09-16 Titanium blade material, titanium blade and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5858398B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042742A (en) * 1990-04-19 1992-01-07 Fuso Off Service:Kk Composite titanium alloy, multilayered titanium material, titanium cutter and their manufacture
JPH04103733A (en) * 1990-08-22 1992-04-06 Suzuki Motor Corp Manufacture of particle reinforced ti-al intermetallic compound
JPH05271717A (en) * 1992-03-24 1993-10-19 Kobe Steel Ltd Production of high-toughness and wear resistance clad thin sheet
JP2002000971A (en) * 2000-06-21 2002-01-08 Takefu Tokushu Kozai Kk Pure titanium/titanium alloy clad cutter and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042742A (en) * 1990-04-19 1992-01-07 Fuso Off Service:Kk Composite titanium alloy, multilayered titanium material, titanium cutter and their manufacture
JPH04103733A (en) * 1990-08-22 1992-04-06 Suzuki Motor Corp Manufacture of particle reinforced ti-al intermetallic compound
JPH05271717A (en) * 1992-03-24 1993-10-19 Kobe Steel Ltd Production of high-toughness and wear resistance clad thin sheet
JP2002000971A (en) * 2000-06-21 2002-01-08 Takefu Tokushu Kozai Kk Pure titanium/titanium alloy clad cutter and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104778A (en) * 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor

Also Published As

Publication number Publication date
JP5858398B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
CN105671404B (en) A kind of TiZrHfNb base high-entropy alloys of the common alloying of nitrogen oxygen and preparation method thereof
CN107000068B (en) The excellent surface-coated cutting tool of chipping resistance, wearability
JP5539707B2 (en) Rotating cutter knife
US9522850B2 (en) Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
US20090241352A1 (en) Blade using ultra-hard microscopic particles
WO2016208646A1 (en) Cutter
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
US20210355567A1 (en) Corrosion and fatigue resistant cemented carbide process line tool
JP2018104778A (en) Sintered cutter material and manufacturing method therefor
JP5858398B2 (en) Titanium blade material, titanium blade and method for manufacturing the same
JP6740862B2 (en) Tools for hard materials and friction stir welding
JP6390151B2 (en) Composite sintered body
JP5971616B2 (en) Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool
JP3641794B2 (en) Diamond blade
JP6931202B2 (en) Titanium Nitride Powder and Titanium Nitride Powder Manufacturing Method
US11891682B2 (en) Iron-based sintered alloy and method for producing the same
JP2014062314A (en) Hard material, method for manufacturing hard material, cutting tool, and frictional agitation joining tool
Szutkowska et al. Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide
JP2006175456A (en) Composite rolling roll made of cemented carbide
US6892490B2 (en) Fishing hook
RU2643752C1 (en) Cermet tool
JP5995093B2 (en) Composite material of WC-based cemented carbide member and steel member, and rotating shaft object cutting tool made of this composite material
TW202225126A (en) Diamond sintered body, and tool comprising diamond sintered body
RU2531332C2 (en) Tungsten carbide-based hard alloy (versions)
CN105525345B (en) Polycrystalline diamond synthesizing superhard material and its production technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5858398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250