JP2013063933A - Human neuraminidase inhibitor or chemical chaperone composition - Google Patents

Human neuraminidase inhibitor or chemical chaperone composition Download PDF

Info

Publication number
JP2013063933A
JP2013063933A JP2011204020A JP2011204020A JP2013063933A JP 2013063933 A JP2013063933 A JP 2013063933A JP 2011204020 A JP2011204020 A JP 2011204020A JP 2011204020 A JP2011204020 A JP 2011204020A JP 2013063933 A JP2013063933 A JP 2013063933A
Authority
JP
Japan
Prior art keywords
hneu2
group
residue
compound
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011204020A
Other languages
Japanese (ja)
Inventor
Koji Matsuoka
浩司 松岡
Kaori Suzuki
香織 鈴木
Koji Ito
孝司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2011204020A priority Critical patent/JP2013063933A/en
Publication of JP2013063933A publication Critical patent/JP2013063933A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hNEU2 inhibitor or a composition showing a chemical chaperone effect on hNEU2.SOLUTION: The human neuraminidase (hNEU2) inhibitor includes: a thiosialooligosaccharide binding dendrimer compound represented by formula (I), a pharmaceutically acceptable salt thereof, or a hydrate of them, and a pharmaceutically acceptable carrier. In the formula: Eand Eare any one of carbon, silicon, and germanium and may be same or different mutually; Rand Rare same of different hydrocarbon groups; R, Rand Rare same or different hydrocarbon chains which may include oxygen, nitrogen and/or a carbonyl group; Ys are thiosialooligosaccharide residue or other substituents and at least one of Ys is a thiosialooligosaccharide residue; l is an integer of 0-2; m is an integer of 0-2; and k is a number of 0 or 1, and 3-m is 1 when k is 0.

Description

本発明は、チオシアロオリゴ糖結合デンドリマー化合物からなるヒトノイラミニダーゼ阻害剤、又は、ヒトノイラミニダーゼのケミカルシャペロン効果を有する組成物に関する。   The present invention relates to a human neuraminidase inhibitor comprising a thiosialogooligosaccharide-linked dendrimer compound, or a composition having a chemical chaperone effect of human neuraminidase.

デンドリマーとは、ギリシャ語の「dendra」(樹木)を語源とする規則正しく分岐した樹状高分子化合物の総称である。デンドリマーによる球状のナノメートルスケールの空間は、様々な官能基を組み込むことで比較的自由にデザイン可能であることから、ナノテクノロジーの分野において、新規デンドリマーのデザインが現在盛んに行われている。
特に、近年、生体機能分野におけるデンドリマーの利用が著しく、生体系における外部刺激に応答するデンドリマー、DDS(薬物送達システム)に利用可能なデンドリマー、分子センサーとして機能し得るデンドリマーなど、多面的にその有効性を生かすべく研究が進んでいる。
Dendrimer is a general term for dendritic polymer compounds that are regularly branched from the Greek word “dendra” (tree). Since a spherical nanometer-scale space by dendrimers can be designed relatively freely by incorporating various functional groups, new dendrimers are being actively designed in the field of nanotechnology.
In particular, in recent years, the use of dendrimers in the field of biological functions has been remarkable, such as dendrimers that respond to external stimuli in biological systems, dendrimers that can be used for DDS (drug delivery systems), dendrimers that can function as molecular sensors, etc. Research is progressing to make use of sex.

例えば、これまでにも、細菌やウィルスなどの感染による生体に対する外部環境からの干渉に対する有効な防御ツールとしてデンドリマーの利用が考慮されている。
細菌の感染に関しては、腸管出血性大腸菌O−157が産生するベロ毒素による生体への攻撃を有効に防御し得るデンドリマーの開発などが行われている。腸管出血性大腸菌O−157が産生するベロ毒素は、赤痢菌由来のシガ毒素と類似した細菌毒素のAB5ファミリーに属するタンパク質である。これらの毒素は、腎臓細胞上のグロボトリオシルセラミド(Gb3、Galα1−4Galβ1−4Glcβ1−Cer)中のグロボ3糖部分を認識し、接着することにより細胞内に取込まれ毒性を示すことが報告されている。
また、本発明者らは、各種糖鎖含有カルボシランデンドリマー化合物に関する知見に基づいて(非特許文献1参照)、インフルエンザウィルス等のウィルス表面に存在するノイラミニダーゼ(シアリダーゼ)活性を阻害するチオシアロシド型オリゴ糖を含むデンドリマーを製造し、その効果を報告している(特許文献1、特許文献2)。
このように、インフルエンザウィルスなどに存在するノイラミニダーゼと糖鎖との関連性については、感染症の防御方法の開発の進展と共に、その研究も進められ、多くの知見が明らかにされているところである。
For example, the use of dendrimers has been considered so far as an effective defense tool against interference from the external environment on living bodies caused by infection with bacteria and viruses.
With regard to bacterial infections, development of dendrimers that can effectively prevent attack on the living body by verotoxin produced by enterohemorrhagic Escherichia coli O-157 has been carried out. Verotoxin produced by enterohemorrhagic E. coli O-157 is a protein belonging to the AB5 family of bacterial toxins similar to Shiga toxin derived from Shigella. These toxins have been reported to be toxic by recognizing and adhering to the globotrisaccharide moiety in globotriosylceramide (Gb3, Galα1-4Galβ1-4Glcβ1-Cer) on kidney cells. Has been.
Further, the present inventors based on the knowledge about various sugar chain-containing carbosilane dendrimer compounds (see Non-Patent Document 1), a thiasialoside oligosaccharide that inhibits neuraminidase (sialidase) activity present on the surface of viruses such as influenza virus. Have been reported and their effects have been reported (Patent Document 1, Patent Document 2).
Thus, with regard to the relationship between neuraminidase and sugar chains present in influenza viruses and the like, research has been advanced along with the development of infectious disease protection methods, and many findings are being revealed.

ところで、ノイラミニダーゼは、ヒトなどの哺乳類の細胞内にも存在しており、重要な役割を担っている。ヒトノイラミニダーゼ(hNEU)は、エキソ−α−シアリダーゼとも称され、糖タンパク質、糖脂質、ガングリオシドなどに結合している非還元シアル酸鎖を加水分解することにより、分子輸送、抗原マスキング、増殖、分化及び膜機能などの調節、維持などに関与している。哺乳類のノイラミニダーゼは、その細胞内における局在性、pH至適性及び基質特異性に基づいて、リソゾーム由来(NEU1)、細胞質由来(NEU2)、細胞膜由来(NEU3)及びミトコンドリア/リソゾーム由来(NEU4)に分類される。
ヒトノイラミニダーゼが、その機能異常により正常に働かなくなると、糖脂質や糖タンパク質に結合しているN−アセチルノイラミン酸(NeuAc)が切除されずに残存し、NeuAcが付加されたままの糖質又は糖タンパク質の蓄積が生じて様々な疾患の原因となる。例えば、リソゾームにおいて機能するhNEUに機能異常が生じると、いわゆる「リソゾーム病」と称される重篤な症状を示す先天代謝異常症を発症することがある。hNEUが関係する疾患のうち、例えば、リソゾーム病の治療においては、現在のところ酵素補充法などが有効な治療法として行われているが、中枢神経性の疾患等においては、末梢血管内に投与された酵素は血液脳関門を通過することができないため、脳内の障害部位まで到達することができず、有効な治療効果を得ることができない。そのため、hNEUの異常に起因する疾患のうち、特に、中枢神経系の疾患においては、酵素補充法以外に有効な治療法の確立が必要とされている。
By the way, neuraminidase exists also in mammalian cells such as humans and plays an important role. Human neuraminidase (hNEU), also called exo-α-sialidase, hydrolyzes non-reducing sialic acid chains bound to glycoproteins, glycolipids, gangliosides, etc., thereby transporting molecules, antigen masking, proliferation and differentiation. It is involved in the regulation and maintenance of membrane function. Mammalian neuraminidase is derived from lysosome (NEU1), cytoplasm (NEU2), cell membrane (NEU3) and mitochondrial / lysosome (NEU4) based on its intracellular localization, pH optimum and substrate specificity. being classified.
When human neuraminidase does not function normally due to its functional abnormality, N-acetylneuraminic acid (NeuAc) bound to glycolipid or glycoprotein remains without being excised, and the carbohydrate with NeuAc added. Or accumulation of glycoprotein occurs and causes various diseases. For example, when a dysfunction occurs in hNEU that functions in lysosomes, an inborn error of metabolism that shows a serious symptom called “lysosomal disease” may occur. Among the diseases related to hNEU, for example, in the treatment of lysosomal disease, an enzyme replacement method or the like is currently used as an effective treatment method. Since the produced enzyme cannot cross the blood-brain barrier, it cannot reach the damaged site in the brain, and an effective therapeutic effect cannot be obtained. Therefore, among diseases caused by abnormalities in hNEU, particularly in diseases of the central nervous system, it is necessary to establish an effective treatment method other than the enzyme replacement method.

特開2004−107230JP 2004-107230 A 特開2009−242387JP2009-242387

Matsuokaら,Bull.Chem.Soc.Jpn.,71:2709-2713 1998Matsuoka et al., Bull. Chem. Soc. Jpn. 71: 2709-2713 1998

hNEU関連疾患の治療法として、酵素補充法以外にケミカルシャペロン法は、中枢性の疾患においても効果を示す事が期待されている。ケミカルシャペロンとは、酵素の活性中心に入ることにより、酵素の構造を安定化するもので、例えば、酵素阻害剤の中には、低濃度においてケミカルシャペロンとして機能するものが存在する。
そこで、本発明は、hNEUのうち、hNEU2に対する阻害剤の提供を目的とする。
さらに、本発明は、hNEU2に対するケミカルシャペロンとしての効果を示す組成物の提供を目的とする。
また、本発明は、hNEU2の機能異常に起因する疾患の治療剤の提供を目的とする。
As a method for treating hNEU-related diseases, the chemical chaperone method is expected to be effective even in central diseases in addition to the enzyme replacement method. A chemical chaperone stabilizes the structure of an enzyme by entering the active center of the enzyme. For example, some enzyme inhibitors function as a chemical chaperone at a low concentration.
Then, this invention aims at provision of the inhibitor with respect to hNEU2 among hNEU.
Furthermore, this invention aims at provision of the composition which shows the effect as a chemical chaperone with respect to hNEU2.
Another object of the present invention is to provide a therapeutic agent for diseases caused by dysfunction of hNEU2.

本発明者らは、上記事情に鑑み、hNEU2に対する阻害活性を有し、ケミカルシャペロンとしても機能する物質の探索を行ったところ、チオグリコシド結合型シアル酸オリゴ糖を結合させたデンドリマーがhNEU2活性を阻害し、かつ、ケミカルシャペロンとしても機能することを見出し、本発明を完成させた。
発明者らは、すでに、チオグリコシド結合型シアル酸オリゴ糖を結合させたデンドリマーのうち、インフルエンザウィルスのノイラミニダーゼ活性を有効に阻害し得る化合物を見出しているが(特許文献2)、今回、該化合物がhNEU2にも阻害効果を示し、かつ、ケミカルシャペロンとして機能することを見出した。
In view of the above circumstances, the present inventors searched for a substance having an inhibitory activity against hNEU2 and also functioning as a chemical chaperone. As a result, a dendrimer bound with a thioglycoside-linked sialic acid oligosaccharide exhibits hNEU2 activity. The present invention was completed by finding that it inhibits and also functions as a chemical chaperone.
The inventors have already found a compound capable of effectively inhibiting neuraminidase activity of influenza virus among dendrimers conjugated with a thioglycoside-linked sialic acid oligosaccharide (Patent Document 2). Was found to have an inhibitory effect on hNEU2 and function as a chemical chaperone.

すなわち、本発明は、次式(I)

(式中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよく、R、Rは、同一又は異なった炭化水素基を示し、R、R及びRは酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭化水素鎖を示し、Yはチオシアロオリゴ糖残基若しくは他の置換基であって少なくとも1つはチオシアロオリゴ糖残基を示し、lは0〜2の整数であり、mは0〜2の整数であり、kは0又は1の数を示し、kが0のときは3−mは1である)で表されるチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物、及び薬理学上許容される担体を含む、ヒトノイラミニダーゼ2(hNEU2)の阻害剤である。
That is, the present invention provides the following formula (I)

(Wherein E 1 and E 2 are any of carbon, silicon and germanium, and may be the same or different from each other, R 1 and R 2 represent the same or different hydrocarbon groups, and R 3 , R 4 and R 5 represent the same or different hydrocarbon chains that may contain oxygen, nitrogen and / or carbonyl groups, Y is a thiosialogooligosaccharide residue or other substituent, at least one of which is a thiosialogooligosaccharide residue And 1 is an integer of 0 to 2, m is an integer of 0 to 2, k is a number of 0 or 1, and 3-k is 1 when k is 0). An inhibitor of human neuraminidase 2 (hNEU2), comprising a thiosialogooligosaccharide-bonded dendrimer compound or a pharmacologically acceptable salt thereof or a hydrate thereof, and a pharmacologically acceptable carrier.

あるいは、上記式(I)(式中の説明は上述と同じ)で表されるチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物、及び薬理学上許容される担体を含む、hNEU2に対するケミカルシャペロンとして効果を示す組成物若しくは医薬組成物である。   Alternatively, the thialoolo-oligosaccharide-bound dendrimer compound represented by the above formula (I) (the description in the formula is the same as described above) or a pharmacologically acceptable salt thereof or a hydrate thereof, and a pharmacologically acceptable carrier It is a composition or pharmaceutical composition which shows an effect as a chemical chaperone with respect to hNEU2.

本発明は、hNEU2の活性を有効に阻害する阻害剤を提供する。   The present invention provides an inhibitor that effectively inhibits the activity of hNEU2.

本発明は、hNEU2のケミカルシャペロンとして効果を示す組成物又は医薬組成物を提供する。特に、本発明のケミカルシャペロン組成物又は医薬組成物に含まれる式(I)の化合物は、Yがチオグリコシド結合で構成されているため、hNEU2により消化されにくくなっており、そのため、ケミカルシャペロンとしての効果を十分に発揮することが可能である。   The present invention provides a composition or pharmaceutical composition that exhibits an effect as a chemical chaperone of hNEU2. In particular, the compound of formula (I) contained in the chemical chaperone composition or pharmaceutical composition of the present invention is difficult to digest by hNEU2 because Y is composed of a thioglycoside bond. It is possible to fully exhibit the effect of.

本発明のデンドリマー化合物のケミカルシャペロンとしての効果を示す結果である。(1)は、凍結保存していたhNEU2を解凍した直後に活性を測定した。また、(2)は、デンドリマー化合物を添加せずに他のサンプルと同様の処理を行った。It is a result which shows the effect as a chemical chaperone of the dendrimer compound of this invention. In (1), the activity was measured immediately after thawing hNEU2 which had been cryopreserved. Moreover, (2) performed the same process as another sample, without adding a dendrimer compound. hNEU2と各種デンドリマー化合物を混合して、処理を行った後、Native−PAGEを行った結果を示す。The result of performing Native-PAGE after mixing by processing hNEU2 and various dendrimer compounds is shown.

本発明のhNEU2阻害剤又はケミカルシャペロン組成物に含まれる式(I)の化合物において、式(I)中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよいが、炭素又はケイ素が好ましく、ケイ素が最も好ましい。
及びRは、同一又は異なった炭化水素基を示すが、炭素数3〜6のアルキル基、フェニル基、ビニル基、及びアリル基のいずれかが好ましく、このうち炭素数3〜4のアルキル基又はフェニル基がより好ましい。
、R及びRは、酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭化水素基を示すが、炭素数3〜12のアルキル基、アルキレン基、アルケニレン基及びアルコキシレン基(オキシアルキレン基)のいずれかが好ましく、このうち炭素数3〜6のアルキレン基がより好ましい。
In the compound of the formula (I) contained in the hNEU2 inhibitor or chemical chaperone composition of the present invention, in the formula (I), E 1 and E 2 are any of carbon, silicon and germanium and are the same or different from each other Although carbon or silicon is preferred, silicon is most preferred.
R 1 and R 2 represent the same or different hydrocarbon groups, but any of an alkyl group having 3 to 6 carbon atoms, a phenyl group, a vinyl group, and an allyl group is preferable, and among them, the carbon number is 3 to 4 An alkyl group or a phenyl group is more preferable.
R 3 , R 4 and R 5 represent the same or different hydrocarbon group which may contain oxygen, nitrogen and / or carbonyl group, but an alkyl group, alkylene group, alkenylene group and alkoxylene having 3 to 12 carbon atoms. Any of the groups (oxyalkylene groups) is preferable, and among these, an alkylene group having 3 to 6 carbon atoms is more preferable.

Yの少なくとも1つは、非還元末端にチオグリコシド型のシアル酸を有する1糖〜3糖を示す。シアル酸としては、NeuAc(N−アセチルノイラミン酸:N−acetylneuraminic acid、Neu5Ac)又は、NeuGc(N−グリコリルノイラミン酸:N−glycolylneuraminic acid、Neu5Gc)が利用可能であるが、NeuAc(N−アセチルノイラミン酸)残基が好ましい。また、シアル酸に結合する糖としては、1〜3糖が好ましく、当業者において周知の糖であれば如何なるものであっても使用することができ、限定はしないが、例えば、ガラクトース、グルコース、ラクトース、セロビオースなどが好適に使用可能である。Yとデンドリマー骨格との結合は、グリコシド結合又はチオグリコシド結合であり、特に、チオグリコシド結合が好ましい。従って、Yは、例えば、以下の置換基となる。

また、本発明の阻害剤又は組成物に含まれるデンドリマーにおいては、1分子中の全てのYの位置が上記置換基のいずれかであることが望ましいが、必ずしも、全てのYが上記置換基である必要はなく、例えば、水素、C=C二重結合、水酸基などであってもよく、当該技術分野における通常の合成方法により、チオシアロオリゴ糖以外にYの位置に結合し得ると当業者によって予測され得る置換基の如何なるものであってもよい。
At least one of Y represents a monosaccharide to a trisaccharide having a thioglycoside type sialic acid at a non-reducing end. As sialic acid, NeuAc (N-acetylneuraminic acid: Neu5Ac) or NeuGc (N-glycolylneuraminic acid: Neu5Gc) can be used, but NeuAc (NeuAcN -Acetylneuraminic acid) residue is preferred. Moreover, as sugars couple | bonded with sialic acid, 1-3 sugars are preferable, and what kind of sugar is well-known to those skilled in the art can be used, but it is not limited, For example, galactose, glucose, Lactose, cellobiose and the like can be suitably used. The bond between Y and the dendrimer skeleton is a glycosidic bond or a thioglycoside bond, and a thioglycoside bond is particularly preferable. Therefore, Y becomes the following substituents, for example.

In addition, in the dendrimer contained in the inhibitor or composition of the present invention, it is desirable that all the Y positions in one molecule are any of the above-mentioned substituents. For example, hydrogen, C═C double bond, hydroxyl group and the like may be used, and it is predicted by a person skilled in the art that, in addition to thiosialo-oligosaccharide, it can be bonded to the Y position by a usual synthesis method in the art. Any of the substituents that can be made.

式(I)のチオシアロオリゴ糖結合デンドリマー化合物の構造は、k、l、mの組み合わせに応じて種々の構造を取り得るが代表的な化学式は下記のようになる。

(式Ia、Ib、Ic及びId中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよく、Rは、炭化水素基を示し、R、R及びRは酸素又は窒素あるいはカルボニル基を含んでもよい同一又は異なった炭化水素鎖を示し、Yはチオシアロオリゴ糖残基若しくは他の置換基であって少なくとも1つはチオシアロオリゴ糖残基を示す)
The structure of the thiosialogooligosaccharide-bonded dendrimer compound of formula (I) can take various structures depending on the combination of k, l, and m, but typical chemical formulas are as follows.

(In Formulas Ia, Ib, Ic and Id, E 1 and E 2 are any of carbon, silicon and germanium, and may be the same or different from each other, R 1 represents a hydrocarbon group, and R 3 , R 4 and R 5 represent the same or different hydrocarbon chain which may contain oxygen or nitrogen or a carbonyl group, Y is a thiosialogooligosaccharide residue or other substituent and at least one is a thiosialogooligosaccharide residue Show)

本発明の式(I)の化合物は、例えば、次の反応式に従って製造することができる。

(上記式中、Xはハロゲン原子、Xは反応脱離性の保護基を示し、Yは、チオシアロオリゴ糖である)
式(IV)の化合物は、式(III)で表されるハロゲン化デンドリマーと式(IV)で表されるスルフィド化合物とを反応させ、必要に応じて、スルフィド化合物中のチオシアロオリゴ糖残基の保護基を脱離させることにより本発明の式(I)の化合物を製造できる。
The compound of the formula (I) of the present invention can be produced, for example, according to the following reaction formula.

(In the above formula, X 1 represents a halogen atom, X 2 represents a reaction-eliminating protecting group, and Y is a thiosialo-oligosaccharide)
The compound of the formula (IV) reacts the halogenated dendrimer represented by the formula (III) with the sulfide compound represented by the formula (IV), and optionally protects the thiosialo-oligosaccharide residue in the sulfide compound. By removing the group, the compound of formula (I) of the present invention can be produced.

式(I)の化合物の製造方法の例として、化合物(36)の製造方法を後述の実施例中に示す。他のチオシアロオリゴ糖のチオアセテート誘導体を製造する場合にも、同様な方法により製造することができる。
また、ハロゲン化デンドリマーは、例えば、次のようにして製造することができる。
Fan(0)3−Brを例にすると、既知化合物のトリオール(トリス(3−ヒドロキシプロピル)フェニルシラン)に脱離基としてメシル基を導入し、臭素アニオンによる求核置換反応を行うことで調製できる(この反応については、例えば、Matsuokaら,Biomacromolecules 7,pp.2274−2283,2006、などを参照のこと)。また、他の構造を持つハロゲン化デンドリマーについても同様に製造することができる。
式(III)の化合物と式(IV)の化合物の反応は、例えばナトリウムメトキシド等の塩基の存在下で行うことができる。また、Yの保護基の脱離は例えばナトリウムメトキシド等の塩基を用いた加水分解により行うことができる。
As an example of the method for producing the compound of formula (I), the method for producing the compound (36) is shown in the Examples described later. In the case of producing thioacetate derivatives of other thiosialogooligosaccharides, they can be produced by the same method.
The halogenated dendrimer can be produced, for example, as follows.
Taking Fan (0) 3-Br as an example, it is prepared by introducing a mesyl group as a leaving group into a known compound triol (tris (3-hydroxypropyl) phenylsilane) and performing a nucleophilic substitution reaction with a bromine anion. (See, for example, Matsuoka et al., Biomacromolecules 7, pp. 2274-2283, 2006, etc. for this reaction). Moreover, it can manufacture similarly about the halogenated dendrimer which has another structure.
The reaction of the compound of formula (III) and the compound of formula (IV) can be carried out in the presence of a base such as sodium methoxide. The removal of the protecting group for Y can be carried out by hydrolysis using a base such as sodium methoxide.

得られた本発明の式(I)の化合物は、洗浄、各種クロマトグラフィー、ゲル濾過等により精製することができる。   The obtained compound of the formula (I) of the present invention can be purified by washing, various chromatography, gel filtration and the like.

また、本発明におけるhNEU2は、一般に、「ヒトノイラミニダーゼ2」と称される酵素のことであり、天然のhNEU2のみならず、変異等により活性が低下したhNEU2であってもよい。hNEU2とは、例えば、NCBI Accession No: NM_005383.2(GI: 222352169, GeneID:4759)として登録されているタンパク質と同一又は実質的に同一のアミノ酸配列を含むタンパク質のことである。
ここで、「実質的に同一のアミノ酸配列を含むタンパク質」とは、NM_005383.2として登録されているアミノ酸配列と約60%以上、好ましくは約70%以上、より好ましくは約80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%,95%,96%,97%,98%,最も好ましくは約99%のアミノ酸同一性を有するアミノ酸配列を含み、かつ、タンパク質リン酸化酵素活性を有するタンパク質である。
あるいは、NM_005383.2として登録されているアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質としては、NM_005383.2として登録されているアミノ酸配列中の1又は数個(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは1〜5個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、タンパク質リン酸化酵素活性を有するタンパク質である。
In addition, hNEU2 in the present invention is an enzyme generally referred to as “human neuraminidase 2”, and it may be not only natural hNEU2, but also hNEU2 whose activity is reduced by mutation or the like. hNEU2 is, for example, a protein containing the same or substantially the same amino acid sequence as a protein registered as NCBI Accession No: NM — 005383.2 (GI: 222352169, GeneID: 4759).
Here, the “protein containing substantially the same amino acid sequence” is about 60% or more, preferably about 70% or more, more preferably about 80% or 81%, with the amino acid sequence registered as NM_005383.2. , 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98 %, Most preferably a protein having an amino acid sequence having about 99% amino acid identity and having protein kinase activity.
Alternatively, as a protein having an amino acid sequence substantially identical to the amino acid sequence registered as NM_005383.2, one or several (preferably 1 to 30) amino acid sequences registered as NM_005383.2 About, more preferably about 1 to 10, more preferably 1 to 5 amino acids are deleted, substituted or added, and the protein has protein kinase activity.

本発明のhNEU2阻害剤又はhNEU2に対するケミカルシャペロン組成物は、一般式(I)のデンドリマー化合物又はその薬理学上許容される塩又はそれらの水和物を含む。さらに、本発明のhNEU2阻害剤又はhNEU2に対するケミカルシャペロン組成物を「剤」又は「組成物」として使用する場合には、目的に応じて、バッファー、塩、その他の添加物質等を含んでいてもよい。特に、本発明の「阻害剤」又は「組成物」をhNEU2の機能異常に起因する疾患の治療剤又は医薬組成物として使用する場合には、薬理学上許容される担体を含んでいてもよい。ここで、「ケミカルシャペロン」組成物は、hNEU2を安定化し(例えば、構造の安定化などにより)、活性を上昇又は保持する効果を示す組成物のことであり、インビトロ又はインビボにおいて使用することができる。   The hNEU2 inhibitor or chemical chaperone composition for hNEU2 of the present invention comprises a dendrimer compound of the general formula (I) or a pharmacologically acceptable salt thereof or a hydrate thereof. Furthermore, when the hNEU2 inhibitor of the present invention or the chemical chaperone composition for hNEU2 is used as “agent” or “composition”, it may contain a buffer, a salt, other additive substances, etc. depending on the purpose. Good. In particular, when the “inhibitor” or “composition” of the present invention is used as a therapeutic agent or a pharmaceutical composition for a disease caused by an abnormal function of hNEU2, it may contain a pharmacologically acceptable carrier. . Here, the “chemical chaperone” composition refers to a composition that has an effect of stabilizing hNEU2 (for example, by stabilizing the structure, etc.) and increasing or retaining activity, and can be used in vitro or in vivo. it can.

「薬理学上許容される担体」は、溶媒、分散媒、コーティング剤、抗菌及び抗真菌剤、アイソトニックに作用して吸着を遅らせる薬剤及びその類似物を含み、薬剤的投与に適するもののことである。該担体及び該担体を希釈するために好ましいものの例には、限定はしないが、水、生理食塩水、フィンガー溶液、デキストロース溶液、及びヒト血清アルブミンなどが含まれる。また、リポソーム及び不揮発性油などの非水溶性媒体も用いられる。さらに、本発明の化合物の活性を保護又は促進するような特定の化合物が、該組成物中に包含されていてもよい。   “Pharmaceutically acceptable carrier” refers to those suitable for pharmaceutical administration, including solvents, dispersion media, coating agents, antibacterial and antifungal agents, agents that act isotonically to delay adsorption and the like. . Examples of such carriers and those preferred for diluting the carriers include, but are not limited to, water, saline, finger solutions, dextrose solutions, and human serum albumin. Non-aqueous media such as liposomes and non-volatile oils are also used. In addition, certain compounds that protect or promote the activity of the compounds of the present invention may be included in the composition.

本発明の阻害剤又はケミカルシャペロン組成物を医薬若しくは医薬組成物として使用する場合、静脈内、皮内、皮下、経口(例えば、吸入なども含む)、経皮及び経粘膜への投与を含み、治療上適切な投与経路に適合するように製剤化される。非経口、皮内、又は皮下への適用に使用される溶液又は懸濁液には、限定はしないが、注射用の水などの滅菌的希釈液、生理食塩水溶液、不揮発性油、ポリエチレングリコール、グリセリン、プロピレングリコール、又は他の合成溶媒、ベンジルアルコール又は他のメチルパラベンなどの保存剤、アスコルビン酸又は亜硫酸水素ナトリウムなどの抗酸化剤、塩化ベンザルコニウム、塩酸プロカインなどの無痛化剤、エチレンジアミンテトラ酢酸(EDTA)などのキレート剤、酢酸塩、クエン酸塩、又はリン酸塩などの緩衝剤、塩化ナトリウム又はデキストロースなど浸透圧調製のための薬剤を含んでもよい。
pHは塩酸又は水酸化ナトリウムなどの酸又は塩基で調製することができる。非経口的標品はアンプル、ガラスもしくはプラスチック製の使い捨てシリンジ又は複数回投与用バイアル中に収納される。
When the inhibitor or chemical chaperone composition of the present invention is used as a pharmaceutical or pharmaceutical composition, it includes intravenous, intradermal, subcutaneous, oral (for example, including inhalation), transdermal and transmucosal administration, Formulated to suit a therapeutically appropriate route of administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application include, but are not limited to, sterile diluents such as water for injection, saline solutions, non-volatile oils, polyethylene glycols, Glycerin, propylene glycol, or other synthetic solvents, benzyl alcohol or other preservatives such as methylparaben, antioxidants such as ascorbic acid or sodium bisulfite, soothing agents such as benzalkonium chloride, procaine hydrochloride, ethylenediaminetetraacetic acid Chelating agents such as (EDTA), buffering agents such as acetate, citrate, or phosphate, and agents for osmotic pressure adjustment such as sodium chloride or dextrose.
The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Parenteral preparations are contained in ampoules, glass or plastic disposable syringes or multiple dose vials.

注射に適する医薬組成物には、滅菌された注射可能な溶液又は分散媒を、使用時に調製するための滅菌水溶液(水溶性の)又は分散媒及び滅菌されたパウダーが含まれる。静脈内の投与に関し、適切な担体には生理食塩水、静菌水、又はリン酸緩衝化生理食塩水(PBS)が含まれる。注射剤として使用する場合、組成物は滅菌的でなくてはならず、また、シリンジを用いて投与されるために十分な流動性を保持していなくてはならない。該組成物は、調剤及び保存の間、化学変化及び腐食等に対して安定でなくてはならず、細菌及び真菌などの微生物由来のコンタミネーションを防止する必要がある。担体は、例えば、水、エタノール、ポリオール(グリセロール、プロピレングリコール、及び液体ポリエチレングリコールなど)、及び適切な混合物を含む溶媒又は分散媒培地を使用することができる。例えば、レクチンなどのコーティング剤を用い、分散媒においては必要とされる粒子サイズを維持し、界面活性剤を用いることにより適度な流動性が維持される。種々の抗菌剤及び抗真菌剤、例えば、パラベン、クロロブタノール、フェノール、アスコルビン酸、及びチメロサールなどは、微生物のコンタミネーションの防止に対して使用可能である。また、糖、マンニトール、ソルビトールなどのポリアルコール及び塩化ナトリウムのような等張性を保つ薬剤が組成物中に含まれてもよい。吸着を遅らせることができる組成物には、モノステアリン酸アルミニウム及びゼラチンなどの薬剤が含まれる。   Pharmaceutical compositions suitable for injection include sterile aqueous solutions (water soluble) or dispersion media and sterile powders for the preparation of sterile injectable solutions or dispersion media at the time of use. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, or phosphate buffered saline (PBS). When used as an injection, the composition must be sterile and must be fluid enough to be administered with a syringe. The composition must be stable to chemical changes, corrosion, and the like during formulation and storage, and must prevent contamination from microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures. For example, using a coating agent such as lectin, maintaining a required particle size in the dispersion medium, and maintaining a proper fluidity by using a surfactant. Various antibacterial and antifungal agents, such as parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal can be used to prevent microbial contamination. In addition, polyalcohols such as sugar, mannitol, sorbitol, and agents that maintain isotonicity such as sodium chloride may be included in the composition. Compositions that can delay adsorption include agents such as aluminum monostearate and gelatin.

滅菌的な注射可能溶液は、必要な成分を単独で、又は他の成分と組み合わせた後に、適切な溶媒中に必要量の活性化合物を加え、滅菌することで調製される。一般に、分散媒は、基本的な分散培地及び上述したその他の必要成分を含む滅菌的媒体中に活性化合物を取り込むことにより調製される。滅菌的な注射可能な溶液を調製するための滅菌的パウダーの調製方法には、活性な成分及び滅菌溶液に由来する何れかの所望な成分を含むパウダーを調製する真空乾燥及び凍結乾燥が含まれる。   Sterile injectable solutions are prepared by adding the required ingredients alone or in combination with other ingredients to the required amount of the active compound in a suitable solvent and sterilizing. Generally, a dispersion medium is prepared by incorporating the active compound into a sterile medium that contains a basic dispersion medium and the other necessary ingredients described above. Methods for preparing a sterile powder for preparing a sterile injectable solution include vacuum drying and lyophilization to prepare a powder containing the active ingredient and any desired ingredients derived from the sterile solution. .

経口組成物には、不活性な希釈剤又は体内に取り込んでも害を及ぼさない担体が含まれる。経口組成物には、例えば、ゼラチンのカプセル剤に包含されるか、加圧されて錠剤化される。経口的治療のためには、活性化合物は賦形剤と共に取り込まれ、錠剤、トローチ又はカプセル剤の形態で使用される。また、経口組成物は、流動性担体を用いて調製することも可能であり、流動性担体中の該組成物は経口的に適用される。さらに、薬剤的に適合する結合剤、及び/又はアジュバント物質などが包含されてもよい。
錠剤、丸薬、カプセル剤、トローチ及びその類似物は以下の成分又は類似の性質を持つ化合物の何れかを含み得る:微結晶性セルロースのような賦形剤、アラビアゴム、トラガント又はゼラチンなどの結合剤;アルギン酸、PRIMOGEL、又はコーンスターチなどの膨化剤;ステアリン酸マグネシウム又はSTRROTESなどの潤滑剤;コロイド性シリコン二酸化物などの滑剤;スクロース又はサッカリンなどの甘味剤;又はペパーミント、メチルサリチル酸又はオレンジフレイバーなどの香料添加剤。
Oral compositions include inert diluents or carriers that are not harmful when incorporated into the body. Oral compositions are, for example, contained in gelatin capsules or compressed into tablets. For oral treatment, the active compound is incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a flowable carrier, and the composition in the flowable carrier is applied orally. In addition, pharmaceutically compatible binding agents, and / or adjuvant materials may be included.
Tablets, pills, capsules, troches and the like may contain any of the following components or compounds with similar properties: excipients such as microcrystalline cellulose, binding such as gum arabic, tragacanth or gelatin Agents; bulking agents such as alginic acid, PRIMOGEL, or corn starch; lubricants such as magnesium stearate or STRROTES; lubricants such as colloidal silicon dioxide; sweeteners such as sucrose or saccharin; or peppermint, methyl salicylic acid or orange flavor, etc. Perfume additive.

本発明の医薬組成物は、植込錠及びマイクロカプセルに封入された送達システムなどの徐放性製剤として、体内から即時に除去されることを防ぎ得る担体を用いて調製することができる。エチレンビニル酢酸塩、ポリ酸無水物、ポリグリコール酸、コラーゲン、ポリオルトエステル、及びポリ乳酸などの、生物分解性、生物適合性ポリマーを用いることができる。このような材料は、当業者によって容易に調製することができる。また、リポソームの懸濁液も薬剤的に受容可能な担体として使用することができる。有用なリポソームは、限定はしないが、ホスファチジルコリン、コレステロール及びPEG誘導ホスファチジルエタノール(PEG−PE)を含む脂質組成物として、使用に適するサイズになるように、適当なポアサイズのフィルターを通して調製され、逆相蒸発法によって精製される。   The pharmaceutical composition of the present invention can be prepared as a sustained-release preparation such as a delivery system encapsulated in implantable tablets and microcapsules using a carrier that can prevent immediate removal from the body. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Such materials can be readily prepared by those skilled in the art. Liposome suspensions can also be used as pharmaceutically acceptable carriers. Useful liposomes are prepared as a lipid composition comprising, but not limited to, phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanol (PEG-PE) through a filter of appropriate pore size to obtain a size suitable for use, and reverse phase. Purified by evaporation.

本発明の阻害剤又はケミカルシャペロンを医薬又は医薬組成物として使用する場合、適切な投与量レベルは、対象の疾患、投与される患者の状態、投与方法等に依存するが、当業者であれば、容易に最適化することが可能である。
注射投与の場合は、例えば、一日に患者の体重あたり約0.1μg/kgから約500mg/kgを投与するのが好ましく、一般に一回又は複数回に分けて投与され得るであろう。好ましくは、投与量レベルは、一日に約0.1μg/kgから約250mg/kgであり、より好ましくは一日に約0.5〜約100mg/kgである。
経口投与の場合は、組成物は、好ましくは1.0から1000mgの活性成分を含む錠剤の形態で提供され、好ましくは活性成分が1.0,5.0,10.0,15.0,20.0,25.0,50.0,75.0,100.0,150.0,200.0,250.0,300.0,400.0,500.0,600.0,750.0,800.0,900.0及び1000.0mgである。化合物は一日に1〜4回の投与計画で、好ましくは一日に一回又は二回投与される。
When the inhibitor or chemical chaperone of the present invention is used as a medicine or pharmaceutical composition, the appropriate dosage level depends on the disease of the subject, the condition of the patient to be administered, the administration method, etc. Can be easily optimized.
In the case of injection administration, for example, it is preferable to administer about 0.1 μg / kg to about 500 mg / kg of the patient's body weight per day, and it will generally be possible to administer a single dose or divided into multiple doses. Preferably, the dosage level is about 0.1 μg / kg to about 250 mg / kg per day, more preferably about 0.5 to about 100 mg / kg per day.
For oral administration, the composition is preferably provided in the form of a tablet containing 1.0 to 1000 mg of active ingredient, preferably 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750. 0, 800.0, 900.0 and 1000.0 mg. The compounds are administered on a regimen of 1 to 4 times daily, preferably once or twice daily.

医薬組成物又は製剤は、一定の投与量を保障すべく、均一単位投与量により構成されなくてはならない。単位投与量は、患者の治療に有効な一回の投与量を含み、薬剤的に受容可能な担体と共に製剤化された一単位のことである。本発明の単位投与量を決定する場合には、製剤化される化合物の物理的、化学的特徴、期待される治療上の効果、及び該化合物に特有な留意事項等が考慮される。   A pharmaceutical composition or formulation must consist of uniform unit doses to ensure a constant dose. A unit dose is a unit formulated with a pharmaceutically acceptable carrier, including a single dose effective for treating a patient. When determining the unit dosage of the present invention, physical and chemical characteristics of the compound to be formulated, expected therapeutic effects, considerations specific to the compound, and the like are considered.

以下に実施例を示すが、本発明はこれに限定されるものではない。   Examples are shown below, but the present invention is not limited thereto.

まず、本発明の阻害剤又はケミカルシャペロン組成物に含まれるデンドリマー化合物の合成方法については、特開2009−242387(特許文献2)に詳述されているので、併せて参照のこと。以下には、合成経路の説明等を行う。   First, a method for synthesizing a dendrimer compound contained in the inhibitor or chemical chaperone composition of the present invention is described in detail in JP-A-2009-242387 (Patent Document 2). In the following, the synthesis route will be described.

1.n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−グルコピラノシド(6)の合成
目的化合物(6)は下記のスキームのように合成することができる。
1. n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-glucopyranoside (6) The target compound (6) can be synthesized as shown in the following scheme.

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−β−D−グルコピラノシド(2)の合成
アルゴン雰囲気下、既知のペンテニルグルコシド(1)をピリジンに溶解させ、氷冷下でTBDMSClを加え、氷冷のまま1時間撹拌する。その後、無水酢酸を加え、室温で2時間攪拌する。氷冷下でメタノールを加えた後、反応液を濃縮する。残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(2)得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-Ot-butyldimethylsilyl-β-D-glucopyranoside (2) Dissolve known pentenyl glucoside (1) in pyridine under argon atmosphere Add TBDMSCl under ice cooling and stir for 1 hour with ice cooling. Then acetic anhydride is added and stirred at room temperature for 2 hours. After adding methanol under ice cooling, the reaction mixture is concentrated. The residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, the filtrate was concentrated, and the residue was subjected to silica gel column chromatography [ 4: 1 (v / v) hexane-ethyl acetate, silica gel] to give compound (2).

n−ペンテニル 2,3,4−トリ−O−アセチル−β−D−グルコピラノシド(3)の合成
完全保護グルコシド(2)を酢酸に溶解させ、水を加え、50℃で2時間撹拌する。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[2:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(3)を得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-β-D-glucopyranoside (3) Dissolve the fully protected glucoside (2) in acetic acid, add water and stir at 50 ° C. for 2 hours. The reaction mixture is concentrated, and the residue is purified by silica gel column chromatography [2: 1 (v / v) hexane-ethyl acetate, silica gel] to give compound (3).

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシド(4)の合成
アルゴン雰囲気下、アルコール(3)をピリジンに溶解させ、氷冷下でトリフェニルホスフィン及び四臭化炭素を順に加え、45℃で15分撹拌する。氷冷下、メタノールを加えて、反応を停止させ、反応液を濃縮する。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[5:2(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(4)を得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranoside (4) In an argon atmosphere, alcohol (3) was dissolved in pyridine, and ice-cooled. Add triphenylphosphine and carbon tetrabromide in order and stir at 45 ° C. for 15 minutes. Methanol is added under ice cooling to stop the reaction, and the reaction mixture is concentrated. The residue is dissolved in a small amount of methanol, toluene is added thereto, and the by-product crystallized is removed by Celite filtration, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [5: 2 (v / v) hexane-ethyl acetate, silica gel] to obtain compound (4).

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(6)の合成
アルゴン雰囲気下、シアル酸チオアセテート(5)及びブロミド(4)をDMF(1mL)に溶解させ、氷冷下でジエチルアミンを加え、室温で6時間撹拌する。反応液を酢酸エチルで希釈し、1M塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[2:3(v/v)トルエン−酢酸エチル,シリカゲル]で粗精製し、ついで分取型GPCにより目的化合物(6)を単離することができる。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (6) In an argon atmosphere, sialic acid thioacetate (5) and bromide (4 ) Is dissolved in DMF (1 mL), diethylamine is added under ice cooling, and the mixture is stirred at room temperature for 6 hours. The reaction mixture is diluted with ethyl acetate, washed successively with 1M aqueous hydrochloric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. The residue is roughly purified by silica gel column chromatography [2: 3 (v / v) toluene-ethyl acetate, silica gel], and then the target compound (6) can be isolated by preparative GPC.

2.n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(11)の合成
目的化合物(11)は下記のスキームのように合成することができる。
2. n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (11) The target compound (11) is synthesized as shown in the following scheme. Can do.

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−β−D−ガラクトピラノシド(8)の合成
アルゴン雰囲気下、既知のペンテニルグルコシド(例えば、Matsuoka及びNishimura,Macromolecules 28, pp.2961−2968,1995、などを参照のこと)(7)をピリジンに溶解させ、氷冷下でTBDMSClを加え、氷冷のまま5時間撹拌する。その後、無水酢酸を加え、室温で6時間攪拌する。氷冷下でメタノールを加えた後、反応液を濃縮する。残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(8)を得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-Ot-butyldimethylsilyl-β-D-galactopyranoside (8) Under an argon atmosphere, known pentenyl glucosides (eg, Matsuoka) And Nishimura, Macromolecules 28, pp. 2961-2968, 1995, etc.) (7) is dissolved in pyridine, TBDMSCl is added under ice cooling, and the mixture is stirred for 5 hours with ice cooling. Then acetic anhydride is added and stirred at room temperature for 6 hours. After adding methanol under ice cooling, the reaction mixture is concentrated. The residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel] to obtain compound (8).

n−ペンテニル 2,3,4−トリ−O−アセチル−β−D−ガラクトピラノシド(9)の合成
完全保護ガラクトシド(8)を酢酸に溶解させ、水を加え、50℃で2時間撹拌する。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(9)を得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-β-D-galactopyranoside (9) Dissolve the fully protected galactoside (8) in acetic acid, add water and stir at 50 ° C. for 2 hours. To do. The reaction mixture is concentrated, and the residue is purified by silica gel column chromatography [1: 1 (v / v) hexane-ethyl acetate, silica gel] to give compound (9).

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−ガラクトピラノシド(10)の合成
アルゴン雰囲気下、アルコール(9)をピリジンに溶解させ、氷冷下でトリフェニルホスフィンおよび四臭化炭素を順に加え、50℃で1時間撹拌する。氷冷下、メタノールを加えて反応を停止させ、反応液を濃縮する。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(10)を得る。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-galactopyranoside (10) In an argon atmosphere, alcohol (9) was dissolved in pyridine. Triphenylphosphine and carbon tetrabromide are sequentially added under ice cooling, and the mixture is stirred at 50 ° C. for 1 hour. Under ice cooling, methanol is added to stop the reaction, and the reaction solution is concentrated. The residue is dissolved in a small amount of methanol, toluene is added thereto, and the by-product crystallized is removed by Celite filtration, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel] to obtain compound (10).

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(11)の合成
アルゴン雰囲気下、チオアセテート(5)及びブロミド(10)をDMF−メタノール混合液(1:1(v/v))に溶解させ、氷冷下で炭酸カリウムを加え、室温で21時間撹拌する。氷冷下、酢酸を加えて反応を停止させ、反応液を濃縮した。残渣をピリジンに懸濁し、無水酢酸を加えて、一晩攪拌する。反応液を濃縮して、その残渣をクロロホルムに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[15:14:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル]で粗精製し、次いで分取型GPCにより目的化合物(11)を単離することができる。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (11) Under argon atmosphere, thioacetate (5) and bromide (10) Dissolve in a DMF-methanol mixture (1: 1 (v / v)), add potassium carbonate under ice cooling, and stir at room temperature for 21 hours. Under ice-cooling, acetic acid was added to stop the reaction, and the reaction solution was concentrated. Suspend the residue in pyridine, add acetic anhydride and stir overnight. The reaction solution is concentrated, and the residue is dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through Celite, and the filtrate is concentrated. . The residue is roughly purified by silica gel column chromatography [15: 14: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel], and then the target compound (11) can be isolated by preparative GPC. .

3.n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(26)の合成
目的化合物(26)は下記のスキームのように合成をすることができる。
3. n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl Synthesis of -β-D-glucopyranoside (26) The target compound (26) can be synthesized as shown in the following scheme.

n−ペンテニル O−(2,3−ジ−O−アセチル−4,6−O−イソプロピリデン−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(23)の合成
アルゴン雰囲気下、既知のペンテニルラクトシド(例えば、Matsuoka及びNishimura,Macromolecules 28, pp.2961−2968,1995、などを参照のこと)(22)をDMFに溶解させ、氷冷下で2−メトキシ−1−プロペン及びp−トルエンスルホン酸一水和物を順に加え、氷冷のまま3時間撹拌する。その後、ピリジン及び無水酢酸を加え、室温で一晩攪拌する。反応液を濃縮し、残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(23)を得る。
n-pentenyl O- (2,3-di-O-acetyl-4,6-O-isopropylidene-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O Synthesis of Acetyl-β-D-glucopyranoside (23) Under known argon pentenyl lactoside (see, for example, Matsuoka and Nishimura, Macromolecules 28, pp. 2961-2968, 1995, etc.) (22) Dissolve in DMF, add 2-methoxy-1-propene and p-toluenesulfonic acid monohydrate in order under ice cooling, and stir for 3 hours with ice cooling. Then add pyridine and acetic anhydride and stir overnight at room temperature. The reaction mixture is concentrated, the residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [4: 1 (v / v) toluene-ethyl acetate, silica gel] to obtain compound (23).

n−ペンテニルO−(2,3−ジ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(24)の合成
完全保護ラクトシド(23)を酢酸に溶解させ、水を加え、50℃で2時間撹拌する。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:4(v/v)トルエン−酢酸エチル, シリカゲル]で精製し、化合物(24)を得る。
n-pentenyl O- (2,3-di-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside ( 24) Synthesis Fully protected lactoside (23) is dissolved in acetic acid, water is added and stirred at 50 ° C. for 2 hours. The reaction mixture is concentrated, and the residue is purified by silica gel column chromatography [1: 4 (v / v) toluene-ethyl acetate, silica gel] to give compound (24).

n−ペンテニル O−(2,3−ジ−O−アセチル−6−ブロモ−6−デオキシ−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(25)の合成
アルゴン雰囲気下、ジオール(24)をピリジンに溶解させ、氷冷下でトリフェニルホスフィン及び四臭化炭素を順に加え、50℃で30分、60℃で3時間時間撹拌する。氷冷下、さらにトリフェニルホスフィン及び四臭化炭素を順に加え、60℃で30分撹拌する。氷冷下、メタノールを加えて反応を停止させ、反応液を濃縮する。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[3:1(v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(25)を得る。
n-pentenyl O- (2,3-di-O-acetyl-6-bromo-6-deoxy-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O— Synthesis of acetyl-β-D-glucopyranoside (25) In an argon atmosphere, diol (24) is dissolved in pyridine, and triphenylphosphine and carbon tetrabromide are added in that order under ice cooling, followed by 50 ° C for 30 minutes, 60 ° C. For 3 hours. Under ice cooling, triphenylphosphine and carbon tetrabromide are further added in this order, and the mixture is stirred at 60 ° C. for 30 minutes. Under ice cooling, methanol is added to stop the reaction, and the reaction solution is concentrated. The residue is dissolved in a small amount of methanol, toluene is added thereto, and the by-product crystallized is removed by Celite filtration, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [3: 1 (v / v) toluene-ethyl acetate, silica gel] to obtain compound (25).

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(26)の合成
アルゴン雰囲気下、チオアセテート(5)及びブロミド(25)をDMF−メタノール混合液(1:1(v/v),1mL)に溶解させ、氷冷下で炭酸カリウムを加え、室温で36時間撹拌する。氷冷下、酢酸を加えて反応を停止させ、反応液を濃縮した。残渣をピリジンに懸濁し、無水酢酸を加えて、3日間攪拌する。反応液を濃縮して、その残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[1:1→2:3→0:1(v/v)トルエン−酢酸エチル,シリカゲル]で粗精製し、次いで分取型GPCにより目的物化合物(26)を単離することができる。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl Synthesis of β-D-glucopyranoside (26) Under argon atmosphere, thioacetate (5) and bromide (25) were dissolved in a DMF-methanol mixture (1: 1 (v / v), 1 mL), and ice-cooled. Add potassium carbonate and stir at room temperature for 36 hours. Under ice-cooling, acetic acid was added to stop the reaction, and the reaction solution was concentrated. Suspend the residue in pyridine, add acetic anhydride and stir for 3 days. The reaction solution is concentrated, and the residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. To do. The residue is roughly purified by silica gel column chromatography [1: 1 → 2: 3 → 0: 1 (v / v) toluene-ethyl acetate, silica gel], and then the target compound (26) is isolated by preparative GPC. be able to.

4.n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(35)の合成
目的化合物(35)は下記のスキームのように合成することができる。
4). n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β- Synthesis target compound (35) of D-glucopyranoside (35) can be synthesized as shown in the following scheme.

O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−α−D−グルコピラノシルブロマイド(28)の合成
市販のセロビオースα−アセテート(PFANSTIEHL LABORATORIES Inc.,Waukegan,IL 60085−0439,USA)(27)を酢酸−無水酢酸混合液に溶解させ、氷冷下、30%臭化水素−酢酸溶液を加えて密栓し、室温で3.5時間攪拌する。さらに氷冷下で30%臭化水素−酢酸溶液を加えて一晩攪拌する。反応液を氷水に注ぎ、酢酸エチルで抽出し、水で5回洗浄し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄する。硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をジエチルエーテルで洗浄することにより化合物(28)を得る。
O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-α-D-glucopyranosyl Synthesis of bromide (28) Commercially available cellobiose α-acetate (PFANSTIHL LABORATORIES Inc., Waukegan, IL 60085-0439, USA) (27) was dissolved in an acetic acid-acetic anhydride mixed solution, and 30% hydrogen bromide under ice-cooling. Add acetic acid solution, seal tightly and stir at room temperature for 3.5 hours. Further, a 30% hydrogen bromide-acetic acid solution is added under ice cooling, and the mixture is stirred overnight. The reaction mixture is poured into ice water, extracted with ethyl acetate, washed 5 times with water, and washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine. After dehydration and drying with magnesium sulfate, the mixture was filtered through Celite, and the filtrate was concentrated. The residue is washed with diethyl ether to obtain compound (28).

n−ペンテニル O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(29)の合成
アルゴン雰囲気下、セロビオースα−ブロミド(28)及び4−ペンテン−1−オール、モレキュラーシーブス4Aをジクロロメタンに懸濁させ、2時間攪拌する。−20℃でトリフルオロメタンスルホン酸銀を加え、40分攪拌し、反応液をセライト濾過し、不溶物をクロロホルムで洗浄する。濾液と洗浄液を合わせて、氷水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をフラッシュシリカゲルカラムクロマトグラフィ[4:1(v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(29)を得る。
n-pentenyl O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside (29) In an argon atmosphere, cellobiose α-bromide (28), 4-penten-1-ol, and molecular sieves 4A are suspended in dichloromethane and stirred for 2 hours. Silver trifluoromethanesulfonate is added at −20 ° C., and the mixture is stirred for 40 minutes. The reaction solution is filtered through Celite, and the insoluble matter is washed with chloroform. The filtrate and the washing solution are combined, washed successively with ice water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. The residue is purified by flash silica gel column chromatography [4: 1 (v / v) toluene-ethyl acetate, silica gel] to give compound (29).

n−ペンテニル O−β−D−グルコピラノシル−(1→4)−β−D−グルコピラノシド(30)の合成
ペンテニルセロビオシド(29)をメタノール−ジクロロメタン混合液に溶解させ、1Mナトリウムメトキシド・メタノール溶液を加え、室温で2時間撹拌する。IR−120B(H+型)を加えてpH〜4とした反応液を綿栓濾過し、樹脂をメタノールで洗浄する。濾液と洗浄液を合わせて濃縮し、残渣として、化合物(30)を得る。
Synthesis of n-pentenyl O-β-D-glucopyranosyl- (1 → 4) -β-D-glucopyranoside (30) Pentenyl cellobioside (29) is dissolved in a methanol-dichloromethane mixed solution, and 1M sodium methoxide / methanol Add the solution and stir at room temperature for 2 hours. The reaction solution adjusted to pH˜4 by adding IR-120B (H + type) is filtered through a cotton plug, and the resin is washed with methanol. The filtrate and the washing solution are combined and concentrated to obtain the compound (30) as a residue.

n−ペンテニル O−(2,3−ジ−O−アセチル−4,6−O−イソプロピリデン−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(31)の合成
アルゴン雰囲気下、セロビオシド(30)をDMFに溶解させ、氷冷下で2−メトキシ−1−プロペン及びp−トルエンスルホン酸−水和物を順に加え、氷冷のまま2時間、室温に戻して4時間撹拌した。その後、ピリジン及び無水酢酸を加え、室温で一晩攪拌した。反応液を濃縮し、残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[5:1 (v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(31)を得る。
n-pentenyl O- (2,3-di-O-acetyl-4,6-O-isopropylidene-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl- Synthesis of β-D-glucopyranoside (31) Cellobioside (30) was dissolved in DMF under an argon atmosphere, and 2-methoxy-1-propene and p-toluenesulfonic acid-hydrate were sequentially added under ice-cooling. The mixture was allowed to cool for 2 hours and then returned to room temperature and stirred for 4 hours. Then, pyridine and acetic anhydride were added and stirred overnight at room temperature. The reaction mixture is concentrated, the residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate is concentrated. The residue is purified by silica gel column chromatography [5: 1 (v / v) toluene-ethyl acetate, silica gel] to obtain compound (31).

n−ペンテニル O−(2,3−ジ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(32)の合成
完全保護セロビオシド(31)を酢酸に溶解させ、水を加え、50℃で2時間撹拌する。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:2(v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(32)を得る。
n-pentenyl of O- (2,3-di-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside (32) Synthetic fully protected cellobioside (31) is dissolved in acetic acid, water is added and stirred at 50 ° C. for 2 hours. The reaction mixture is concentrated, and the residue is purified by silica gel column chromatography [1: 2 (v / v) toluene-ethyl acetate, silica gel] to give compound (32).

n−ペンテニル O−(2,3−ジ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(33)の合成
アルゴン雰囲気下、ジオール(32)をピリジンに溶解させ、氷冷下でトリフェニルホスフィン及び四臭化炭素を順に加え、50℃で1時間時間撹拌する。氷冷下、メタノールを加えて反応を停止させ、反応液を濃縮する。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮する。残渣をフラッシュシリカゲルカラムクロマトグラフィ[1:1(v/v)ヘキサン−酢酸エチル,シリカゲル]で精製し、化合物(33)を得る。
n-pentenyl O- (2,3-di-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β -Synthesis of D-glucopyranoside (33) The diol (32) is dissolved in pyridine under an argon atmosphere, triphenylphosphine and carbon tetrabromide are sequentially added under ice cooling, and the mixture is stirred at 50 ° C for 1 hour. Under ice cooling, methanol is added to stop the reaction, and the reaction solution is concentrated. The residue is dissolved in a small amount of methanol, toluene is added thereto, and the by-product crystallized is removed by Celite filtration, and the filtrate is concentrated. The residue is purified by flash silica gel column chromatography [1: 1 (v / v) hexane-ethyl acetate, silica gel] to give compound (33).

n−ペンテニル O−(2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(34)の合成
アルゴン雰囲気下、アルコール(33)をピリジンに溶解させ、氷冷下で無水酢酸を加え、室温で6時間時間撹拌する。反応液を濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィ[2:1(v/v)トルエン−酢酸エチル,シリカゲル]で精製し、化合物(34)を得る。
n-pentenyl O- (2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl Synthesis of β-D-glucopyranoside (34) In an argon atmosphere, alcohol (33) is dissolved in pyridine, acetic anhydride is added under ice cooling, and the mixture is stirred at room temperature for 6 hours. The reaction mixture is concentrated, and the residue is purified by flash silica gel column chromatography [2: 1 (v / v) toluene-ethyl acetate, silica gel] to give compound (34).

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(35)の合成
アルゴン雰囲気下、チオアセテート(5)及びブロミド(34)をDMFに溶解させ、氷冷下でジエチルアミンを加え、室温で20時間撹拌する。反応液を濃縮し、残渣をクロロホルムに溶解させ、1M塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[100:30:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル]で粗精製し、ついで分取型GPCにより目的化合物(35)を単離することができる。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β- Synthesis of D-glucopyranoside (35) Thioacetate (5) and bromide (34) are dissolved in DMF under an argon atmosphere, diethylamine is added under ice cooling, and the mixture is stirred at room temperature for 20 hours. The reaction mixture was concentrated, the residue was dissolved in chloroform, washed successively with 1M aqueous hydrochloric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue is roughly purified by silica gel column chromatography [100: 30: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel], and then the target compound (35) can be isolated by preparative GPC. .

5.チオシアロオリゴ糖結合型デンドリマーの合成
チオシアロオリゴ糖結合型デンドリマーを以下のスキームのように合成することができる。
5. Synthesis of Thiosialooligosaccharide-Linked Dendrimer Thiothialooligosaccharide-bound dendrimers can be synthesized as in the following scheme.

4−アセチルチオ−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−グルコピラノシド(36)の合成
アルゴン雰囲気下、ペンテニルグリコシド(6)を1,4−ジオキサンに溶解し、チオ酢酸を加え、加熱し50℃とした。そこでAIBNを加え、80℃で3時間撹拌する。その後、氷冷下でシクロヘキセンを加え、室温に戻して数分間撹拌する。反応液を濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィ[トルエン→酢酸エチル,シリカゲル]で精製し、化合物(36)を得る。
4-acetylthio-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate )-(2 → 6) -2,3,4-Tri-O-acetyl-6-thio-β-D-glucopyranoside (36) Synthesis of pentenyl glycoside (6) to 1,4-dioxane under argon atmosphere Dissolve, add thioacetic acid and heat to 50 ° C. Therefore, AIBN is added and stirred at 80 ° C. for 3 hours. Thereafter, cyclohexene is added under ice cooling, and the mixture is returned to room temperature and stirred for several minutes. The reaction mixture is concentrated, and the residue is purified by flash silica gel column chromatography [toluene → ethyl acetate, silica gel] to give compound (36).

Fan(0)3−NeuSGlcS(OAc,OMe)(37)の合成
アルゴン雰囲気下、チオアセテート(36)及びFan(0)3−BrデンドリマーをDMF−メタノール混合液に溶解させた。そこに1Mナトリウムメトキシド・メタノール溶液を加え、室温で19時間撹拌する。その後、氷冷下で酢酸を加えて反応を停止させ、反応液を濃縮する。残渣をアルゴン雰囲気下、ピリジンに懸濁させ、無水酢酸を加え、室温で5時間撹拌する。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→10:9:1(v/v/v)クロロホルム−酢酸エチル−メタノール, シリカゲル]で精製し、目的化合物(37)を得ることができる。
Synthesis of Fan (0) 3-NeuSGlcS (OAc, OMe) (37) Thioacetate (36) and Fan (0) 3-Br dendrimer were dissolved in a DMF-methanol mixture under an argon atmosphere. 1M sodium methoxide / methanol solution is added thereto and stirred at room temperature for 19 hours. Then, acetic acid is added under ice cooling to stop the reaction, and the reaction solution is concentrated. The residue is suspended in pyridine under an argon atmosphere, acetic anhydride is added, and the mixture is stirred at room temperature for 5 hours. Thereafter, the reaction solution is concentrated, the residue is dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through Celite, and the filtrate is concentrated. The residue can be purified by silica gel column chromatography [15: 14: 1 → 10: 9: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel] to obtain the target compound (37).

Ball(0)4−NeuSGlcS(OAc,OMe)(38)の合成
アルゴン雰囲気下、チオアセテート(36)及びBall(0)4−BrデンドリマーをDMF−メタノール混合液に溶解させる。そこに、1Mナトリウムメトキシド・メタノール溶液を加え、室温で24時間撹拌する。その後、氷冷下で酢酸を加えて反応を停止させ、反応液を濃縮する。残渣をアルゴン雰囲気下、ピリジンに懸濁させ、無水酢酸を加え、室温で22時間撹拌する。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→7:7:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル]で精製し、目的化合物(38)を得ることができる。
Synthesis of Ball (0) 4-NeuSGlcS (OAc, OMe) (38) Thioacetate (36) and Ball (0) 4-Br dendrimer are dissolved in a DMF-methanol mixture under an argon atmosphere. 1M sodium methoxide / methanol solution is added thereto and stirred at room temperature for 24 hours. Then, acetic acid is added under ice cooling to stop the reaction, and the reaction solution is concentrated. The residue is suspended in pyridine under an argon atmosphere, acetic anhydride is added, and the mixture is stirred at room temperature for 22 hours. Thereafter, the reaction solution is concentrated, the residue is dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through Celite, and the filtrate is concentrated. The residue can be purified by silica gel column chromatography [15: 14: 1 → 7: 7: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel] to obtain the target compound (38).

Dumbbell(1)6−NeuSGlcS(OAc,OMe)(39)の合成
アルゴン雰囲気下、チオアセテート(36)及びDumbbell(1)6−BrデンドリマーをDMF−メタノール混合液に溶解させた。そこに1Mナトリウムメトキシド・メタノール溶液を加え、室温で23時間撹拌する。その後、氷冷下で酢酸を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジンに懸濁させ、無水酢酸を加え、室温で22時間撹拌する。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→5:4:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル]で精製し、目的化合物(39)を得ることができる。
Synthesis of Dumbbell (1) 6-NeuSGlcS (OAc, OMe) (39) Thioacetate (36) and Dumbbell (1) 6-Br dendrimer were dissolved in a DMF-methanol mixture under an argon atmosphere. 1M sodium methoxide / methanol solution is added thereto and stirred at room temperature for 23 hours. Thereafter, acetic acid was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue is suspended in pyridine under an argon atmosphere, acetic anhydride is added, and the mixture is stirred at room temperature for 22 hours. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue can be purified by silica gel column chromatography [15: 14: 1 → 5: 4: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel] to obtain the target compound (39).

Ball(1)12−NeuSGlcS(OAc,OMe)(40)の合成
アルゴン雰囲気下、チオアセテート(36)及びBall(1)12−BrデンドリマーをDMF−メタノール混合液に溶解させた。そこに1Mナトリウムメトキシド・メタノール溶液(を加え、室温で8時間撹拌する。その後、氷冷下で酢酸を加えて反応を停止させ、反応液を濃縮する。残渣をアルゴン雰囲気下、ピリジンに懸濁させ、無水酢酸を加え、室温で24時間撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮する。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→15:0:1 (v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル]で精製し、目的化合物(40)を得ることができる。
化合物(11)、化合物(26)及び化合物(35)を担持したファン型、ボール型、ダンベル型の各デンドリマー化合物も上記5の方法と同様に合成することができる。
また、エーテル又はアミド伸長型チオシアロオリゴ糖結合型デンドリマーの合成、並びに、チオシアロシド化合物の脱保護については、特開2009−242387(特許文献2)に詳述されているので、そこに記載の方法に従って合成を行った。
Synthesis of Ball (1) 12-NeuSGlcS (OAc, OMe) (40) In an argon atmosphere, thioacetate (36) and Ball (1) 12-Br dendrimer were dissolved in a DMF-methanol mixture. 1M sodium methoxide / methanol solution (added thereto) and stirred at room temperature for 8 hours. Then, acetic acid was added under ice cooling to stop the reaction, and the reaction mixture was concentrated. The residue was suspended in pyridine under an argon atmosphere. The reaction mixture was concentrated, and the residue was dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue can be purified by silica gel column chromatography [15: 14: 1 → 15: 0: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel] to obtain the target compound (40).
Fan-type, ball-type and dumbbell-type dendrimer compounds carrying compound (11), compound (26) and compound (35) can also be synthesized in the same manner as in the above method 5.
In addition, synthesis of ether- or amide-extended thiosialo-oligosaccharide-linked dendrimers and deprotection of thiosialoside compounds are described in detail in JP-A-2009-242387 (Patent Document 2), and synthesized according to the method described therein. Went.

6.hNEU2に対する各種デンドリマー化合物の影響について
上記合成例に沿って合成した下記の化合物についてhNEU2阻害活性を測定した。

精製したリコンビナントhNEU2(NCBI Accession No: NM_005383.2)は、合成基質である4MU−NeuAcを用いて酵素活性を測定した。hNEU2の活性は、0.2mM酢酸ナトリウムバッファー(pH6.0)、2μLの50mg/mLBSA、5μLの2mM4MU−NeuAc、20μLの種々の濃度の各種デンドリマー化合物、及び5μLのリコンビナントhNEU2(活性;9.5nmol/30min/5μL)を含む、40μLの反応液中で測定した。反応液を37℃、30分間のインキュベーションの後、770μLのグリシン−NaOH(pH10.7)を、反応を停止させるために添加した。解離した4−メチルウンベリフェロン(4−MU)の蛍光を蛍光スペクトロメーター(励起波長:360nm、蛍光波長:455nm)で測定し、50%阻害(IC50)を示す濃度を決定した。
測定結果を以下の表に示す。

表1から、デンドリマーの形状としてダンベル型>ファン型>>ボール型の順で、阻害活性の傾向が認められた。また、50%阻害する濃度(IC50)については、ダンベル(1)6>ファン(0)3>ボール(0)4の傾向が見出された。さらに、糖鎖とデンドリマー間のリンカーとしては、リンカー無>エーテル伸長型>アミド伸長型の順となっていた。
6). About the influence of various dendrimer compounds with respect to hNEU2 hNEU2 inhibitory activity was measured about the following compound synthesize | combined along the said synthesis example.

The purified recombinant hNEU2 (NCBI Accession No: NM — 005383.2) was measured for enzyme activity using 4MU-NeuAc, which is a synthetic substrate. The activity of hNEU2 was as follows: 0.2 mM sodium acetate buffer (pH 6.0), 2 μL of 50 mg / mL BSA, 5 μL of 2 mM 4MU-NeuAc, 20 μL of various dendrimer compounds at various concentrations, and 5 μL of recombinant hNEU2 (activity; 9.5 nmol) / 30 min / 5 μL) in a 40 μL reaction solution. After incubation of the reaction at 37 ° C. for 30 minutes, 770 μL of glycine-NaOH (pH 10.7) was added to stop the reaction. The fluorescence of the dissociated 4-methylumbelliferone (4-MU) was measured with a fluorescence spectrometer (excitation wavelength: 360 nm, fluorescence wavelength: 455 nm), and the concentration showing 50% inhibition (IC 50 ) was determined.
The measurement results are shown in the following table.

From Table 1, the tendency of the inhibitory activity was recognized in the order of dumbbell type> fan type >> ball type as the dendrimer shape. Further, for the concentration (IC 50 ) that inhibits 50%, a tendency of dumbbell (1) 6> fan (0) 3> ball (0) 4 was found. Furthermore, the linker between the sugar chain and the dendrimer was in the order of no linker> ether extension type> amide extension type.

7.hNEU2に対する各種デンドリマー化合物のケミカルシャペロンとしての効果
上記各種デンドリマー化合物にhNEU2に対する阻害活性が認められたので、次に、ケミカルシャペロンとしての効果の有無について、検討を行った。
hNEU2溶液5μL(活性;9.5nmol/30min/5μL)に対して、各種デンドリマー化合物5μLを、各濃度0.05、0.5、5mMとなるように加え、氷上にて、30分間放置した。30分後、水を10μL添加し、反応溶液を20μLとした。さらに、氷上にて1時間放置後、反応液から16μLを分取してNaive−PAGE(pH8.0)による電気泳動を行い、2μLを酵素活性測定に用いた。
デンドリマー化合物は、ダンベル(1)6−NeuSGal、ダンベル(1)6−エーテル−NeuSGal、ダンベル(1)6−NeuSLac、ダンベル(1)6−エーテル−NeuSLacを用いた(下記を参照のこと)。
7). Effects of various dendrimer compounds on hNEU2 as chemical chaperones Since the above-mentioned various dendrimer compounds were found to have inhibitory activity on hNEU2, next, the presence or absence of effects as chemical chaperones was examined.
To 5 μL of hNEU2 solution (activity: 9.5 nmol / 30 min / 5 μL), 5 μL of various dendrimer compounds were added so as to have respective concentrations of 0.05, 0.5, and 5 mM, and left on ice for 30 minutes. After 30 minutes, 10 μL of water was added to make the reaction solution 20 μL. Further, after being left on ice for 1 hour, 16 μL was taken out from the reaction solution and subjected to electrophoresis using Naive-PAGE (pH 8.0), and 2 μL was used for enzyme activity measurement.
As the dendrimer compound, dumbbell (1) 6-NeuSGal, dumbbell (1) 6-ether-NeuSGal, dumbbell (1) 6-NeuSLac, and dumbbell (1) 6-ether-NeuSLac were used (see below).

酵素活性測定の結果、いずれのデンドリマー化合物においても、化合物の濃度依存的にhNEU2活性が高まることが分かった(図1)。すなわち、デンドリマー化合物の添加濃度の上昇により、インビトロにおけるhNEU2の変性による活性低下が抑制されていることが明かとなった。
また、Native−PAGEの結果、阻害剤濃度5mMにおいてhNEU2のバンドより低分子両側の位置にラダー状のバンドが、また、Running gel上端付近で濃いバンドがそれぞれ観察された(図2)。このように、電気泳動像において、Running gel上端付近で濃いバンドやラダー状のバンドが観察されたことは、hNEU2とデンドリマーが複数の会合様式で結合していることを示している。デンドリマーのhNEU2への結合に基づき、hNEU2の変性による不活性化が抑制されるという安定化効果が認められたと考えられる。
As a result of enzyme activity measurement, it was found that hNEU2 activity increased in any dendrimer compound depending on the concentration of the compound (FIG. 1). That is, it was revealed that the decrease in activity due to the denaturation of hNEU2 in vitro was suppressed by increasing the concentration of the dendrimer compound.
Further, as a result of Native-PAGE, a ladder-like band was observed at positions on both sides of the lower molecule than the hNEU2 band at an inhibitor concentration of 5 mM, and a dark band was observed near the upper end of the Running gel (FIG. 2). Thus, in the electrophoretic image, the observation of a dark band or a ladder-like band near the upper end of the Running gel indicates that hNEU2 and the dendrimer are bound in a plurality of association modes. Based on the binding of the dendrimer to hNEU2, it is considered that a stabilizing effect was observed in which inactivation due to denaturation of hNEU2 was suppressed.

本発明はhNEU2の阻害活性及びケミカルシャペロン活性を有するデンドリマー化合物を含む組成物を提供する。本発明は、hNEU2関連疾患の治療法の開発などに利用することができる。   The present invention provides a composition comprising a dendrimer compound having hNEU2 inhibitory activity and chemical chaperone activity. The present invention can be used for development of therapeutic methods for hNEU2-related diseases.

Claims (7)

次式(I)で表されるチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物、及び薬理学上許容される担体を含む、ヒトノイラミニダーゼ2(hNEU2)の阻害剤。

(式中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよく、R、Rは、同一又は異なった炭化水素基を示し、R、R及びRは酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭化水素鎖を示し、Yはチオシアロオリゴ糖残基若しくは他の置換基であって少なくとも1つはチオシアロオリゴ糖残基を示し、lは0〜2の整数であり、mは0〜2の整数であり、kは0又は1の数を示し、kが0のときは3−mは1である)
An inhibitor of human neuraminidase 2 (hNEU2), comprising a thialoolo-oligosaccharide-bound dendrimer compound represented by the following formula (I) or a pharmacologically acceptable salt thereof or a hydrate thereof, and a pharmacologically acceptable carrier: .

(Wherein E 1 and E 2 are any of carbon, silicon and germanium, and may be the same or different from each other, R 1 and R 2 represent the same or different hydrocarbon groups, and R 3 , R 4 and R 5 represent the same or different hydrocarbon chains that may contain oxygen, nitrogen and / or carbonyl groups, Y is a thiosialogooligosaccharide residue or other substituent, at least one of which is a thiosialogooligosaccharide residue Represents a group, l is an integer of 0 to 2, m is an integer of 0 to 2, k represents a number of 0 or 1, and 3-m is 1 when k is 0)
及びRが同一又は異なる炭素数1〜6のアルキル基、フェニル基、ビニル基、又はアルケニル基である請求項1に記載のhNEU2阻害剤。 The hNEU2 inhibitor according to claim 1, wherein R 1 and R 2 are the same or different alkyl groups having 1 to 6 carbon atoms, phenyl group, vinyl group, or alkenyl group. 、R及びRが同一又は異なり、アミド結合を含んでもよく、炭素数1〜6の直鎖アルキル基、アルキレン基、又はアルケニレン基、又はアルコキシレン基(オキシアルキレン基)である請求項1又は請求項2に記載のhNEU2阻害剤。 R 3 , R 4 and R 5 may be the same or different and may contain an amide bond, and are a linear alkyl group having 1 to 6 carbon atoms, an alkylene group, an alkenylene group, or an alkoxylene group (oxyalkylene group) The hNEU2 inhibitor according to claim 1 or 2. 及びEがケイ素である請求項1乃至請求項3のいずれかに記載のhNEU2阻害剤。 The hNEU2 inhibitor according to any one of claims 1 to 3, wherein E 1 and E 2 are silicon. がフェニル基又はメチル基、Rが−C3H6−、−C3H6−O−C3H6−又は−C3H6C5H8−NHCOC5H10−、Rが−C5H10−、Yが以下の置換基

のずれかである請求項4に記載のhNEU2阻害剤。
R 1 is a phenyl group or a methyl group, R 2 is —C 3 H 6 —, —C 3 H 6 —O—C 3 H 6 — or —C 3 H 6 C 5 H 8 —NHCOC 5 H 10 —, R 4 is —C 5 H 10 —, and Y is the following substituent.

The hNEU2 inhibitor according to claim 4, wherein
請求項1乃至5のいずれかに記載のhNEU2阻害剤を含む、hNEU2に対しケミカルシャペロン効果を示す組成物。   A composition showing a chemical chaperone effect on hNEU2, comprising the hNEU2 inhibitor according to any one of claims 1 to 5. 請求項1乃至5のいずれかに記載のhNEU2阻害剤を含む、hNEU2の機能異常に起因する疾患の治療剤。 A therapeutic agent for a disease caused by an abnormal function of hNEU2, comprising the hNEU2 inhibitor according to any one of claims 1 to 5.
JP2011204020A 2011-09-20 2011-09-20 Human neuraminidase inhibitor or chemical chaperone composition Withdrawn JP2013063933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204020A JP2013063933A (en) 2011-09-20 2011-09-20 Human neuraminidase inhibitor or chemical chaperone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204020A JP2013063933A (en) 2011-09-20 2011-09-20 Human neuraminidase inhibitor or chemical chaperone composition

Publications (1)

Publication Number Publication Date
JP2013063933A true JP2013063933A (en) 2013-04-11

Family

ID=48187803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204020A Withdrawn JP2013063933A (en) 2011-09-20 2011-09-20 Human neuraminidase inhibitor or chemical chaperone composition

Country Status (1)

Country Link
JP (1) JP2013063933A (en)

Similar Documents

Publication Publication Date Title
RU2170738C2 (en) Substituted liposaccharides used for treatment and prophylaxis of endotoxicosis
AU2019204513B2 (en) Treatment of protein aggregation myopathic and neurodegenerative diseases by parenteral administration of trehalose
SG173183A1 (en) Methods of reducing the proliferation and viability of microbial agents
JPS62294432A (en) Ribosome using phosphatide as base and medicine composition
EP2722049A1 (en) A pharmaceutical composition for inhibiting recurrence, aggravation and metastasis of hepatocarcinoma
JP2006257028A (en) Sialyllactosamine-bonded dendrimer compound
US20140065062A1 (en) Halogenated Di and Trisaccharides, Pharmaceutical Formulations, Diagnostic Kits and Methods of Treatment
JP5327839B2 (en) Method for producing sialic acid derivative and its use as an influenza virus inhibitor
US20060128659A1 (en) Sulfotransferase inhibitors
JP2013063933A (en) Human neuraminidase inhibitor or chemical chaperone composition
JP5481731B2 (en) Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof
US20030143265A1 (en) Method for treatment of sepsis
Fang et al. Development of cannabidiol derivatives as potent broad-spectrum antibacterial agents with membrane-disruptive mechanism
EP2289904A1 (en) Inhibitors of microbial infections
AU2016340017A1 (en) Compositions and methods for the treatment of diseases involving mucin
JP5282258B2 (en) Thioglycoside-type sialic acid-bonded dendrimer compounds
US20210401863A1 (en) Treatment and prevention of neisseria gonorrhoeae infection using cmp-activated nonulosonate analog compounds
JP5283033B2 (en) Sialyl α (2 → 6) lactose-containing compound and use thereof
WO2008127298A2 (en) Staphylococcal enterotoxin b peptide compositions and methods of use
JP2021152000A (en) Glucose-binding boron drug
WO1999052922A1 (en) ANTIMICROBIAL βGalNAc(1→4)βGal DERIVATIVES AND METHODS OF USE
CN114948974A (en) Application of heparin pentasaccharide compound in preparation of sepsis medicine
WO1999053930A1 (en) Synthetic glycoamines and methods for their use, alone or in combination with other therapies, that affect cell adhesion, inhibit cancer cell growth and metastasis, and induce apoptosis
JPS61130229A (en) Phagocyte function activator composition
Cighetti Design, synthesis and biological characterization of new small-molecule TLR4 modulators

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202