JP5481731B2 - Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof - Google Patents

Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof Download PDF

Info

Publication number
JP5481731B2
JP5481731B2 JP2009055892A JP2009055892A JP5481731B2 JP 5481731 B2 JP5481731 B2 JP 5481731B2 JP 2009055892 A JP2009055892 A JP 2009055892A JP 2009055892 A JP2009055892 A JP 2009055892A JP 5481731 B2 JP5481731 B2 JP 5481731B2
Authority
JP
Japan
Prior art keywords
mmol
residue
added
concentrated
silica gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009055892A
Other languages
Japanese (ja)
Other versions
JP2009242387A (en
Inventor
純一 坂本
浩司 松岡
大陽 照沼
健 幡野
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University Educational Foundation
Saitama University NUC
Original Assignee
Chubu University Educational Foundation
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University Educational Foundation, Saitama University NUC filed Critical Chubu University Educational Foundation
Priority to JP2009055892A priority Critical patent/JP5481731B2/en
Publication of JP2009242387A publication Critical patent/JP2009242387A/en
Application granted granted Critical
Publication of JP5481731B2 publication Critical patent/JP5481731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、チオシアロオリゴ糖結合デンドリマー化合物及び該デンドリマー化合物を有効成分として含有する医薬に関する。より詳細には、チオシアロオリゴ糖を結合させたデンドリマー化合物であって、インフルエンザノイラミニダーゼ阻害活性を有するデンドリマー化合物、及び該デンドリマー化合物を有効成分として含有する医薬に関する。   The present invention relates to a thialoolo-oligosaccharide-linked dendrimer compound and a medicament containing the dendrimer compound as an active ingredient. More specifically, the present invention relates to a dendrimer compound to which thiosialo-oligosaccharide is bound, a dendrimer compound having influenza neuraminidase inhibitory activity, and a medicament containing the dendrimer compound as an active ingredient.

デンドリマーとは、ギリシャ語の「dendra」(樹木)を語源とする規則正しく分岐した樹状高分子化合物の総称である。デンドリマーによる球状のナノメートルスケールの空間は、様々な官能基を組み込むことで比較的自由にデザイン可能であることから、ナノテクノロジーの分野において、新規デンドリマーのデザインが現在盛んに行われている。
特に、近年、生体機能分野におけるデンドリマーの利用が著しく、生体系における外部刺激に応答するデンドリマー、DDS(薬物送達システム)に利用可能なデンドリマー、分子センサーとして機能し得るデンドリマーなど、多面的にその有効性を生かすべく研究が進んでいる。
Dendrimer is a general term for dendritic polymer compounds that are regularly branched from the Greek word “dendra” (tree). Since a spherical nanometer-scale space by dendrimers can be designed relatively freely by incorporating various functional groups, new dendrimers are being actively designed in the field of nanotechnology.
In particular, in recent years, the use of dendrimers in the field of biological functions has been remarkable, such as dendrimers that respond to external stimuli in biological systems, dendrimers that can be used for DDS (drug delivery systems), dendrimers that can function as molecular sensors, etc. Research is progressing to make use of sex.

なかでも、生体に対する外部環境からの干渉、特に、細菌やウィルスなどの感染に対する有効な防御ツールとしてデンドリマーの利用は、注目を浴びている。
例えば、腸管出血性大腸菌O−157が産生するベロ毒素による生体への攻撃を有効に防御し得るデンドリマーの開発などが行われている。腸管出血性大腸菌O−157が産生するベロ毒素は、赤痢菌由来のシガ毒素と類似した細菌毒素のAB5ファミリーに属するタンパク質である。これらの毒素は、腎臓細胞上のグロボトリオシルセラミド(Gb3、Galα1−4Galβ1−4Glcβ1−Cer)中のグロボ3糖部分を認識し、接着することにより細胞内に取込まれ毒性を示すことが報告されている。
Among them, the use of dendrimers is attracting attention as an effective defense tool against interference from the external environment with respect to living bodies, particularly infection with bacteria and viruses.
For example, development of dendrimers that can effectively protect the body from attack by verotoxin produced by enterohemorrhagic Escherichia coli O-157 has been carried out. Verotoxin produced by enterohemorrhagic E. coli O-157 is a protein belonging to the AB5 family of bacterial toxins similar to Shiga toxin derived from Shigella. These toxins are reported to be toxic by recognizing and adhering to the globotrisaccharide moiety in globotriosylceramide (Gb3, Galα1-4Galβ1-4Glcβ1-Cer) on kidney cells. Has been.

すでに、本発明者らは、当該グロボ3糖を結合したカルボシランデンドリマーをコア骨格とするクラスター化合物を合成し、それに強いベロ毒素阻害活性があることを報告している(非特許文献1及び2、並びに特許文献1及び2参照)。   The present inventors have already synthesized a cluster compound having a carbosilane dendrimer linked with the globotrisaccharide as a core skeleton, and reported that it has strong verotoxin inhibitory activity (Non-patent Documents 1 and 2). And Patent Documents 1 and 2).

また、本発明者らは、各種糖鎖含有カルボシランデンドリマー化合物に関する知見に基づいて(非特許文献3参照)、インフルエンザウィルス等のウィルス表面に存在するヘマグルチニンを特異的に接着し、生体に対するウィルス感染を防止し得る物質として、シアリルラクトース含有デンドリマーを開示した(特許文献2参照)。さらに、生体内における適合性および安全性に優れたアミド結合を介して糖鎖を結合するデンドリマーの開示も行っている(特許文献3参照)。
インフルエンザウィルスによる感染には、宿主細胞に対する接着と脱離が重要であるが、この過程には、各々、ヘマグルチニンとノイラミニダーゼ(シアリダーゼ)という2種類のタンパク質が関与している。特に、ノイラミニダーゼはインフルエンザウィルスが、感染した細胞から脱離する上で必須の酵素である。従って、ノイラミニダーゼの活性を有効に阻害することができれば、インフルエンザウィルスによる他の細胞への感染を抑えることができるため、インフルエンザウィルス感染症の治療に応用することができる。
医薬品としてはすでに、インフルエンザ膜タンパク質のイオンチャンネル阻害剤(シンメトレルR(アマンタジン))やシアリダーゼの阻害剤(タミフルR(リン酸オセルタミビル)とリレンザR(ザナミビル))が、インフルエンザの特効薬として処方されている。しかしながら、これらの特効薬の有効成分は何れも天然物ではないため、その耐性ウィルスの出現が危惧されており、近年、シンメトレルRやタミフルRに対する耐性ウィルスが出現したとの報告もある。
In addition, the present inventors have specifically adhered hemagglutinin present on the surface of viruses such as influenza viruses based on the knowledge about various sugar chain-containing carbosilane dendrimer compounds (see Non-Patent Document 3), and virus infection to living bodies. A sialyl lactose-containing dendrimer has been disclosed as a substance capable of preventing (see Patent Document 2). Furthermore, the dendrimer which couple | bonds a sugar chain via the amide bond excellent in the compatibility and safety | security in the living body is also disclosed (refer patent document 3).
Adhesion and detachment from host cells are important for influenza virus infection, and this process involves two types of proteins, hemagglutinin and neuraminidase (sialidase), respectively. In particular, neuraminidase is an essential enzyme for influenza virus to detach from infected cells. Therefore, if the neuraminidase activity can be effectively inhibited, infection of other cells with influenza virus can be suppressed, and therefore, it can be applied to the treatment of influenza virus infection.
Influenza membrane protein ion channel inhibitors (Symmetrel R (amantadine)) and sialidase inhibitors (Tamiflu R (oseltamivir phosphate) and Relenza R (zanamivir)) have already been prescribed as specific medicines for influenza. . However, since the active ingredients of these specific drugs are not natural products, the emergence of resistant viruses is feared, and in recent years, there are reports that resistant viruses against simmetrel R and Tamiflu R have emerged.

Matsuokaら,Tetrahedron Letters 40:7839-7842 1999Matsuoka et al., Tetrahedron Letters 40: 7839-7842 1999. Nishikawaら,Proc.Natl.Acad.Sci., USA.99:7669-7674 2002Nishikawa et al., Proc. Natl. Acad. Sci. USA. 99: 7669-7664 2002 Matsuokaら,Bull.Chem.Soc.Jpn.,71:2709-2713 1998Matsuoka et al., Bull. Chem. Soc. Jpn. 71: 2709-2713 1998 特開2004−107230JP 2004-107230 A 国際公開公報WO02/02588International Publication WO02 / 02588 特開2003−212893JP2003-212893

本発明の目的は、インフルエンザウィルスのノイラミニダーゼ活性を有効に阻害し、インフルエンザウィルス感染症の治療薬の有効成分となるデンドリマー化合物の提供を目的とする。
さらに、本発明は、該デンドリマー化合物を有効成分として含有する医薬の提供を目的とする。
An object of the present invention is to provide a dendrimer compound that effectively inhibits the neuraminidase activity of influenza virus and becomes an active ingredient of a therapeutic agent for influenza virus infection.
Furthermore, this invention aims at provision of the pharmaceutical which contains this dendrimer compound as an active ingredient.

本発明者らは、上記事情に鑑み、耐性ウィルスに対しても治療効果を保持することができる、インフルエンザウィルス感染症の治療薬の開発を目的に、鋭意研究を行った結果、チオグリコシド結合型のシアル酸のオリゴ糖を結合させたデンドリマーがインフルエンザウィルスのノイラミニダーゼ活性を有効に阻害し得ることを見出し、本発明を完成させるに至った。
インフルエンザのノイラミニダーゼ阻害物として、加水分解の過程で生じる基質の遷移状態アナログが有効であると考えられている。シアル酸誘導体は、この遷移状態アナログとしてインフルエンザのノイラミニダーゼの活性中心に結合し、その活性の阻害に有効であることが報告されている。抗インフルエンザ薬として市販されているタミフルR(リン酸オセルタミビル)は、このような機構に着目して開発されたものである。しかしながら、タミフルR(リン酸オセルタミビル)の有効部位であるシアル酸類似体は天然のものではないため、耐性ウィルスが出現する可能性があり、前述の通り、現に、タミフルR(リン酸オセルタミビル)耐性ウィルスが出現したとの報告もある。
発明者らは、耐性ウィルスの出現を回避し、かつ、インフルエンザノイラミニダーゼ阻害活性の高い化合物の創出を目的として、チオグリコシド結合型のシアル酸のオリゴ糖を結合させたデンドリマーの合成を行った。
In view of the above circumstances, the present inventors have conducted extensive research for the purpose of developing a therapeutic agent for influenza virus infection that can retain a therapeutic effect against resistant viruses. The present inventors have found that a dendrimer conjugated with an oligosaccharide of sialic acid can effectively inhibit the neuraminidase activity of influenza virus, and completed the present invention.
As an influenza neuraminidase inhibitor, it is considered that a transition state analog of a substrate generated during hydrolysis is effective. It has been reported that sialic acid derivatives bind to the active center of influenza neuraminidase as a transition state analog and are effective in inhibiting the activity. Tamiflu R (oseltamivir phosphate), marketed as an anti-influenza drug, was developed with a focus on such a mechanism. However, since the sialic acid analog that is the effective site of Tamiflu R (oseltamivir phosphate) is not natural, a resistant virus may appear. As mentioned above, it is actually resistant to Tamiflu R (oseltamivir phosphate). There is also a report that a virus has appeared.
The inventors synthesized a dendrimer conjugated with a thioglycoside-linked sialic acid oligosaccharide for the purpose of avoiding the emergence of resistant viruses and creating a compound with high influenza neuraminidase inhibitory activity.

すなわち、本発明は、次式(I)

Figure 0005481731

(式中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよく、R、Rは、同一又は異なった炭化水素基を示し、R、R及びRは酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭化水素鎖を示し、Yはチオシアロオリゴ糖残基若しくは他の置換基であって少なくとも1つはチオシアロオリゴ糖残基を示し、lは0〜2の整数であり、mは0〜2の整数であり、kは0又は1の数を示し、kが0のときは3−mは1である)で表されるチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物、並びにこれらのチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物の他、薬理学上許容される担体を含む医薬である。 That is, the present invention provides the following formula (I)
Figure 0005481731

(Wherein E 1 and E 2 are any of carbon, silicon and germanium, and may be the same or different from each other, R 1 and R 2 represent the same or different hydrocarbon groups, and R 3 , R 4 and R 5 represent the same or different hydrocarbon chains that may contain oxygen, nitrogen and / or carbonyl groups, Y is a thiosialogooligosaccharide residue or other substituent, at least one of which is a thiosialogooligosaccharide residue And 1 is an integer of 0 to 2, m is an integer of 0 to 2, k is a number of 0 or 1, and 3-k is 1 when k is 0). Thiosialogooligosaccharide-bonded dendrimer compounds or pharmacologically acceptable salts thereof or hydrates thereof, as well as these thiosialogooligosaccharide-bonded dendrimer compounds or pharmacologically acceptable salts thereof or hydrates thereof. A medicament containing a pharmacologically acceptable carrier.

本発明のチオシアロオリゴ糖結合デンドリマー化合物は、インフルエンザノイラミニダーゼの活性を有効に阻害する。また、耐性ウィルスの出現を低率に抑える効果も期待できる。   The thiosialo-oligosaccharide-linked dendrimer compound of the present invention effectively inhibits the activity of influenza neuraminidase. In addition, an effect of suppressing the emergence of resistant virus at a low rate can be expected.

式(I)中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよいが、炭素又はケイ素が好ましく、ケイ素が最も好ましい。 In formula (I), E 1 and E 2 are any of carbon, silicon, and germanium, and may be the same or different from each other, but carbon or silicon is preferable, and silicon is most preferable.

及びRは、同一又は異なった炭化水素基を示すが、炭素数3〜6のアルキル基、フェニル基、ビニル基、及びアリル基のいずれかが好ましく、このうち炭素数3〜4のアルキル基又はフェニル基がより好ましい。 R 1 and R 2 represent the same or different hydrocarbon groups, but any of an alkyl group having 3 to 6 carbon atoms, a phenyl group, a vinyl group, and an allyl group is preferable, and among them, the carbon number is 3 to 4 An alkyl group or a phenyl group is more preferable.

、R及びRは、酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭化水素基を示すが、炭素数3〜12のアルキル基、アルキレン基、アルケニレン基及びアルコキシレン基(オキシアルキレン基)のいずれかが好ましく、このうち炭素数3〜6のアルキレン基がより好ましい。 R 3 , R 4 and R 5 represent the same or different hydrocarbon group which may contain oxygen, nitrogen and / or carbonyl group, but an alkyl group, alkylene group, alkenylene group and alkoxylene having 3 to 12 carbon atoms. Any of the groups (oxyalkylene groups) is preferable, and among these, an alkylene group having 3 to 6 carbon atoms is more preferable.

Yの少なくとも1つは、非還元末端にチオグリコシド型のシアル酸を有する1糖〜3糖を示す。シアル酸としては、NeuAc(N−アセチルノイラミン酸:N−acetylneuraminic acid、Neu5Ac)又は、NeuGc(N−グリコリルノイラミン酸:N−glycolylneuraminic acid、Neu5Gc)が利用可能であるが、NeuAc(N−アセチルノイラミン酸)残基が好ましい。また、シアル酸に結合する糖としては、1〜3糖が好ましく、当業者において周知の糖であれば如何なるものであっても使用することができ、限定はしないが、例えば、ガラクトース、グルコース、ラクトース、セロビオースなどが好適に使用可能である。Yとデンドリマー骨格との結合は、グリコシド結合又はチオグリコシド結合であり、特に、チオグリコシド結合が好ましい。従って、Yは、例えば、以下の置換基となる。

Figure 0005481731

また、本発明のデンドリマーにおいては、1分子中の全てのYの位置が上記置換基のいずれかであることが望ましいが、必ずしも、全てのYが上記置換基である必要はなく、例えば、水素、C=C二重結合、水酸基などであってもよく、当該技術分野における通常の合成方法により、チオシアロオリゴ糖以外にYの位置に結合し得ると当業者によって予測され得る置換基の如何なるものであってもよい。 At least one of Y represents a monosaccharide to a trisaccharide having a thioglycoside type sialic acid at a non-reducing end. As sialic acid, NeuAc (N-acetylneuraminic acid: Neu5Ac) or NeuGc (N-glycolylneuraminic acid: Neu5Gc) can be used, but NeuAc (NeuAcN -Acetylneuraminic acid) residue is preferred. Moreover, as sugars couple | bonded with sialic acid, 1-3 sugars are preferable, and what kind of sugar is well-known to those skilled in the art can be used, but it is not limited, For example, galactose, glucose, Lactose, cellobiose and the like can be suitably used. The bond between Y and the dendrimer skeleton is a glycosidic bond or a thioglycoside bond, and a thioglycoside bond is particularly preferable. Therefore, Y becomes the following substituents, for example.
Figure 0005481731

Further, in the dendrimer of the present invention, it is desirable that all Y positions in one molecule are any of the above substituents, but not all Y need necessarily be the above substituents. , C = C double bond, hydroxyl group and the like, and any substituent that can be predicted by those skilled in the art to be able to bind to the Y position in addition to thiosialoglygosaccharides by a usual synthesis method in the art. There may be.

式(I)のチオシアロオリゴ糖結合デンドリマー化合物の構造は、k、l、mの組み合わせに応じて種々の構造を取り得るが代表的な化学式は下記のようになる。

Figure 0005481731

(式Ia、Ib、Ic及びId中、E及びEは、炭素、ケイ素、ゲルマニウムのいずれかであり、互いに同一でも異なっていてもよく、Rは、炭化水素基を示し、R、R及びRは酸素又は窒素あるいはカルボニル基を含んでもよい同一又は異なった炭化水素鎖を示し、Yはチオシアロオリゴ糖残基若しくは他の置換基であって少なくとも1つはチオシアロオリゴ糖残基を示す) The structure of the thiosialogooligosaccharide-bonded dendrimer compound of formula (I) can take various structures depending on the combination of k, l, and m, but typical chemical formulas are as follows.
Figure 0005481731

(In Formulas Ia, Ib, Ic and Id, E 1 and E 2 are any of carbon, silicon and germanium, and may be the same or different from each other, R 1 represents a hydrocarbon group, and R 3 , R 4 and R 5 represent the same or different hydrocarbon chain which may contain oxygen or nitrogen or a carbonyl group, Y is a thiosialogooligosaccharide residue or other substituent and at least one is a thiosialogooligosaccharide residue Show)

本発明の式(I)の化合物は、例えば、次の反応式に従って製造することができる。

Figure 0005481731

(上記式中、Xはハロゲン原子、Xは反応脱離性の保護基を示し、Yは、チオシアロオリゴ糖である)
本発明の式(I)の化合物は、式(III)で表されるハロゲン化デンドリマーと式(IV)で表されるスルフィド化合物とを反応させ、必要に応じて、スルフィド化合物中のチオシアロオリゴ糖残基の保護基を脱離させることにより本発明の式(I)の化合物を製造できる。 The compound of the formula (I) of the present invention can be produced, for example, according to the following reaction formula.
Figure 0005481731

(In the above formula, X 1 represents a halogen atom, X 2 represents a reaction-eliminating protecting group, and Y is a thiosialo-oligosaccharide)
The compound of the formula (I) of the present invention reacts the halogenated dendrimer represented by the formula (III) with the sulfide compound represented by the formula (IV), and if necessary, the thiosialo-oligosaccharide residue in the sulfide compound. The compound of formula (I) of the present invention can be produced by removing the protecting group.

式(IV)の化合物の製造方法の例として、化合物(36)の製造方法を後述の実施例中に示す。他のチオシアロオリゴ糖のチオアセテート誘導体を製造する場合にも、同様な方法により製造することができる。
また、ハロゲン化デンドリマーは、例えば、次のようにして製造することができる。
Fan(0)3−Brを例にすると、既知化合物のトリオール(トリス(3−ヒドロキシプロピル)フェニルシラン)に脱離基としてメシル基を導入し、臭素アニオンによる求核置換反応を行うことで調製できる(この反応については、例えば、Matsuokaら,Biomacromolecules 7,pp.2274−2283,2006、などを参照のこと)。また、他の構造を持つハロゲン化デンドリマーについても同様に製造することができる。
式(III)の化合物と式(IV)の化合物の反応は、例えばナトリウムメトキシド等の塩基の存在下で行うことができる。また、Yの保護基の脱離は例えばナトリウムメトキシド等の塩基を用いた加水分解により行うことができる。
As an example of the method for producing the compound of the formula (IV), the method for producing the compound (36) is shown in the Examples described later. In the case of producing thioacetate derivatives of other thiosialogooligosaccharides, they can be produced by the same method.
The halogenated dendrimer can be produced, for example, as follows.
Taking Fan (0) 3-Br as an example, it is prepared by introducing a mesyl group as a leaving group into a known compound triol (tris (3-hydroxypropyl) phenylsilane) and performing a nucleophilic substitution reaction with a bromine anion. (See, for example, Matsuoka et al., Biomacromolecules 7, pp. 2274-2283, 2006, etc. for this reaction). Moreover, it can manufacture similarly about the halogenated dendrimer which has another structure.
The reaction of the compound of formula (III) and the compound of formula (IV) can be carried out in the presence of a base such as sodium methoxide. The removal of the protecting group for Y can be carried out by hydrolysis using a base such as sodium methoxide.

得られた本発明の式(I)の化合物は、洗浄、各種クロマトグラフィー、ゲル濾過等により精製することができる。     The obtained compound of the formula (I) of the present invention can be purified by washing, various chromatography, gel filtration and the like.

本発明の化合物は、生体に対して悪影響を及ぼさない医薬組成物の形態で医薬として、用いることができる。
上記医薬組成物は、一般式(I)で表されるチオシアロオリゴ糖結合デンドリマー化合物、その薬理学上許容される塩又はそれらの水和物のうち、1又は複数の種類を含有してもよい。
通常、医薬組成物には、本発明の化合物の他、薬理学上許容される担体が含まれる。
「薬理学上許容される担体」は、溶媒、分散媒、コーティング剤、抗菌及び抗真菌剤、アイソトニックに作用して吸着を遅らせる薬剤及びその類似物を含み、薬剤的投与に適するもののことである。該担体及び該担体を希釈するために好ましいものの例には、限定はしないが、水、生理食塩水、フィンガー溶液、デキストロース溶液、及びヒト血清アルブミンなどが含まれる。また、リポソーム及び不揮発性油などの非水溶性媒体も用いられる。さらに、本発明の化合物の活性を保護又は促進するような特定の化合物が、該組成物中に包含されていてもよい。
The compound of the present invention can be used as a medicament in the form of a pharmaceutical composition that does not adversely affect the living body.
The pharmaceutical composition may contain one or a plurality of types among the thiosialo-oligosaccharide-bound dendrimer compound represented by the general formula (I), a pharmacologically acceptable salt thereof, or a hydrate thereof.
Usually, the pharmaceutical composition includes a pharmacologically acceptable carrier in addition to the compound of the present invention.
“Pharmaceutically acceptable carrier” refers to those suitable for pharmaceutical administration, including solvents, dispersion media, coating agents, antibacterial and antifungal agents, agents that act isotonically to delay adsorption and the like. . Examples of such carriers and those preferred for diluting the carriers include, but are not limited to, water, saline, finger solutions, dextrose solutions, and human serum albumin. Non-aqueous media such as liposomes and non-volatile oils are also used. In addition, certain compounds that protect or promote the activity of the compounds of the present invention may be included in the composition.

本発明の医薬は、静脈内、皮内、皮下、経口(例えば、吸入なども含む)、経皮及び経粘膜への投与を含み、治療上適切な投与経路に適合するように製剤化される。非経口、皮内、又は皮下への適用に使用される溶液又は懸濁液には、限定はしないが、注射用の水などの滅菌的希釈液、生理食塩水溶液、不揮発性油、ポリエチレングリコール、グリセリン、プロピレングリコール、又は他の合成溶媒、ベンジルアルコール又は他のメチルパラベンなどの保存剤、アスコルビン酸又は亜硫酸水素ナトリウムなどの抗酸化剤、塩化ベンザルコニウム、塩酸プロカインなどの無痛化剤、エチレンジアミンテトラ酢酸(EDTA)などのキレート剤、酢酸塩、クエン酸塩、又はリン酸塩などの緩衝剤、塩化ナトリウム又はデキストロースなど浸透圧調製のための薬剤を含んでもよい。
pHは塩酸又は水酸化ナトリウムなどの酸又は塩基で調製することができる。非経口的標品はアンプル、ガラスもしくはプラスチック製の使い捨てシリンジ又は複数回投与用バイアル中に収納される。
The medicament of the present invention includes intravenous, intradermal, subcutaneous, oral (including inhalation, etc.), transdermal and transmucosal administration, and is formulated to be suitable for a therapeutically appropriate route of administration. . Solutions or suspensions used for parenteral, intradermal, or subcutaneous application include, but are not limited to, sterile diluents such as water for injection, saline solutions, non-volatile oils, polyethylene glycols, Glycerin, propylene glycol, or other synthetic solvents, benzyl alcohol or other preservatives such as methylparaben, antioxidants such as ascorbic acid or sodium bisulfite, soothing agents such as benzalkonium chloride, procaine hydrochloride, ethylenediaminetetraacetic acid Chelating agents such as (EDTA), buffering agents such as acetate, citrate, or phosphate, and agents for osmotic pressure adjustment such as sodium chloride or dextrose.
The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. Parenteral preparations are contained in ampoules, glass or plastic disposable syringes or multiple dose vials.

注射に適する医薬組成物には、滅菌された注射可能な溶液又は分散媒を、使用時に調製するための滅菌水溶液(水溶性の)又は分散媒及び滅菌されたパウダーが含まれる。静脈内の投与に関し、適切な担体には生理食塩水、静菌水、又はリン酸緩衝化生理食塩水(PBS)が含まれる。注射剤として使用する場合、組成物は滅菌的でなくてはならず、また、シリンジを用いて投与されるために十分な流動性を保持していなくてはならない。該組成物は、調剤及び保存の間、化学変化及び腐食等に対して安定でなくてはならず、細菌及び真菌などの微生物由来のコンタミネーションを防止する必要がある。担体は、例えば、水、エタノール、ポリオール(グリセロール、プロピレングリコール、及び液体ポリエチレングリコールなど)、及び適切な混合物を含む溶媒又は分散媒培地を使用することができる。例えば、レクチンなどのコーティング剤を用い、分散媒においては必要とされる粒子サイズを維持し、界面活性剤を用いることにより適度な流動性が維持される。種々の抗菌剤及び抗真菌剤、例えば、パラベン、クロロブタノール、フェノール、アスコルビン酸、及びチメロサールなどは、微生物のコンタミネーションの防止に対して使用可能である。また、糖、マンニトール、ソルビトールなどのポリアルコール及び塩化ナトリウムのような等張性を保つ薬剤が組成物中に含まれてもよい。吸着を遅らせることができる組成物には、モノステアリン酸アルミニウム及びゼラチンなどの薬剤が含まれる。   Pharmaceutical compositions suitable for injection include sterile aqueous solutions (water soluble) or dispersion media and sterile powders for the preparation of sterile injectable solutions or dispersion media at the time of use. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, or phosphate buffered saline (PBS). When used as an injection, the composition must be sterile and must be fluid enough to be administered with a syringe. The composition must be stable to chemical changes, corrosion, and the like during formulation and storage, and must prevent contamination from microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures. For example, using a coating agent such as lectin, maintaining a required particle size in the dispersion medium, and maintaining a proper fluidity by using a surfactant. Various antibacterial and antifungal agents, such as parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal can be used to prevent microbial contamination. In addition, polyalcohols such as sugar, mannitol, sorbitol, and agents that maintain isotonicity such as sodium chloride may be included in the composition. Compositions that can delay adsorption include agents such as aluminum monostearate and gelatin.

滅菌的な注射可能溶液は、必要な成分を単独で、又は他の成分と組み合わせた後に、適切な溶媒中に必要量の活性化合物を加え、滅菌することで調製される。一般に、分散媒は、基本的な分散培地及び上述したその他の必要成分を含む滅菌的媒体中に活性化合物を取り込むことにより調製される。滅菌的な注射可能な溶液を調製するための滅菌的パウダーの調製方法には、活性な成分及び滅菌溶液に由来する何れかの所望な成分を含むパウダーを調製する真空乾燥及び凍結乾燥が含まれる。   Sterile injectable solutions are prepared by adding the required ingredients alone or in combination with other ingredients to the required amount of the active compound in a suitable solvent and sterilizing. Generally, a dispersion medium is prepared by incorporating the active compound into a sterile medium that contains a basic dispersion medium and the other necessary ingredients described above. Methods for preparing a sterile powder for preparing a sterile injectable solution include vacuum drying and lyophilization to prepare a powder containing the active ingredient and any desired ingredients derived from the sterile solution. .

経口組成物には、不活性な希釈剤又は体内に取り込んでも害を及ぼさない担体が含まれる。経口組成物には、例えば、ゼラチンのカプセル剤に包含されるか、加圧されて錠剤化される。経口的治療のためには、活性化合物は賦形剤と共に取り込まれ、錠剤、トローチ又はカプセル剤の形態で使用される。また、経口組成物は、流動性担体を用いて調製することも可能であり、流動性担体中の該組成物は経口的に適用される。さらに、薬剤的に適合する結合剤、及び/又はアジュバント物質などが包含されてもよい。
錠剤、丸薬、カプセル剤、トローチ及びその類似物は以下の成分又は類似の性質を持つ化合物の何れかを含み得る:微結晶性セルロースのような賦形剤、アラビアゴム、トラガント又はゼラチンなどの結合剤;アルギン酸、PRIMOGEL、又はコーンスターチなどの膨化剤;ステアリン酸マグネシウム又はSTRROTESなどの潤滑剤;コロイド性シリコン二酸化物などの滑剤;スクロース又はサッカリンなどの甘味剤;又はペパーミント、メチルサリチル酸又はオレンジフレイバーなどの香料添加剤。
Oral compositions include inert diluents or carriers that are not harmful when incorporated into the body. Oral compositions are, for example, contained in gelatin capsules or compressed into tablets. For oral treatment, the active compound is incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a flowable carrier, and the composition in the flowable carrier is applied orally. In addition, pharmaceutically compatible binding agents, and / or adjuvant materials may be included.
Tablets, pills, capsules, troches and the like may contain any of the following components or compounds with similar properties: excipients such as microcrystalline cellulose, binding such as gum arabic, tragacanth or gelatin Agents; bulking agents such as alginic acid, PRIMOGEL, or corn starch; lubricants such as magnesium stearate or STRROTES; lubricants such as colloidal silicon dioxide; sweeteners such as sucrose or saccharin; or peppermint, methyl salicylic acid or orange flavor Perfume additive.

本発明の化合物は、植込錠及びマイクロカプセルに封入された送達システムなどの徐放性製剤として、体内から即時に除去されることを防ぎ得る担体を用いて調製することができる。エチレンビニル酢酸塩、ポリ酸無水物、ポリグリコール酸、コラーゲン、ポリオルトエステル、及びポリ乳酸などの、生物分解性、生物適合性ポリマーを用いることができる。このような材料は、当業者によって容易に調製することができる。また、リポソームの懸濁液も薬剤的に受容可能な担体として使用することができる。有用なリポソームは、限定はしないが、ホスファチジルコリン、コレステロール及びPEG誘導ホスファチジルエタノール(PEG−PE)を含む脂質組成物として、使用に適するサイズになるように、適当なポアサイズのフィルターを通して調製され、逆相蒸発法によって精製される。   The compounds of the present invention can be prepared as sustained release formulations such as delivery systems encapsulated in implantable tablets and microcapsules using a carrier that can prevent immediate removal from the body. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Such materials can be readily prepared by those skilled in the art. Liposome suspensions can also be used as pharmaceutically acceptable carriers. Useful liposomes are prepared as a lipid composition comprising, but not limited to, phosphatidylcholine, cholesterol and PEG-derived phosphatidylethanol (PEG-PE), through a filter of appropriate pore size so as to be of a size suitable for use. Purified by evaporation.

本発明の化合物によるウィルス感染症の治療又は予防において、適切な投与量レベルは、投与される患者の状態、投与方法等に依存するが、当業者であれば、容易に最適化することが可能である。
注射投与の場合は、例えば、一日に患者の体重あたり約0.1μg/kgから約500mg/kgを投与するのが好ましく、一般に一回又は複数回に分けて投与され得るであろう。好ましくは、投与量レベルは、一日に約0.1μg/kgから約250mg/kgであり、より好ましくは一日に約0.5〜約100mg/kgである。
経口投与の場合は、組成物は、好ましくは1.0から1000mgの活性成分を含む錠剤の形態で提供され、好ましくは活性成分が1.0,5.0,10.0,15.0,20.0,25.0,50.0,75.0,100.0,150.0,200.0,250.0,300.0,400.0,500.0,600.0,750.0,800.0,900.0及び1000.0mgである。化合物は一日に1〜4回の投与計画で、好ましくは一日に一回又は二回投与される。
In treating or preventing viral infections with the compounds of the present invention, the appropriate dosage level depends on the condition of the patient to be administered, the method of administration, etc., but can be easily optimized by those skilled in the art. It is.
In the case of injection administration, for example, it is preferable to administer about 0.1 μg / kg to about 500 mg / kg of the patient's body weight per day, and it will generally be possible to administer a single dose or divided into multiple doses. Preferably, the dosage level is about 0.1 μg / kg to about 250 mg / kg per day, more preferably about 0.5 to about 100 mg / kg per day.
For oral administration, the composition is preferably provided in the form of a tablet containing 1.0 to 1000 mg of active ingredient, preferably 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750. 0, 800.0, 900.0 and 1000.0 mg. The compounds are administered on a regimen of 1 to 4 times daily, preferably once or twice daily.

医薬組成物又は製剤は、一定の投与量を保障すべく、均一単位投与量により構成されなくてはならない。単位投与量は、患者の治療に有効な一回の投与量を含み、薬剤的に受容可能な担体と共に製剤化された一単位のことである。本発明の単位投与量を決定する場合には、製剤化される化合物の物理的、化学的特徴、期待される治療上の効果、及び該化合物に特有な留意事項等が考慮される。   A pharmaceutical composition or formulation must consist of uniform unit doses to ensure a constant dose. A unit dose is a unit formulated with a pharmaceutically acceptable carrier, including a single dose effective for treating a patient. When determining the unit dosage of the present invention, physical and chemical characteristics of the compound to be formulated, expected therapeutic effects, considerations specific to the compound, and the like are considered.

本発明の医薬組成物はキットの形態で、容器、パック中に投与の説明書と共に含めることができる。本発明に係る薬剤組成物がキットとして供給される場合、該薬剤組成物のうち異なる構成成分が別々の容器中に包装され、使用直前に混合される。このように構成成分を別々に包装するのは、活性構成成分の機能を失うことなく長期間の貯蔵を可能にするためである。   The pharmaceutical composition of the present invention can be included in the form of a kit in a container or pack together with instructions for administration. When the pharmaceutical composition according to the present invention is supplied as a kit, different constituents of the pharmaceutical composition are packaged in separate containers and mixed immediately before use. The reason why the components are packaged separately in this way is to enable long-term storage without losing the function of the active component.

キット中に含まれる試薬は、構成成分が活性を長期間有効に持続し、容器の材質によって吸着されず、変質を受けないような何れかの種類の容器中に供給される。例えば、封着されたガラスアンプルは、窒素ガスのような中性で不反応性ガスの下において包装されたバッファーを含む。アンプルは、ガラス、ポリカーボネート、ポリスチレンなどの有機ポリマー、セラミック、金属、又は試薬を保持するために通常用いられる他の何れかの適切な材料などから構成される。他の適切な容器の例には、アンプルなどの類似物質から作られる簡単なボトル、及び内部がアルミニウム又は合金などのホイルで裏打ちされた包装材が含まれる。他の容器には、試験管、バイアル、フラスコ、ボトル、シリンジ、又はその類似物が含まれる。容器は、皮下用注射針で貫通可能なストッパーを有するボトルなどの無菌のアクセスポートを有する。   Reagents contained in the kit are supplied in any type of container in which the components remain active for an extended period of time, are not adsorbed by the container material, and are not subject to alteration. For example, a sealed glass ampoule includes a buffer packaged under a neutral and non-reactive gas such as nitrogen gas. Ampoules are composed of glass, polycarbonate, organic polymers such as polystyrene, ceramics, metals, or any other suitable material commonly used to hold reagents. Examples of other suitable containers include simple bottles made from similar materials such as ampoules, and packaging materials that are internally lined with foil such as aluminum or an alloy. Other containers include test tubes, vials, flasks, bottles, syringes, or the like. The container has a sterile access port such as a bottle having a stopper that can be penetrated by a hypodermic needle.

また、キットには使用説明書も添付される。当該医薬組成物からな成るキットの使用説明は、紙又は他の材質上に印刷され、及び/又はフロッピー(登録商標)ディスク、CD−ROM、DVD−ROM、Zipディスク、ビデオテープ、オーディオテープなどの電気的又は電磁的に読み取り可能な媒体として供給されてもよい。詳細な使用説明は、キット内に実際に添付されていてもよく、あるいは、キットの製造者又は分配者によって指定され又は電子メール等で通知されるウェブサイトに掲載されていてもよい。   The kit also includes instructions for use. Instructions for using the kit comprising the pharmaceutical composition are printed on paper or other material and / or floppy disk, CD-ROM, DVD-ROM, Zip disk, video tape, audio tape, etc. It may be supplied as an electrically or electromagnetically readable medium. Detailed instructions for use may be actually attached to the kit, or may be posted on a website designated by the manufacturer or distributor of the kit or notified by e-mail or the like.

さらに、本発明には、ウィルス感染、特に、インフルエンザウィルスに感染した、又は感染する危険性のある哺乳動物の該感染症に関する予防又は治療方法も含まれる。
ここで「治療」とは、ウィルスに感染するおそれがあるか又は感染した哺乳動物において、該感染症の病態の進行を阻止又は緩和することを意味し、治療的処置のみならず予防的処置をも含む広い意味として使用される。
治療の対象となる「哺乳動物」は、哺乳類に分類される任意の動物を意味し、特に限定はしないが、例えば、ヒトの他、イヌ、ネコなどのペット動物、ウシ、ブタ、ヒツジ、ウマなどの家畜動物などのことである。特に好ましい「哺乳動物」は、ヒトである。
Furthermore, the present invention also includes a method for preventing or treating viral infections, particularly mammals infected with or at risk of infection with influenza viruses.
Here, “treatment” means to prevent or alleviate the progression of the pathology of the infectious disease in a mammal that is likely to be infected with a virus or is infected. It is used as a broad meaning including.
The “mammal” to be treated means any animal classified as a mammal, and is not particularly limited. For example, in addition to humans, pet animals such as dogs and cats, cows, pigs, sheep, horses It is a domestic animal. Particularly preferred “mammals” are humans.

以下に実施例を示すが、本発明はこれに限定されるものではない。   Examples are shown below, but the present invention is not limited thereto.

〔合成例1〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(6)の合成
化合物(6)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 1 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Pyranosilonate)-(2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (6) is synthesized as shown in the following scheme (6). Was synthesized.
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−β−D−グルコピラノシド(2)の合成
アルゴン雰囲気下、既知のペンテニルグルコシド(1)(2.00g,8.06mmol)をピリジン(25mL)に溶解させ、氷冷下でTBDMSCl(2.19g,14.53mmol)を加え、氷冷のまま1時間撹拌した。その後、無水酢酸(6.9mL,73.12mmol)を加え、室温で2時間攪拌した。氷冷下でメタノール(10mL)を加えた後、反応液を濃縮した。残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル225mL]で精製し、目的物(2)(3.63g,92.1%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-Ot-butyldimethylsilyl-β-D-glucopyranoside (2) Under an argon atmosphere, the known pentenyl glucoside (1) (2.00 g , 8.06 mmol) was dissolved in pyridine (25 mL), TBDMSCl (2.19 g, 14.53 mmol) was added under ice cooling, and the mixture was stirred for 1 hour with ice cooling. Then, acetic anhydride (6.9 mL, 73.12 mmol) was added and stirred at room temperature for 2 hours. Methanol (10 mL) was added under ice cooling, and then the reaction solution was concentrated. The residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel 225 mL] to obtain the desired product (2) (3.63 g, 92.1%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−β−D−グルコピラノシド(3)の合成
完全保護グルコシド(2)(2.98g,6.10mmol)を酢酸(24mL)に溶解させ、水(6mL)を加え、50℃で2時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[2:1(v/v)ヘキサン−酢酸エチル,シリカゲル180mL]で精製し、目的物(3)(2.24g,98.2%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-β-D-glucopyranoside (3) Fully protected glucoside (2) (2.98 g, 6.10 mmol) was dissolved in acetic acid (24 mL) and water (6 mL) was added and it stirred at 50 degreeC for 2 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography [2: 1 (v / v) hexane-ethyl acetate, silica gel 180 mL] to obtain the desired product (3) (2.24 g, 98.2%). .
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシド(4)の合成
アルゴン雰囲気下、アルコール(3)(200mg,0.534mmol)をピリジン (3mL)に溶解させ、氷冷下でトリフェニルホスフィン(210mg,0.801mmol)及び四臭化炭素(266mg,0.802mmol)を順に加え、45℃で15分撹拌した。氷冷下、メタノール(3mL)を加えて、反応を停止させ、反応液を濃縮した。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[5:2(v/v)ヘキサン−酢酸エチル,シリカゲル25mL]で精製し、目的物(4)(224mg,95.7%)を得た。
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranoside (4) In an argon atmosphere, alcohol (3) (200 mg, 0.534 mmol) was pyridine. (3 mL), triphenylphosphine (210 mg, 0.801 mmol) and carbon tetrabromide (266 mg, 0.802 mmol) were sequentially added under ice-cooling, and the mixture was stirred at 45 ° C. for 15 minutes. Methanol (3 mL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was dissolved in a small amount of methanol, toluene was added thereto, and the by-product crystallized was removed by celite filtration, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [5: 2 (v / v) hexane-ethyl acetate, silica gel 25 mL] to obtain the desired product (4) (224 mg, 95.7%).

Figure 0005481731
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(6)の合成
アルゴン雰囲気下、シアル酸チオアセテート(5)(377mg,0.686mmol)及びブロミド(4)(200mg,0.457mmol)をDMF(1mL)に溶解させ、氷冷下でジエチルアミン(0.72mL,68.6mmol)を加え、室温で6時間撹拌した。反応液を酢酸エチルで希釈し、1M塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[2:3(v/v)トルエン−酢酸エチル,シリカゲル45mL]で粗精製し、ついで分取型GPCにより目的物(6)(194mg,49.1%)を単離した。

Figure 0005481731
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (6) Sialic acid thioacetate (5) (377 mg, 0 .686 mmol) and bromide (4) (200 mg, 0.457 mmol) were dissolved in DMF (1 mL), diethylamine (0.72 mL, 68.6 mmol) was added under ice cooling, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was diluted with ethyl acetate, washed successively with 1M aqueous hydrochloric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was roughly purified by silica gel column chromatography [2: 3 (v / v) toluene-ethyl acetate, silica gel 45 mL], and then the desired product (6) (194 mg, 49.1%) was isolated by preparative GPC. .
Figure 0005481731

〔合成例2〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(11)の合成
化合物(11)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 2 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Pyranoshironate)-(2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (11) is synthesized as shown in the following scheme. Was synthesized.
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−β−D−ガラクトピラノシド(8)の合成
アルゴン雰囲気下、既知のペンテニルグルコシド(例えば、Matsuoka及びNishimura,Macromolecules 28, pp.2961−2968,1995、などを参照のこと)(7)(2.87g,11.56mmol)をピリジン(25mL)に溶解させ、氷冷下でTBDMSCl(3.48g,23.09mmol)を加え、氷冷のまま5時間撹拌した。その後、無水酢酸(9.8mL,103.86mmol)を加え、室温で6時間攪拌した。氷冷下でメタノール(15mL)を加えた後、反応液を濃縮した。残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル300mL]で精製し、目的物(8)(4.45g,78.8%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-Ot-butyldimethylsilyl-β-D-galactopyranoside (8) Under an argon atmosphere, known pentenyl glucosides (eg, Matsuoka) And Nishimura, Macromolecules 28, pp. 2961-2968, 1995) (7) (2.87 g, 11.56 mmol) were dissolved in pyridine (25 mL) and TBDMSCl (3.48 g) was cooled with ice. , 23.09 mmol), and stirred for 5 hours while cooling with ice. Then, acetic anhydride (9.8 mL, 103.86 mmol) was added and stirred at room temperature for 6 hours. Methanol (15 mL) was added under ice cooling, and then the reaction solution was concentrated. The residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel 300 mL] to obtain the desired product (8) (4.45 g, 78.8%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−β−D−ガラクトピラノシド(9)の合成
完全保護ガラクトシド(8)(300mg,0.614mmol)を酢酸(2.4mL)に溶解させ、水(0.6mL)を加え、50℃で2時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:1(v/v)ヘキサン−酢酸エチル,シリカゲル180mL]で精製し、目的物(9)(225mg,97.8%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-β-D-galactopyranoside (9) Fully protected galactoside (8) (300 mg, 0.614 mmol) was dissolved in acetic acid (2.4 mL). Water (0.6 mL) was added and stirred at 50 ° C. for 2 hours. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography [1: 1 (v / v) hexane-ethyl acetate, silica gel 180 mL] to obtain the desired product (9) (225 mg, 97.8%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−ガラクトピラノシド(10)の合成
アルゴン雰囲気下、アルコール(9)(200mg,0.534mmol)をピリジン (3mL)に溶解させ、氷冷下でトリフェニルホスフィン(280mg,1.068mmol)および四臭化炭素(266mg,0.802mmol)を順に加え、50℃で1時間撹拌した。氷冷下、メタノール(3mL)を加えて反応を停止させ、反応液を濃縮した。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル25mL]で精製し、目的物(10)(148mg,63.2%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-galactopyranoside (10) Alcohol (9) (200 mg, 0.534 mmol) under argon atmosphere ) Was dissolved in pyridine (3 mL), triphenylphosphine (280 mg, 1.068 mmol) and carbon tetrabromide (266 mg, 0.802 mmol) were sequentially added under ice cooling, and the mixture was stirred at 50 ° C. for 1 hour. Under ice-cooling, methanol (3 mL) was added to stop the reaction, and the reaction solution was concentrated. The residue was dissolved in a small amount of methanol, toluene was added thereto, and the by-product crystallized was removed by celite filtration, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel 25 mL] to obtain the desired product (10) (148 mg, 63.2%).
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−6−チオ−β−D−ガラクトピラノシド(11)の合成
アルゴン雰囲気下、チオアセテート(5)(364mg,0.662mmol)およびブロミド(10)(145mg,0.332mmol)をDMF−メタノール混合液(1:1(v/v),1.4mL)に溶解させ、氷冷下で炭酸カリウム(91mg,0.662 mmol)を加え、室温で21時間撹拌した。氷冷下、酢酸(76μL,1.324mmol)を加えて反応を停止させ、反応液を濃縮した。残渣をピリジン(4mL)に懸濁し、無水酢酸(3mL)を加えて、一晩攪拌した。反応液を濃縮して、その残渣をクロロホルムに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル40mL]で粗精製し、次いで分取型GPCにより目的物(11)(122mg,42.5%)を単離した。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-6-thio-β-D-galactopyranoside (11) Under argon atmosphere, thioacetate (5) (364 mg, 0.662 mmol ) And bromide (10) (145 mg, 0.332 mmol) were dissolved in a DMF-methanol mixture (1: 1 (v / v), 1.4 mL), and potassium carbonate (91 mg, 0.662 mmol) was cooled with ice. ) And stirred at room temperature for 21 hours. Under ice-cooling, acetic acid (76 μL, 1.324 mmol) was added to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (4 mL), acetic anhydride (3 mL) was added, and the mixture was stirred overnight. The reaction solution was concentrated, and the residue was dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. . The residue was roughly purified by silica gel column chromatography [15: 14: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 40 mL], and then the desired product (11) (122 mg, 42.5) by preparative GPC. %) Was isolated.

〔合成例3〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−1,6−チオ−β−D−グルコピラノシド(16)の合成
化合物(16)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 3 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Synthesis of pyranoshironate)-(2 → 6) -2,3,4-tri-O-acetyl-1,6-thio- [beta] -D-glucopyranoside (16) Compound (16) is Synthesis was performed as in the scheme.
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−1−チオ−β−D−グルコピラノシド(13)の合成
アルゴン雰囲気下、既知のペンテニルチオグルコシド(Leuck及びKunz,J. prakt.Chem.339,pp.322−334,1997、などを参照のこと)(12)(6.30g,23.83mmol)をピリジン(65mL)に溶解させ、氷冷下でTBDMSCl(6.46g,42.86mmol)を加え、氷冷のまま1時間撹拌した。その後、無水酢酸(13.5mL,143.07mmol)を加え、室温で3時間攪拌した。氷冷下でメタノール(20mL)を加えた後、反応液を濃縮した。残渣を酢酸エチルに溶解させ、1M硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル0.8L]で精製し、目的物(13)(11.39g,94.7%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6- Ot -butyldimethylsilyl-1-thio-β-D-glucopyranoside (13) Under an argon atmosphere, a known pentenyl thioglucoside (Leuck And Kunz, J. prakt.Chem.339, pp.322-334, 1997, etc.) (12) (6.30 g, 23.83 mmol) was dissolved in pyridine (65 mL) under ice cooling. TBDMSCl (6.46 g, 42.86 mmol) was added, and the mixture was stirred for 1 hour with ice cooling. Then, acetic anhydride (13.5 mL, 143.07 mmol) was added and stirred at room temperature for 3 hours. Methanol (20 mL) was added under ice cooling, and then the reaction solution was concentrated. The residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel 0.8 L] to obtain the desired product (13) (11.39 g, 94.7%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−1−チオ−β−D−グルコピラノシド(14)
完全保護チオグルコシド(13)(5.90g,12.02mmol)を酢酸(48mL)に溶解させ、水(12mL)を加え、50℃で2時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[2:1(v/v)ヘキサン−酢酸エチル,シリカゲル250mL]で精製し、目的物(14)(4.42g,97.6%)を得た。

Figure 0005481731
n-pentenyl 2,3,4-tri-O-acetyl-1-thio-β-D-glucopyranoside (14)
Fully protected thioglucoside (13) (5.90 g, 12.02 mmol) was dissolved in acetic acid (48 mL), water (12 mL) was added, and the mixture was stirred at 50 ° C. for 2 hr. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography [2: 1 (v / v) hexane-ethyl acetate, silica gel 250 mL] to obtain the desired product (14) (4.42 g, 97.6%). .
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−1−チオ−β−D−グルコピラノシド(15)の合成
アルゴン雰囲気下、アルコール(14)(300mg,0.768mmol)をピリジン(4.5mL)に溶解させ、氷冷下でトリフェニルホスフィン(302mg,1.151mmol)および四臭化炭素(382mg,1.151mmol)を順に加え、45℃で15分撹拌した。氷冷下、メタノール(3mL)を加えて、反応を停止させ、反応液を濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィ[80:1(v/v)クロロホルム−メタノール,シリカゲル50mL]で精製し、目的物(15)(318mg,91.4%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-1-thio-β-D-glucopyranoside (15) Alcohol (14) (300 mg, 0. 768 mmol) was dissolved in pyridine (4.5 mL), triphenylphosphine (302 mg, 1.151 mmol) and carbon tetrabromide (382 mg, 1.151 mmol) were sequentially added under ice cooling, and the mixture was stirred at 45 ° C. for 15 minutes. . Methanol (3 mL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was purified by flash silica gel column chromatography [80: 1 (v / v) chloroform-methanol, silica gel 50 mL] to obtain the desired product (15) (318 mg, 91.4%).
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−1,6−チオ−β−D−グルコピラノシド(16)の合成
アルゴン雰囲気下、チオアセテート(3)(273 mg,0.497mmol)およびブロミド(15)(150mg,0.331mmol)をDMF(2mL)に溶解させ、氷冷下でジエチルアミン(0.78mL,7.465mmol)を加え、室温で7時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[2:3→0:1(v/v)トルエン−酢酸エチル,シリカゲル40mL]で粗精製し、ついで分取型GPCにより目的物(16)(181mg,64.4%)を単離した。

Figure 0005481731
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-1,6-thio-β-D-glucopyranoside (16) Under argon atmosphere, thioacetate (3) (273 mg, 0.497 mmol ) And bromide (15) (150 mg, 0.331 mmol) were dissolved in DMF (2 mL), diethylamine (0.78 mL, 7.465 mmol) was added under ice cooling, and the mixture was stirred at room temperature for 7 hours. The reaction mixture was concentrated, and the residue was roughly purified by silica gel column chromatography [2: 3 → 0: 1 (v / v) toluene-ethyl acetate, silica gel 40 mL], and then subjected to preparative GPC (16) (181 mg , 64.4%).
Figure 0005481731

〔合成例4〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−1,6−チオ−β−D−ガラクトピラノシド(21)の合成
化合物(21)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 4 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Pyranosylonate)-(2 → 6) -2,3,4-tri-O-acetyl-1,6-thio-β-D-galactopyranoside (21) is synthesized by the following scheme (21). The synthesis was performed as follows.
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−O−t−ブチルジメチルシリル−1−チオ−β−D−ガラクトピラノシド(18)の合成
アルゴン雰囲気下、既知のペンテニルチオグルコシド(Leuck及びKunz,J. prakt.Chem.339,pp.322−334,1997、などを参照のこと)(17)(5.30g,20.05mmol)をピリジン(55mL)に溶解させ、氷冷下でTBDMSCl(5.44g,36.09mmol)を加え、氷冷のまま5時間撹拌した。その後、無水酢酸(17.0mL,180.16mmol)を加え、室温で1時間攪拌した。氷冷下でメタノール(30mL)を加えた後、反応液を濃縮した。残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)ヘキサン−酢酸エチル,シリカゲル0.9L]で精製し、目的物(18)(8.16g,80.7%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-Ot-butyldimethylsilyl-1-thio-β-D-galactopyranoside (18) Known pentenylthio under argon atmosphere Glucoside (see Leuck and Kunz, J. prakt. Chem. 339, pp. 322-334, 1997, etc.) (17) (5.30 g, 20.05 mmol) was dissolved in pyridine (55 mL) and iced. TBDMSCl (5.44 g, 36.09 mmol) was added under cooling, and the mixture was stirred for 5 hours while cooling with ice. Then, acetic anhydride (17.0 mL, 180.16 mmol) was added and stirred at room temperature for 1 hour. Methanol (30 mL) was added under ice cooling, and then the reaction solution was concentrated. The residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) hexane-ethyl acetate, silica gel 0.9 L] to obtain the desired product (18) (8.16 g, 80.7%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−1−チオ−β−D−ガラクトピラノシド(19)の合成
完全保護チオガラクトシド(18)(550mg,1.090mmol)を酢酸(4.8mL)に溶解させ、水(1.2mL)を加え、50℃で3時間撹拌した。反応液を濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィ[2:1(v/v)ヘキサン−酢酸エチル,シリカゲル40mL]で精製し、目的物(19)(388mg,91.3%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-1-thio-β-D-galactopyranoside (19) Fully protected thiogalactoside (18) (550 mg, 1.090 mmol) was converted to acetic acid (4 8 mL), water (1.2 mL) was added, and the mixture was stirred at 50 ° C. for 3 hours. The reaction mixture was concentrated, and the residue was purified by flash silica gel column chromatography [2: 1 (v / v) hexane-ethyl acetate, silica gel 40 mL] to obtain the desired product (19) (388 mg, 91.3%).
Figure 0005481731

n−ペンテニル 2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−1−チオ−β−D−ガラクトピラノシド(20)の合成
アルゴン雰囲気下、アルコール(19)(200mg,0.512mmol)をピリジン(3mL)に溶解させ、氷冷下でトリフェニルホスフィン(242mg,0.923mmol)および四臭化炭素(255mg,0.769mmol)を順に加え、45℃で45分撹拌した。氷冷下、メタノール(3mL)を加えて、反応を停止させ、反応液を濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィ[80:1(v/v)クロロホルム−メタノール,シリカゲル40mL]で精製し、目的物(20)(165mg, 71.1%)を得た。

Figure 0005481731
Synthesis of n-pentenyl 2,3,4-tri-O-acetyl-6-bromo-6-deoxy-1-thio-β-D-galactopyranoside (20) Alcohol (19) (200 mg) under argon atmosphere , 0.512 mmol) was dissolved in pyridine (3 mL), triphenylphosphine (242 mg, 0.923 mmol) and carbon tetrabromide (255 mg, 0.769 mmol) were sequentially added under ice cooling, and the mixture was stirred at 45 ° C. for 45 minutes. did. Methanol (3 mL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was purified by flash silica gel column chromatography [80: 1 (v / v) chloroform-methanol, silica gel 40 mL] to obtain the desired product (20) (165 mg, 71.1%).
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−1,6−チオ−β−D−ガラクトピラノシド(21)の合成
アルゴン雰囲気下、チオアセテート(5)(364mg,0.662mmol)およびブロミド(20)(150mg,0.331mmol)をDMF−メタノール混合液(1:1(v/v),1.5mL)に溶解させ、氷冷下で炭酸カリウム(92mg 0.666mmol)を加え、室温で32時間撹拌した。氷冷下、酢酸(76μL,1.328mmol)を加えて反応を停止させ、反応液を濃縮した。残渣をピリジン(1mL)に懸濁し、無水酢酸(1mL)を加えて、一晩攪拌した。反応液を濃縮して、その残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[2:3(v/v)トルエン−酢酸エチル,シリカゲル30mL]で粗精製し、次いで分取型GPC(クロロホルム)により目的物(21)(162mg,57.4%)を単離した。

Figure 0005481731
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- Synthesis of (2 → 6) -2,3,4-tri-O-acetyl-1,6-thio-β-D-galactopyranoside (21) Thioacetate (5) (364 mg, 0 662 mmol) and bromide (20) (150 mg, 0.331 mmol) were dissolved in a DMF-methanol mixture (1: 1 (v / v), 1.5 mL), and potassium carbonate (92 mg 0.666 mmol) was cooled with ice. ) And stirred at room temperature for 32 hours. Under ice-cooling, acetic acid (76 μL, 1.328 mmol) was added to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (1 mL), acetic anhydride (1 mL) was added, and the mixture was stirred overnight. The reaction solution is concentrated, and the residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through Celite, and the filtrate is concentrated. did. The residue was roughly purified by silica gel column chromatography [2: 3 (v / v) toluene-ethyl acetate, silica gel 30 mL], and then the desired product (21) (162 mg, 57.4%) was obtained by preparative GPC (chloroform). Isolated.
Figure 0005481731

〔合成例5〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(26)の合成
化合物(26)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 5 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Pyranoshironate)-(2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6- Synthesis of tri-O-acetyl- [beta] -D-glucopyranoside (26) Compound (26) was synthesized according to the following scheme.
Figure 0005481731

n−ペンテニル O−(2,3−ジ−O−アセチル−4,6−O−イソプロピリデン−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(23)の合成
アルゴン雰囲気下、既知のペンテニルラクトシド(例えば、Matsuoka及びNishimura,Macromolecules 28, pp.2961−2968,1995、などを参照のこと)(22)(11.36g 27.67mmol)をDMF(100mL)に溶解させ、氷冷下で2−メトキシ−1−プロペン(5.2mL,55.53mmol)およびp−トルエンスルホン酸一水和物(1.05g,5.52mmol)を順に加え、氷冷のまま3時間撹拌した。その後、ピリジン(80mL)および無水酢酸(65.3mL,692.01mmol)を加え、室温で一晩攪拌した。反応液を濃縮し、残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[4:1(v/v)トルエン−酢酸エチル,シリカゲル0.9L]で精製し、目的物(23)(14.56g,79.6%)を得た。

Figure 0005481731
n-pentenyl O- (2,3-di-O-acetyl-4,6-O-isopropylidene-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O -Synthesis of acetyl-β-D-glucopyranoside (23) Under an argon atmosphere, known pentenyl lactosides (see, for example, Matsuoka and Nishimura, Macromolecules 28, pp. 2961-2968, 1995) (22) ( 11.36 g (27.67 mmol) was dissolved in DMF (100 mL), and 2-methoxy-1-propene (5.2 mL, 55.53 mmol) and p-toluenesulfonic acid monohydrate (1.05 g) were cooled with ice. , 5.52 mmol) was added in order, and the mixture was stirred for 3 hours with ice cooling. Thereafter, pyridine (80 mL) and acetic anhydride (65.3 mL, 692.01 mmol) were added, and the mixture was stirred overnight at room temperature. The reaction mixture was concentrated, the residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [4: 1 (v / v) toluene-ethyl acetate, silica gel 0.9 L] to obtain the desired product (23) (14.56 g, 79.6%).
Figure 0005481731

n−ペンテニルO−(2,3−ジ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(24)の合成
完全保護ラクトシド(23)(200mg,0.303mmol)を酢酸(1.6mL)に溶解させ、水(0.4 mL)を加え、50℃で2時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:4(v/v)トルエン−酢酸エチル, シリカゲル20mL]で精製し、目的物(24)(178mg,94.7%)を得た。

Figure 0005481731
n-pentenyl O- (2,3-di-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside ( Synthesis of 24) Completely protected lactoside (23) (200 mg, 0.303 mmol) was dissolved in acetic acid (1.6 mL), water (0.4 mL) was added, and the mixture was stirred at 50 ° C. for 2 hr. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography [1: 4 (v / v) toluene-ethyl acetate, silica gel 20 mL] to obtain the desired product (24) (178 mg, 94.7%).
Figure 0005481731

n−ペンテニル O−(2,3−ジ−O−アセチル−6−ブロモ−6−デオキシ−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(25)の合成
アルゴン雰囲気下、ジオール(24)(155mg,0.250mmol)をピリジン (2.5mL)に溶解させ、氷冷下でトリフェニルホスフィン(98mg,0.374mmol)および四臭化炭素(124mg,0.473mmol)を順に加え、50℃で30分、60℃で3時間時間撹拌した。氷冷下、さらにトリフェニルホスフィン(65mg,0.248mmol)および四臭化炭素(83mg,0.250mmol)を順に加え、60℃で30分撹拌した。氷冷下、メタノール(1mL)を加えて反応を停止させ、反応液を濃縮した。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[3:1(v/v)トルエン−酢酸エチル,シリカゲル25mL]で精製し、目的物(25)(130mg,76.0%)を得た。

Figure 0005481731
n-pentenyl O- (2,3-di-O-acetyl-6-bromo-6-deoxy-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O— Synthesis of acetyl-β-D-glucopyranoside (25) Diol (24) (155 mg, 0.250 mmol) was dissolved in pyridine (2.5 mL) under an argon atmosphere, and triphenylphosphine (98 mg, 0. 374 mmol) and carbon tetrabromide (124 mg, 0.473 mmol) were sequentially added, and the mixture was stirred at 50 ° C. for 30 minutes and at 60 ° C. for 3 hours. Under ice cooling, triphenylphosphine (65 mg, 0.248 mmol) and carbon tetrabromide (83 mg, 0.250 mmol) were further added in this order, and the mixture was stirred at 60 ° C. for 30 minutes. Under ice cooling, methanol (1 mL) was added to stop the reaction, and the reaction solution was concentrated. The residue was dissolved in a small amount of methanol, toluene was added thereto, and the by-product crystallized was removed by celite filtration, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [3: 1 (v / v) toluene-ethyl acetate, silica gel 25 mL] to obtain the desired product (25) (130 mg, 76.0%).
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−ガラクトピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(26)の合成
アルゴン雰囲気下、チオアセテート(5)(169mg,0.308mmol)及びブロミド(25)(105mg,0.154mmol)をDMF−メタノール混合液(1:1(v/v),1mL)に溶解させ、氷冷下で炭酸カリウム(43mg,0.311mmol)を加え、室温で36時間撹拌した。氷冷下、酢酸(35μL,0.611mmol)を加えて反応を停止させ、反応液を濃縮した。残渣をピリジン(2mL)に懸濁し、無水酢酸(1.5mL)を加えて、3日間攪拌した。反応液を濃縮して、その残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[1:1→2:3→0:1(v/v)トルエン−酢酸エチル,シリカゲル25mL]で粗精製し、次いで分取型GPCにより目的物(26)(80mg,45.2%)を単離した。

Figure 0005481731
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl Synthesis of β-D-glucopyranoside (26) Under argon atmosphere, thioacetate (5) (169 mg, 0.308 mmol) and bromide (25) (105 mg, 0.154 mmol) were mixed with DMF-methanol mixture (1: 1 ( v / v), 1 mL), potassium carbonate (43 mg, 0.311 mmol) was added under ice cooling, and the mixture was stirred at room temperature for 36 hours. Under ice-cooling, acetic acid (35 μL, 0.611 mmol) was added to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (2 mL), acetic anhydride (1.5 mL) was added, and the mixture was stirred for 3 days. The reaction solution is concentrated, and the residue is dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through Celite, and the filtrate is concentrated. did. The residue was roughly purified by silica gel column chromatography [1: 1 → 2: 3 → 0: 1 (v / v) toluene-ethyl acetate, silica gel 25 mL], and then subjected to preparative GPC (26) (80 mg, 45 .2%) was isolated.
Figure 0005481731

〔合成例6〕n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(35)の合成
化合物(35)は下記のスキームのように合成を行った。

Figure 0005481731
Synthesis Example 6 n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonuro Pyranoshironate)-(2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O Synthesis of -acetyl- [beta] -D-glucopyranoside (35) Compound (35) was synthesized as shown in the following scheme.
Figure 0005481731

O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−α−D−グルコピラノシルブロマイド(28)の合成
市販のセロビオースα−アセテート(PFANSTIEHL LABORATORIES Inc.,Waukegan,IL 60085−0439,USA)(27)(10.00g,14.47mmol)を酢酸(20mL)−無水酢酸(2mL)混合液に溶解させ、氷冷下、30%臭化水素−酢酸溶液(5.9mL,29.48mL)を加えて密栓し、室温で3.5時間攪拌した。さらに氷冷下で30%臭化水素−酢酸溶液(5.9mL,29.48mL)を加えて一晩攪拌した。反応液を氷水に注ぎ、酢酸エチルで抽出し、水で5回洗浄し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄した。硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をジエチルエーテルで洗浄することにより目的物(28)(10.20g,98.9%)を得た。

Figure 0005481731
O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-α-D-glucopyranosyl Synthesis of bromide (28) Commercially available cellobiose α-acetate (PFANSTIHL LABORATORIES Inc., Waukegan, IL 60085-0439, USA) (27) (10.00 g, 14.47 mmol) acetic acid (20 mL) -acetic anhydride (2 mL) The mixture was dissolved in a mixed solution, 30% hydrogen bromide-acetic acid solution (5.9 mL, 29.48 mL) was added under ice-cooling, the mixture was sealed, and the mixture was stirred at room temperature for 3.5 hours. Further, 30% hydrogen bromide-acetic acid solution (5.9 mL, 29.48 mL) was added under ice cooling, and the mixture was stirred overnight. The reaction mixture was poured into ice water, extracted with ethyl acetate, washed 5 times with water, and washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine. After dehydration and drying with magnesium sulfate, the mixture was filtered through Celite, and the filtrate was concentrated. The residue was washed with diethyl ether to obtain the desired product (28) (10.20 g, 98.9%).
Figure 0005481731

n−ペンテニル O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(29)の合成
アルゴン雰囲気下、セロビオースα−ブロミド(28)(28.10g,40.17mmol)および4−ペンテン−1−オール(20.4mL,201.32mmol)、モレキュラーシーブス4A(35g)をジクロロメタン(180mL)に懸濁させ、2時間攪拌した。−20oCでトリフルオロメタンスルホン酸銀(12.39g,48.22mmol)を加え、40分攪拌し、反応液をセライト濾過し、不溶物をクロロホルムで洗浄した。濾液と洗浄液を合わせて、氷水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順に洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィ[4:1(v/v)トルエン−酢酸エチル,シリカゲル0.9L]で精製し、目的物(29)(15.23g,53.8%)を得た。

Figure 0005481731
n-pentenyl O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside (29) Under an argon atmosphere, cellobiose α-bromide (28) (28.10 g, 40.17 mmol) and 4-penten-1-ol (20.4 mL, 201.32 mmol), molecular sieves 4A (35 g) were added. Suspended in dichloromethane (180 mL) and stirred for 2 hours. Silver trifluoromethanesulfonate (12.39 g, 48.22 mmol) was added at −20 ° C., and the mixture was stirred for 40 minutes. The reaction solution was filtered through Celite, and the insoluble material was washed with chloroform. The filtrate and the washing solution were combined, washed successively with ice water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by flash silica gel column chromatography [4: 1 (v / v) toluene-ethyl acetate, silica gel 0.9 L] to obtain the desired product (29) (15.23 g, 53.8%).
Figure 0005481731

n−ペンテニル O−β−D−グルコピラノシル−(1→4)−β−D−グルコピラノシド(30)の合成
ペンテニルセロビオシド(29)(2.89g,4.10mmol)をメタノール(50mL)−ジクロロメタン(5mL)混合液に溶解させ、1M ナトリウムメトキシド・メタノール溶液(2mL)を加え、室温で2時間撹拌した。IR−120B(H+型)を加えてpH〜4とした反応液を綿栓濾過し、樹脂をメタノールで洗浄した。濾液と洗浄液を合わせて濃縮し、残渣として、目的物(30)(1.68g,定量的)を得た。

Figure 0005481731
Synthesis of n-pentenyl O-β-D-glucopyranosyl- (1 → 4) -β-D-glucopyranoside (30) Pentenyl cellobioside (29) (2.89 g, 4.10 mmol) in methanol (50 mL) -dichloromethane (5 mL) Dissolved in a mixed solution, 1M sodium methoxide / methanol solution (2 mL) was added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was adjusted to pH˜4 by adding IR-120B (H + type) and filtered with a cotton plug, and the resin was washed with methanol. The filtrate and washings were combined and concentrated to obtain the desired product (30) (1.68 g, quantitative) as a residue.
Figure 0005481731

n−ペンテニル O−(2,3−ジ−O−アセチル−4,6−O−イソプロピリデン−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(31)の合成
アルゴン雰囲気下、セロビオシド(30)(8.14g,19.83mmol)をDMF(80mL)に溶解させ、氷冷下で2−メトキシ−1−プロペン(3.7mL,39.51mmol)およびp−トルエンスルホン酸−水和物(0.75 g,3.94mmol)を順に加え、氷冷のまま2時間、室温に戻して4時間撹拌した。その後、ピリジ(50mL)および無水酢酸(47.0mL,498.08mmol)を加え、室温で一晩攪拌した。反応液を濃縮し、残渣を酢酸エチルに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[5:1 (v/v)トルエン−酢酸エチル,シリカゲル0.9L]で精製し、目的物(31)(9.37g,71.5%)を得た。

Figure 0005481731
n-pentenyl O- (2,3-di-O-acetyl-4,6-O-isopropylidene-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl- Synthesis of β-D-glucopyranoside (31) Cellobioside (30) (8.14 g, 19.83 mmol) was dissolved in DMF (80 mL) under an argon atmosphere, and 2-methoxy-1-propene (3. 7 mL, 39.51 mmol) and p-toluenesulfonic acid hydrate (0.75 g, 3.94 mmol) were added in order, and the mixture was stirred for 2 hours while cooling with ice and returning to room temperature for 4 hours. Thereafter, pyridi (50 mL) and acetic anhydride (47.0 mL, 498.08 mmol) were added, and the mixture was stirred overnight at room temperature. The reaction mixture was concentrated, the residue was dissolved in ethyl acetate, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [5: 1 (v / v) toluene-ethyl acetate, silica gel 0.9 L] to obtain the desired product (31) (9.37 g, 71.5%).
Figure 0005481731

n−ペンテニル O−(2,3−ジ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(32)の合成
完全保護セロビオシド(31)(185mg,0.280mmol)を酢酸(1.6mL)に溶解させ、水(0.4mL)を加え、50℃で2時間撹拌した。反応液を濃縮し、残渣をシリカゲルカラムクロマトグラフィ[1:2(v/v)トルエン−酢酸エチル, シリカゲル20mL]で精製し、目的物(32)(168mg,96.6%)を得た。

Figure 0005481731
n-pentenyl of O- (2,3-di-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β-D-glucopyranoside (32) Synthetic fully protected cellobioside (31) (185 mg, 0.280 mmol) was dissolved in acetic acid (1.6 mL), water (0.4 mL) was added, and the mixture was stirred at 50 ° C. for 2 hr. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography [1: 2 (v / v) toluene-ethyl acetate, silica gel 20 mL] to obtain the desired product (32) (168 mg, 96.6%).
Figure 0005481731

n−ペンテニル O−(2,3−ジ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(33)の合成
アルゴン雰囲気下、ジオール(32)(1.71g,2.76mmol)をピリジン(25mL)に溶解させ、氷冷下でトリフェニルホスフィン(1.45g,5.53mmol)および四臭化炭素(1.83g,5.52mmol)を順に加え、50℃で1時間時間撹拌した。氷冷下、メタノール(5mL)を加えて反応を停止させ、反応液を濃縮した。残渣を少量のメタノールに溶解させ、そこにトルエンを加えて結晶化した副生成物をセライト濾過により除去し、濾液を濃縮した。残渣をフラッシュシリカゲルカラムクロマトグラフィ[1:1(v/v)ヘキサン−酢酸エチル,シリカゲル25mL]で精製し、目的物(33)(1.86g,98.9%)を得た。

Figure 0005481731
n-pentenyl O- (2,3-di-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β Synthesis of D-glucopyranoside (33) Diol (32) (1.71 g, 2.76 mmol) was dissolved in pyridine (25 mL) under an argon atmosphere, and triphenylphosphine (1.45 g, 5.53 mmol) was cooled with ice. ) And carbon tetrabromide (1.83 g, 5.52 mmol) were sequentially added, and the mixture was stirred at 50 ° C. for 1 hour. Under ice-cooling, methanol (5 mL) was added to stop the reaction, and the reaction solution was concentrated. The residue was dissolved in a small amount of methanol, toluene was added thereto, and the by-product crystallized was removed by celite filtration, and the filtrate was concentrated. The residue was purified by flash silica gel column chromatography [1: 1 (v / v) hexane-ethyl acetate, silica gel 25 mL] to obtain the desired product (33) (1.86 g, 98.9%).
Figure 0005481731

n−ペンテニル O−(2,3,4−トリ−O−アセチル−6−ブロモ−6−デオキシ−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(34)の合成
アルゴン雰囲気下、アルコール(33)(1.08g,1.58mmol)をピリジン(5mL)に溶解させ、氷冷下で無水酢酸(0.75mL,7.95mmol)を加え、室温で6時間時間撹拌した。反応液を濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィ[2:1(v/v)トルエン−酢酸エチル,シリカゲル80mL]で精製し、目的物(34)(1.15g,定量的)を得た。

Figure 0005481731
n-pentenyl O- (2,3,4-tri-O-acetyl-6-bromo-6-deoxy-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl Synthesis of β-D-glucopyranoside (34) In an argon atmosphere, alcohol (33) (1.08 g, 1.58 mmol) was dissolved in pyridine (5 mL), and acetic anhydride (0.75 mL, 7. 95 mmol) was added and stirred at room temperature for 6 hours. The reaction mixture was concentrated, and the residue was purified by flash silica gel column chromatography [2: 1 (v / v) toluene-ethyl acetate, silica gel 80 mL] to obtain the desired product (34) (1.15 g, quantitative).
Figure 0005481731

n−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(2,3,4,6−テトラ−O−アセチル−β−D−グルコピラノシル)−(1→4)−2,3,6−トリ−O−アセチル−β−D−グルコピラノシド(35)の合成
アルゴン雰囲気下、チオアセテート(5)(227mg,0.413mmol)及びブロミド(34)(200mg,0.276mmol)をDMF(0.8mL)に溶解させ、氷冷下でジエチルアミン(0.43mL,4.11mmol)を加え、室温で20時間撹拌した。反応液を濃縮し、残渣をクロロホルムに溶解させ、1M 塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[100:30:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル40mL]で粗精製し、ついで分取型GPCにより目的物(35)(249mg,78.3%)を単離した。
n-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)- (2 → 6) -O- (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1 → 4) -2,3,6-tri-O-acetyl-β- Synthesis of D-glucopyranoside (35) In an argon atmosphere, thioacetate (5) (227 mg, 0.413 mmol) and bromide (34) (200 mg, 0.276 mmol) were dissolved in DMF (0.8 mL), and ice-cooled. Diethylamine (0.43 mL, 4.11 mmol) was added and stirred at room temperature for 20 hours. The reaction mixture was concentrated, the residue was dissolved in chloroform, washed successively with 1M aqueous hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and saturated brine, dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was roughly purified by silica gel column chromatography [100: 30: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 40 mL], and then subjected to preparative GPC (35) (249 mg, 78.3). %) Was isolated.

〔合成例7〕チオシアロオリゴ糖結合型デンドリマーの合成
チオシアロオリゴ糖結合型デンドリマーを以下のスキームのように合成した。

Figure 0005481731
[Synthesis Example 7] Synthesis of thiosialogooligosaccharide-linked dendrimer A thiosialogooligosaccharide-linked dendrimer was synthesized as shown in the following scheme.
Figure 0005481731

4−アセチルチオ−ペンテニル S−(メチル 5−アセトアミド−4,7,8,9−テトラ−O−アセチル−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−2,3,4−トリ−O−アセチル−1,6−チオ−β−D−グルコピラノシド(36s)の合成
アルゴン雰囲気下、ペンテニルグリコシド(16)(216mg,0.245mmol)を1,4−ジオキサン(0.5mL)に溶解し、チオ酢酸(1mL,13.99mmol)を加え、加熱し50℃とした。そこでAIBN(80mg,0.49mmol)を加え、80℃で3時間撹拌した。その後、氷冷下でシクロヘキセン(99μL,0.98mmol)を加え、室温に戻して数分間撹拌した。反応液を濃縮し、残渣をフラッシュシリカゲルカラムクロマトグラフィ[トルエン→酢酸エチル,シリカゲル25mL]で精製し、目的物(36s)(235mg,定量的)を得た。

Figure 0005481731
4-acetylthio-pentenyl S- (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate )-(2 → 6) -2,3,4-Tri-O-acetyl-1,6-thio-β-D-glucopyranoside (36s) Under an argon atmosphere, pentenyl glycoside (16) (216 mg, 0. 245 mmol) was dissolved in 1,4-dioxane (0.5 mL), thioacetic acid (1 mL, 13.99 mmol) was added, and the mixture was heated to 50 ° C. Therefore, AIBN (80 mg, 0.49 mmol) was added and stirred at 80 ° C. for 3 hours. Thereafter, cyclohexene (99 μL, 0.98 mmol) was added under ice cooling, and the mixture was returned to room temperature and stirred for several minutes. The reaction mixture was concentrated, and the residue was purified by flash silica gel column chromatography [toluene → ethyl acetate, silica gel 25 mL] to obtain the desired product (36s) (235 mg, quantitative).
Figure 0005481731

Fan(0)3−NeuSGlcS(OAc,OMe)(37s)の合成
アルゴン雰囲気下、チオアセテート(36s)(180mg,0.188mmol)、及びFan(0)3−Brデンドリマー(20mg,0.042mmol)をDMF(0.45mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(207μL,0.207mmol)を加え、室温で19時間撹拌した。その後、氷冷下で酢酸(12μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(0.5mL)に懸濁させ、無水酢酸(0.5mL)を加え、室温で5時間撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→10:9:1(v/v/v)クロロホルム−酢酸エチル−メタノール, シリカゲル20 mL]で精製し、目的物(37s)(86mg,68.3%)を得た。また、副生成物として2糖ダイマー(41s)(31mg)を得た。
Synthesis of Fan (0) 3-NeuSGlcS (OAc, OMe) (37s) Under an argon atmosphere, thioacetate (36s) (180 mg, 0.188 mmol) and Fan (0) 3-Br dendrimer (20 mg, 0.042 mmol) Was dissolved in a DMF (0.45 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (207 μL, 0.207 mmol) was added thereto and stirred at room temperature for 19 hours. Thereafter, acetic acid (12 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (0.5 mL) under an argon atmosphere, acetic anhydride (0.5 mL) was added, and the mixture was stirred at room temperature for 5 hours. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [15: 14: 1 → 10: 9: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 20 mL] to obtain the desired product (37s) (86 mg, 68.3). %). In addition, disaccharide dimer (41s) (31 mg) was obtained as a by-product.

Ball(0)4−NeuSGlcS(OAc,OMe)(38s)の合成
アルゴン雰囲気下、チオアセテート(36s)(180mg,0.188mmol)、及びBall(0)4−Brデンドリマー(17mg,0.033mmol)をDMF(0.45mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(207μL,0.207mmol)を加え、室温で24時間撹拌した。その後、氷冷下で酢酸(12μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(0.5mL)に懸濁させ、無水酢酸(0.5mL)を加え、室温で22時間撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→7:7:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル20mL]で精製し、目的物(38s)(75mg,59.1%)を得た。また、副生成物として2糖ダイマー(41s)(22mg)を得た。
Synthesis of Ball (0) 4-NeuSGlcS (OAc, OMe) (38s) Under argon atmosphere, thioacetate (36s) (180 mg, 0.188 mmol), and Ball (0) 4-Br dendrimer (17 mg, 0.033 mmol) Was dissolved in a DMF (0.45 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (207 μL, 0.207 mmol) was added thereto, and the mixture was stirred at room temperature for 24 hours. Thereafter, acetic acid (12 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (0.5 mL) under an argon atmosphere, acetic anhydride (0.5 mL) was added, and the mixture was stirred at room temperature for 22 hours. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [15: 14: 1 → 7: 7: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 20 mL] to obtain the desired product (38s) (75 mg, 59.1%). ) Moreover, the disaccharide dimer (41s) (22 mg) was obtained as a by-product.

Dumbbell(1)6−NeuSGlcS(OAc,OMe)(39s)の合成
アルゴン雰囲気下、チオアセテート(36s)(190mg,0.199mmol)、及びDumbbell(1)6−Brデンドリマー(21mg,0.023mmol)をDMF(0.45mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(219μL,0.219mmol)を加え、室温で23時間撹拌した。その後、氷冷下で酢酸(13μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(0.5mL)に懸濁させ、無水酢酸(0.5mL)を加え、室温で22時間撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→5:4:1(v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル20mL]で精製し、目的物(39s)(87mg,64.9%)を得た。また、副生成物として2糖ダイマー(41s)(33mg)を得た。
Synthesis of Dumbbell (1) 6-NeuSGlcS (OAc, OMe) (39s) Under argon atmosphere, thioacetate (36s) (190 mg, 0.199 mmol), and Dumbbell (1) 6-Br dendrimer (21 mg, 0.023 mmol) Was dissolved in a DMF (0.45 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (219 μL, 0.219 mmol) was added thereto, and the mixture was stirred at room temperature for 23 hours. Thereafter, acetic acid (13 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (0.5 mL) under an argon atmosphere, acetic anhydride (0.5 mL) was added, and the mixture was stirred at room temperature for 22 hours. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [15: 14: 1 → 5: 4: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 20 mL] to obtain the desired product (39s) (87 mg, 64.9% ) In addition, disaccharide dimer (41s) (33 mg) was obtained as a by-product.

Ball(1)12−NeuSGlcS(OAc,OMe)(40s)の合成
アルゴン雰囲気下、チオアセテート(36s)(180mg,0.188mmol)、及びBall(1)12−Brデンドリマー(20mg,0.011mmol)をDMF(0.45mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(207μL,0.207mmol)を加え、室温で8時間撹拌した。その後、氷冷下で酢酸(12μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(0.5mL)に懸濁させ、無水酢酸(0.5mL)を加え、室温で24時間撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、水で洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[15:14:1→15:0:1 (v/v/v)クロロホルム−酢酸エチル−メタノール,シリカゲル20mL]で精製し、目的物(38s)(50mg,37.6%)を得た。
化合物(36o)の合成についても化合物(36s)と同様に行った。
また、化合物(36o)及び化合物(35)を担持したファン型、ボール型、ダンベル型の各デンドリマー化合物も上記(〔合成例7〕)と同様に合成した。
さらに、化合物(11)及び化合物(26)を担持したファン型、ボール型、ダンベル型の各デンドリマー化合物も上記(〔合成例7〕)と同様に合成した。
Synthesis of Ball (1) 12-NeuSGlcS (OAc, OMe) (40s) Under an argon atmosphere, thioacetate (36s) (180 mg, 0.188 mmol), and Ball (1) 12-Br dendrimer (20 mg, 0.011 mmol) Was dissolved in a DMF (0.45 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (207 μL, 0.207 mmol) was added thereto and stirred at room temperature for 8 hours. Thereafter, acetic acid (12 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (0.5 mL) under an argon atmosphere, acetic anhydride (0.5 mL) was added, and the mixture was stirred at room temperature for 24 hours. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed with water, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [15: 14: 1 → 15: 0: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 20 mL] to obtain the desired product (38s) (50 mg, 37.6%). )
The compound (36o) was synthesized in the same manner as the compound (36s).
Also, fan-type, ball-type, and dumbbell-type dendrimer compounds carrying the compound (36o) and the compound (35) were synthesized in the same manner as described above ([Synthesis Example 7]).
Further, fan-type, ball-type, and dumbbell-type dendrimer compounds carrying the compound (11) and the compound (26) were synthesized in the same manner as described above ([Synthesis Example 7]).

〔合成例8〕エーテルおよびアミド伸長型チオシアロオリゴ糖結合型デンドリマーの合成
エーテルおよびアミド伸長型チオシアロオリゴ糖結合型デンドリマーを以下のスキームのように合成した。

Figure 0005481731
[Synthesis Example 8] Synthesis of ether and amide-extended thiosialo-oligosaccharide-linked dendrimer An ether and amide-extended thiosialo-oligosaccharide-linked dendrimer were synthesized as shown in the following scheme.
Figure 0005481731

Fan(0)3-エーテル-NeuSGlcO(OAc,OMe) (42o)の合成
アルゴン雰囲気下、チオアセテート(36o)(249.6mg, 265.5μmol)、及びFan(0)3−エーテル−Brデンドリマー(38.1mg, 59.0μmol)をDMF(0.25mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(266μL,266μmol)を加え、室温で24時間撹拌した。その後、氷冷下で酢酸(15μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(1.5mL)に懸濁させ、無水酢酸(1.5mL)を加え、35℃で一晩撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[10:9:1→8:6:1(v/v/v)クロロホルム−酢酸エチル−メタノール, シリカゲル30 mL]で精製し、目的物(42o)(144.7mg,79.2%)を得た。
ボール型、ダンベル型についても同様に合成を行った。
さらに、化合物(35)、化合物(11)及び化合物(26)を担持したエーテル伸長型デンドリマーについても上記と同様に合成を行った。
Synthesis of Fan (0) 3-ether-NeuSGlcO (OAc, OMe) (42o) Under argon atmosphere, thioacetate (36o) (249.6 mg, 265.5 μmol), and Fan (0) 3-ether-Br dendrimer ( 38.1 mg, 59.0 μmol) was dissolved in a DMF (0.25 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (266 μL, 266 μmol) was added thereto and stirred at room temperature for 24 hours. Thereafter, acetic acid (15 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (1.5 mL) under an argon atmosphere, acetic anhydride (1.5 mL) was added, and the mixture was stirred at 35 ° C. overnight. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [10: 9: 1 → 8: 6: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 30 mL] to obtain the desired product (42o) (144.7 mg, 79 .2%).
The ball type and dumbbell type were synthesized in the same manner.
Further, the ether-extended dendrimer carrying the compound (35), the compound (11) and the compound (26) was synthesized in the same manner as described above.

Fan(0)3-アミド-NeuSGlcO(OAc,OMe) (43o)の合成
アルゴン雰囲気下、チオアセテート(36o)(250.0mg, 266.0μmol)、及びFan(0)3−アミド−Brデンドリマー(59.1mg, 47.9μmol)をDMF(0.25mL)−メタノール(0.25mL)混合液に溶解させた。そこに1M ナトリウムメトキシド・メタノール溶液(266μL,266μmol)を加え、室温で24時間撹拌した。その後、氷冷下で酢酸(15μL)を加えて反応を停止させ、反応液を濃縮した。残渣をアルゴン雰囲気下、ピリジン(1.5mL)に懸濁させ、無水酢酸(1.5mL)を加え、35℃で一晩撹拌した。その後反応液を濃縮し、残渣をクロロホルムに溶解させ、1M 硫酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで脱水乾燥させた後、セライト濾過し、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィ[10:9:1→8:6:1→6:5:1(v/v/v)クロロホルム−酢酸エチル−メタノール, シリカゲル30mL]で精製し、目的物(43o)(103.8mg,53.9%)を得た。
ボール型、ダンベル型についても同様に合成を行った。
さらに、化合物(35)、化合物(11)及び化合物(26)を担持したアミド伸長型デンドリマーについても上記と同様に合成を行った。
Synthesis of Fan (0) 3-amido-NeuSGlcO (OAc, OMe) (43o) Under argon atmosphere, thioacetate (36o) (250.0 mg, 266.0 μmol), and Fan (0) 3-amido-Br dendrimer ( 59.1 mg, 47.9 μmol) was dissolved in a DMF (0.25 mL) -methanol (0.25 mL) mixture. 1M sodium methoxide / methanol solution (266 μL, 266 μmol) was added thereto and stirred at room temperature for 24 hours. Thereafter, acetic acid (15 μL) was added under ice cooling to stop the reaction, and the reaction solution was concentrated. The residue was suspended in pyridine (1.5 mL) under an argon atmosphere, acetic anhydride (1.5 mL) was added, and the mixture was stirred at 35 ° C. overnight. Thereafter, the reaction solution was concentrated, the residue was dissolved in chloroform, washed successively with 1M aqueous sulfuric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dehydrated and dried over magnesium sulfate, filtered through celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography [10: 9: 1 → 8: 6: 1 → 6: 5: 1 (v / v / v) chloroform-ethyl acetate-methanol, silica gel 30 mL] to obtain the target compound (43o) ( 103.8 mg, 53.9%).
The ball type and dumbbell type were synthesized in the same manner.
Furthermore, the amide extension dendrimer carrying the compound (35), the compound (11) and the compound (26) was synthesized in the same manner as described above.

〔合成例9〕チオシアロシド化合物の脱保護
上述のように合成した、デンドリマー及びモノマーを含むチオシアロシド化合物の脱保護を下記のスキームのように行った。

Figure 0005481731
[Synthesis Example 9] Deprotection of Thiosialoside Compound The deprotection of the thiocyanoside compound containing dendrimer and monomer synthesized as described above was carried out according to the following scheme.
Figure 0005481731

Fan(0)3−NeuSGlcO(OH)(44o)の合成
アルゴン雰囲気下、Fan(0)3-NeuSGlcO(OAc,OMe)(37o) (48.1mg, 16.5μmol)をメタノール(0.5mL)に溶解させ、ナトリウムメトキシド(1M メタノール溶液, 8μL, 8μM)を加え、室温で1時間撹拌した。その後、0.5M水酸化ナトリウム水溶液(2mL)を加えて一晩撹拌し、強酸性陽イオン交換樹脂Dowex-50W-X8(H+)(適量)を加えてpH〜4とした後、綿栓ろ過を行い、ろ液を濃縮した。その残渣をゲルろ過(Sephadex G-25: 250mL, 5%AcOH aq.)で精製した後、凍結乾燥を行い、白色固体として目的物(44o)(30.5mg, 92.7%)を得た。

Figure 0005481731

Synthesis of Fan (0) 3-NeuSGlcO (OH) (44o) Fan (0) 3-NeuSGlcO (OAc, OMe) (37o) (48.1 mg, 16.5 μmol) in methanol (0.5 mL) under an argon atmosphere Sodium methoxide (1M methanol solution, 8 μL, 8 μM) was added and stirred at room temperature for 1 hour. Thereafter, 0.5 M aqueous sodium hydroxide solution (2 mL) was added and stirred overnight, and after adding strong acidic cation exchange resin Dowex-50W-X8 (H + ) (appropriate amount) to pH ˜4, cotton plug Filtration was performed and the filtrate was concentrated. The residue was purified by gel filtration (Sephadex G-25: 250 mL, 5% AcOH aq.) And then freeze-dried to obtain the desired product (44o) (30.5 mg, 92.7%) as a white solid. .
Figure 0005481731

n−ペンテニル S−(5−アセトアミド−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−6−チオ−β−D−ガラクトピラノシド(45)の合成

Figure 0005481731

アルゴン雰囲気下、NeuSGlcO(OAc,OMe)(6)(79.1mg,91.6μmol)をメタノール(1.0 mL)に溶解させ、ナトリウムメトキシド(1M メタノール溶液, 50μL, 50μM)を加え、室温で30分間撹拌した。その後、0.5M 水酸化ナトリウム水溶液(2mL)を加えて一晩撹拌し、強酸性陽イオン交換樹脂Dowex−50W−X8 (H)を適量加えてpH〜4とした後、綿栓ろ過を行った。ろ液を濃縮し、残渣をゲルろ過(Sephadex G−15:220 mL,5% AcOH aq.)で精製した後、凍結乾燥を行い、白色固体として目的物(45)(54.3mg, 99.3%)を得た。
Figure 0005481731
n-pentenyl S- (5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)-(2 → 6) -6-thio-β-D-galacto Synthesis of pyranoside (45)
Figure 0005481731

Under an argon atmosphere, NeuSGlcO (OAc, OMe) (6) (79.1 mg, 91.6 μmol) was dissolved in methanol (1.0 mL), sodium methoxide (1M methanol solution, 50 μL, 50 μM) was added, and room temperature was added. For 30 minutes. Thereafter, 0.5 M aqueous sodium hydroxide solution (2 mL) was added and stirred overnight. After adding an appropriate amount of strong acidic cation exchange resin Dowex-50W-X8 (H + ) to pH ˜4, cotton plug filtration was performed. went. The filtrate was concentrated, and the residue was purified by gel filtration (Sephadex G-15: 220 mL, 5% AcOH aq.), And then lyophilized to give the target product (45) (54.3 mg, 99.99) as a white solid. 3%).
Figure 0005481731

n−ペンテニル S−(5−アセトアミド−3,5−ジデオキシ−D−グリセロ−α−D−ガラクト−2−ノニュロピラノシロネート)−(2→6)−O−(6−チオ−β−D−グルコピラノシル)−(1→4)−β−D−グルコピラノシド(46)の合成

Figure 0005481731

アルゴン雰囲気下、NeuSCel(OAc,OMe)(35)(61.1mg, 53.0μmol)をメタノール(0.8mL)に溶解させ、ナトリウムメトキシド(1M メタノール溶液, 40μL, 40μM)を加え、室温で30分間撹拌した。その後、0.5M水酸化ナトリウム水溶液(2mL)を加えて一晩撹拌し、強酸性陽イオン交換樹脂Dowex−50W−X8(H)を適量加えてpH〜4とした後、綿栓ろ過を行った。ろ液を濃縮し、残渣をゲルろ過(Sephadex G−15: 220mL, 5%AcOH aq.)で精製した後、凍結乾燥を行い、白色固体として目的物(46)(38.2mg, quant.)を得た。
Figure 0005481731

以下のシアリダーゼ阻害活性の測定には、脱保護した化合物を使用した。 n-pentenyl S- (5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonopyranosilonate)-(2 → 6) -O- (6-thio-β- Synthesis of D-glucopyranosyl)-(1 → 4) -β-D-glucopyranoside (46)
Figure 0005481731

Under an argon atmosphere, NeuSCel (OAc, OMe) (35) (61.1 mg, 53.0 μmol) was dissolved in methanol (0.8 mL), sodium methoxide (1 M methanol solution, 40 μL, 40 μM) was added, and at room temperature. Stir for 30 minutes. Thereafter, 0.5 M aqueous sodium hydroxide solution (2 mL) was added and stirred overnight. After adding an appropriate amount of strong acidic cation exchange resin Dowex-50W-X8 (H + ) to pH ˜4, cotton plug filtration was performed. went. The filtrate was concentrated, and the residue was purified by gel filtration (Sephadex G-15: 220 mL, 5% AcOH aq.) And then freeze-dried to obtain the target product (46) (38.2 mg, quant.) As a white solid. Got.
Figure 0005481731

The deprotected compound was used for the following measurement of sialidase inhibitory activity.

〔実験例〕シアリダーゼ阻害アッセイ法
前記合成例に示すように合成した下記の化合物についてシアリダーゼ阻害活性を測定した。

Figure 0005481731

96穴プレートに種々の濃度の合成阻害剤(本発明に係る上記化合物及びポジティブコントロール(ザナミビルあるいはオセルタミビル))(4μL)とインフルエンザA型ウィルス(H1N1:Aソ連型、H3N2:A香港型)懸濁液(4μL)を加え、4℃、1時間インキュベートした。各ウェルにシアリダーゼの基質として0.4mM 4−Mu−Neu5Ac(4−メチルウンベリフェリル−N−アセチル−α−D−ノイラミン酸)(2μL)を加え、37℃、30分インキュベートし、停止溶液(200μL)を加えた。この混合物(100μL)を新規の96穴マイクロプレートに移し、励起波長 Ex.355nm、蛍光波長 Em.460nmの蛍光強度を測定し、インフルエンザウィルスシアリダーゼに対する各化合物のIC50値を測定した。
測定結果を以下の表に示す。
Figure 0005481731

Figure 0005481731

Figure 0005481731
[Experimental Example] Sialidase Inhibition Assay Method The sialidase inhibitory activity of the following compounds synthesized as shown in the synthesis examples was measured.
Figure 0005481731

Suspension of influenza A virus (H1N1: A Soviet type, H3N2: A Hong Kong type) and suspension of various concentrations of synthesis inhibitor (the above compound according to the present invention and positive control (zanamivir or oseltamivir)) (4 μL) in 96-well plate The solution (4 μL) was added and incubated at 4 ° C. for 1 hour. To each well, 0.4 mM 4-Mu-Neu5Ac (4-methylumbelliferyl-N-acetyl-α-D-neuraminic acid) (2 μL) was added as a sialidase substrate, incubated at 37 ° C. for 30 minutes, and stop solution (200 μL) was added. This mixture (100 μL) is transferred to a new 96-well microplate and the excitation wavelength Ex. 355 nm, fluorescence wavelength Em. The fluorescence intensity at 460 nm was measured, and the IC 50 value of each compound against influenza virus sialidase was measured.
The measurement results are shown in the following table.
Figure 0005481731

Figure 0005481731

Figure 0005481731

本発明はインフルエンザウィルスのノイラミニダーゼ活性を有効に阻害することから、抗インフルエンザ薬の開発に利用することができる。   Since the present invention effectively inhibits neuraminidase activity of influenza virus, it can be used for the development of anti-influenza drugs.

Claims (9)

次式(I)
Figure 0005481731
(式中、E及びEは、炭素又はケイ素のいずれかであり、互いに同一でも異なっていてもよく、R、Rは、同一又は異なった炭化水素基を示し、R、R及びRは酸素、窒素及び/又はカルボニル基を含んでもよい同一又は異なった炭素数3〜12のアルキル基、アルキレン基、アルキニレン基及びアルコキシレン基(オキシアルキレン基)を示し、Yは以下の置換基を示し、lは0〜2のであり、mは0〜2のであり、kは0又は1の数を示し、kが0のときは3−mは1であり、kが1の場合に、R は、E と結合する)で表されるチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。
Figure 0005481731
Formula (I)
Figure 0005481731
(In the formula, E 1 and E 2 are either carbon or silicon , and may be the same or different from each other, R 1 and R 2 represent the same or different hydrocarbon groups, and R 3 , R 2 4 and R 5 is oxygen, nitrogen and / or optionally identical also contain a carbonyl group or a different alkyl group having 3 to 12 carbon atoms, an alkylene group, an alkynylene group and alkoxylene group (oxyalkylene group), Y is less shows a substituent, l is a number of 0 to 2, m is a number of 0 to 2, k represents a number of 0 or 1, 3-m when the k is 0, Ri 1 der In the case where k is 1, R 3 binds to E 2 ), or a pharmacologically acceptable salt thereof or a hydrate thereof.
Figure 0005481731
R1及びR2が同一又は異なる炭素数1〜6のアルキル基、フェニル基、ビニル基、又はアルケニル基である請求項1に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそらの水和物。   R 1 and R 2 are the same or different alkyl groups having 1 to 6 carbon atoms, phenyl group, vinyl group, or alkenyl group, or the thiosialogooligosaccharide-bonded dendrimer compound according to claim 1, or a pharmacologically acceptable salt thereof, or a salt thereof Hydrate. 及びEがケイ素である請求項1又は請求項2に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。 The thiosialogooligosaccharide-bonded dendrimer compound according to claim 1 or 2, wherein E 1 and E 2 are silicon, or a pharmacologically acceptable salt thereof, or a hydrate thereof. がフェニル基、Rが−C−、−C−O−C−又は−C−NHCOC10−、Rが−C10−、kが0、lが1、mが2である請求項に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。 R 1 is a phenyl group, R 3 is —C 3 H 6 —, —C 3 H 6 —O—C 3 H 6 — or —C 3 H 6 C 5 H 8 —NHCOC 5 H 10 —, and R 4 is — The thiosialogooligosaccharide-bonded dendrimer compound according to claim 3 , or a pharmacologically acceptable salt thereof, or a hydrate thereof, wherein C 5 H 10- , k is 0, 1 is 1, and m is 2. が−C−、−C−O−C−又は−C−NHCOC10−、Rが−C10、kが0、lが0、mが2である請求項に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。 R 3 is —C 3 H 6 —, —C 3 H 6 —O—C 3 H 6 — or —C 3 H 6 —NHCOC 5 H 10 —, R 4 is —C 5 H 10 , k is 0, l The thiosialogooligosaccharide-bonded dendrimer compound according to claim 3 , or a pharmacologically acceptable salt thereof, or a hydrate thereof. がメチル基、R及びRが−C−、−C−O−C−又は−C−NHCOC10−、Rが−C10、kが1、lが2、mが0である請求項に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。 R 1 is a methyl group, R 3 and R 5 are —C 3 H 6 —, —C 3 H 6 —O—C 3 H 6 — or —C 3 H 6 —NHCOC 5 H 10 —, and R 4 is —C. The thiosialogooligosaccharide-bonded dendrimer compound according to claim 3 or a pharmacologically acceptable salt thereof, or a hydrate thereof, wherein 5 H 10 , k is 1, 1 is 2, and m is 0. 及びRが−C−、−C−O−C−又は−C−NHCOC10−、Rが−C10、kが1、lが0、mが0である請求項に記載のチオシアロオリゴ糖結合デンドリマー化合物若しくはその薬理学上許容される塩又はそれらの水和物。 R 3 and R 5 are —C 3 H 6 —, —C 3 H 6 —O—C 3 H 6 — or —C 3 H 6 —NHCOC 5 H 10 —, R 4 is —C 5 H 10 , and k is The thialo-oligosaccharide-linked dendrimer compound according to claim 3 , wherein 1, 1 is 0, and m is 0, or a pharmacologically acceptable salt thereof, or a hydrate thereof. 請求項1乃至請求項のいずれかに記載のチオシアロオリゴ糖結合デンドリマー化合物、その薬剤上許容される塩及びそれらの水和物、並びに薬剤上許容される担体を含有することを特徴とする感染症の治療のための医薬。 An infectious disease comprising the thiosialogooligosaccharide-bonded dendrimer compound according to any one of claims 1 to 7, a pharmaceutically acceptable salt and hydrate thereof, and a pharmaceutically acceptable carrier. Medicine for the treatment of 前記感染症がインフルエンザウィルス感染症であることを特徴とする請求項に記載の医薬。 The medicament according to claim 8 , wherein the infectious disease is an influenza virus infection.
JP2009055892A 2008-03-10 2009-03-10 Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof Expired - Fee Related JP5481731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055892A JP5481731B2 (en) 2008-03-10 2009-03-10 Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008059623 2008-03-10
JP2008059623 2008-03-10
JP2009055892A JP5481731B2 (en) 2008-03-10 2009-03-10 Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof

Publications (2)

Publication Number Publication Date
JP2009242387A JP2009242387A (en) 2009-10-22
JP5481731B2 true JP5481731B2 (en) 2014-04-23

Family

ID=41304728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055892A Expired - Fee Related JP5481731B2 (en) 2008-03-10 2009-03-10 Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof

Country Status (1)

Country Link
JP (1) JP5481731B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355313B2 (en) 2014-10-03 2019-07-16 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040554A1 (en) * 2000-06-30 2004-03-04 Koji Matsuoka Sugar chain-containing carbosilane dendrimer compounds, process for producing the same verotoxin neutralizers and antiviral agents
JP2003212893A (en) * 2002-01-18 2003-07-30 Japan Science & Technology Corp Amide-linked sugar chain-containing carbosilane dendrimer and method for producing the same
JP2004107230A (en) * 2002-09-17 2004-04-08 Gs Plaz Co Ltd Galabiose-bonded carbosilane dendrimer compound
JP4666941B2 (en) * 2004-04-20 2011-04-06 独立行政法人科学技術振興機構 Novel sugar chain-supporting carbosilane dendrimer, method for producing the same, and dengue virus infection inhibitor, antiviral agent and anti-HIV agent target substance for screening
JP4930929B2 (en) * 2005-03-17 2012-05-16 国立大学法人埼玉大学 Sialyl lactosamine binding dendrimer compounds
JP5282258B2 (en) * 2006-08-23 2013-09-04 国立大学法人埼玉大学 Thioglycoside-type sialic acid-bonded dendrimer compounds

Also Published As

Publication number Publication date
JP2009242387A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
Boukerb et al. Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection
JP5843344B2 (en) Macrocyclic antibiotic compounds and methods for their production and use
EP2616065B1 (en) Glyco-substituted dihydroxy-chlorins and b-functionalized chlorins for anti-microbial photodynamic therapy
Li et al. Synthesis and assessment of globotriose–chitosan conjugate, a novel inhibitor of Shiga toxins produced by Escherichia coli
TW201024314A (en) Pyrone analogs for therapeutic treatment
JP4930929B2 (en) Sialyl lactosamine binding dendrimer compounds
ES2709680T3 (en) Medicinal carbohydrates for the treatment of respiratory diseases
Larsson et al. Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides
WO1996023002A1 (en) Low-molecular-weight lipopolysaccharide
Wu et al. Maltoheptaose-presenting nanoscale glycoliposomes for the delivery of rifampicin to E. coli
US5962423A (en) Treatment of bacterial dysentery
JP2007126453A (en) Hyaluronan production promotor and hyaluronan decomposition suppressor
JP5481731B2 (en) Method for producing sugar chain dendrimer containing thiasialoside type oligosaccharide and use thereof
EP2344167B1 (en) Inhibitors of f18+ e. coli binding
WO2012167434A1 (en) A pharmaceutical composition for inhibiting recurrence, aggravation and metastasis of hepatocarcinoma
WO2005120555A1 (en) Use of human lysozyme in preparation of medicine for treating acne
JP2007291133A (en) Therapeutic agent containing hyaluronic acid oligosaccharide as active ingredient
WO1998026662A9 (en) Compounds and methods for treating and preventing bacterial and viral disease
WO1998026662A1 (en) Compounds and methods for treating and preventing bacterial and viral disease
JP5327839B2 (en) Method for producing sialic acid derivative and its use as an influenza virus inhibitor
JP5103613B2 (en) Sialic acid thioglycoside polymer
JP2021508339A (en) How to improve the oral bioavailability of a drug
JP5282258B2 (en) Thioglycoside-type sialic acid-bonded dendrimer compounds
US11413299B2 (en) Compositions and methods for treatment of inflammatory disorders
EP2289904A1 (en) Inhibitors of microbial infections

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5481731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees