JP2013063867A - Method for producing barium titanyl oxalate and method for producing barium titanate - Google Patents

Method for producing barium titanyl oxalate and method for producing barium titanate Download PDF

Info

Publication number
JP2013063867A
JP2013063867A JP2011202451A JP2011202451A JP2013063867A JP 2013063867 A JP2013063867 A JP 2013063867A JP 2011202451 A JP2011202451 A JP 2011202451A JP 2011202451 A JP2011202451 A JP 2011202451A JP 2013063867 A JP2013063867 A JP 2013063867A
Authority
JP
Japan
Prior art keywords
barium
titanyl oxalate
liquid
solution
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011202451A
Other languages
Japanese (ja)
Other versions
JP5879078B2 (en
Inventor
Hideki Inoue
秀樹 井上
Tatsuya Kato
達也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2011202451A priority Critical patent/JP5879078B2/en
Priority to CN201280044902.4A priority patent/CN103796956B/en
Priority to KR1020147006674A priority patent/KR101904579B1/en
Priority to PCT/JP2012/073341 priority patent/WO2013039108A1/en
Publication of JP2013063867A publication Critical patent/JP2013063867A/en
Application granted granted Critical
Publication of JP5879078B2 publication Critical patent/JP5879078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing barium titanyl oxalate, whereby barium titanate having excellent crystallinity irrespective of small particle diameter can be obtained by an oxalate technique, and to provide a method whereby fine barium titanate having excellent crystallinity can be produced.SOLUTION: In this method for producing barium titanyl oxalate, an aqueous solution (B solution) including titanium tetrachloride is added to and reacted with a solution (A solution) containing at least oxalic acid and barium chloride; and preferably, the A solution is obtained by bringing oxalic acid and barium chloride into contact with each other in a water solvent.

Description

本発明は、特に、圧電体、オプトエレクトロニクス材、誘電体、半導体、センサー等の機能性セラミックの原料として有用なシュウ酸バリウムチタニルの製造方法、及びそれを用いるチタン酸バリウムの製造方法に関するものである。   The present invention particularly relates to a method for producing barium titanyl oxalate useful as a raw material for functional ceramics such as piezoelectric materials, optoelectronic materials, dielectric materials, semiconductors, and sensors, and a method for producing barium titanate using the same. is there.

従来、チタン酸バリウムは、固相法、水熱合成法、アルコキシド法、シュウ酸塩法等により製造されている。   Conventionally, barium titanate is produced by a solid phase method, a hydrothermal synthesis method, an alkoxide method, an oxalate method, or the like.

固相法では、構成原料粉末等を混合し、該混合物を高温で加熱する乾式方法により製造するため、得られた粉末は不規則な形状を呈する凝集体を成し、また、所望の特性を達成するために高温焼成が必要である。また、水熱合成法は、粉体の特性が良好との長所にもかかわらず合成工程が複雑で、オートクレーブを用いるため生産性が劣り、製造粉末の値段が高く工業的に有利でない。また、アルコキシド法も同様、出発物質の取り扱いが難しく、値段が高く工業的に有利でない。   In the solid phase method, constituent raw material powders and the like are mixed, and the mixture is manufactured by a dry method in which the mixture is heated at a high temperature. Therefore, the obtained powder forms an agglomerate having an irregular shape and has desired characteristics. High temperature firing is necessary to achieve. In addition, the hydrothermal synthesis method has a complicated synthesis process in spite of the advantages of good powder characteristics, and is inferior in productivity because of the use of an autoclave, and the production powder is expensive and not industrially advantageous. Similarly, the alkoxide method is difficult to handle starting materials, is expensive, and is not industrially advantageous.

シュウ酸塩法で得られるチタン酸バリウムは、水熱合成法やアルコキシド法に比べ、組成が均一なものを安価に製造することができ、また、固相法で製造したチタン酸バリウムに比べ、組成が均一であるという特徴を有する。従来のシュウ酸塩法としては、TiClとBaClとの水溶液を、H水溶液に攪拌下に滴下して、シュウ酸バリウムチタニルを得、該シュウ酸バリウムチタニルを焼成する方法が一般的である(例えば、非特許文献1及び特許文献1参照)。 Barium titanate obtained by the oxalate method can be manufactured at a low cost compared with hydrothermal synthesis method or alkoxide method, and compared with barium titanate manufactured by solid phase method, It has the feature that the composition is uniform. As a conventional oxalate method, an aqueous solution of TiCl 4 and BaCl 2 is dropped into an H 2 C 2 O 4 aqueous solution while stirring to obtain barium titanyl oxalate, and the barium titanyl oxalate is baked. Is common (see, for example, Non-Patent Document 1 and Patent Document 1).

特開2005−500239号公報JP 2005-500239 A

W.S.Clabaugh et al.,J.Res.Nat.Bur.Stand.,56(5),289−291(1956)W. S. Clavaugh et al. , J .; Res. Nat. Bur. Stand. , 56 (5), 289-291 (1956)

シュウ酸塩法により得られるチタン酸バリウムは、誘電体セラミックの材料として、優れた性能を発揮するものの、近年の要求性能の高まりから、更なる性能向上が求められている。チタン酸バリウムの誘電体セラミックとしての特性は、一般的には結晶性が高いものが誘電特性もよいことが知られている(例えば、特開2006−117446号公報参照)。   Although barium titanate obtained by the oxalate method exhibits excellent performance as a dielectric ceramic material, further improvement in performance is required due to the recent increase in required performance. It is known that the characteristic of barium titanate as a dielectric ceramic is generally high in crystallinity and has good dielectric characteristics (see, for example, JP-A-2006-117446).

本発明者らは、従来の方法で得られるシュウ酸バリウムチタニルについて検討したところ、これらのシュウ酸バリウムチタニルは、バルクのBa/Tiモル比は0.998〜1.002の略1であるものの、粒径毎のBa/Tiモル比にはバラツキがあり、小さいもの程(言い換えると、「比表面積が大きいもの程」)Ba/Tiモル比が小さく、一方、粒径が大きいもの程(言い換えると、「比表面積が小さいもの程」)Ba/Tiモル比が大きくなっていることを見出した。このため、シュウ酸塩法では、粒径が小さく、Ba/Tiモル比が0.998〜1.002の略1で、結晶性が高いチタン酸バリウムが得られ難いということを見出した。   The present inventors examined barium titanyl oxalate obtained by a conventional method, and these barium titanyl oxalates have a bulk Ba / Ti molar ratio of about 0.998 to 1.002. The Ba / Ti molar ratio for each particle size varies, and the smaller the Ba / Ti molar ratio (in other words, the larger the specific surface area), the smaller the Ba / Ti molar ratio, while the larger the particle size (in other words, And “the smaller the specific surface area”), the Ba / Ti molar ratio was found to be large. For this reason, the oxalate method has found that it is difficult to obtain barium titanate having a small particle size and a Ba / Ti molar ratio of about 0.998 to 1.002 and high crystallinity.

従って、本発明の目的は、シュウ酸塩法で、粒径が小さいにもかかわらず結晶性に優れたチタン酸バリウムを得ることができるシュウ酸バリウムチタニルの製造方法を提供すること。更に、微粒で結晶性に優れたチタン酸バリウムを製造することができる方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing barium titanyl oxalate capable of obtaining barium titanate having excellent crystallinity despite the small particle size by the oxalate method. Furthermore, it is providing the method which can manufacture the barium titanate which was excellent in crystallinity with the fine particle.

本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、少なくともシュウ酸及び塩化バリウムを含有する溶液(A液)に、四塩化チタンを含む水溶液(B液)を添加し反応を行うことにより、平均粒径が4μm以下の微粒であってもBa/Tiモル比が0.998〜1.002の略1のシュウ酸バリウムチタニルが得られること、また、該シュウ酸バリウムチタニルを用いることにより、粒径が小さいにもかかわらず結晶性が高いチタン酸バリウムが得られるので、優れた性能を有する誘電体セラミック材料を提供できること等を見出し、本発明を完成させるに到った。   As a result of intensive studies in view of the above circumstances, the present inventors have added an aqueous solution (liquid B) containing titanium tetrachloride to a reaction containing at least oxalic acid and barium chloride (liquid A). To obtain barium titanyl oxalate having a Ba / Ti molar ratio of 0.998 to 1.002 even when the average particle diameter is 4 μm or less, and to use the barium titanyl oxalate. Thus, since barium titanate having high crystallinity can be obtained even though the particle size is small, it has been found that a dielectric ceramic material having excellent performance can be provided, and the present invention has been completed.

即ち、本発明が提供しようとする第1の発明は、少なくともシュウ酸及び塩化バリウムを含有する溶液(A液)に、四塩化チタンを含む水溶液(B液)を添加し反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法である。   That is, the first invention to be provided by the present invention is characterized in that an aqueous solution (liquid B) containing titanium tetrachloride is added to a solution (liquid A) containing at least oxalic acid and barium chloride to carry out the reaction. And a method for producing barium titanyl oxalate.

また、本発明が提供しようとする第2の発明は、前記第1の発明により得られたシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法である。   A second invention to be provided by the present invention is a method for producing barium titanate, characterized by firing the barium titanyl oxalate obtained by the first invention.

本発明によれば、平均粒径が4μm以下と小さくとも、Ba/Tiモル比が0.998〜1.002の略1のシュウ酸バリウムチタニルを提供することができる。そして、このようなシュウ酸バリウムチタニルを用いることにより、シュウ酸塩法で、粒径が小さいにもかかわらず結晶性が高く、優れた性能を有する誘電体セラミック材料を提供できる。   According to the present invention, it is possible to provide approximately 1 barium titanyl oxalate having a Ba / Ti molar ratio of 0.998 to 1.002 even when the average particle size is as small as 4 μm or less. By using such barium titanyl oxalate, a dielectric ceramic material having high crystallinity and excellent performance can be provided by the oxalate method even though the particle size is small.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明の製造方法は、少なくともシュウ酸及び塩化バリウムを含有する溶液(A液)に、四塩化チタンを含む水溶液(B液)を添加し反応を行うことを特徴とするものである。本発明の製造方法に従い製造されるシュウ酸バリウムチタニルは、好適にはTiに対するBaのモル比(以下、「Ba/Tiモル比」という)が0.998〜1.002、好ましくは略1であり、レーザー回折・散乱法により求められる平均粒径が4μm以下、好ましくは0.1〜4μmで微細なシュウ酸バリウムチタニルである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The production method of the present invention is characterized in that an aqueous solution (liquid B) containing titanium tetrachloride is added to a solution (liquid A) containing at least oxalic acid and barium chloride to carry out the reaction. The barium titanyl oxalate produced according to the production method of the present invention preferably has a Ba to Ti molar ratio (hereinafter referred to as “Ba / Ti molar ratio”) of 0.998 to 1.002, preferably about 1. There is a fine barium titanyl oxalate having an average particle size of 4 μm or less, preferably 0.1 to 4 μm, determined by a laser diffraction / scattering method.

本発明で用いるA液は、少なくともシュウ酸及び塩化バリウムを含む溶液である。本発明に係るA液は水、シュウ酸及び塩化バリウム以外の成分としてシュウ酸バリウム、更には塩酸等の塩素イオン源を含有させることができる。A液のシュウ酸及び塩化バリウム、又はシュウ酸、塩化バリウム及びシュウ酸バリウム、更には塩素イオン源のA液への配合割合は、A液中のシュウ酸とバリウムの濃度及びシュウ酸とバリウムのモル比、更には塩素イオン濃度が後述する範囲内であれば、各原料の配合割合は特に制限されない。   The solution A used in the present invention is a solution containing at least oxalic acid and barium chloride. The liquid A according to the present invention can contain barium oxalate as a component other than water, oxalic acid and barium chloride, and further a chlorine ion source such as hydrochloric acid. The mixing ratio of oxalic acid and barium chloride of liquid A, or oxalic acid, barium chloride and barium oxalate, and the chlorine ion source to liquid A is determined by the concentration of oxalic acid and barium in liquid A and the concentration of oxalic acid and barium. If the molar ratio and further the chlorine ion concentration is within the range described later, the blending ratio of each raw material is not particularly limited.

A液中の組成はシュウ酸(H)換算で0.7〜2.5モル/L、好ましくは1.0〜2.2モル/Lで、Ba換算で0.4〜1.3モル/L、好ましくは0.9〜1.1モル/Lであり、且つBaに対するシュウ酸のモル比(シュウ酸/Ba)が1.5〜2.5、好ましくは1.8〜2.2であることが、高い収率でBa/Tiモル比が略1のシュウ酸バリウムチタニルが得られるという観点から好ましい。また、A液中の塩素イオン濃度は、Cl換算で0.7〜2.5モル/L、好ましくは1.0〜2.2モル/Lであると高い収率でBa/Tiモル比が略1で微粒のシュウ酸バリウムチタニルを得られるという観点から好ましい。 The composition in the liquid A is 0.7 to 2.5 mol / L, preferably 1.0 to 2.2 mol / L in terms of oxalic acid (H 2 C 2 O 4 ), and 0.4 to 0.4 in terms of Ba. 1.3 mol / L, preferably 0.9 to 1.1 mol / L, and the molar ratio of oxalic acid to Ba (oxalic acid / Ba) is 1.5 to 2.5, preferably 1.8 It is preferable from the viewpoint that barium titanyl oxalate having a Ba / Ti molar ratio of about 1 is obtained in a high yield. The chlorine ion concentration in the liquid A is 0.7 to 2.5 mol / L, preferably 1.0 to 2.2 mol / L in terms of Cl, and the Ba / Ti molar ratio is high with a high yield. From the viewpoint that approximately 1 and fine barium titanyl oxalate can be obtained.

本発明に係るA液はシュウ酸と塩化バリウムとを水溶媒中で接触させて得られるものをそのまま用いることができる。通常、シュウ酸と塩化バリウムとを水溶媒中で接触させると、一部シュウ酸と塩化バリウムが反応して微細なシュウ酸バリウムが析出したものになる。この際のA液の組成は、水、シュウ酸、塩化バリウム、更にはそれ以外の成分としてシュウ酸バリウム及び塩酸が含有されたものになるが、本製造方法において、このように調製されたA液は四塩化チタンとの反応性が高く、高い収率で目的とするシュウ酸バリウムチタニルを得ることができるという観点から特に好ましく用いられる。なお、シュウ酸と塩化バリウムの配合割合はA液中のシュウ酸とバリウムの濃度及びシュウ酸とバリウムのモル比、更には塩素イオン濃度が上記範囲内となるような範囲であればよい。   As the solution A according to the present invention, a solution obtained by contacting oxalic acid and barium chloride in an aqueous solvent can be used as it is. Usually, when oxalic acid and barium chloride are brought into contact with each other in an aqueous solvent, oxalic acid and barium chloride partially react to precipitate fine barium oxalate. The composition of the liquid A at this time is water, oxalic acid, barium chloride, and further contains barium oxalate and hydrochloric acid as other components. In this production method, A prepared in this way The liquid is particularly preferably used from the viewpoint that the reactivity with titanium tetrachloride is high and the target barium titanyl oxalate can be obtained in a high yield. The mixing ratio of oxalic acid and barium chloride may be in a range such that the concentration of oxalic acid and barium in the liquid A, the molar ratio of oxalic acid and barium, and the chlorine ion concentration are within the above ranges.

A液の調製に係る前記シュウ酸と塩化バリウムの接触は、攪拌下に行うことにより、析出した微細なシュウ酸バリウムが均一に分散した懸濁液を得ることができる。前記接触温度は、特に制限はなく、多くの場合、100℃以下、好ましくは室温付近(15〜30℃)で十分である。また、A液の調製におけるシュウ酸と塩化バリウムの接触時間は、特に制限はないが多くの場合、0.25時間以上、好ましくは0.5〜2時間で満足のいく物性のA液が得られる。   The contact of the oxalic acid and barium chloride relating to the preparation of the liquid A can be performed with stirring, whereby a suspension in which the precipitated fine barium oxalate is uniformly dispersed can be obtained. The contact temperature is not particularly limited, and in many cases, it is 100 ° C. or less, preferably about room temperature (15 to 30 ° C.). The contact time between oxalic acid and barium chloride in the preparation of the liquid A is not particularly limited, but in many cases, a liquid A having satisfactory physical properties can be obtained in 0.25 hours or more, preferably 0.5 to 2 hours. It is done.

シュウ酸と塩化バリウムの接触方法としては、例えば、1)シュウ酸水溶液に、塩化バリウムを水溶液或いは粉体として添加する方法、2)塩化バリウム水溶液に、シュウ酸を水溶液或いは粉体として添加する方法、3)水を仕込んだ容器にシュウ酸及び塩化バリウムを添加する方法、4)シュウ酸及び塩化バリウムを仕込んだ容器に水を添加する方法等が挙げられるが、装置、操作性等を考慮して適宜有利な方法を選択して行うことができる。   Examples of contact methods of oxalic acid and barium chloride include 1) a method of adding barium chloride as an aqueous solution or powder to an oxalic acid aqueous solution, and 2) a method of adding oxalic acid as an aqueous solution or powder to an aqueous barium chloride solution. 3) A method of adding oxalic acid and barium chloride to a container charged with water, 4) A method of adding water to a container charged with oxalic acid and barium chloride, etc. Thus, an advantageous method can be selected as appropriate.

本発明で用いるB液は、四塩化チタンを含む水溶液である。B液中の四塩化チタンの濃度はTiとして0.1〜1.2モル/L、特に0.3〜1.0モル/Lであると、高い収率でBa/Tiモル比が略1のシュウ酸バリウムチタニルを得られるという観点から好ましい。また、B液中の塩素イオン濃度は、Cl換算で0.7〜2.5モル/L、好ましくは1.0〜2.2モル/Lであると高い収率で、微粒で、且つBa/Tiモル比が略1のシュウ酸バリウムチタニルを得るという観点から好ましい。   The B liquid used in the present invention is an aqueous solution containing titanium tetrachloride. When the concentration of titanium tetrachloride in the liquid B is 0.1 to 1.2 mol / L as Ti, particularly 0.3 to 1.0 mol / L, the Ba / Ti molar ratio is about 1 with high yield. From the viewpoint that barium titanyl oxalate can be obtained. Further, the chlorine ion concentration in the liquid B is 0.7 to 2.5 mol / L, preferably 1.0 to 2.2 mol / L in terms of Cl, with a high yield, fine particles, and Ba From the viewpoint of obtaining barium titanyl oxalate having a / Ti molar ratio of about 1.

本製造方法において、A液とB液の組成が前記範囲であることに加えて、A液中の塩素イオン濃度に対するB液中の塩素イオン濃度の比(B/A)が重量比で0.5〜5.0、好ましくは0.75〜3.0となるようにA液及びB液を調整して反応を行うことにより、いっそう微細で、且つBa/Tiモル比が0.998〜1.002、好ましくは略1のシュウ酸バリウムチタニルを得やすくなる。
なお、A液及びB液には、塩素イオン濃度の調整のため、塩素イオン源を添加することができる。塩素イオン源としては、例えば塩酸、塩化ナトリウム、塩化カリウム、塩化リチウム、塩素イオンを含む有機化合物等が挙げられる。
In this production method, in addition to the composition of the liquid A and the liquid B being in the above ranges, the ratio of the chlorine ion concentration in the liquid B to the chlorine ion concentration in the liquid A (B / A) is 0. By adjusting the liquid A and the liquid B so as to be 5 to 5.0, preferably 0.75 to 3.0, the reaction is further fined, and the Ba / Ti molar ratio is 0.998 to 1 It is easy to obtain 0.002 and preferably about 1 barium titanyl oxalate.
In addition, a chlorine ion source can be added to A liquid and B liquid for adjustment of chlorine ion concentration. Examples of the chlorine ion source include hydrochloric acid, sodium chloride, potassium chloride, lithium chloride, organic compounds containing chlorine ions, and the like.

反応操作は、B液をA液へ添加し反応を行う。B液のA液への添加は、添加後の反応液におけるチタン原子に対するバリウム原子のモル比が1.0〜1.5、特に1.1〜1.3となるように行うと、Ba/Tiモル比が略1のシュウ酸バリウムチタニルが高収率で得られるので好ましい。   In the reaction operation, the liquid B is added to the liquid A to carry out the reaction. When the addition of the B liquid to the A liquid is performed so that the molar ratio of barium atoms to titanium atoms in the reaction liquid after the addition is 1.0 to 1.5, particularly 1.1 to 1.3, Ba / Since barium titanyl oxalate having a Ti molar ratio of about 1 is obtained in a high yield, it is preferable.

B液の添加速度は、速ければ速いほど、単位時間当たりの核発生が多くなり,より微細なものが得られる傾向がある。添加速度は、反応容器の大きさ、反応液の量等により、適宜選択されるが、例えば0.5Lスケールの実験室レベルでは、B液の添加速度は5L/時間以上、好ましくは8〜11L/時間とすることが好ましい。   As the addition speed of the liquid B increases, the number of nuclei generated per unit time increases, and a finer product tends to be obtained. The addition rate is appropriately selected depending on the size of the reaction vessel, the amount of the reaction solution, etc. For example, at the laboratory level of 0.5 L scale, the addition rate of solution B is 5 L / hour or more, preferably 8 to 11 L. / Hour is preferable.

B液のA液への添加温度は、40℃以下、好ましくは25〜40℃である。シュウ酸塩法において、多くの場合、この添加温度は50℃以上の温度で行われるが、本製造方法では添加温度を40℃まで下げることで、生成されるシュウ酸バリウムチタニルからBaの溶出を抑制し、微細なシュウ酸バリウムチタニルのモル比の変化を抑制することができるので、Ba/Tiモル比がより1に近いものが得られやすくなる。なお、B液の温度は特に限定されないが、A液の温度と同様の範囲内にあると、反応操作が容易となるので好ましい。   The addition temperature of B liquid to A liquid is 40 degrees C or less, Preferably it is 25-40 degreeC. In the oxalate method, this addition temperature is often performed at a temperature of 50 ° C. or higher, but in this production method, the elution of Ba from the barium titanyl oxalate produced by lowering the addition temperature to 40 ° C. Since it can suppress and the change of the molar ratio of fine barium titanyl oxalate can be suppressed, it becomes easy to obtain a Ba / Ti molar ratio closer to 1. The temperature of the B liquid is not particularly limited, but it is preferable that the temperature is within the same range as the temperature of the A liquid because the reaction operation becomes easy.

B液のA液への添加は攪拌下に行うことが好ましい。本製造方法において、攪拌を強くすることにより急激な反応を行わせ,これにより核成長を抑えて、より微粉なものが得られる傾向がある。攪拌速度は、反応容器の大きさ、攪拌羽の径、反応液の量等により、適宜選択されるが、例えば0.5Lスケールの実験室レベルを基準にすると、攪拌羽の周速0.5〜2.0m/秒以上が好ましく、攪拌羽の周速1.6〜1.8m/秒が特に好ましい。   It is preferable to add the B liquid to the A liquid with stirring. In this production method, the agitation is strengthened to cause a rapid reaction, thereby suppressing the nucleus growth and obtaining a finer powder. The stirring speed is appropriately selected depending on the size of the reaction vessel, the diameter of the stirring blade, the amount of the reaction solution, and the like. For example, on the basis of a laboratory level of 0.5 L scale, the peripheral speed of the stirring blade is 0.5. -2.0 m / sec or more is preferable, and the peripheral speed of the stirring blade is particularly preferably 1.6-1.8 m / sec.

B液の添加終了後、高い収率でシュウ酸バリウムチタニルを得る為に熟成を行なうことが好ましい。熟成温度は特に制限されないが、反応温度と同じであると操作がし易く好ましい。また熟成時間に特に制限はないが多くの場合、0.5時間以上、好ましくは0.5〜2時間である。熟成終了後は、常法により固液分離し、次いで水で洗浄する。洗浄方法は特に制限されるものではない。リパルプ等で洗浄を行うと洗浄効率がよいので好ましい。次いで、乾燥、必要により粉砕或いは解砕してシュウ酸バリウムチタニルを得る。   After completion of the addition of solution B, aging is preferably performed to obtain barium titanyl oxalate with a high yield. The aging temperature is not particularly limited, but is preferably the same as the reaction temperature for easy operation. The aging time is not particularly limited, but in many cases, it is 0.5 hours or more, preferably 0.5 to 2 hours. After completion of aging, the solid and liquid are separated by a conventional method and then washed with water. The cleaning method is not particularly limited. Washing with repulp or the like is preferable because the washing efficiency is good. Next, it is dried and, if necessary, ground or crushed to obtain barium titanyl oxalate.

かくして得られるシュウ酸バリウムチタニルの好ましい物性としては、レーザー回折・散乱法により求められる平均粒径が4μm以下、好ましくは0.1〜4μmである。また、該シュウ酸バリウムチタニルの組成は、Ba/Tiモル比が0.998〜1.002、好ましくは略1である。   As a preferable physical property of the barium titanyl oxalate thus obtained, an average particle size determined by a laser diffraction / scattering method is 4 μm or less, preferably 0.1 to 4 μm. The composition of the barium titanyl oxalate has a Ba / Ti molar ratio of 0.998 to 1.002, preferably about 1.

本発明の製造方法で得られるシュウ酸バリウムチタニルは、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として好適に用いることが出来る。本発明のチタン酸バリウムの製造方法は以下の通りである。   Barium titanyl oxalate obtained by the production method of the present invention can be suitably used as a production raw material for a barium titanate-based ceramic as a dielectric ceramic material. The manufacturing method of the barium titanate of this invention is as follows.

本発明のチタン酸バリウムの製造方法は、前述の方法で得られたシュウ酸バリウムチタニルを焼成することを特徴とするものである。   The method for producing barium titanate of the present invention is characterized in that barium titanyl oxalate obtained by the above-described method is fired.

最終製品に含まれるシュウ酸由来の有機物は、材料の誘電体特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるので好ましくない。従って、本発明では焼成によりシュウ酸バリウムチタニルを熱分解して目的とするチタン酸バリウムを得ると共に、シュウ酸由来の有機物を十分除去する必要がある。焼成条件は、焼成温度が好ましくは600〜1200℃、更に好ましくは700〜1100℃である。焼成温度が600℃未満では、単一相のチタン酸バリウムが得られにくい。一方、焼成温度が1200℃を超えると、粒径のバラツキが大きくなる。焼成時間は好ましくは2〜30時間、更に好ましくは5〜20時間である。また、焼成雰囲気は、特に制限されず、不活性ガス雰囲気下、真空雰囲気下、酸化性ガス雰囲気下、大気中のいずれであってもよく、或いは水蒸気を導入しながら前記雰囲気中で焼成を行ってもよい。   The organic material derived from oxalic acid contained in the final product is not preferable because it impairs the dielectric properties of the material and causes unstable behavior in the thermal process for ceramization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by firing to obtain the target barium titanate and to sufficiently remove organic substances derived from oxalic acid. The firing conditions are such that the firing temperature is preferably 600 to 1200 ° C, more preferably 700 to 1100 ° C. When the firing temperature is less than 600 ° C., it is difficult to obtain single-phase barium titanate. On the other hand, when the firing temperature exceeds 1200 ° C., the variation in particle diameter increases. The firing time is preferably 2 to 30 hours, more preferably 5 to 20 hours. The firing atmosphere is not particularly limited, and may be any of an inert gas atmosphere, a vacuum atmosphere, an oxidizing gas atmosphere, and the air, or firing is performed in the atmosphere while introducing water vapor. May be.

焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。   Firing may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired.

焼成後、適宜冷却し、必要に応じ粉砕してチタン酸バリウムの粉末を得る。必要に応じて行われる粉砕は、焼成して得られるチタン酸バリウムがもろくブロック状のものである場合等に適宜行うが、チタン酸バリウムの粒子自体は下記特定の平均粒径、BET比表面積を有するものである。即ち、前記で得られるチタン酸バリウムの粉末は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が好ましくは0.5μm以下、更に好ましくは0.05〜0.5μmである。BET比表面積は、好ましくは2〜20m/g、更に好ましくは2.0〜10m/gである。更に、本発明の製造方法で得られるチタン酸バリウムの組成は、BaとTiのモル比(Ba/Ti)が0.998〜1.002、特に略1であることが好ましい。また、結晶性の指標となるc軸/a軸比が1.007以上、好ましくは1.0085以上の結晶性が高いものであることがより好ましい。 After firing, the mixture is appropriately cooled and pulverized as necessary to obtain a barium titanate powder. The pulverization performed as necessary is appropriately performed when the barium titanate obtained by firing is fragile and in a block shape, but the barium titanate particles themselves have the following specific average particle diameter and BET specific surface area. It is what you have. That is, the barium titanate powder obtained above has an average particle size determined from a scanning electron micrograph (SEM) of preferably 0.5 μm or less, more preferably 0.05 to 0.5 μm. The BET specific surface area is preferably 2 to 20 m 2 / g, more preferably 2.0 to 10 m 2 / g. Furthermore, the composition of barium titanate obtained by the production method of the present invention is preferably such that the molar ratio of Ba to Ti (Ba / Ti) is 0.998 to 1.002, particularly about 1. Further, it is more preferable that the c-axis / a-axis ratio serving as an index of crystallinity is 1.007 or higher, preferably 1.0085 or higher.

また、本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムには、必要により誘電特性や温度特性を調整する目的で、副成分元素含有化合物を本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムに添加して、副成分元素を含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素を含有する化合物が挙げられる。   In addition, the barium titanate obtained by carrying out the method for producing barium titanate of the present invention is prepared by adding the subcomponent element-containing compound to the method for producing barium titanate of the present invention for the purpose of adjusting dielectric properties and temperature characteristics as necessary. In addition to the barium titanate obtained, subcomponent elements can be contained. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Examples include compounds containing elements.

副成分元素含有化合物は、無機物又は有機物のいずれであってもよい。例えば、前記の元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩及びアルコキシド等が挙げられる。副成分元素含有化合物がSi元素を含有する化合物である場合は、酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができる。その添加量や添加化合物の組み合わせは、常法に従って行えばよい。   The subcomponent element-containing compound may be either inorganic or organic. Examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. In the case where the subcomponent element-containing compound is a compound containing Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide or the like. The subcomponent element-containing compounds can be used alone or in combination of two or more. What is necessary is just to perform the combination of the addition amount and an addition compound according to a conventional method.

チタン酸バリウムに副成分元素を含有させるには、例えば、チタン酸バリウムと副成分元素含有化合物を均一混合後、焼成を行えばよい。或いは、シュウ酸バリウムチタニルと副成分元素含有化合物を均一混合後、焼成を行ってもよい。   In order to contain the subcomponent element in the barium titanate, for example, barium titanate and the subcomponent element-containing compound may be uniformly mixed and then fired. Alternatively, baking may be performed after uniformly mixing barium titanyl oxalate and the subcomponent element-containing compound.

本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムを用いて、例えば積層セラミックコンデンサを製造する場合には、先ず、チタン酸バリウムの粉末を、副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行う。これにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得る。該セラミックシートから積層セラミックコンデンサを作製するには、先ず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷する。乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該焼成体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布し焼き付けて、積層セラミックコンデンサが得られる。   For example, when producing a multilayer ceramic capacitor using the barium titanate obtained by the method for producing barium titanate according to the present invention, first, a known addition of barium titanate powder including subcomponent elements is added. A sheet is formed by mixing and dispersing in an appropriate solvent together with a compounding agent such as an agent, an organic binder, a plasticizer, and a dispersing agent. Thereby, the ceramic sheet used for manufacture of a multilayer ceramic capacitor is obtained. In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, an internal electrode forming conductive paste is printed on one surface of the ceramic sheet. After drying, a plurality of the ceramic sheets are laminated and pressed in the thickness direction to obtain a laminated body. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Further, a Ni paste, an Ag paste, a nickel alloy paste, a copper paste, a copper alloy paste or the like is applied to the fired body and baked to obtain a multilayer ceramic capacitor.

また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムの粉末を、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料として用いることができる他、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用の誘電体材料としても用いることができる。   In addition, the barium titanate powder obtained by the method for producing barium titanate of the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin, and a resin sheet, a resin film, an adhesive, and the like. Then, it can be used as a material for printed wiring boards and multilayer printed wiring boards, as well as co-materials for suppressing shrinkage differences between internal electrodes and dielectric layers, electrode ceramic circuit boards, glass ceramic circuit boards, circuit peripherals It can also be used as a material and a dielectric material for inorganic EL.

また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムは、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いられる。   Further, the barium titanate obtained by the method for producing barium titanate of the present invention is a catalyst used in reactions such as exhaust gas removal and chemical synthesis, and surface modification of printing toner that imparts antistatic and cleaning effects. It is suitably used as a material.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

〔実施例1〜14〕
(A液の調製)
純水に、塩化バリウム2水塩と、シュウ酸2水塩を30℃で表1に示す割合となるように添加し、撹拌速度1.3m/秒で0.5時間撹拌して得られた懸濁液をA液とした。
(B液の調製)
市販の15重量%の四塩化チタン水溶液を純水で希釈することにより表1に示す組成のものをB液とした。
B液をA液へ表2に示す条件にて添加し、1時間熟成を行った。熟成終了後、濾過してシュウ酸バリウムチタニルを回収した。
次いで、回収したシュウ酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥してシュウ酸バリウムチタニルの粉末を得た。得られたシュウ酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。その結果を表3に併記した。
[Examples 1 to 14]
(Preparation of solution A)
It was obtained by adding barium chloride dihydrate and oxalic acid dihydrate to pure water so as to have the ratio shown in Table 1 at 30 ° C. and stirring for 0.5 hour at a stirring speed of 1.3 m / sec. The suspension was designated as liquid A.
(Preparation of liquid B)
A commercially available 15 wt% aqueous solution of titanium tetrachloride was diluted with pure water to obtain a solution B having the composition shown in Table 1.
Liquid B was added to liquid A under the conditions shown in Table 2 and aged for 1 hour. After completion of aging, filtration was performed to recover barium titanyl oxalate.
Subsequently, the recovered barium titanyl oxalate was repulped with pure water and carefully washed. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows properties of the barium titanyl oxalate obtained. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The results are also shown in Table 3.

〔比較例1〕
(A液の調製)
純水にシュウ酸2水塩を30℃で表1に示す割合で添加し、撹拌速度1.3m/秒で0.5時間撹拌して得られた懸濁液をA液とした。
(B液の調製)
純水に塩化バリウム2水塩と市販の15重量%の四塩化チタン水溶液を添加することにより得られた表1に示す組成のものをB液とした。
B液をA液へ表2に示す条件にて添加し、1時間熟成を行った。熟成終了後、濾過してシュウ酸バリウムチタニルを回収した。
次いで、回収したシュウ酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥してシュウ酸バリウムチタニルの粉末を得た。得られたシュウ酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。その結果を表3に併記した。
[Comparative Example 1]
(Preparation of solution A)
A suspension obtained by adding oxalic acid dihydrate to pure water at a rate shown in Table 1 at 30 ° C. and stirring for 0.5 hour at a stirring speed of 1.3 m / sec was designated as solution A.
(Preparation of liquid B)
Liquid B was obtained by adding barium chloride dihydrate and 15% by weight aqueous titanium tetrachloride aqueous solution to pure water and having the composition shown in Table 1.
Liquid B was added to liquid A under the conditions shown in Table 2 and aged for 1 hour. After completion of aging, filtration was performed to recover barium titanyl oxalate.
Subsequently, the recovered barium titanyl oxalate was repulped with pure water and carefully washed. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows properties of the barium titanyl oxalate obtained. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The results are also shown in Table 3.

〔比較例2〕
(A液の調製)
純水にシュウ酸2水塩と市販の15重量%の四塩化チタン水溶液を30℃で表1に示す割合で添加し、撹拌速度1.3m/秒で0.5時間撹拌して得られた液をA液とした。
(B液の調製)
純水に塩化バリウム2水塩を溶解させて得られた表1に示す組成のものをB液とした。
B液をA液へ表2に示す条件にて添加し、1時間熟成を行った。熟成終了後、濾過してシュウ酸バリウムチタニルを回収した。
次いで、回収したシュウ酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥してシュウ酸バリウムチタニルの粉末を得た。得られたシュウ酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。その結果を表3に併記した。
[Comparative Example 2]
(Preparation of solution A)
It was obtained by adding oxalic acid dihydrate and a commercially available 15 wt% titanium tetrachloride aqueous solution to pure water at a rate shown in Table 1 at 30 ° C. and stirring for 0.5 hours at a stirring speed of 1.3 m / sec. The liquid was designated as liquid A.
(Preparation of liquid B)
Liquid B was prepared by dissolving barium chloride dihydrate in pure water and having the composition shown in Table 1.
Liquid B was added to liquid A under the conditions shown in Table 2 and aged for 1 hour. After completion of aging, filtration was performed to recover barium titanyl oxalate.
Subsequently, the recovered barium titanyl oxalate was repulped with pure water and carefully washed. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows properties of the barium titanyl oxalate obtained. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The results are also shown in Table 3.

〔比較例3〕
(A液の調製)
純水に塩化バリウム2水塩を30℃で表1に示す割合で添加し、撹拌速度1.3m/秒で0.5時間撹拌して得られた液をA液とした。
(B液の調製)
純水にシュウ酸2水塩と市販の15重量%の四塩化チタン水溶液を添加することにより得られた表1に示す組成のものをB液とした。
B液をA液へ表2に示す条件にて添加し、1時間熟成を行った。熟成終了後、濾過してシュウ酸バリウムチタニルを回収した。
次いで、回収したシュウ酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥してシュウ酸バリウムチタニルの粉末を得た。得られたシュウ酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。その結果を表3に併記した。
[Comparative Example 3]
(Preparation of solution A)
Barium chloride dihydrate was added to pure water at a rate shown in Table 1 at 30 ° C., and a liquid obtained by stirring for 0.5 hour at a stirring speed of 1.3 m / sec was designated as liquid A.
(Preparation of liquid B)
Liquid B was obtained by adding oxalic acid dihydrate and a commercially available 15% by weight aqueous titanium tetrachloride solution to pure water and having the composition shown in Table 1.
Liquid B was added to liquid A under the conditions shown in Table 2 and aged for 1 hour. After completion of aging, filtration was performed to recover barium titanyl oxalate.
Subsequently, the recovered barium titanyl oxalate was repulped with pure water and carefully washed. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows properties of the barium titanyl oxalate obtained. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The results are also shown in Table 3.

注)表中のシュウ酸濃度は、シュウ酸2水塩としての濃度を示す。 Note) The oxalic acid concentration in the table indicates the concentration of oxalic acid dihydrate.

注)表中のシュウ酸は2水塩を示す。 Note) Oxalic acid in the table indicates dihydrate.

注)BTOはシュウ酸バリウムチタニルを示す。 Note) BTO indicates barium titanyl oxalate.

表3より実施例にて得られたシュウ酸バリウムチタニルは、レーザー回折・散乱法により求められる平均粒径が4μm以下で、また、該シュウ酸バリウムチタニルの組成は、Ba/Tiモル比が1.000〜1.002の略1であった。
表3より比較例にて得られたシュウ酸バリウムチタニルは、レーザー回折・散乱法により求められる平均粒径が4μmより大きく、また、該シュウ酸バリウムチタニルの組成は、Ba/Tiモル比が0.997〜1.001であった。
From Table 3, the barium titanyl oxalate obtained in the examples has an average particle size of 4 μm or less determined by the laser diffraction / scattering method, and the composition of the barium titanyl oxalate has a Ba / Ti molar ratio of 1. It was about 1 of .000 to 1.002.
From Table 3, the barium titanyl oxalate obtained in the comparative example has an average particle size larger than 4 μm determined by the laser diffraction / scattering method, and the composition of the barium titanyl oxalate has a Ba / Ti molar ratio of 0. .997 to 1.001.

〔実施例15、16及び比較例4〜6〕
<チタン酸バリウムの製造>
実施例1及び比較例1〜3で得られたシュウ酸バリウムチタニル試料の8gを、大気中、875或いは900℃で24時間で焼成した。冷却後、解砕してそれぞれチタン酸バリウムの粉末を得た。得られたチタン酸バリウムの諸物性を表4に示した。BaとTiのモル比は前記と同様な方法で求めた。平均粒径はSEM写真から、比表面積はBET法で求めた。また、得られたチタン酸バリウムについて、結晶性の指標であるc軸とa軸の長さの比(c軸/a軸比)をXRDによって測定した。
[Examples 15 and 16 and Comparative Examples 4 to 6]
<Manufacture of barium titanate>
8 g of the barium titanyl oxalate sample obtained in Example 1 and Comparative Examples 1 to 3 was baked in the air at 875 or 900 ° C. for 24 hours. After cooling, it was crushed to obtain barium titanate powder. Various physical properties of the obtained barium titanate are shown in Table 4. The molar ratio of Ba and Ti was determined by the same method as described above. The average particle size was determined from the SEM photograph, and the specific surface area was determined by the BET method. Further, for the obtained barium titanate, the ratio of the c-axis to a-axis length (c-axis / a-axis ratio), which is an index of crystallinity, was measured by XRD.

注)BTOはシュウ酸バリウムチタニルを示す。BTはチタン酸バリウムを示す。 Note) BTO indicates barium titanyl oxalate. BT represents barium titanate.

表4より、焼成温度を同じ温度(900℃)にした場合、本発明で得られるシュウ酸バリウムチタニル(実施例15)を用いたものは、比較例のものと比べ、c軸/a軸比が高いチタン酸バリウムが得られることが分かる。また、焼成温度を875℃まで低くした場合(実施例16)でも得られるチタン酸バリウムはc軸/a軸比が1.0085以上と高いことが分かる。   From Table 4, when the firing temperature is the same temperature (900 ° C.), the one using barium titanyl oxalate (Example 15) obtained in the present invention has a c-axis / a-axis ratio as compared with the comparative example. It can be seen that high barium titanate is obtained. It can also be seen that the barium titanate obtained even when the firing temperature is lowered to 875 ° C. (Example 16) has a high c-axis / a-axis ratio of 1.0085 or more.

本発明によれば、平均粒径が4μm以下と小さくとも、Ba/Tiモル比が0.998〜1.002の略1のシュウ酸バリウムチタニルを提供することができる。そして、このようなシュウ酸バリウムチタニルを用いることにより、シュウ酸塩法で、粒径が小さいにもかかわらず結晶性が高く、優れた性能を有する誘電体セラミック材料を提供できる。   According to the present invention, it is possible to provide approximately 1 barium titanyl oxalate having a Ba / Ti molar ratio of 0.998 to 1.002 even when the average particle size is as small as 4 μm or less. By using such barium titanyl oxalate, a dielectric ceramic material having high crystallinity and excellent performance can be provided by the oxalate method even though the particle size is small.

Claims (7)

少なくともシュウ酸及び塩化バリウムを含有する溶液(A液)に、四塩化チタンを含む水溶液(B液)を添加し反応を行うことを特徴とするシュウ酸バリウムチタニルの製造方法。   A method for producing barium titanyl oxalate, which comprises reacting an aqueous solution (solution B) containing titanium tetrachloride with a solution (solution A) containing at least oxalic acid and barium chloride. A液は、シュウ酸及び塩化バリウムを水溶媒中で接触させて得られるものであることを特徴とする請求項1記載のシュウ酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to claim 1, wherein the liquid A is obtained by contacting oxalic acid and barium chloride in an aqueous solvent. A液中の塩素イオン濃度に対するB液中の塩素イオン濃度の比(B/A)が重量比で0.50〜5であることを特徴とする請求項1記載のシュウ酸バリウムチタニルの製造方法。   2. The method for producing barium titanyl oxalate according to claim 1, wherein the ratio (B / A) of the chlorine ion concentration in the B liquid to the chlorine ion concentration in the A liquid is 0.50 to 5 by weight. . 反応温度が40℃以下であることを特徴とする請求項1乃至3記載のシュウ酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to claim 1, wherein the reaction temperature is 40 ° C. or lower. 生成されるシュウ酸バリウムチタニルは平均粒径が4μm以下であることを特徴とする請求項1乃至4記載のシュウ酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to claim 1, wherein the barium titanyl oxalate produced has an average particle size of 4 μm or less. 請求項1乃至5の何れか1項に記載のシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法。   A method for producing barium titanate, comprising firing the barium titanyl oxalate according to any one of claims 1 to 5. 焼成温度が600〜1200℃であることを特徴とする請求項6記載のチタン酸バリウムの製造方法。   The method for producing barium titanate according to claim 6, wherein the firing temperature is 600 to 1200 ° C.
JP2011202451A 2011-09-15 2011-09-15 Method for producing barium titanyl oxalate and method for producing barium titanate Active JP5879078B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011202451A JP5879078B2 (en) 2011-09-15 2011-09-15 Method for producing barium titanyl oxalate and method for producing barium titanate
CN201280044902.4A CN103796956B (en) 2011-09-15 2012-09-12 The manufacture method of barium titanium oxalate and the manufacture method of barium titanate
KR1020147006674A KR101904579B1 (en) 2011-09-15 2012-09-12 Method for producing barium titanyl oxalate and method for producing barium titanate
PCT/JP2012/073341 WO2013039108A1 (en) 2011-09-15 2012-09-12 Method for producing barium titanyl oxalate and method for producing barium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202451A JP5879078B2 (en) 2011-09-15 2011-09-15 Method for producing barium titanyl oxalate and method for producing barium titanate

Publications (2)

Publication Number Publication Date
JP2013063867A true JP2013063867A (en) 2013-04-11
JP5879078B2 JP5879078B2 (en) 2016-03-08

Family

ID=47883333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202451A Active JP5879078B2 (en) 2011-09-15 2011-09-15 Method for producing barium titanyl oxalate and method for producing barium titanate

Country Status (4)

Country Link
JP (1) JP5879078B2 (en)
KR (1) KR101904579B1 (en)
CN (1) CN103796956B (en)
WO (1) WO2013039108A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251451A1 (en) * 2020-06-12 2021-12-16 日本化学工業株式会社 Barium titanyl oxalate, method for producing same, and method for producing barium titanate
WO2022107695A1 (en) * 2020-11-19 2022-05-27 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP2022081059A (en) * 2020-11-19 2022-05-31 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP2022081058A (en) * 2020-11-19 2022-05-31 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217599B2 (en) 2014-11-17 2017-10-25 株式会社村田製作所 Method for producing barium titanate powder
CN107311224B (en) * 2017-07-14 2019-04-19 安徽拓吉泰新型陶瓷科技有限公司 A kind of preparation method of barium carbonate powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388720A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JPH03103322A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle
JPH03103323A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414832B1 (en) 2001-02-22 2004-01-13 삼성전기주식회사 Preparation of the high quality Barium-Titanate based powder
KR100434883B1 (en) 2001-08-14 2004-06-07 삼성전기주식회사 A method for the manufacturing of Barium-Titanate based Powder
CN1712356A (en) * 2004-06-21 2005-12-28 肇庆羚华有限责任公司 Reactor, reacting method and product for preparing barium titanate powder
JP2012077068A (en) * 2010-09-07 2012-04-19 Nippon Chem Ind Co Ltd Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388720A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JPH03103322A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle
JPH03103323A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251451A1 (en) * 2020-06-12 2021-12-16 日本化学工業株式会社 Barium titanyl oxalate, method for producing same, and method for producing barium titanate
JP2021195329A (en) * 2020-06-12 2021-12-27 日本化学工業株式会社 Barium titanyl oxalate, production method thereof and production method of barium titanate
JP7102462B2 (en) 2020-06-12 2022-07-19 日本化学工業株式会社 Barium titanyl oxalate, its production method and barium titanate production method
KR20230024274A (en) 2020-06-12 2023-02-20 니폰 가가쿠 고교 가부시키가이샤 Barium titanyl oxalate, method for producing the same, and method for producing barium titanate
WO2022107695A1 (en) * 2020-11-19 2022-05-27 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP2022081059A (en) * 2020-11-19 2022-05-31 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP2022081058A (en) * 2020-11-19 2022-05-31 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110305B2 (en) 2020-11-19 2022-08-01 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110306B2 (en) 2020-11-19 2022-08-01 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
KR20230109634A (en) 2020-11-19 2023-07-20 니폰 가가쿠 고교 가부시키가이샤 Method for producing barium titanyl oxalate and method for producing barium titanate

Also Published As

Publication number Publication date
WO2013039108A1 (en) 2013-03-21
CN103796956B (en) 2016-01-20
KR20140063691A (en) 2014-05-27
KR101904579B1 (en) 2018-10-04
JP5879078B2 (en) 2016-03-08
CN103796956A (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5879078B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4759211B2 (en) Method for producing perovskite-type barium titanate powder
JP2006265003A (en) Composition for forming dielectric ceramic and dielectric ceramic material
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
JPWO2009125681A1 (en) Method for producing barium titanate
JP5658295B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
JP5323537B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JP5410124B2 (en) Method for manufacturing dielectric material
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP2022081059A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2012077068A (en) Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
JP2010047428A (en) Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
KR101751070B1 (en) Method of preparing barium titanate using acid-base reaction
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5879078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250