JP2013063861A - Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven - Google Patents

Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven Download PDF

Info

Publication number
JP2013063861A
JP2013063861A JP2011201746A JP2011201746A JP2013063861A JP 2013063861 A JP2013063861 A JP 2013063861A JP 2011201746 A JP2011201746 A JP 2011201746A JP 2011201746 A JP2011201746 A JP 2011201746A JP 2013063861 A JP2013063861 A JP 2013063861A
Authority
JP
Japan
Prior art keywords
glass
heat
dielectric loss
resistant glass
microwave oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011201746A
Other languages
Japanese (ja)
Inventor
Shinsaku Nishida
晋作 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011201746A priority Critical patent/JP2013063861A/en
Publication of JP2013063861A publication Critical patent/JP2013063861A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant glass for microwave ovens in which hot spots are less formed than before, and a method of manufacturing the same.SOLUTION: The heat resistant glass for microwave ovens includes a composition of 75-85% of SiO, 0-5% of AlO, 10-20% of BO, 0-5% of LiO, 1-10% NaO, and 0-5% of KO in terms of mass%, and is characterized in that (LiO+NaO+KO)/(SiO+BO+AlO) is 0.045-0.055 and the internal residual stress is 5 MPa or less.

Description

本発明は、電子レンジ用耐熱ガラスおよびその製造方法に関し、より詳細には所定の組成を有し、熱膨張係数が低く、ホットスポットが発生しにくい電子レンジ用耐熱ガラスおよびその製造方法に関する。   The present invention relates to a heat-resistant glass for a microwave oven and a method for producing the same, and more particularly relates to a heat-resistant glass for a microwave oven having a predetermined composition, a low thermal expansion coefficient, and less likely to generate hot spots, and a method for producing the same.

一般に、電子レンジはマイクロ波発振器を内蔵し、この発振器から調理室内に周波数2.45GHzのマイクロ波を供給することによって食品自体を発熱させて加熱する。この際、食品は調理室内の底面上に設置されたガラス製のターンテーブル上に置かれる。ターンテーブルに用いられるガラスとしては、熱膨張係数が低く、耐熱衝撃性に優れた硼珪酸ガラスが使用される。硼珪酸ガラス製のターンテーブルは、一般的に、溶融ガラスを所定の粘度まで冷却し、金型でプレス成型することによって作製される。   In general, a microwave oven has a built-in microwave oscillator, and a microwave with a frequency of 2.45 GHz is supplied from the oscillator into a cooking chamber to heat and heat the food itself. At this time, the food is placed on a glass turntable installed on the bottom of the cooking chamber. As the glass used for the turntable, borosilicate glass having a low thermal expansion coefficient and excellent thermal shock resistance is used. A turntable made of borosilicate glass is generally manufactured by cooling molten glass to a predetermined viscosity and press-molding it with a mold.

上記のような電子レンジにてマイクロ波の供給により調理室内の食品を加熱する際、同時にターンテーブル、すなわちガラスも発熱する。したがって、電子レンジを空焚き等すると、ターンテーブルが局所的に過度に発熱して一部が溶けて穴が空いてしまう、いわゆるホットスポットという現象を引き起こすことがある。なお、このようなガラスの発熱は、主にガラスの誘電損失に起因するものである。   When the food in the cooking chamber is heated by supplying microwaves in the microwave oven as described above, the turntable, that is, the glass also generates heat. Therefore, when the microwave oven is blown or the like, a phenomenon called a so-called hot spot, in which the turntable generates excessive heat locally and partly melts to form a hole, may occur. Such heat generation of glass is mainly caused by the dielectric loss of glass.

上記のような問題に鑑みて、誘電損失を低減した結晶化ガラスおよびその製造方法が開発されている(例えば、特許文献1)。ガラスの誘電損失は主にガラス組成によって左右されるが、特許文献1によれば、ガラスの結晶化工程において、結晶化の条件を制御することによって誘電損失の低い結晶を優先的に析出させ、ガラスをさらに低誘電損失化することが可能である。   In view of the above problems, crystallized glass with reduced dielectric loss and a manufacturing method thereof have been developed (for example, Patent Document 1). Although the dielectric loss of glass mainly depends on the glass composition, according to Patent Document 1, in the crystallization process of glass, crystals having low dielectric loss are preferentially precipitated by controlling the crystallization conditions, It is possible to further reduce the dielectric loss of the glass.

特開昭61‐53131号公報JP 61-53131 A

しかしながら、ガラスの誘電損失を低減するように組成を設計しても、誘電損失が設計時の想定以上となり、ホットスポットが発生する場合があった。また、上記特許文献1に係る製造方法を用いてもなお、ガラスの誘電損失を十分に低減できていない場合があった。すなわち、従来の電子レンジ用耐熱ガラスには未だ改良の余地が残されていた。   However, even when the composition is designed so as to reduce the dielectric loss of the glass, the dielectric loss is higher than expected at the time of design, and a hot spot may occur. Moreover, even when the manufacturing method according to Patent Document 1 is used, the dielectric loss of the glass may not be sufficiently reduced. That is, there is still room for improvement in conventional heat-resistant glass for microwave ovens.

上記課題に鑑み、本発明は、ホットスポットが従来よりも発生しにくい電子レンジ用耐熱ガラスおよびその製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a heat-resistant glass for microwave ovens and a method for producing the same, in which hot spots are less likely to occur than before.

本発明者は、鋭意検討の結果、プレス成型によって発生するガラス内部の残留応力によって誘電損失が高くなることを見出した。すなわち、ガラスの誘電損失には、残留応力に起因する誘電損失と、組成に起因する誘電損失とが含まれることを見出した。また、これらの誘電損失のうち、残留応力に起因する誘電損失は残留応力を低減することによって低減することが可能であることを見出した。そして、本発明者は、ガラス組成を厳密に規定するとともに残留応力を所定値以下とすることによって、上記課題を解決できることを見出し、本発明として、提案するものである。また、このようなガラスを製造する方法として、成型されたガラスの降温開始から終了までの温度制御域および降温速度を厳密に規制することを提案する。   As a result of intensive studies, the present inventor has found that the dielectric loss increases due to the residual stress inside the glass generated by press molding. That is, it has been found that the dielectric loss of glass includes dielectric loss due to residual stress and dielectric loss due to composition. Moreover, it discovered that the dielectric loss resulting from a residual stress among these dielectric losses can be reduced by reducing a residual stress. And this inventor discovers that the said subject can be solved by prescribing | regulating a glass composition strictly and making a residual stress below a predetermined value, and proposes as this invention. In addition, as a method for producing such glass, it is proposed to strictly regulate the temperature control range and the temperature decrease rate from the start to the end of temperature decrease of the molded glass.

本発明に係る電子レンジ用耐熱ガラスは、質量%で、SiO 75〜85%、Al 0〜5%、B 10〜20%、LiO 0〜5%、NaO 1〜10%、KO 0〜5%の組成を含有し、(LiO+NaO+KO)/(SiO+B+Al)が0.045〜0.055であり、内部の残留応力が5MPa以下であることを特徴とする。 The heat-resistant glass for microwave ovens according to the present invention is, by mass%, SiO 2 75 to 85%, Al 2 O 3 0 to 5%, B 2 O 3 10 to 20%, Li 2 O 0 to 5%, Na 2. It contains a composition of O 1 to 10%, K 2 O 0 to 5%, and (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.045 to 0.055 And the internal residual stress is 5 MPa or less.

また、本発明の電子レンジ用耐熱ガラスは、周波数2.45GHz、25℃における誘電損失が0.020〜0.035であることが好ましい。このような構成によれば、電子レンジ内で調理加熱を行った際のホットスポットの発生を十分に抑制することができる。   Moreover, it is preferable that the dielectric loss in the heat resistant glass for microwave ovens of this invention in frequency 2.45GHz and 25 degreeC is 0.020-0.035. According to such a structure, generation | occurrence | production of the hot spot at the time of cooking and heating within a microwave oven can fully be suppressed.

また、本発明の電子レンジ用耐熱ガラスは、30〜380℃における熱膨張係数が37×10−7/℃以下であることが好ましい。30〜380℃における熱膨張係数が37×10−7/℃以下であれば、電子レンジ用耐熱ガラスとして十分な耐熱、耐衝撃性を有するといえる。   Moreover, it is preferable that the heat-resistant glass for microwave ovens of this invention has a thermal expansion coefficient in 30-380 degreeC below 37 * 10 <-7> / degreeC. If the thermal expansion coefficient in 30-380 degreeC is 37x10 <-7> / degrees C or less, it can be said that it has sufficient heat resistance and impact resistance as heat resistant glass for microwave ovens.

また、本発明の電子レンジ用耐熱ガラスは、円盤形状を有し、ターンテーブルのプレートとして用いられることが好ましい。   Moreover, it is preferable that the heat-resistant glass for microwave ovens of this invention has a disk shape, and is used as a plate of a turntable.

また、本発明の電子レンジ用耐熱ガラスは、10℃/分で(徐冷点+30℃)まで昇温し、30分保持した後、3℃/分で歪点まで降温し、さらに10℃/分で室温まで降温する熱処理を行った際の周波数2.45GHz、25℃におけるガラス中の誘電損失の減少量が0.007以下であることが好ましい。   Further, the heat-resistant glass for microwave oven of the present invention is heated to 10 ° C./min to (annealing point + 30 ° C.), held for 30 minutes, then cooled to the strain point at 3 ° C./min, and further 10 ° C. / It is preferable that the amount of decrease in the dielectric loss in the glass at a frequency of 2.45 GHz and 25 ° C. when the heat treatment for lowering to room temperature in minutes is performed is 0.007 or less.

また、本発明の電子レンジ用耐熱ガラスは、周波数2.45GHz、25℃における(前記熱処理した際のガラス中の誘電損失の減少量)/(前記熱処理前のガラスの誘電損失)の値が0.1〜0.3であることが好ましい。   Further, the heat-resistant glass for microwave oven of the present invention has a value of (reduction amount of dielectric loss in glass when heat-treated) / (dielectric loss of glass before heat-treatment) at a frequency of 2.45 GHz and 25 ° C. is 0. It is preferable that it is 0.1-0.3.

本発明の電子レンジ用耐熱ガラスの製造方法は、質量%で、SiO 75〜85%、Al 0〜5%、B 10〜20%、LiO 0〜5%、NaO 1〜10%、KO 0〜5%の組成を含有し、且つ(LiO+NaO+KO)/(SiO+B+Al)が0.045〜0.055となるガラス原料を溶融・成形工程と、溶融・成型工程で得られたガラスを、内部の残留応力が5MPa以下となるよう徐冷する徐冷工程とを含むことを特徴とする。 Method for producing a microwavable heat-resistant glass of the present invention, in mass%, SiO 2 75~85%, Al 2 O 3 0~5%, B 2 O 3 10~20%, Li 2 O 0~5%, It contains 1 to 10% Na 2 O, 0 to 5% K 2 O, and (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.045 to 0 The glass raw material to be 0.05 is melted and molded, and the glass obtained by the melting and molding process is gradually cooled so that the internal residual stress is 5 MPa or less.

また、本発明の電子レンジ用耐熱ガラスの製造方法では、徐冷工程において、溶融・成型工程で得られたガラスを、内部の残留応力が5MPa以下となるよう、(徐冷点+50℃)から歪点までの温度域において0.5〜3℃/分の降温速度で徐冷することが好ましい。   Moreover, in the manufacturing method of the heat-resistant glass for microwave ovens of the present invention, in the slow cooling step, the glass obtained in the melting / molding step is changed from (slow cooling point + 50 ° C.) so that the internal residual stress becomes 5 MPa or less. In the temperature range up to the strain point, it is preferable to slowly cool at a temperature drop rate of 0.5 to 3 ° C./min.

また、本発明の電子レンジ用耐熱ガラスの製造方法では、徐冷工程において、徐冷の前後での前記電子レンジ用耐熱ガラスの内部の残留応力の差が1.5MPa以上となるよう徐冷を行うことが好ましい。このような構成によれば、残留応力に起因する高誘電損失化を十分に抑制でき、品質が安定した製品を製造することができる。   Further, in the method for producing a heat-resistant glass for microwave oven according to the present invention, in the annealing step, the cooling is performed so that a difference in residual stress inside the heat-resistant glass for microwave oven before and after the annealing is 1.5 MPa or more. Preferably it is done. According to such a configuration, a high dielectric loss due to residual stress can be sufficiently suppressed, and a product with stable quality can be manufactured.

なお、徐冷点とは、残留応力を低減する温度の目安であり、この温度でのガラスの粘度は1013.0dPa・sである。また、歪点とは、ガラスの粘性流動がおこらなくなる温度であり、この温度でのガラスの粘度は1014.5dPa・sである。   The annealing point is a measure of the temperature at which the residual stress is reduced, and the viscosity of the glass at this temperature is 1013.0 dPa · s. The strain point is a temperature at which the viscous flow of the glass does not occur, and the viscosity of the glass at this temperature is 1014.5 dPa · s.

本発明の電子レンジ用耐熱ガラスによれば、残留応力を低減することによって当該残留応力に起因する誘電損失を低減することができる。すなわち、従来に比してガラス全体の誘電損失を低減し、電子レンジの調理室内部でのマイクロ波による発熱およびホットスポットの発生を抑制することができる。また、上述のような組成を有することから、ガラスの耐熱衝撃性も高く、徐冷も容易なためガラス中の残留応力を低減しやすい。すなわち製品として高い信頼性を得ることができる。また、上述のような組成を有することから溶融性に優れるため、高温溶融を必要とせず、ガラス溶解炉やプレス金型の損傷を抑制できる。また、従来技術のような結晶化処理を行う必要がないため、生産に要するエネルギーやコスト等を抑制することができる。   According to the heat resistant glass for a microwave oven of the present invention, it is possible to reduce the dielectric loss due to the residual stress by reducing the residual stress. That is, the dielectric loss of the whole glass can be reduced as compared with the conventional case, and the generation of heat and hot spots due to microwaves in the cooking chamber of the microwave oven can be suppressed. Moreover, since it has the composition as described above, the thermal shock resistance of the glass is high and the annealing is easy, so that the residual stress in the glass can be easily reduced. That is, high reliability can be obtained as a product. Moreover, since it has the above composition, it is excellent in meltability, so high temperature melting is not required, and damage to the glass melting furnace and the press mold can be suppressed. Further, since there is no need to perform crystallization treatment as in the prior art, energy, cost, etc. required for production can be suppressed.

以下、本発明の実施形態に係る電子レンジ用耐熱ガラスについて説明する。本発明の実施形態に係る電子レンジ用耐熱ガラスは、ガラス組成として、SiO、Al、B、LiO、NaO、KOを含有する。なお、以下の各成分の含有範囲の説明において、%表示は質量%を指す。 Hereinafter, the heat-resistant glass for microwave ovens according to the embodiment of the present invention will be described. Microwave resistant glass according to an embodiment of the present invention has a glass composition, SiO 2, Al 2 O 3 , B 2 O 3, Li 2 O, Na 2 O, containing K 2 O. In the following description of the content range of each component,% display refers to mass%.

SiOは、ガラス骨格構造を形成する主要成分である。本発明におけるSiOの含有量は75〜85%、好ましくは77〜82%、より好ましくは78〜81%である。特に、SiOの含有量を78〜81%に規制すれば、機械的強度を損なうことなく、溶融性や成形性を高めることができる。SiOの含有量が75%より少ないと、ガラスの機械的強度が低下しやすくなる。また、SiOの含有量が85%より多いと、ガラスの高温粘度が高くなり、溶融性や成形性が低下しやすくなる。そのため、溶融に要するエネルギーが増大するとともに、プレス成型時に金型が損傷するおそれがある。 SiO 2 is a main component that forms a glass skeleton structure. The content of SiO 2 in the present invention is 75 to 85%, preferably 77 to 82%, more preferably 78 to 81%. In particular, if the content of SiO 2 is regulated to 78 to 81%, meltability and moldability can be improved without impairing mechanical strength. If the content of SiO 2 is less than 75%, the mechanical strength of the glass tends to decrease. If the content of SiO 2 is more than 85%, the high temperature viscosity of the glass becomes high, the meltability and moldability tends to decrease. Therefore, energy required for melting increases and the mold may be damaged during press molding.

Alは、ガラスの化学的耐久性や機械的強度を高め、且つ適量添加により耐失透性を高める成分である。本発明におけるAlの含有量は0〜5%、好ましくは1〜4%、より好ましくは2〜3%である。特に、Alの含有量を2〜3%に規制すれば、成形時に溶融ガラス中に結晶が析出しにくくなるとともに、溶融性や成形性を高めることができる。Alの含有量が5%より多いと、高温粘度が高くなり、溶融性や成形性が低下しやすくなる。そのため、溶融に要するエネルギーが増大するとともに、プレス成型時に金型が損傷するおそれがある。 Al 2 O 3 is a component that increases the chemical durability and mechanical strength of the glass and increases the devitrification resistance by adding an appropriate amount. The content of Al 2 O 3 in the present invention is 0 to 5%, preferably 1 to 4%, more preferably 2 to 3%. In particular, if the content of Al 2 O 3 is regulated to 2 to 3%, it becomes difficult for crystals to precipitate in the molten glass at the time of molding, and the meltability and moldability can be improved. When the content of Al 2 O 3 is more than 5%, the viscosity at high temperature increases, the meltability and the formability tends to decrease. Therefore, energy required for melting increases and the mold may be damaged during press molding.

は、ガラス骨格構造を形成し、且つ高温粘度を低下させる成分である。本発明におけるBの含有量は10〜20%、好ましくは10〜15%、より好ましくは12〜15%である。特に、Bの含有量を12〜15%に規制すれば、分相や溶融ガラスからの揮発量を抑制できるとともに、溶融に要するエネルギーを低減でき、プレス成型時に金型が損傷しにくくなる。Bの含有量が20%より多いと、ガラスが分相しやすくなり、一旦、分相が生じると、ガラスの熱膨張係数や誘電損失(以下、ガラス全体の誘電損失αと称する)が均一でなくなることに加えて、化学的耐久性が低下しやすくなる。また、溶融ガラスからの揮発量が増え、溶融ガラス表面に異質層が形成されやすくなってガラスの均質性が低下しやすくなる。また、Bの含有量が10%より小さいと、ガラスの粘性が高くなりすぎる。 B 2 O 3 is a component that forms a glass skeleton structure and lowers the high-temperature viscosity. In the present invention, the content of B 2 O 3 is 10 to 20%, preferably 10 to 15%, more preferably 12 to 15%. In particular, if the content of B 2 O 3 is regulated to 12 to 15%, the amount of volatilization from phase separation and molten glass can be suppressed, the energy required for melting can be reduced, and the mold is not easily damaged during press molding. Become. When the content of B 2 O 3 is more than 20%, the glass is likely to undergo phase separation. Once phase separation occurs, the thermal expansion coefficient and dielectric loss of the glass (hereinafter referred to as dielectric loss α of the entire glass). In addition to the non-uniformity, the chemical durability tends to decrease. Moreover, the volatilization amount from a molten glass increases, a heterogeneous layer tends to be formed on the molten glass surface, and the homogeneity of glass tends to be lowered. Further, the content of B 2 O 3 is 10% less than the viscosity of the glass becomes too high.

LiOは、ガラスの高温粘度を低下させて、溶融性を高める成分である。本発明におけるLiOの含有量は0〜5%、好ましくは0〜3%、より好ましくは0〜1%である。LiOの含有量が5%より多いと、熱膨張係数が高くなりすぎるとともに、誘電損失αも高くなりすぎる。また、溶融ガラスからLiを含む結晶が析出しやすくなる。 Li 2 O is a component that lowers the high-temperature viscosity of the glass and increases the meltability. The content of Li 2 O in the present invention is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%. When the content of Li 2 O is more than 5%, the thermal expansion coefficient becomes too high and the dielectric loss α becomes too high. In addition, crystals containing Li are easily precipitated from the molten glass.

NaOは、ガラスの高温粘度を低下させ、且つ溶融性を高める成分である。本発明におけるNaOの含有量は1〜10%、好ましくは2〜7%、より好ましくは4〜6%である。特に、NaOの含有量が4〜6%であれば、熱膨張係数と誘電損失αが高くなりすぎることなくガラスの溶融性を高めることができる。NaOの含有量が1%未満であると、ガラスの高温粘度が高くなり、溶融性が悪化する。NaOの含有量が10%より多いと、熱膨張係数と誘電損失αが高くなり、製品の信頼性が低下する。 Na 2 O is a component that lowers the high temperature viscosity of the glass and increases the meltability. The content of Na 2 O in the present invention is 1 to 10%, preferably 2 to 7%, more preferably 4 to 6%. In particular, if the content of Na 2 O is 4 to 6%, the meltability of the glass can be enhanced without the thermal expansion coefficient and the dielectric loss α being too high. When the content of Na 2 O is less than 1%, the high-temperature viscosity of the glass increases and the meltability deteriorates. When the content of Na 2 O is more than 10%, the thermal expansion coefficient and the dielectric loss α are increased, and the reliability of the product is lowered.

Oは、ガラスの高温粘度を低下させて、溶融性を高める成分であり、その含有量は0〜5%、好ましくは0〜3%、より好ましくは0〜1%である。KOの含有量が5%より多いと、熱膨張係数が高くなりすぎるとともに、誘電損失αも高くなりすぎる。 K 2 O is a component that lowers the high temperature viscosity of the glass and increases the meltability, and its content is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%. When the content of K 2 O is more than 5%, the thermal expansion coefficient becomes too high and the dielectric loss α becomes too high.

(LiO+NaO+KO)/(SiO+B+Al)は、ガラスの溶融性、熱膨張係数、誘電損失αを調節するための指標である。(LiO+NaO+KO)/(SiO+B+Al)の範囲は、0.045〜0.055、好ましくは0.047〜0.052である。特に、(LiO+NaO+KO)/(SiO+B+Al)が0.047〜0.052であれば、熱膨張係数と誘電損失αの上昇を抑制できると同時にガラスの溶融性も高めることができる。(LiO+NaO+KO)/(SiO+B+Al)が0.45より小さいとガラスの高温粘度が高くなり、溶融性が悪化するとともにプレス成型時に金型が損傷しやすくなる。(LiO+NaO+KO)/(SiO+B+Al)が0.55より大きいと熱膨張係数、誘電損失αが高くなり、耐熱衝撃性が低下するとともにホットスポットが発生しやすくなり製品の信頼性が低下する。 (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is an index for adjusting the meltability, thermal expansion coefficient, and dielectric loss α of the glass. The range of (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.045 to 0.055, preferably 0.047 to 0.052. In particular, if (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.047 to 0.052, it is possible to suppress an increase in the thermal expansion coefficient and dielectric loss α. The meltability of the glass can also be increased. If (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is less than 0.45, the high-temperature viscosity of the glass increases, the meltability deteriorates and the mold is damaged during press molding. It becomes easy to do. If (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is greater than 0.55, the thermal expansion coefficient and dielectric loss α increase, the thermal shock resistance decreases and hot spots It tends to occur and the reliability of the product decreases.

本発明の電子レンジ用耐熱ガラスは上記成分以外にも、他の成分を含有してもよい。例えば、熱膨張係数、誘電損失α、高温粘度等の改良のために、MgO、CaO、SrO、BaO、ZnO、TiO、ZrO、SnO、P、Cr、SB、SO、Cl、PbO、La、WO、Co、Nb、Y、CeO等を含有してもよい。なお、これらの成分の含有量は合量で3%以下とすることが好ましい。 The heat-resistant glass for microwave ovens of the present invention may contain other components in addition to the above components. For example, MgO, CaO, SrO, BaO, ZnO, TiO 2 , ZrO 2 , SnO 2 , P 2 O 5 , Cr 2 O 3 , SB 2 are used to improve the thermal expansion coefficient, dielectric loss α, high temperature viscosity, and the like. O 3 , SO 2 , Cl 2 , PbO, La 2 O 3 , WO 3 , Co 3 O 4 , Nb 2 O 5 , Y 2 O 3 , CeO 2 and the like may be contained. The total content of these components is preferably 3% or less.

本発明の電子レンジ用耐熱ガラスは、H、CO2、CO、HO、He、Ne、Ar、N等の微量成分を合量で0.1%まで含有してもよい。また、誘電損失αに悪影響を及ぼさない限り、ガラス中にPt、Rh等の貴金属元素を合量で500ppmまで含有してもよい。 Microwave resistant glass of the present invention, H 2, CO2, CO, H 2 O, He, Ne, Ar, may contain minor components such as N 2 to 0.1% in total. Moreover, as long as the dielectric loss α is not adversely affected, the total amount of noble metal elements such as Pt and Rh may be contained in the glass up to 500 ppm.

また、本発明の電子レンジ用耐熱ガラスは、ガラス内部の残留応力が5MPa以下、好ましくは3MPa以下、より好ましくは1MPa以下である。特に、残留応力が1MPa以下であれば、残留応力が十分に小さく、残留応力による誘電損失αの増加を大幅に抑制できる。一方、残留応力が5MPaより大きいと、当該残留応力に起因する誘電損失によりホットスポットが発生しやすくなる。   Moreover, the heat resistant glass for microwave ovens of the present invention has a residual stress inside the glass of 5 MPa or less, preferably 3 MPa or less, more preferably 1 MPa or less. In particular, if the residual stress is 1 MPa or less, the residual stress is sufficiently small, and an increase in the dielectric loss α due to the residual stress can be significantly suppressed. On the other hand, if the residual stress is greater than 5 MPa, hot spots are likely to occur due to dielectric loss caused by the residual stress.

さらに、本発明に係る電子レンジ用耐熱ガラスは、ガラス内部の残留応力が0.1MPa以上且つ5MPa以下、好ましくは0.1MPa以上且つ3MPa以下、より好ましくは0.1MPa以上且つ1MPa以下としても良い。このような電子レンジ用耐熱ガラスであれば、ほぼ設計値通りの誘電損失とすることが可能であり、効率良く本発明の電子レンジ用耐熱ガラスを製造することができる。   Furthermore, the heat resistant glass for microwave ovens according to the present invention may have a residual stress inside the glass of 0.1 MPa to 5 MPa, preferably 0.1 MPa to 3 MPa, more preferably 0.1 MPa to 1 MPa. . With such a heat-resistant glass for a microwave oven, the dielectric loss can be made almost as designed, and the heat-resistant glass for a microwave oven of the present invention can be efficiently produced.

本発明の電子レンジ用耐熱ガラスにおいて、周波数2.45GHz、25℃における誘電損失αは好ましくは0.025〜0.035、より好ましくは0.025〜0.033、さらに好ましくは0.027〜0.033である。周波数2.45GHz、25℃における誘電損失が0.035よりも高くなると、ガラス中の残留応力に起因する誘電損失が低い場合でも、電子レンジ内部でマイクロ波により発熱しやすくなり、ホットスポットが発生しやすくなって製品の信頼性が低下する。また、周波数2.45GHz、25℃における誘電損失αを0.025未満にするためには、ガラス中の残留応力に起因する誘電損失の低減とともに、ガラスのアルカリ金属酸化物の含有量を少なくする必要があり、この場合ガラスの粘度が高くなってガラスの溶融が困難になる。特に、周波数2.45GHz、25℃における誘電損失αが0.027〜0.033であれば、電子レンジ内部でマイクロ波により発熱しにくくなるとともにガラスの溶融も容易になる。   In the heat-resistant glass for microwave oven of the present invention, the dielectric loss α at a frequency of 2.45 GHz and 25 ° C. is preferably 0.025 to 0.035, more preferably 0.025 to 0.033, still more preferably 0.027 to 0.033. When the dielectric loss at a frequency of 2.45 GHz and 25 ° C. is higher than 0.035, even when the dielectric loss due to the residual stress in the glass is low, heat is easily generated by the microwave inside the microwave oven and a hot spot is generated. This reduces the reliability of the product. In order to reduce the dielectric loss α at a frequency of 2.45 GHz and 25 ° C. to less than 0.025, the dielectric loss due to the residual stress in the glass is reduced and the content of alkali metal oxide in the glass is reduced. In this case, the viscosity of the glass becomes high, and it becomes difficult to melt the glass. In particular, if the dielectric loss α at a frequency of 2.45 GHz and 25 ° C. is 0.027 to 0.033, it is difficult for heat to be generated by microwaves inside the microwave oven, and the glass is easily melted.

本発明の電子レンジ用耐熱ガラスにおいて、30〜380℃における熱膨張係数は37×10−7/℃以下であることが好ましい。30〜380℃における熱膨張係数が37×10−7/℃以下であれば、十分なガラスの耐熱衝撃性を得ることができる。一方、30〜380℃における熱膨張係数が37×10−7/℃より高くなると、ガラスの耐熱衝撃性が悪化する。   In the heat-resistant glass for a microwave oven of the present invention, the thermal expansion coefficient at 30 to 380 ° C. is preferably 37 × 10 −7 / ° C. or less. If the thermal expansion coefficient at 30 to 380 ° C. is not more than 37 × 10 −7 / ° C., sufficient thermal shock resistance of glass can be obtained. On the other hand, when the thermal expansion coefficient at 30 to 380 ° C. is higher than 37 × 10 −7 / ° C., the thermal shock resistance of the glass is deteriorated.

本発明の電子レンジ用耐熱ガラスにおいて、ガラスの粘度が104dPa・sとなる温度は1230℃以下であることが好ましい。ガラスの粘度が104dPa・sとなる温度が1230℃以下であれば、ガラスの溶融に要するエネルギーが増大し過ぎることがなく、また、プレス成型時の金型の損傷を抑制することができる。一方、ガラスの粘度が104dPa・sとなる温度が1230℃より高くなると、ガラスの溶融性が低下し、ガラスの溶融に要するエネルギーが増大するとともにプレス成型時に金型が損傷しやすくなる。   In the heat resistant glass for a microwave oven of the present invention, the temperature at which the viscosity of the glass is 104 dPa · s is preferably 1230 ° C. or lower. If the temperature at which the viscosity of the glass becomes 104 dPa · s is 1230 ° C. or less, the energy required for melting the glass does not increase excessively, and damage to the mold during press molding can be suppressed. On the other hand, when the temperature at which the viscosity of the glass becomes 104 dPa · s is higher than 1230 ° C., the meltability of the glass decreases, the energy required for melting the glass increases, and the mold is easily damaged during press molding.

本発明の電子レンジ用耐熱ガラスは、ターンテーブルとして用いられる場合、円盤形状を有することが好ましい。また、本発明に係る電子レンジ用耐熱ガラスは、生産効率や誘電損失αに悪影響を及ぼさない限り、その他任意の形状であってもよい。例えば、本発明に係る電子レンジ用耐熱ガラスは、棚板として利用可能な四角平板状であっても良い。   When the heat-resistant glass for a microwave oven of the present invention is used as a turntable, it preferably has a disk shape. The heat-resistant glass for microwave ovens according to the present invention may have any other shape as long as it does not adversely affect production efficiency and dielectric loss α. For example, the heat-resistant glass for a microwave oven according to the present invention may be a rectangular flat plate that can be used as a shelf board.

また、上記のように電子レンジ用耐熱ガラスが円盤状あるいは平板状を成す場合、板面(片面)の面積は好ましくは1300cm2以下、より好ましくは750cm2以下とする。また、本発明の電子レンジ用耐熱ガラスの肉厚は好ましくは1〜10mm、より好ましくは3〜7mmとする。面積が大きすぎたり、肉厚が厚すぎたりすると、ガラスの体積が増大するため、ガラスを均一に徐冷して残留応力を低減することが困難となる。また、肉厚が薄すぎると、機械的衝撃が加わった際に割れやすくなり、製品としての強度の信頼性が低下する。   Moreover, when the heat-resistant glass for microwave ovens forms a disk shape or a flat plate shape as described above, the area of the plate surface (one surface) is preferably 1300 cm 2 or less, more preferably 750 cm 2 or less. The thickness of the heat-resistant glass for microwave ovens of the present invention is preferably 1 to 10 mm, more preferably 3 to 7 mm. If the area is too large or the wall thickness is too thick, the volume of the glass increases, so that it becomes difficult to cool the glass uniformly and reduce the residual stress. On the other hand, if the wall thickness is too thin, it is easily broken when a mechanical impact is applied, and the reliability of strength as a product is lowered.

本発明の電子レンジ用耐熱ガラスは、10℃/分で(徐冷点+30℃)まで昇温し、30分保持した後、3℃/分で歪点まで降温し、さらに10℃/分で室温まで降温する熱処理をした際の周波数2.45GHz、25℃における誘電損失の減少量(以下、単に誘電損失の減少量γと称する)が好ましくは0.007以下、より好ましくは0.006以下、さらに好ましくは0.005以下である。誘電損失の減少量γが0.007以下であれば、ガラス中の残留応力に起因する高誘電損失化を抑制できる。したがって、電子レンジの調理室内部でのマイクロ波による加熱及びホットスポットの発生を抑制し、製品としての信頼性が高くなる。特に、周波数2.45GHz、25℃における誘電損失の減少量γが小さいほど、ガラス組成に起因する誘電損失が高い場合でも電子レンジ内部でマイクロ波により発熱しにくくなる。上記誘電損失の減少量γが0.007より大きい場合は、すなわちガラス中の残留応力に起因して誘電損失が設計値より著しく大きくなっている状態を意味することから、ホットスポットの発生が懸念される。   The heat-resistant glass for microwave oven of the present invention is heated to 10 ° C./min to (annealing point + 30 ° C.), held for 30 minutes, then cooled to the strain point at 3 ° C./min, and further at 10 ° C./min. The amount of decrease in dielectric loss at a frequency of 2.45 GHz and 25 ° C. at the time of heat treatment for lowering to room temperature (hereinafter simply referred to as “dielectric loss decrease amount γ”) is preferably 0.007 or less, more preferably 0.006 or less. More preferably, it is 0.005 or less. If the reduction amount γ of the dielectric loss is 0.007 or less, the increase in the dielectric loss due to the residual stress in the glass can be suppressed. Therefore, heating by microwaves and generation of hot spots in the cooking chamber of the microwave oven are suppressed, and the reliability as a product is increased. In particular, the smaller the loss γ of the dielectric loss at a frequency of 2.45 GHz and 25 ° C., the less the heat generated by the microwave inside the microwave oven even when the dielectric loss due to the glass composition is high. When the reduction amount γ of the dielectric loss is larger than 0.007, that means that the dielectric loss is significantly larger than the design value due to the residual stress in the glass. Is done.

なお、周波数2.45GHz、25℃における誘電損失の減少量γは基本的に低いほど良いが、低くするためには後述するガラスの徐冷時の降温速度を遅くする必要がある。このため、ガラスの生産効率を優先する場合には周波数2.45GHz、25℃における上記熱処理した際の誘電損失の減少量γを0.001以上にすることが好ましい。   In general, the lower the loss γ of the dielectric loss at a frequency of 2.45 GHz and 25 ° C., the better. However, in order to lower it, it is necessary to slow down the temperature-decreasing rate at the time of glass cooling described later. For this reason, when giving priority to the production efficiency of glass, it is preferable to set the reduction amount γ of the dielectric loss when the heat treatment is performed at a frequency of 2.45 GHz and 25 ° C. to 0.001 or more.

本発明の電子レンジ用耐熱ガラスにおいて、周波数2.45GHz、25℃における(誘電損失の減少量γ)/(熱処理前のガラスの誘電損失α)の値は好ましくは0.1〜0.3、より好ましくは0.1〜0.2、さらに好ましくは0.1〜0.15である。なお、熱処理前のガラスの誘電損失αは、上記熱処理を行う前の本発明の電子レンジ用耐熱ガラスの誘電損失を示し、すなわちガラス全体の誘電損失αと同義である(以下、単に誘電損失αと称する)。特に、周波数2.45GHz、25℃における(誘電損失の減少量γ)/(誘電損失α)の値が0.1〜0.15であれば、ガラスの全体の誘電損失に対する残留応力に起因する誘電損失の影響が十分に小さくなり、残留応力による誘電損失の増加を抑制できるとともにホットスポットの発生を抑制できる。(誘電損失の減少量γ)/(誘電損失α)の値を0.1未満にしようとすると、ガラスの徐冷時間を長くする必要があり、生産効率が低下する懸念がある。あるいはガラスの誘電損失が高いため、電子レンジ内部でマイクロ波により加熱されやすくなってホットスポットが発生しやすくなる懸念がある。(誘電損失の減少量γ)/(誘電損失α)の値が0.3を超えると、ガラス中の残留応力に起因して誘電損失が設計値より著しく大きくなっている状態を意味することから、電子レンジ内部でマイクロ波により加熱されやすくなって、ホットスポットが発生しやすくなる懸念がある。   In the heat-resistant glass for microwave oven of the present invention, the value of (dielectric loss decrease γ) / (dielectric loss α of glass before heat treatment) at a frequency of 2.45 GHz and 25 ° C. is preferably 0.1 to 0.3, More preferably, it is 0.1-0.2, More preferably, it is 0.1-0.15. The dielectric loss α of the glass before the heat treatment indicates the dielectric loss of the heat-resistant glass for microwave ovens of the present invention before the heat treatment, that is, the same as the dielectric loss α of the whole glass (hereinafter simply referred to as dielectric loss α Called). In particular, if the value of (dielectric loss decrease γ) / (dielectric loss α) at a frequency of 2.45 GHz and 25 ° C. is 0.1 to 0.15, it results from residual stress with respect to the total dielectric loss of the glass. The influence of dielectric loss is sufficiently reduced, so that an increase in dielectric loss due to residual stress can be suppressed and generation of hot spots can be suppressed. If the value of (dielectric loss reduction amount γ) / (dielectric loss α) is to be less than 0.1, it is necessary to lengthen the slow cooling time of the glass, and there is a concern that the production efficiency is lowered. Or since the dielectric loss of glass is high, there exists a possibility that it will be easily heated with a microwave inside a microwave oven, and a hot spot will occur easily. When the value of (dielectric loss decrease γ) / (dielectric loss α) exceeds 0.3, it means that the dielectric loss is significantly larger than the design value due to residual stress in the glass. There is a concern that the inside of the microwave oven is likely to be heated by microwaves, and hot spots are likely to be generated.

次いで、本発明に係る電子レンジ用耐熱ガラスの製造方法について説明する。   Subsequently, the manufacturing method of the heat-resistant glass for microwave ovens concerning this invention is demonstrated.

本発明に係る電子レンジ用耐熱ガラスは、上述組成から成るガラス原料を溶融し、溶融ガラスからプレス成型された電子レンジ用耐熱ガラスの前駆体を、内部の残留応力が5Mpa以下となるよう、例えば、温度制御可能な連続徐冷炉によって徐冷することにより得られる。   The heat-resistant glass for a microwave oven according to the present invention is obtained by melting a glass raw material having the above-described composition and pressing the precursor of the heat-resistant glass for microwave oven press-molded from the molten glass so that the internal residual stress becomes 5 Mpa or less. It can be obtained by slow cooling with a temperature-controllable continuous slow cooling furnace.

本発明の製造方法において、電子レンジ用耐熱ガラスの前駆体の(徐冷点+50℃)〜歪点までの温度域における連続徐冷炉内での降温速度は好ましくは0.5〜3℃/分、より好ましくは1〜2℃/分である。前記徐冷開始温度から徐冷終了温度までの降温速度が0.5〜3℃/分であれば徐冷によりガラス内部の残留応力が小さくなり、残留応力による高誘電損失化を抑制できる。特に、前記徐冷開始温度から徐冷終了温度までの降温速度が1〜2℃/分であれば徐冷によりガラス内部の残留応力が大幅に低減されるとともに、高い生産効率を実現できる。一方、前記徐冷開始温度から徐冷終了温度までの降温速度が3℃/分より速いと、徐冷時間が短くなり、残留応力の低減が困難になる。また、降温速度が0.5℃/分より遅いと、残留応力の低減は可能になるが、徐冷時間が長くなるため生産効率は低下する。   In the production method of the present invention, the rate of cooling in the continuous annealing furnace in the temperature range from (annealing point + 50 ° C.) to the strain point of the heat-resistant glass precursor for microwave oven is preferably 0.5 to 3 ° C./min. More preferably, it is 1-2 degreeC / min. If the rate of temperature decrease from the slow cooling start temperature to the slow cooling end temperature is 0.5 to 3 ° C./minute, the residual stress inside the glass is reduced by slow cooling, and high dielectric loss due to the residual stress can be suppressed. In particular, if the rate of temperature decrease from the slow cooling start temperature to the slow cooling end temperature is 1 to 2 ° C./min, the residual stress inside the glass is greatly reduced by slow cooling, and high production efficiency can be realized. On the other hand, when the rate of temperature decrease from the slow cooling start temperature to the slow cooling end temperature is faster than 3 ° C./minute, the slow cooling time is shortened and it is difficult to reduce the residual stress. In addition, when the temperature lowering rate is lower than 0.5 ° C./min, the residual stress can be reduced, but since the slow cooling time becomes longer, the production efficiency is lowered.

徐冷開始温度および徐冷終了温度は上記の温度に限定されるものではないが、徐冷開始温度が高すぎると、ガラスが軟化変形しやすくなり、徐冷時にプレス成型された形状を維持できなくなる。一方、徐冷開始温度が低すぎると、ガラス内部の残留応力の低減が困難となり、残留応力に起因した高誘電損失化を抑制することができなくなる。また、徐冷終了温度が高すぎると、徐冷終了後にガラス内部に残留応力が発生し、ガラスが高誘電損失化してしまう。一方、徐冷終了温度が低すぎると、徐冷時間が長くなって生産効率が低下する。   The slow cooling start temperature and the slow cooling end temperature are not limited to the above temperatures, but if the slow cooling start temperature is too high, the glass tends to soften and deform, and the press-molded shape can be maintained during slow cooling. Disappear. On the other hand, if the annealing start temperature is too low, it is difficult to reduce the residual stress inside the glass, and it becomes impossible to suppress the increase in the dielectric loss due to the residual stress. On the other hand, if the annealing end temperature is too high, residual stress is generated in the glass after the end of annealing and the glass has a high dielectric loss. On the other hand, if the annealing end temperature is too low, the annealing time becomes longer and the production efficiency decreases.

なお、連続徐冷炉を通過する前後の電子レンジ用耐熱ガラスの周波数2.45GHz、25℃における誘電損失の差は好ましくは0.005以上、より好ましくは0.008以上である。特に、周波数2.45GHz、25℃における誘電損失の差が0.008以上であれば、ガラス全体の誘電損失αに占める、ガラス中の残留応力に起因する誘電損失の割合を十分に小さくできる。すなわち、不要な誘電損失の増加を抑制し、品質が安定した製品を製造できる。   The difference in dielectric loss between the heat-resistant glass for microwave ovens before and after passing through the continuous annealing furnace at a frequency of 2.45 GHz and 25 ° C. is preferably 0.005 or more, more preferably 0.008 or more. In particular, when the difference in dielectric loss at a frequency of 2.45 GHz and 25 ° C. is 0.008 or more, the ratio of the dielectric loss due to the residual stress in the glass in the dielectric loss α of the entire glass can be sufficiently reduced. That is, an increase in unnecessary dielectric loss can be suppressed, and a product with stable quality can be manufactured.

さらに本発明の製造方法では、連続徐冷炉を通過する前後での電子レンジ用耐熱ガラスの内部の残留応力差(すなわち前駆体と電子レンジ用耐熱ガラスとの残留応力差)が1.5MPa以上となるよう徐冷することが好ましい。より好ましくは、連続徐冷炉を通過する前後のガラス内部の残留応力差が2.5MPa以上となるよう徐冷すると良い。特に、連続徐冷炉を通過する前後のガラス内部の残留応力差が2.5MPa以上となるようにすれば、残留応力に起因する高誘電損失化を大幅に抑制でき、品質が安定した製品を製造できる。   Furthermore, in the production method of the present invention, the residual stress difference inside the heat-resistant glass for microwave ovens before and after passing through the continuous annealing furnace (that is, the residual stress difference between the precursor and the heat-resistant glass for microwave ovens) is 1.5 MPa or more. It is preferable to cool slowly. More preferably, the glass is slowly cooled so that the residual stress difference inside the glass before and after passing through the continuous annealing furnace is 2.5 MPa or more. In particular, if the difference in the residual stress inside the glass before and after passing through the continuous annealing furnace is 2.5 MPa or more, a high dielectric loss due to the residual stress can be greatly suppressed, and a product with stable quality can be manufactured. .

なお、連続徐冷炉内を通過する電子レンジ用耐熱ガラスの前駆体の面積が1300cm2以下、肉厚が1〜10mmであることが好ましい。このような寸法で電子レンジ用耐熱ガラスの前駆体を成型すれば、前記降温速度による残留応力の低減はより一層容易となり、残留応力による高誘電損失化を抑制でき、品質が安定する。   In addition, it is preferable that the area of the precursor of the heat-resistant glass for microwave ovens which passes the inside of a continuous annealing furnace is 1300 cm <2> or less, and thickness is 1-10 mm. If the precursor of the heat-resistant glass for microwave ovens is molded with such dimensions, the residual stress can be further easily reduced by the temperature lowering rate, the high dielectric loss due to the residual stress can be suppressed, and the quality can be stabilized.

また、上記では連続徐冷炉によって徐冷を行う例を示したが、少量生産の場合においては生産効率の低下をもたらさない限り、プレス成型後、急冷されたガラスを温度制御可能な非連続徐冷炉で(徐冷点+50℃)まで再度加熱し、その後徐冷して残留応力を低減してもよい。   Moreover, although the example which performs slow cooling by a continuous slow cooling furnace was shown above, in the case of a small amount production, unless it brings about the fall of production efficiency, after press molding, in the discontinuous slow cooling furnace which can control the temperature of the rapidly cooled glass ( It may be reheated to (annealing point + 50 ° C.) and then gradually cooled to reduce the residual stress.

以下、実施例に基づいて、本発明を詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

表1は、本発明の実施例(試料No.1及び2)および比較例(試料No.3及び4)を示している。   Table 1 shows examples (samples No. 1 and 2) and comparative examples (samples No. 3 and 4) of the present invention.


先ず、表1中に示すガラス組成になるように、天然原料、化成原料等の各種ガラス原料を秤量、混合して、ガラスバッチを作製した。次に、このガラスバッチを白金坩堝で1600℃で8時間溶融した後、得られたガラス融液をプレス成型し、円盤形状のガラス試料を得た。さらに、このガラス試料を、各所に熱電対が設置された温度制御可能な連続徐冷炉を通過させた。

First, various glass raw materials such as natural raw materials and chemical raw materials were weighed and mixed so as to have the glass composition shown in Table 1 to prepare a glass batch. Next, this glass batch was melted at 1600 ° C. for 8 hours in a platinum crucible, and the obtained glass melt was press-molded to obtain a disk-shaped glass sample. Further, this glass sample was passed through a temperature-controllable continuous annealing furnace having thermocouples installed in various places.

また、ガラス試料の降温速度を、連続徐冷炉各部の熱電対の表示温度と連続徐冷炉内のコンベアの送り速度とに基づいて算出した。なお、降温速度の算出方法は従来周知の任意の手法を用いて良い。   Moreover, the temperature-fall rate of the glass sample was computed based on the display temperature of the thermocouple of each part of a continuous slow cooling furnace, and the feed rate of the conveyor in a continuous slow cooling furnace. In addition, the conventionally known arbitrary method may be used for the calculation method of the temperature decrease rate.

上記のようにして得られた各試料につき、残留応力、徐冷炉通過前後の残留応力差、30〜380℃における熱膨張係数、ガラスの粘度が104dPa・sとなる温度、周波数2.45GHz、25℃における比誘電率および誘電正接を測定した。   For each sample obtained as described above, the residual stress, the residual stress difference before and after passing through the slow cooling furnace, the thermal expansion coefficient at 30 to 380 ° C., the temperature at which the viscosity of the glass becomes 104 dPa · s, the frequency 2.45 GHz, 25 ° C. The relative dielectric constant and dielectric loss tangent at were measured.

なお、ガラス試料の残留応力は、徐冷炉通過前の各試料について偏光顕微鏡を用いてセナルモン法により算出した。また、同様にして徐冷炉通過後の残留応力を求め、これら徐冷炉通過前後の残留応力の差分値を、徐冷前後でのガラス内部の残留応力差として算出した。   In addition, the residual stress of the glass sample was calculated by the Senarmon method for each sample before passing through the slow cooling furnace using a polarizing microscope. Similarly, the residual stress after passing through the slow cooling furnace was determined, and the difference value of the residual stress before and after passing through the slow cooling furnace was calculated as the residual stress difference inside the glass before and after slow cooling.

また、熱膨張係数は、MAC SCIENCE社製熱膨張係数測定装置を用いて30〜380℃における平均線熱膨張係数を測定した。   Moreover, the thermal expansion coefficient measured the average linear thermal expansion coefficient in 30-380 degreeC using the thermal expansion coefficient measuring apparatus by MAC SCIENCE.

また、ガラスの粘度が104dPa・sとなる温度は白金球引き上げ法により測定した。   The temperature at which the viscosity of the glass was 104 dPa · s was measured by a platinum ball pulling method.

また、周波数2.45GHz、25℃における比誘電率、誘電正接は空洞共振器を用いて共振周波数と負荷の変化から測定した。また、誘電損失は、比誘電率および誘電正接を乗算して算出した。   The relative dielectric constant and dielectric loss tangent at a frequency of 2.45 GHz and 25 ° C. were measured from changes in the resonance frequency and load using a cavity resonator. The dielectric loss was calculated by multiplying the dielectric constant and the dielectric loss tangent.

さらに、上記のように測定した比誘電率と誘電正接とを乗算して各試料ガラスの誘電損失αを算出した。また、各試料を小型徐冷炉で10℃/分で(徐冷点+30℃)まで昇温し、30分保持した後、3℃/分で歪点まで降温し、さらに10℃/分で室温まで降温する熱処理を行って残留応力を低減した後のガラスの誘電損失βを算出した。また、連続徐冷炉通過後のガラス試料の誘電損失αと熱処理後の誘電損失βとの差を、熱処理した際の誘電損失の減少量γとして算出した。   Furthermore, the dielectric loss α of each sample glass was calculated by multiplying the relative dielectric constant and the dielectric loss tangent measured as described above. Also, each sample was heated to 10 ° C./min (slow cooling point + 30 ° C.) in a small annealing furnace, held for 30 minutes, then cooled to the strain point at 3 ° C./min, and further to room temperature at 10 ° C./min. The dielectric loss β of the glass after reducing the residual stress by performing a heat treatment to lower the temperature was calculated. Further, the difference between the dielectric loss α of the glass sample after passing through the continuous annealing furnace and the dielectric loss β after the heat treatment was calculated as a decrease amount γ of the dielectric loss upon the heat treatment.

上記誘電損失αには、ガラスの組成に起因する誘電損失、およびガラスの残留応力に起因する誘電損失が含まれている。そして、上述の熱処理によってガラス試料中の残留応力は低減される。したがって、誘電損失の減少量γは、ガラスの残留応力に起因した誘電損失に相当するものであると考えられる。故に、誘電損失の減少量γが小さいほど、不要な誘電損失の増加が抑制されており、ホットスポットが発生しにくい。   The dielectric loss α includes a dielectric loss due to the glass composition and a dielectric loss due to the residual stress of the glass. And the residual stress in a glass sample is reduced by the above-mentioned heat processing. Therefore, it is considered that the reduction amount γ of the dielectric loss corresponds to the dielectric loss due to the residual stress of the glass. Therefore, the smaller the decrease amount γ of the dielectric loss, the more the increase in unnecessary dielectric loss is suppressed, and the hot spot is less likely to occur.

表1から明らかなように、本発明の実施例である試料No.1および2は、(徐冷点+50℃)から歪点までの降温速度が1〜2℃/分の範囲内にあり、残留応力が2MPa以下と小さかった。このため、誘電損失が0.031と低く、誘電損失の減少量γは0.007以下であった。また、(誘電損失の減少量γ)/(誘電損失α)の値は、0.1〜0.3の範囲内であった。すなわち、何れもホットスポットの発生しにくい電子レンジ用耐熱ガラスが得られた。また、試料No.1および2は本発明における好ましいガラス組成を有しているため、30〜380℃における熱膨張係数が37×10−7/℃以下、ガラスの粘度が104dPa・sとなる温度が1230℃以下であった。すなわち、試料No.1および2は、高い耐熱、耐衝撃性および優れた成形性を有する電子レンジ用耐熱ガラスとなっている。   As is apparent from Table 1, sample No. which is an example of the present invention. In Nos. 1 and 2, the rate of temperature decrease from (slow cooling point + 50 ° C.) to the strain point was in the range of 1 to 2 ° C./min, and the residual stress was as small as 2 MPa or less. Therefore, the dielectric loss was as low as 0.031, and the decrease amount γ of the dielectric loss was 0.007 or less. The value of (dielectric loss decrease γ) / (dielectric loss α) was in the range of 0.1 to 0.3. That is, a heat-resistant glass for microwave ovens that hardly generates hot spots was obtained. Sample No. Since 1 and 2 have a preferable glass composition in the present invention, the coefficient of thermal expansion at 30 to 380 ° C. is 37 × 10 −7 / ° C. or less, and the temperature at which the glass viscosity is 104 dPa · s is 1230 ° C. or less. there were. That is, sample no. Nos. 1 and 2 are heat-resistant glass for microwave ovens having high heat resistance, impact resistance and excellent moldability.

一方、比較例である試料No.3は、ガラス組成は本発明における好ましい範囲内にあるが、徐冷時の降温速度が速いため、残留応力が本発明の実施例に比べ大きく、よって、ガラスの誘電損失αが0.039と高く、誘電損失の減少量γも0.012と高かった。また、周波数2.45GHz、25℃における(誘電損失の減少量γ)/(誘電損失α)の値が0.31と、0.1〜0.3の範囲外であった。すなわち、試料No.3は、ホットスポットが発生しやすいガラスとなっている。   On the other hand, sample No. which is a comparative example. No. 3, the glass composition is within the preferred range in the present invention, but the rate of temperature drop during slow cooling is fast, so the residual stress is larger than in the examples of the present invention, so the dielectric loss α of the glass is 0.039. The dielectric loss reduction amount γ was as high as 0.012. Moreover, the value of (dielectric loss decrease γ) / (dielectric loss α) at a frequency of 2.45 GHz and 25 ° C. was 0.31, which was outside the range of 0.1 to 0.3. That is, sample no. No. 3 is a glass that easily generates hot spots.

また、比較例である試料No.4は徐冷時の降温速度は本発明の範囲内(1〜2℃/分)にあるが、ガラス組成が本発明の範囲外であるため、熱膨張係数や誘電損失が本発明の実施例に比べ高かった。すなわち、試料No.4は、ホットスポットが発生しやすく、耐熱衝撃性が低いガラスとなっている。   In addition, sample No. No. 4 has a temperature-decreasing rate during slow cooling within the range of the present invention (1-2 ° C./min), but the glass composition is outside the range of the present invention. It was higher than That is, sample no. No. 4 is a glass that easily generates hot spots and has low thermal shock resistance.

本発明に係る電子レンジ用耐熱ガラスおよびその製造方法は、ホットスポットが従来よりも発生しにくい電子レンジ用耐熱ガラスおよびその製造方法などとして有用である。   The heat-resistant glass for a microwave oven and the method for producing the same according to the present invention are useful as a heat-resistant glass for a microwave oven and a method for producing the same.

Claims (9)

質量%で、SiO 75〜85%、Al 0〜5%、B 10〜20%、LiO 0〜5%、NaO 1〜10%、KO 0〜5%の組成を含有し、且つ質量比(LiO+NaO+KO)/(SiO+B+Al)が0.045〜0.055であり、
内部の残留応力が5MPa以下であることを特徴とする電子レンジ用耐熱ガラス。
By mass%, SiO 2 75~85%, Al 2 O 3 0~5%, B 2 O 3 10~20%, Li 2 O 0~5%, Na 2 O 1~10%, K 2 O 0~ 5% composition and mass ratio (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is 0.045 to 0.055,
A heat-resistant glass for microwave ovens, wherein the internal residual stress is 5 MPa or less.
周波数2.45GHz、25℃における誘電損失が0.020〜0.035であることを特徴とする請求項1に記載の電子レンジ用耐熱ガラス。   2. The heat-resistant glass for microwave oven according to claim 1, wherein a dielectric loss at a frequency of 2.45 GHz and 25 ° C. is 0.020 to 0.035. 30〜380℃における熱膨張係数が37×10−7/℃以下であることを特徴とする請求項1または2の何れかに記載の電子レンジ用耐熱ガラス。   The heat-resistant glass for microwave oven according to claim 1, wherein a thermal expansion coefficient at 30 to 380 ° C. is 37 × 10 −7 / ° C. or less. 円盤形状を有し、ターンテーブルのプレートとして用いられることを特徴とする請求項1から3の何れかに記載の電子レンジ用耐熱ガラス。   The heat-resistant glass for a microwave oven according to any one of claims 1 to 3, wherein the heat-resistant glass has a disk shape and is used as a plate of a turntable. 10℃/分で(徐冷点+30℃)まで昇温し、30分保持した後、3℃/分で歪点まで降温し、さらに10℃/分で室温まで降温する熱処理を行った際の周波数2.45GHz、25℃におけるガラス中の誘電損失の減少量が0.007以下であることを特徴とする、請求項1から4の何れか1項に記載の電子レンジ用耐熱ガラス。   The temperature was raised to 10 ° C./min (slow cooling point + 30 ° C.), held for 30 minutes, then lowered to the strain point at 3 ° C./min, and further subjected to heat treatment to lower the temperature to 10 ° C./min to room temperature. The heat-resistant glass for microwave oven according to any one of claims 1 to 4, wherein a decrease amount of dielectric loss in the glass at a frequency of 2.45 GHz and 25 ° C is 0.007 or less. 周波数2.45GHz、25℃における(前記熱処理した際のガラス中の誘電損失の減少量)/(前記熱処理前のガラスの誘電損失)の値が0.1〜0.3であることを特徴とする、請求項5に記載の電子レンジ用耐熱ガラス。   The value of (reduction amount of dielectric loss in the glass when the heat treatment is performed) / (dielectric loss of the glass before the heat treatment) at a frequency of 2.45 GHz and 25 ° C. is 0.1 to 0.3. The heat-resistant glass for microwave ovens according to claim 5. (1)質量%で、SiO 75〜85%、Al 0〜5%、B 10〜20%、LiO 0〜5%、NaO 1〜10%、KO 0〜5%の組成を含有し、且つ(LiO+NaO+KO)/(SiO+B+Al)が0.045〜0.055となるガラス原料を溶融および成型する溶融・成型工程と、
(2)前記溶融・成型工程で得られたガラスを、内部の残留応力が5MPa以下となるよう徐冷する徐冷工程とを含むことを特徴とする電子レンジ用耐熱ガラスの製造方法。
(1) in mass%, SiO 2 75~85%, Al 2 O 3 0~5%, B 2 O 3 10~20%, Li 2 O 0~5%, Na 2 O 1~10%, K 2 Melting and molding a glass raw material containing a composition of O 0 to 5% and (Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 + Al 2 O 3 ) being 0.045 to 0.055 Melting and molding process,
(2) A method for producing a heat-resistant glass for a microwave oven, comprising a slow cooling step of slowly cooling the glass obtained in the melting and molding step so that the internal residual stress is 5 MPa or less.
前記徐冷工程において、前記溶融・成型工程で得られたガラスを、内部の残留応力が5MPa以下となるよう、徐冷前の電子レンジ用耐熱ガラスの(徐冷点+50℃)から歪点までの温度域において0.5〜3℃/分の降温速度で徐冷することを特徴とする、請求項7に記載の電子レンジ用耐熱ガラスの製造方法。   In the slow cooling step, the glass obtained in the melting / molding step is from (slow cooling point + 50 ° C.) to the strain point of the heat-resistant glass for microwave oven before slow cooling so that the internal residual stress is 5 MPa or less. The method for producing heat-resistant glass for microwave ovens according to claim 7, wherein the glass is slowly cooled at a temperature-decreasing rate of 0.5 to 3 ° C./min in the temperature range. 前記徐冷工程において、徐冷の前後での前記電子レンジ用耐熱ガラスの内部の残留応力の差が1.5MPa以上となるよう徐冷を行うことを特徴とする、請求項7または8に記載の電子レンジ用耐熱ガラスの製造方法。   9. The slow cooling process according to claim 7 or 8, wherein in the slow cooling step, slow cooling is performed so that a difference in residual stress inside the heat resistant glass for microwave oven before and after slow cooling becomes 1.5 MPa or more. Manufacturing method of heat-resistant glass for microwave ovens.
JP2011201746A 2011-09-15 2011-09-15 Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven Pending JP2013063861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201746A JP2013063861A (en) 2011-09-15 2011-09-15 Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201746A JP2013063861A (en) 2011-09-15 2011-09-15 Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven

Publications (1)

Publication Number Publication Date
JP2013063861A true JP2013063861A (en) 2013-04-11

Family

ID=48187745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201746A Pending JP2013063861A (en) 2011-09-15 2011-09-15 Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven

Country Status (1)

Country Link
JP (1) JP2013063861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071879A (en) * 2011-09-29 2013-04-22 Nippon Electric Glass Co Ltd Heat-resistant glass for microwave oven and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498490B1 (en) * 1970-03-10 1974-02-26
JPS5490318A (en) * 1977-12-19 1979-07-18 Jenaer Glaswerk Schott & Gen Glass having changing adaptability to high temperature*and high thermal residual stress
JPH06191874A (en) * 1992-09-14 1994-07-12 Corning Inc Rose-pink borosilicate glass, production thereof and article produced from said glass
JP2003201146A (en) * 2002-01-04 2003-07-15 Nippon Electric Glass Co Ltd Heat resisting glass block
JP2006312585A (en) * 2006-08-11 2006-11-16 Nippon Electric Glass Co Ltd Glass substrate for flat panel display, and its manufacturing method
JP2008255002A (en) * 2007-03-15 2008-10-23 Nippon Electric Glass Co Ltd Glass composition for glass fiber, glass fiber, method for producing glass fiber and composite material
JP2011162420A (en) * 2010-02-15 2011-08-25 Nippon Electric Glass Co Ltd Glass for illumination and sheath tube for fluorescent lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498490B1 (en) * 1970-03-10 1974-02-26
JPS5490318A (en) * 1977-12-19 1979-07-18 Jenaer Glaswerk Schott & Gen Glass having changing adaptability to high temperature*and high thermal residual stress
JPH06191874A (en) * 1992-09-14 1994-07-12 Corning Inc Rose-pink borosilicate glass, production thereof and article produced from said glass
JP2003201146A (en) * 2002-01-04 2003-07-15 Nippon Electric Glass Co Ltd Heat resisting glass block
JP2006312585A (en) * 2006-08-11 2006-11-16 Nippon Electric Glass Co Ltd Glass substrate for flat panel display, and its manufacturing method
JP2008255002A (en) * 2007-03-15 2008-10-23 Nippon Electric Glass Co Ltd Glass composition for glass fiber, glass fiber, method for producing glass fiber and composite material
JP2011162420A (en) * 2010-02-15 2011-08-25 Nippon Electric Glass Co Ltd Glass for illumination and sheath tube for fluorescent lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071879A (en) * 2011-09-29 2013-04-22 Nippon Electric Glass Co Ltd Heat-resistant glass for microwave oven and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP7036168B2 (en) Non-alkali glass substrate
JP5831838B2 (en) Alkali-free glass
JP7458388B2 (en) Transparent β-quartz glass ceramic with low lithium content
US10626046B2 (en) Glass ceramics
US9126859B2 (en) Li2O—Al2O3—SiO2—based crystallized glass
JP5751439B2 (en) Alkali-free glass
CN102503141B (en) Glass-ceramics and preparation method thereof
KR101945148B1 (en) Compositional control of fast relaxation in display glasses
JP2015143184A (en) Transparent, dyed cooktop having improved color display capability, and method for producing the same
US20220024803A1 (en) Glass plate and process for producing the same
JP2007197310A (en) Crystallized glass, reflection mirror base material and reflection mirror using the same
JP6175742B2 (en) High refractive index glass
WO2015111524A1 (en) Glass composition for tempering, tempered glass article and method for producing same
JP5762707B2 (en) Method for producing crystallized glass and crystallized glass article
US10730786B2 (en) Alkali-free glass and method for producing the same
JP2019055895A (en) Borosilicate glass, and production method thereof
JP2013063861A (en) Heat resistant glass for microwave oven and method of manufacturing heat resistant glass for microwave oven
JP4320772B2 (en) Glass substrate for flat panel display
JP2013071879A (en) Heat-resistant glass for microwave oven and method of manufacturing the same
JP2020172423A (en) Alkali-free glass plate
JPS6153131A (en) Crystallized glass and its production
JP2018203571A (en) Glass
US11286198B2 (en) LAS system crystalline glass, LAS system crystallized glass, method for producing LAS system crystalline glass, and method for producing LAS system crystallized glass
JP2005281101A (en) Glass substrate for display device
JP2016155693A (en) Alkali-free glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150603