JP2013063453A - Laser machining method - Google Patents

Laser machining method Download PDF

Info

Publication number
JP2013063453A
JP2013063453A JP2011203392A JP2011203392A JP2013063453A JP 2013063453 A JP2013063453 A JP 2013063453A JP 2011203392 A JP2011203392 A JP 2011203392A JP 2011203392 A JP2011203392 A JP 2011203392A JP 2013063453 A JP2013063453 A JP 2013063453A
Authority
JP
Japan
Prior art keywords
workpiece
modified region
cutting
back surface
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011203392A
Other languages
Japanese (ja)
Other versions
JP5894754B2 (en
Inventor
Daisuke Kawaguchi
大祐 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2011203392A priority Critical patent/JP5894754B2/en
Priority to PCT/JP2012/073472 priority patent/WO2013039150A1/en
Priority to TW101133800A priority patent/TWI594832B/en
Publication of JP2013063453A publication Critical patent/JP2013063453A/en
Application granted granted Critical
Publication of JP5894754B2 publication Critical patent/JP5894754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

PROBLEM TO BE SOLVED: To provide a laser machining method capable of cutting a workpiece formed by crystalline quartz with good dimensional accuracy, and of preventing the occurrence of damage on the outer surface of the workpiece.SOLUTION: A laser light L is focused onto the surface 3 of a crystalline quartz workpiece 1 as a laser light incident surface to form a modified region 7 along a planned cutting line 5 on the roughened back side 21 of the workpiece 1. Thereby, the occurrence of cracks exposed to the surface 3 is prevented, and the post-cutting dimensional accuracy of the workpiece 1 is improved. Further, since the processing threshold of the laser beam L is high, a large amount of energy of the laser beam L is consumed for formation of the modified region, and the laser beam L reaching the back side 21 being roughened scatters, resulting in less damage to the back side 21.

Description

本発明は、加工対象物を切断するためのレーザ加工方法に関する。   The present invention relates to a laser processing method for cutting a workpiece.

従来のレーザ加工方法としては、加工対象物にレーザ光を集光させ、加工対象物に改質領域を切断予定ラインに沿って形成し、加工対象物を切断予定ラインに沿って切断するものが知られている(例えば、特許文献1参照)。   As a conventional laser processing method, there is a method of condensing a laser beam on a processing object, forming a modified region along the planned cutting line on the processing target, and cutting the processing target along the planned cutting line. It is known (see, for example, Patent Document 1).

特開2006−108459号公報Japanese Patent Laid-Open No. 2006-108459

ここで、上述したようなレーザ加工方法においては、水晶で形成された加工対象物に改質領域を形成する場合、一般的に、改質領域を形成するためのレーザ光の加工閾値が高いことから、集光させるレーザ光の加工エネルギ密度が高いものとされる。そのため、改質領域から亀裂が延び易く、レーザ光入射面に露出する亀裂が生じやすい。この点、レーザ光入射面に露出する亀裂を生じさせると、当該亀裂は例えば水晶が有する加工特性のために蛇行し易いことから、切断後の加工対象物の寸法精度(加工品質)を制御することは容易でなく、寸法精度を向上させることが困難とされている。   Here, in the laser processing method as described above, when a modified region is formed on a workpiece formed of quartz, generally, a processing threshold of laser light for forming the modified region is high. Therefore, the processing energy density of the focused laser beam is high. For this reason, cracks tend to extend from the modified region, and cracks exposed to the laser light incident surface tend to occur. In this regard, if a crack exposed on the laser light incident surface is generated, the crack is easy to meander due to, for example, the processing characteristics of the crystal, so that the dimensional accuracy (processing quality) of the workpiece after cutting is controlled. This is not easy, and it is difficult to improve the dimensional accuracy.

また、上述したようなレーザ加工方法では、加工対象物へのレーザ光の照射で加工対象物の外表面にダメージが生じるのを抑制することが好ましい。   Further, in the laser processing method as described above, it is preferable to prevent the outer surface of the processing target from being damaged by the irradiation of the processing target with the laser beam.

そこで、本発明は、水晶で形成された加工対象物を寸法精度よく切断すると共に、その外表面にダメージが生じるのを抑制することが可能なレーザ加工方法を提供することを課題とする。   Then, this invention makes it a subject to provide the laser processing method which can suppress that the outer surface is damaged while cut | disconnecting the workpiece formed with the quartz crystal with sufficient dimensional accuracy.

上記課題を解決するために、本発明に係るレーザ加工方法は、水晶で形成され表面と該表面の反対側の粗面としての裏面とを有する加工対象物を、切断予定ラインに沿って切断するためのレーザ加工方法であって、表面をレーザ光入射面として加工対象物にレーザ光を集光させ、加工対象物における裏面側に改質領域を切断予定ラインに沿って形成する改質領域形成工程を含むことを特徴とする。   In order to solve the above-described problems, a laser processing method according to the present invention cuts a workpiece to be processed having a surface formed of quartz and a back surface as a rough surface opposite to the surface along a planned cutting line. Forming a modified region along a planned cutting line on the back surface side of the processing object by condensing the laser beam on the processing object with the front surface being a laser light incident surface Including a process.

この本発明のレーザ加工方法では、レーザ光入射面としての表面とは反対側の裏面側に改質領域が形成されている。よって、レーザ光入射面に露出する亀裂が生じるのを抑制することができ、切断後の加工対象物の寸法精度を高めることができる。このとき、改質領域が裏面側に形成されるために裏面へのダメージが懸念されるが、水晶では加工閾値が高いためにレーザ光のエネルギが改質領域の形成で大きく消費されると共に、裏面が粗面とされているために裏面に到達したレーザ光が散乱することから、裏面にダメージが生じることも少ない。従って、本発明によれば、水晶で形成された加工対象物を寸法精度よく切断すると共に、加工対象物の外表面にダメージが生じるのを抑制することが可能となる。   In this laser processing method of the present invention, the modified region is formed on the back surface side opposite to the surface as the laser light incident surface. Therefore, it is possible to suppress the occurrence of cracks exposed on the laser light incident surface, and to increase the dimensional accuracy of the workpiece after cutting. At this time, since the modified region is formed on the back surface side, there is a concern about damage to the back surface, but since the processing threshold is high in quartz, the energy of the laser beam is greatly consumed in forming the modified region, Since the back surface is a rough surface, the laser light reaching the back surface is scattered, so that the back surface is rarely damaged. Therefore, according to the present invention, it is possible to cut a processing object formed of quartz with high dimensional accuracy and to prevent damage to the outer surface of the processing object.

また、裏面の中心線平均粗さは、0.05μm以上とされていることが好ましい。この場合、例えば裏面に到達したレーザ光の散乱を効果的に生じさせ、裏面へのダメージを一層抑制することができる。   The center line average roughness on the back surface is preferably 0.05 μm or more. In this case, for example, it is possible to effectively cause scattering of laser light that has reached the back surface, thereby further suppressing damage to the back surface.

また、上記作用効果を好適に奏するために、具体的には、加工対象物の厚さは、100μm以下であり、改質領域形成工程では、加工対象物内において裏面から5μm以下の位置に改質領域を形成する場合がある。   In order to achieve the above-described effects, the thickness of the workpiece is specifically 100 μm or less. In the modified region forming step, the thickness of the workpiece is changed to 5 μm or less from the back surface. A quality region may be formed.

また、切断予定ラインに沿って外部から加工対象物に力を印加することにより、改質領域を切断の起点として加工対象物を切断する切断工程をさらに含むことが好ましい。これにより、加工対象物を確実に切断予定ラインに沿って切断することが可能となる。   Moreover, it is preferable to further include a cutting step of cutting the processing object from the modified region as a starting point of cutting by applying a force to the processing object from the outside along the scheduled cutting line. Thereby, it becomes possible to cut | disconnect a process target object along a cutting plan line reliably.

本発明によれば、水晶で形成された加工対象物を寸法精度よく切断すると共に、その外表面にダメージが生じるのを抑制することが可能となる。   According to the present invention, it is possible to cut a workpiece formed of crystal with high dimensional accuracy and to prevent damage to the outer surface.

改質領域の形成に用いられるレーザ加工装置の概略構成図である。It is a schematic block diagram of the laser processing apparatus used for formation of a modification area | region. 改質領域の形成の対象となる加工対象物の平面図である。It is a top view of the processing target object used as the object of formation of a modification field. 図2の加工対象物のIII−III線に沿っての断面図である。It is sectional drawing along the III-III line of the workpiece of FIG. レーザ加工後の加工対象物の平面図である。It is a top view of the processing target after laser processing. 図4の加工対象物のV−V線に沿っての断面図である。It is sectional drawing along the VV line of the workpiece of FIG. 図4の加工対象物のVI−VI線に沿っての断面図である。It is sectional drawing along the VI-VI line of the processing target object of FIG. 本実施形態に係る水晶振動子の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the crystal oscillator which concerns on this embodiment. 加工対象物を水晶チップに切断する工程を説明するための概略図である。It is the schematic for demonstrating the process of cut | disconnecting a workpiece to a quartz chip.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

本実施形態に係るレーザ加工方法では、加工対象物にレーザ光を集光させ、改質領域を切断予定ラインに沿って形成する。そこで、まず、改質領域の形成について、図1〜図6を参照して説明する。   In the laser processing method according to the present embodiment, the laser beam is focused on the object to be processed, and the modified region is formed along the planned cutting line. First, the formation of the modified region will be described with reference to FIGS.

図1に示すように、レーザ加工装置100は、レーザ光Lをパルス発振するレーザ光源101と、レーザ光Lの光軸(光路)の向きを90°変えるように配置されたダイクロイックミラー103と、レーザ光Lを集光するための集光用レンズ(集光光学系)105と、を備えている。また、レーザ加工装置100は、集光用レンズ105で集光されたレーザ光Lが照射される加工対象物1を支持するための支持台107と、支持台107を移動させるためのステージ111と、レーザ光Lの出力やパルス幅、パルス波形等を調節するためにレーザ光源101を制御するレーザ光源制御部(制御手段)102と、ステージ111の移動を制御するステージ制御部115と、を備えている。   As shown in FIG. 1, a laser processing apparatus 100 includes a laser light source 101 that oscillates a laser beam L, a dichroic mirror 103 that is arranged so as to change the direction of the optical axis (optical path) of the laser beam L, and A condensing lens (condensing optical system) 105 for condensing the laser light L. Further, the laser processing apparatus 100 includes a support base 107 for supporting the workpiece 1 irradiated with the laser light L condensed by the condensing lens 105, and a stage 111 for moving the support base 107. A laser light source controller (control means) 102 for controlling the laser light source 101 in order to adjust the output, pulse width, pulse waveform, etc. of the laser light L, and a stage controller 115 for controlling the movement of the stage 111. ing.

このレーザ加工装置100においては、レーザ光源101から出射されたレーザ光Lは、ダイクロイックミラー103によってその光軸の向きを90°変えられ、支持台107上に載置された加工対象物1の内部に集光用レンズ105によって集光される。これと共に、ステージ111が移動させられ、加工対象物1がレーザ光Lに対して切断予定ライン5に沿って相対移動させられる。これにより、切断予定ライン5に沿った改質領域が加工対象物1に形成されることとなる。なお、ここでは、レーザ光Lを相対的に移動させるためにステージ111を移動させたが、集光用レンズ105を移動させてもよいし、或いはこれらの両方を移動させてもよい。   In this laser processing apparatus 100, the laser light L emitted from the laser light source 101 has its optical axis changed by 90 ° by the dichroic mirror 103, and the inside of the processing object 1 placed on the support base 107. The light is condensed by the condensing lens 105. At the same time, the stage 111 is moved, and the workpiece 1 is moved relative to the laser beam L along the planned cutting line 5. As a result, a modified region along the planned cutting line 5 is formed on the workpiece 1. Here, the stage 111 is moved in order to move the laser light L relatively, but the condensing lens 105 may be moved, or both of them may be moved.

加工対象物1は、水晶で形成されており、図2に示すように、加工対象物1には、加工対象物1を切断するための切断予定ライン5が設定されている。切断予定ライン5は、直線状に延びた仮想線である。加工対象物1の内部に改質領域を形成する場合、図3に示すように、加工対象物1の内部に集光点(集光位置)Pを合わせた状態で、レーザ光Lを切断予定ライン5に沿って(すなわち、図2の矢印A方向に)相対的に移動させる。これにより、図4〜図6に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、切断予定ライン5に沿って形成された改質領域7が切断起点領域8となる。   The processing object 1 is formed of quartz, and as shown in FIG. 2, a cutting line 5 for cutting the processing object 1 is set in the processing object 1. The planned cutting line 5 is a virtual line extending linearly. When the modified region is formed inside the workpiece 1, as shown in FIG. 3, the laser beam L is scheduled to be cut in a state where the focusing point (focusing position) P is aligned with the inside of the workpiece 1. It moves relatively along the line 5 (that is, in the direction of arrow A in FIG. 2). Thereby, as shown in FIGS. 4 to 6, the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and the modified region 7 formed along the planned cutting line 5 is formed. It becomes the cutting start area 8.

なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、これらが組み合わされた3次元状であってもよいし、座標指定されたものであってもよい。また、切断予定ライン5は、仮想線に限らず加工対象物1の表面3に実際に引かれた線であってもよい。改質領域7は、連続的に形成される場合もあるし、断続的に形成される場合もある。また、改質領域7は列状でも点状でもよく、要は、改質領域7は少なくとも加工対象物1の内部に形成されていればよい。また、改質領域7を起点に亀裂が形成される場合があり、亀裂及び改質領域7は、加工対象物1の外表面(表面3、裏面21、若しくは外周面)に露出していてもよい。また、改質領域7を形成する際のレーザ光入射面は、加工対象物1の表面3に限定されるものではなく、加工対象物1の裏面21であってもよい。   In addition, the condensing point P is a location where the laser light L is condensed. Further, the planned cutting line 5 is not limited to a straight line, but may be a curved line, a three-dimensional shape in which these lines are combined, or a coordinate designated. Further, the planned cutting line 5 is not limited to a virtual line but may be a line actually drawn on the surface 3 of the workpiece 1. The modified region 7 may be formed continuously or intermittently. Further, the modified region 7 may be in the form of a line or a dot. In short, the modified region 7 only needs to be formed at least inside the workpiece 1. In addition, a crack may be formed starting from the modified region 7, and the crack and the modified region 7 may be exposed on the outer surface (front surface 3, back surface 21, or outer peripheral surface) of the workpiece 1. Good. Further, the laser light incident surface when forming the modified region 7 is not limited to the front surface 3 of the workpiece 1 but may be the back surface 21 of the workpiece 1.

ちなみに、ここでのレーザ光Lは、加工対象物1を透過すると共に加工対象物1の内部の集光点近傍にて特に吸収され、これにより、加工対象物1に改質領域7が形成される(すなわち、内部吸収型レーザ加工)。よって、加工対象物1の表面3ではレーザ光Lが殆ど吸収されないので、加工対象物1の表面3が溶融することはない。一般的に、表面3から溶融され除去されて穴や溝等の除去部が形成される(表面吸収型レーザ加工)場合、加工領域は表面3側から徐々に裏面側に進行する。   Incidentally, the laser light L here passes through the workpiece 1 and is particularly absorbed near the condensing point inside the workpiece 1, thereby forming the modified region 7 in the workpiece 1. (Ie, internal absorption laser processing). Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted. In general, when a removed portion such as a hole or a groove is formed by being melted and removed from the front surface 3 (surface absorption laser processing), the processing region gradually proceeds from the front surface 3 side to the back surface side.

ところで、本実施形態で形成される改質領域は、密度、屈折率、機械的強度やその他の物理的特性が周囲とは異なる状態になった領域をいう。改質領域としては、例えば、溶融処理領域(一旦溶融後再固化した領域、溶融状態中の領域及び溶融から再固化する状態中の領域のうち少なくともいずれか一つを意味する)、クラック領域、絶縁破壊領域、屈折率変化領域等があり、これらが混在した領域もある。さらに、改質領域としては、加工対象物の材料において改質領域の密度が非改質領域の密度と比較して変化した領域や、格子欠陥が形成された領域がある(これらをまとめて高密転移領域ともいう)。   By the way, the modified region formed in the present embodiment refers to a region where the density, refractive index, mechanical strength, and other physical characteristics are different from the surroundings. Examples of the reforming region include a melting treatment region (meaning at least one of a region once solidified after melting, a region in a molten state, and a region in a state of being resolidified from melting), a crack region, There are dielectric breakdown regions, refractive index change regions, and the like, and there are also regions where these are mixed. Furthermore, as the modified region, there are a region where the density of the modified region in the material of the workpiece is changed compared to the density of the non-modified region, and a region where lattice defects are formed. Also known as the metastatic region).

また、溶融処理領域や屈折率変化領域、改質領域の密度が非改質領域の密度と比較して変化した領域、格子欠陥が形成された領域は、さらに、それら領域の内部や改質領域と非改質領域との界面に亀裂(割れ、マイクロクラック)を内包している場合がある。内包される亀裂は改質領域の全面に渡る場合や一部分のみや複数部分に形成される場合がある。加工対象物1としては、水晶(SiO)又は水晶を含む材料が用いられている。 In addition, the area where the density of the melt-processed area, the refractive index changing area, the modified area is changed compared to the density of the non-modified area, or the area where lattice defects are formed is In some cases, cracks (cracks, microcracks) are included in the interface between the non-modified region and the non-modified region. The included crack may be formed over the entire surface of the modified region, or may be formed in only a part or a plurality of parts. As the processing object 1, quartz (SiO 2 ) or a material containing quartz is used.

また、本実施形態においては、切断予定ライン5に沿って改質スポット(加工痕)を複数形成することによって、改質領域7を形成している。改質スポットとは、パルスレーザ光の1パルスのショット(つまり1パルスのレーザ照射:レーザショット)で形成される改質部分であり、改質スポットが集まることにより改質領域7となる。改質スポットとしては、クラックスポット、溶融処理スポット若しくは屈折率変化スポット、又はこれらの少なくとも1つが混在するもの等が挙げられる。   Further, in the present embodiment, the modified region 7 is formed by forming a plurality of modified spots (processing marks) along the planned cutting line 5. The modified spot is a modified portion formed by one pulse shot of pulsed laser light (that is, one pulse of laser irradiation: laser shot). Examples of the modified spot include a crack spot, a melting treatment spot, a refractive index change spot, or a mixture of at least one of these.

この改質スポットについては、要求される切断精度、要求される切断面の平坦性、加工対象物の厚さ、種類、結晶方位等を考慮して、その大きさや発生する亀裂の長さを適宜制御することが好ましい。   Considering the required cutting accuracy, required flatness of the cut surface, thickness of the workpiece, type, crystal orientation, etc., the size of the modified spot and the length of the crack to be generated are appropriately determined. It is preferable to control.

次に、本実施形態について詳細に説明する。   Next, this embodiment will be described in detail.

本実施形態は、例えば水晶振動子を製造するための水晶振動子の製造方法として用いられるものであって、六方柱状の結晶である水晶で形成された加工対象物1を複数の水晶チップに切断する。そこで、まず、図7を参照しつつ水晶振動子の全体の製造工程フローを概略説明する。   The present embodiment is used, for example, as a method of manufacturing a crystal unit for manufacturing a crystal unit, and cuts a workpiece 1 formed of crystal that is a hexagonal column crystal into a plurality of crystal chips. To do. First, the overall manufacturing process flow of the crystal unit will be described with reference to FIG.

初めに、人工水晶原石を例えばダイヤモンド研削によって切り出し、所定サイズの棒状体(ランバード)に加工する(S1)。続いて、水晶振動子の温度特性要求に応じた切断角度をX線により測定し、この切断角度に基づいてランバードをワイヤーソー加工によって複数のウェハ状の加工対象物1に切断する(S2)。ここでの加工対象物1は、10mm×10mmの矩形板状を呈し、厚さ方向に対し35.15°傾斜した結晶軸を有している。   First, the raw quartz crystal is cut out by, for example, diamond grinding and processed into a rod-shaped body (lumbard) of a predetermined size (S1). Subsequently, the cutting angle corresponding to the temperature characteristic requirement of the crystal resonator is measured by X-rays, and the lambard is cut into a plurality of wafer-like workpieces 1 by wire saw processing based on this cutting angle (S2). The workpiece 1 here has a rectangular plate shape of 10 mm × 10 mm, and has a crystal axis inclined by 35.15 ° with respect to the thickness direction.

続いて、ラッピング加工を加工対象物1の表面3及び裏面21に施し、その厚さを所定厚さとする(S3)。続いて、微小角度レベルで切断角度をX線により測定し、加工対象物1の選別及び分類を行った後、上記S3と同様なラッピング加工を加工対象物1の表面3及び裏面21に再度施し、加工対象物1の厚さを微調整する(S4,S5)。   Subsequently, lapping is performed on the front surface 3 and the back surface 21 of the workpiece 1 and the thickness is set to a predetermined thickness (S3). Subsequently, the cutting angle is measured by X-rays at a minute angle level, and after selecting and classifying the workpiece 1, lapping processing similar to the above S3 is performed again on the front surface 3 and the back surface 21 of the workpiece 1. Then, the thickness of the workpiece 1 is finely adjusted (S4, S5).

上記S5においては、加工対象物1は、その厚さが100μm以下とされ、好ましいとして厚さ35μmの超極薄状とされている。また、上記S3,S5にて表面3及び裏面21にラッピング加工が施されることにより、これら表面3及び裏面21は粗面となっている。具体的には、表面3及び裏面21は、例えば梨地状に形成され、その中心線平均粗さRa(以下、単に「粗さRa」)が0.05μm以上とされ、好ましいとして0.05μm〜0.30μmとされている。なお、粗さRaは、日本工業規格(JIS−B0601)で定義される中心線平均粗さを意味する。   In S5, the workpiece 1 has a thickness of 100 μm or less, and preferably has an ultra-thin shape with a thickness of 35 μm. Further, the front surface 3 and the back surface 21 are subjected to lapping in S3 and S5, so that the front surface 3 and the back surface 21 are rough surfaces. Specifically, the front surface 3 and the back surface 21 are formed in, for example, a satin shape, and the center line average roughness Ra (hereinafter simply referred to as “roughness Ra”) is 0.05 μm or more, preferably 0.05 μm to It is 0.30 μm. In addition, roughness Ra means the centerline average roughness defined by Japanese Industrial Standard (JIS-B0601).

続いて、切断加工及び外形加工として、加工対象物1に改質領域7を形成し当該改質領域7を切断の起点として加工対象物1を切断予定ライン5に沿って切断する(S6:詳しくは、後述)。これにより、±数μm以下の寸法精度の外形寸法を有する複数の水晶チップを得る。本実施形態では、表面3視において切断予定ライン5が格子状に加工対象物1に設定されており、1mm×0.5mmの矩形板状の水晶チップとして加工対象物1を切断する。   Subsequently, as a cutting process and an outline process, the modified region 7 is formed on the workpiece 1, and the workpiece 1 is cut along the planned cutting line 5 using the modified region 7 as a starting point for cutting (S6: details). Is described later). As a result, a plurality of crystal chips having external dimensions with a dimensional accuracy of ± several μm or less are obtained. In the present embodiment, the line 5 to be cut is set in the processing object 1 in a lattice shape when viewed from the front surface 3, and the processing object 1 is cut as a rectangular plate-shaped crystal chip of 1 mm × 0.5 mm.

続いて、所定周波数となるように水晶チップに面取り加工(コンベックス加工)を施す共に、所定周波数となるようにエッチング加工により水晶チップの厚さを調整する(S7,S8)。その後、この水晶チップを水晶振動子として組み立てる(S9)。具体的には、水晶チップ上にスパッタリングにより電極を形成し、この水晶チップをマウンタ内に搭載し、真空雰囲気中で熱処理した後、イオンエッチングで水晶チップの電極を削り周波数を調整し、マウンタ内をシーム封止する。これにより、水晶振動子の製造が完了する。   Subsequently, the quartz chip is subjected to chamfering (convex machining) so as to have a predetermined frequency, and the thickness of the quartz chip is adjusted by etching so as to have a predetermined frequency (S7, S8). Thereafter, the crystal chip is assembled as a crystal resonator (S9). Specifically, an electrode is formed on the crystal chip by sputtering, this crystal chip is mounted in the mounter, heat-treated in a vacuum atmosphere, and then the crystal chip electrode is shaved by ion etching to adjust the frequency. Seal the seam. Thereby, the manufacture of the crystal unit is completed.

図8は、加工対象物を水晶チップに切断する工程を説明するための概略図である。図中においては、説明の便宜上、1つの切断予定ライン5に沿った切断を例示して示している。加工対象物1を水晶チップへ切断する上記S6においては、まず、加工対象物1の裏面21にエキスパンドテープ31を貼り付けて加工対象物1を支持台107(図1参照)上に載置する。   FIG. 8 is a schematic diagram for explaining a process of cutting a workpiece into a quartz chip. In the drawing, for convenience of explanation, the cutting along one cutting scheduled line 5 is illustrated as an example. In the above-described step S6 for cutting the workpiece 1 into the crystal chip, first, the expand tape 31 is attached to the back surface 21 of the workpiece 1 and the workpiece 1 is placed on the support 107 (see FIG. 1). .

続いて、レーザ光源制御部102によりレーザ光源101を制御すると共にステージ制御部115によりステージ111を制御し、切断予定ライン5に沿って、加工対象物1にレーザ光Lを適宜集光させて改質領域7を形成する(改質領域形成工程)。   Subsequently, the laser light source control unit 102 controls the laser light source 101 and the stage control unit 115 controls the stage 111, and the laser beam L is appropriately condensed on the workpiece 1 along the scheduled cutting line 5 and modified. The quality region 7 is formed (modified region forming step).

具体的には、図8(a)に示すように、加工対象物1内において裏面21側に集光点を合わせ、例えば出力0.2Wでレーザ光Lを表面3側から照射する。これに併せて、このレーザ光Lを、例えば135mm/sの速度で加工対象物1に対し相対移動させる(スキャン)。これにより、加工対象物1の表面3に露出する亀裂を形成することなく、例えば3μmのピッチを有する複数の改質スポットを含む改質領域7を、切断予定ライン5に沿って加工対象物1内の裏面21側に一列形成する。そして、上記スキャンを全ての切断予定ライン5について実施する。   Specifically, as shown in FIG. 8 (a), the condensing point is set on the back surface 21 side in the workpiece 1, and the laser beam L is irradiated from the front surface 3 side with an output of 0.2 W, for example. At the same time, the laser beam L is moved relative to the workpiece 1 at a speed of, for example, 135 mm / s (scanning). As a result, the modified region 7 including a plurality of modified spots having a pitch of 3 μm, for example, is formed along the planned cutting line 5 without forming a crack exposed on the surface 3 of the workpiece 1. One row is formed on the back surface 21 side. Then, the above scan is performed for all the cutting scheduled lines 5.

ここでは、好ましいとして、加工対象物1内において裏面21から加工対象物1の厚さの半分以下の位置に集光点を合わせてレーザ光Lを照射し、加工対象物1内の当該位置に切断予定ライン5に沿って改質領域7を形成する。或いは、好ましいとして、加工対象物1内において裏面21から0〜10μm以内(より好ましいとして、5μm以下)の位置に集光点を合わせてレーザ光Lを照射し、加工対象物1内の当該位置に切断予定ライン5に沿って改質領域7を形成する。さらに或いは、好ましいとして、加工対象物1内において裏面21近傍に集光点を合わせてレーザ光Lを照射し、加工対象物1内の当該裏面21近傍に切断予定ライン5に沿って改質領域7を形成する。   Here, as a preferable case, the laser beam L is irradiated from the back surface 21 to the position of the half or less of the thickness of the workpiece 1 in the workpiece 1 and irradiated with the laser beam L, and the target location in the workpiece 1 is irradiated. A modified region 7 is formed along the planned cutting line 5. Alternatively, preferably, the processing object 1 is irradiated with the laser light L at a position within 0 to 10 μm (more preferably, 5 μm or less) from the back surface 21 within the processing object 1, and the position in the processing object 1. Then, the modified region 7 is formed along the cutting line 5. Further alternatively, preferably, a laser beam L is irradiated in the vicinity of the back surface 21 near the back surface 21 in the processing object 1, and a modified region is formed along the planned cutting line 5 near the back surface 21 in the processing object 1. 7 is formed.

続いて、図8(b)に示すように、エキスパンドテープ31を表面3に転写した後、加工対象物1に対し裏面21側から、エキスパンドテープ31を介して切断予定ライン5に沿ってナイフエッジ32を押し当てる(切断工程)。これにより、改質領域7が開く(応力開放する)よう切断予定ライン5に沿って外部から加工対象物1に力を印加し、改質領域7を切断の起点として、加工対象物1を複数の水晶チップに切断する。そして、図8(c)に示すように、エキスパンドテープ31を拡張させ、チップ間隔を確保する。以上により、加工対象物1が複数の水晶チップ10として切断されることとなる。   Subsequently, as shown in FIG. 8B, after the expanded tape 31 is transferred to the front surface 3, the knife edge along the planned cutting line 5 from the back surface 21 side with respect to the workpiece 1 through the expanded tape 31. 32 is pressed (cutting step). As a result, a force is applied to the workpiece 1 from the outside along the planned cutting line 5 so that the modified region 7 is opened (releasing stress), and a plurality of workpieces 1 are formed using the modified region 7 as a starting point for cutting. Cut into crystal chips. Then, as shown in FIG. 8C, the expanded tape 31 is expanded to ensure the chip interval. Thus, the workpiece 1 is cut as a plurality of crystal chips 10.

ところで、水晶で形成された加工対象物1にレーザ光Lを集光させて改質領域7を形成する場合、加工閾値が高いためにレーザ光Lのエネルギ密度を高める必要があり、よって、改質領域7から亀裂が延び易く、レーザ光入射面としての表面3に露出する亀裂(ハーフカット)が生じやすい。このハーフカットは、水晶が有する加工特性のために蛇行し易いことから、例えば切断面が鋸歯状に形成され、切断後の加工対象物1の寸法精度(加工品質)を制御することは容易でない。この点、本実施形態では、上述したように、レーザ光入射面である表面3の反対面としての裏面21側に改質領域7が形成されており、よって、ハーフカットが生じるのを抑制することができる。その結果、切断後の加工対象物1の寸法精度を高めることができる。   By the way, when the laser beam L is condensed on the workpiece 1 formed of quartz and the modified region 7 is formed, it is necessary to increase the energy density of the laser beam L because the processing threshold is high. Cracks tend to extend from the material region 7 and cracks (half cuts) exposed on the surface 3 as the laser light incident surface are likely to occur. Since this half-cut is easy to meander due to the processing characteristics of quartz, for example, the cut surface is formed in a sawtooth shape, and it is not easy to control the dimensional accuracy (processing quality) of the workpiece 1 after cutting. . In this regard, in the present embodiment, as described above, the modified region 7 is formed on the back surface 21 side as the opposite surface of the front surface 3 that is the laser light incident surface, and thus half-cut is suppressed. be able to. As a result, the dimensional accuracy of the workpiece 1 after cutting can be increased.

ここで、改質領域7が裏面21側に形成されると、裏面21にダメージが生じることが懸念され、かかる懸念は本実施形態のように加工対象物1が薄い場合に顕著となる。これに対し、本実施形態では、水晶が有する高い加工閾値のためにレーザ光Lのエネルギが改質領域7の形成で大きく消費されると共に、裏面21が粗面とされているために裏面21に到達したレーザ光Lが散乱することから、裏面21にダメージが生じることも少ない。さらに、改質領域7が裏面21側に形成されても、加工対象物1自体が高い硬度を有するため、抗折強度に対する悪影響は少ない。   Here, when the modified region 7 is formed on the back surface 21 side, there is a concern that the back surface 21 may be damaged, and this concern becomes significant when the workpiece 1 is thin as in the present embodiment. On the other hand, in the present embodiment, the energy of the laser beam L is greatly consumed by the formation of the modified region 7 due to the high processing threshold of the crystal, and the back surface 21 is a rough surface. Since the laser beam L that has reached scatters, the back surface 21 is less likely to be damaged. Furthermore, even if the modified region 7 is formed on the back surface 21 side, since the workpiece 1 itself has a high hardness, there is little adverse effect on the bending strength.

従って、本実施形態によれば、水晶で形成された加工対象物1を切断する場合において、加工対象物1の外表面にダメージが生じるのを抑制しながら、加工対象物1を寸法精度よく切断して加工品質を向上させることが可能となる。   Therefore, according to this embodiment, when cutting the workpiece 1 formed of quartz, the workpiece 1 is cut with high dimensional accuracy while suppressing damage to the outer surface of the workpiece 1. As a result, the processing quality can be improved.

また、本実施形態では、上述したように、裏面21の粗さRaは、0.05μm以上とされていることから、例えば裏面21に到達したレーザ光Lの散乱が効果的に生じるため、裏面21へのダメージを一層抑制することができる。   In the present embodiment, as described above, since the roughness Ra of the back surface 21 is 0.05 μm or more, for example, scattering of the laser light L that has reached the back surface 21 is effectively generated. The damage to 21 can be further suppressed.

また、本実施形態では、上述したように、ナイフエッジ32を用いて加工対象物1に切断予定ライン5に沿って外部応力を印加し、改質領域7を切断の起点として加工対象物1をしている。これにより、切断し難い水晶で形成された加工対象物1であっても、加工対象物1を確実に切断予定ライン5に沿って精度切断することが可能となる。   Further, in the present embodiment, as described above, external stress is applied to the workpiece 1 along the planned cutting line 5 using the knife edge 32, and the workpiece 1 is set with the modified region 7 as a starting point of cutting. doing. Thereby, even if it is the process target object 1 formed with the crystal which is hard to cut | disconnect, it becomes possible to cut | disconnect the process target object 1 accurately along the cutting scheduled line 5 reliably.

なお、加工対象物1におけるレーザ光入射面としての表面3側に改質領域7を形成する場合、前述のようにレーザ光Lに高いエネルギ密度が必要であることから、ハーフカットが発生して加工品質が低下するおそれが大きい。またこの場合、ハーフカットが発生しないようレーザ光Lを制御することは容易でなく、いわゆる空振り(レーザ光Lを加工対象物1に集光させても改質スポットないし改質領域7が形成されない現象)が生じ易い。この点においても、加工対象物1の裏面21側に改質領域7を形成する本実施形態の技術的意義は大きいといえる。   Note that, when the modified region 7 is formed on the surface 3 side as the laser beam incident surface in the workpiece 1, since the laser beam L needs a high energy density as described above, a half cut occurs. There is a great risk that the processing quality will deteriorate. Further, in this case, it is not easy to control the laser beam L so that half-cut does not occur, and so-called idling (the modified spot or modified region 7 is not formed even when the laser beam L is condensed on the workpiece 1). Phenomenon). Also in this respect, it can be said that the technical significance of the present embodiment in which the modified region 7 is formed on the back surface 21 side of the workpiece 1 is great.

ちなみに、水晶振動子は水晶の材料そのものの特性を利用するデバイスであることから、水晶振動子用の水晶チップは寸法精度が温度特性や振動子特性に大きく影響を与える。よって、水晶チップとして寸法精度よく加工対象物1を切断する上記作用効果は、水晶振動子を製造する場合に顕著となる。   Incidentally, since a crystal resonator is a device that uses the characteristics of the crystal material itself, the dimensional accuracy of a crystal chip for a crystal resonator greatly affects temperature characteristics and resonator characteristics. Therefore, the above-described effect of cutting the workpiece 1 with high dimensional accuracy as a quartz chip becomes prominent when a quartz resonator is manufactured.

また、表面3及び裏面21が粗面とされていても、圧電効果に与える悪影響は少ない。また、水晶チップはその厚さが薄いものほど、高周波デバイスとして好適に利用することが可能となる。よって、表面が荒れていて且つ薄い水晶チップとして加工対象物1を切断できる本実施形態は、特に有効なものといえる。   Moreover, even if the front surface 3 and the back surface 21 are rough surfaces, there is little adverse effect on the piezoelectric effect. In addition, the thinner the quartz chip, the more preferably it can be used as a high frequency device. Therefore, it can be said that this embodiment which can cut the workpiece 1 as a thin quartz chip having a rough surface is particularly effective.

以上、本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. The present invention can be modified without departing from the scope described in the claims or applied to other embodiments. May be.

例えば上記において、加工対象物1の厚さ、改質領域7の形成位置、及び粗さRaの各数値は、加工上、製造上及び設計上等の誤差を許容するものである。また、上記実施形態では、加工対象物1の内部に改質領域7を形成したが、改質領域7はレーザ光入射面の反対面である裏面21から露出してもよい。なお、本発明は、上記レーザ加工方法により水晶振動子を製造する水晶振動子の製造方法又は製造装置として捉えることもできる一方、水晶振動子を製造するものに限定されず、水晶で形成された加工対象物を切断するための種々の方法又は装置に適用可能である。   For example, in the above description, the numerical values of the thickness of the workpiece 1, the formation position of the modified region 7, and the roughness Ra allow for errors in processing, manufacturing, and design. In the above embodiment, the modified region 7 is formed inside the workpiece 1. However, the modified region 7 may be exposed from the back surface 21 that is the opposite surface of the laser light incident surface. The present invention can also be regarded as a crystal resonator manufacturing method or manufacturing apparatus for manufacturing a crystal resonator by the laser processing method described above, but is not limited to a crystal resonator manufacturing method and is formed of crystal. The present invention can be applied to various methods or apparatuses for cutting a workpiece.

1…加工対象物、5…切断予定ライン、7…改質領域、L…レーザ光。   DESCRIPTION OF SYMBOLS 1 ... Processing object, 5 ... Planned cutting line, 7 ... Modified area | region, L ... Laser beam.

Claims (4)

水晶で形成され表面と該表面の反対側の粗面としての裏面とを有する加工対象物を、切断予定ラインに沿って切断するためのレーザ加工方法であって、
前記表面をレーザ光入射面として前記加工対象物にレーザ光を集光させ、前記加工対象物における前記裏面側に改質領域を前記切断予定ラインに沿って形成する改質領域形成工程を含むことを特徴とするレーザ加工方法。
A laser processing method for cutting an object to be processed having a front surface and a back surface as a rough surface opposite to the front surface formed of quartz, along a planned cutting line,
Including a modified region forming step of condensing a laser beam on the object to be processed with the surface as a laser beam incident surface and forming a modified region along the planned cutting line on the back surface side of the object to be processed. A laser processing method characterized by the above.
前記裏面の中心線平均粗さは、0.05μm以上とされていることを特徴とする請求項1記載のレーザ加工方法。   The laser processing method according to claim 1, wherein a center line average roughness of the back surface is 0.05 μm or more. 前記加工対象物の厚さは、100μm以下であり、
前記改質領域形成工程では、前記加工対象物内において前記裏面から5μm以下の位置に前記改質領域を形成することを特徴とする請求項1又は2記載のレーザ加工方法。
The processing object has a thickness of 100 μm or less,
3. The laser processing method according to claim 1, wherein in the modified region forming step, the modified region is formed at a position of 5 μm or less from the back surface in the object to be processed.
前記切断予定ラインに沿って外部から前記加工対象物に力を印加することにより、前記改質領域を切断の起点として前記加工対象物を切断する切断工程をさらに含むことを特徴とする請求項1〜3の何れか一項記載のレーザ加工方法。   2. The method according to claim 1, further comprising a cutting step of cutting the workpiece from the modified region as a starting point of cutting by applying a force to the workpiece from the outside along the scheduled cutting line. The laser processing method as described in any one of -3.
JP2011203392A 2011-09-16 2011-09-16 Laser processing method Active JP5894754B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011203392A JP5894754B2 (en) 2011-09-16 2011-09-16 Laser processing method
PCT/JP2012/073472 WO2013039150A1 (en) 2011-09-16 2012-09-13 Laser machining method
TW101133800A TWI594832B (en) 2011-09-16 2012-09-14 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203392A JP5894754B2 (en) 2011-09-16 2011-09-16 Laser processing method

Publications (2)

Publication Number Publication Date
JP2013063453A true JP2013063453A (en) 2013-04-11
JP5894754B2 JP5894754B2 (en) 2016-03-30

Family

ID=47883367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203392A Active JP5894754B2 (en) 2011-09-16 2011-09-16 Laser processing method

Country Status (3)

Country Link
JP (1) JP5894754B2 (en)
TW (1) TWI594832B (en)
WO (1) WO2013039150A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012203A (en) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk Laser machining method
JP2005203541A (en) * 2004-01-15 2005-07-28 Disco Abrasive Syst Ltd Laser-processing method for wafer
JP2007160920A (en) * 2005-11-16 2007-06-28 Denso Corp Wafer and fabrication method of wafer
JP2010082645A (en) * 2008-09-30 2010-04-15 Aisin Seiki Co Ltd Laser scribing method and laser scribing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208730B2 (en) * 1998-01-16 2001-09-17 住友重機械工業株式会社 Marking method of light transmissive material
JP4659300B2 (en) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
JP3408805B2 (en) * 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
EP2216128B1 (en) * 2002-03-12 2016-01-27 Hamamatsu Photonics K.K. Method of cutting object to be processed
JP4432110B2 (en) * 2003-02-19 2010-03-17 日本電気硝子株式会社 Cover glass for semiconductor packages
US9138913B2 (en) * 2005-09-08 2015-09-22 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US7897487B2 (en) * 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
JP5449665B2 (en) * 2007-10-30 2014-03-19 浜松ホトニクス株式会社 Laser processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012203A (en) * 2003-05-29 2005-01-13 Hamamatsu Photonics Kk Laser machining method
JP2005203541A (en) * 2004-01-15 2005-07-28 Disco Abrasive Syst Ltd Laser-processing method for wafer
JP2007160920A (en) * 2005-11-16 2007-06-28 Denso Corp Wafer and fabrication method of wafer
JP2010082645A (en) * 2008-09-30 2010-04-15 Aisin Seiki Co Ltd Laser scribing method and laser scribing apparatus

Also Published As

Publication number Publication date
WO2013039150A1 (en) 2013-03-21
TW201332696A (en) 2013-08-16
TWI594832B (en) 2017-08-11
JP5894754B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5864988B2 (en) Tempered glass sheet cutting method
JP5771391B2 (en) Laser processing method
JP5491761B2 (en) Laser processing equipment
JP5480169B2 (en) Laser processing method
WO2014030518A1 (en) Method for cutting object to be processed
WO2013039012A1 (en) Laser machining method and laser machining device
JP5670764B2 (en) Laser processing method
JP5670765B2 (en) Laser processing method
JP2017024014A (en) Wafer production method
WO2014030520A1 (en) Workpiece cutting method
JP2013247147A (en) Processing object cutting method, processing object, and semiconductor element
JP2012028452A (en) Laser processing method
WO2012096092A1 (en) Laser processing method
JP2005294325A (en) Method and apparatus for manufacturing substrate
JP5894754B2 (en) Laser processing method
JP5775312B2 (en) Laser processing method
JP6050002B2 (en) Laser processing method
WO2014030517A1 (en) Workpiece cutting method
JP2013147380A (en) Method for laser beam machining
JP2014177369A (en) Manufacturing method of tempered glass member
WO2023106018A1 (en) Wafer manufacturing method
JP2023085189A (en) Wafer manufacturing method
JP2014091641A (en) Laser processing method, and manufacturing method of electronic device
JP2023085188A (en) Wafer manufacturing method
JP2013157455A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5894754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250