JP2013063088A - Method for inducing differentiation to neurocyte from adipose tissue stromal cells - Google Patents
Method for inducing differentiation to neurocyte from adipose tissue stromal cells Download PDFInfo
- Publication number
- JP2013063088A JP2013063088A JP2012273080A JP2012273080A JP2013063088A JP 2013063088 A JP2013063088 A JP 2013063088A JP 2012273080 A JP2012273080 A JP 2012273080A JP 2012273080 A JP2012273080 A JP 2012273080A JP 2013063088 A JP2013063088 A JP 2013063088A
- Authority
- JP
- Japan
- Prior art keywords
- adipose tissue
- stromal cells
- differentiation
- cells
- tissue stromal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明は、脂肪組織に由来する間質細胞(脂肪組織間質細胞)の分化誘導方法、および該誘導細胞、並びに該分化誘導に用いる培地に関する。特に本発明は、脂肪組織間質細胞を、神経細胞の表現型を発現するように分化誘導する方法、および該誘導細胞、並びに該分化誘導に用いる培地に関する。 The present invention relates to a method for inducing differentiation of stromal cells derived from adipose tissue (adipose tissue stromal cells), the induced cells, and a medium used for the induction of differentiation. In particular, the present invention relates to a method for inducing differentiation of adipose tissue stromal cells so as to express a neuronal phenotype, the induced cells, and a medium used for the differentiation induction.
近年、組織再生を目的とした幹細胞研究が、盛んに行われている。その理由は、すでに壊死、変性を起こしてしまった組織に外部から細胞を移植することで、組織を回復できる可能性があるからである。 In recent years, research on stem cells aimed at tissue regeneration has been actively conducted. The reason is that there is a possibility that the tissue can be recovered by transplanting cells from the outside to the tissue that has already undergone necrosis or degeneration.
組織再生に用いることができる幹細胞の候補として第一に考えられるのは、胚性幹細胞(ES細胞)である。組織再生に用いる幹細胞には、細胞を未分化な状態で容易に増殖させることができ、且つ目的の組織に分化可能であることが必要とされるところ、ES細胞は、試験管内で未分化な状態を維持したまま、ほぼ無限に増殖させることが可能であるとともに、様々な系譜の細胞へと分化させることが可能である。しかしながら、ES細胞は胚を破壊して採取するため、倫理的な問題がある。加えて、法的な問題点も解決されておらず、現段階では神経再生に用いるのは現実的ではない。また、ES細胞は原理的に移植を必要とする個体と異なる個体からの細胞を用いるため、免疫拒絶の問題も考えられる(非特許文献1参照)。 Embryonic stem cells (ES cells) are the first candidates for stem cells that can be used for tissue regeneration. Stem cells used for tissue regeneration need to be able to easily proliferate in an undifferentiated state and be capable of differentiating into a target tissue. ES cells are undifferentiated in vitro. While maintaining the state, it can be proliferated almost infinitely and can be differentiated into cells of various lineages. However, ES cells have an ethical problem because they are collected by destroying embryos. In addition, legal problems have not been solved, and it is not practical to use it for nerve regeneration at this stage. In addition, since ES cells use cells from an individual different from an individual that needs transplantation in principle, there may be a problem of immune rejection (see Non-Patent Document 1).
このため、近年では、体性幹細胞と呼ばれる、成体の組織から採取可能な幹細胞が注目を集めている。体性幹細胞は、成体の脳、皮膚、骨髄、脂肪などに存在しており、試験管内で未分化な状態で増殖可能である。また、それぞれの由来する組織の細胞への分化が可能である。 Therefore, in recent years, stem cells called somatic stem cells that can be collected from adult tissues have attracted attention. Somatic stem cells are present in the adult brain, skin, bone marrow, fat and the like, and can proliferate in an undifferentiated state in vitro. Moreover, differentiation into the cell of the tissue from which it originates is possible.
ここで、組織再生の中でも、重要度の高いものの一つとして、神経再生が挙げられる。神経細胞は、発生初期に増殖、分布することにより神経系が構築されて以降は自己再生能に乏しく、一度傷害を受けた神経組織は修復されない。そのため、幹細胞から分化させた神経細胞を移植することで、傷害を受けた神経組織を修復する技術が求められている。 Here, nerve regeneration is one of the most important items in tissue regeneration. Nerve cells have poor self-regenerative ability after the nervous system is constructed by proliferating and distributing in the early stages of development, and once damaged nerve tissue is not repaired. Therefore, there is a demand for a technique for repairing damaged nerve tissue by transplanting nerve cells differentiated from stem cells.
体性幹細胞の上述した性質に鑑みると、神経再生に用いる体性幹細胞として第一に考えられるのは、大脳脳室下領域から採取できる神経幹細胞(neural stem cells: NSCs)である。神経幹細胞は、in vitroでneurosphereと呼ばれる浮遊細胞塊を形成しながら増殖可能であり、また、特定の分化条件に置くと神経細胞に分化可能であるという報告がある(非特許文献2参照)。しかしながら、神経幹細胞は採取する際に個体の大脳に大きな傷害を与えるため、同一個体の細胞を用いて神経再生を行うことには大きな困難性を伴う。よって、神経幹細胞の場合も異なる個体から採取することが必要となり、ES細胞と同様に、倫理的な問題のほか、免疫拒絶の問題も生じる。
一方、近年、体性幹細胞については、由来組織以外の組織の細胞へも分化可能であるという報告がなされている(例えば非特許文献3)。特に、体性幹細胞の1つである脂肪組織間質細胞から、神経細胞を分化誘導する技術が報告されている(例えば特許文献1、2)。
In view of the above-mentioned properties of somatic stem cells, neural stem cells (NSCs) that can be collected from the subcerebral ventricular region are the first conceivable somatic stem cells used for nerve regeneration. There are reports that neural stem cells can proliferate in vitro while forming floating cell masses called neurospheres, and can differentiate into neurons when placed under specific differentiation conditions (see Non-Patent Document 2). However, since neural stem cells cause serious damage to the cerebrum of individuals when they are collected, it is very difficult to perform nerve regeneration using cells of the same individual. Therefore, it is necessary to collect neural stem cells from different individuals, and in the same way as ES cells, not only ethical problems but also immune rejection problems arise.
On the other hand, recently, it has been reported that somatic stem cells can be differentiated into cells of tissues other than the derived tissue (for example, Non-Patent Document 3). In particular, techniques for inducing differentiation of nerve cells from adipose tissue stromal cells, which are one of somatic stem cells, have been reported (for example, Patent Documents 1 and 2).
特許文献1には、脂肪組織間質細胞から神経細胞を分化誘導する方法が記載されている。特許文献1の方法は、脂肪組織間質細胞を10%ウシ胎児血清及び5%ニワトリ胚エキスを含むDMEMで培養した後、20%ウシ胎児血清(FBS)を含むDMEMで培養し、その後、BHAを含む無血清DMEMで培養することにより、幼若な神経細胞のマーカーであるNSE、および神経幹細胞のマーカーであるネスチンの発現を誘導する。しかしながら、この方法ではNSEおよびネスチンを誘導させるための前処理が煩雑であり、一般に培地に使用されないニワトリ胚エキスのロット差がその成否に影響するという問題点がある。 Patent Document 1 describes a method of inducing differentiation of nerve cells from adipose tissue stromal cells. In the method of Patent Document 1, adipose tissue stromal cells are cultured in DMEM containing 10% fetal bovine serum and 5% chicken embryo extract, then cultured in DMEM containing 20% fetal bovine serum (FBS), and then BHA. Incubation with serum-free DMEM containing NSE induces the expression of NSE, which is a marker for young neurons, and nestin, which is a marker for neural stem cells. However, in this method, the pretreatment for inducing NSE and nestin is complicated, and there is a problem that a lot difference of a chicken embryo extract that is generally not used in a medium affects its success or failure.
一方、特許文献2には、脂肪組織間質細胞を神経細胞へ分化誘導する方法が記載されている。特許文献2の方法は、脂肪組織間質細胞を20%FBS含有DMEMで培養した後、1mMβ‐メルカプトエタノール含有無血清DMEMで培養するものであり、培養後の細胞には神経突起が出現すると記載されている。しかしながら、この方法で得られた細胞の突起が神経突起であることは証明されておらず、また、神経細胞へ分化し始めたとしてもその分化のレベルが神経細胞のどの段階のレベルであるか不明である。 On the other hand, Patent Document 2 describes a method for inducing differentiation of adipose tissue stromal cells into nerve cells. In the method of Patent Document 2, adipose tissue stromal cells are cultured in DMEM containing 20% FBS and then cultured in serum-free DMEM containing 1 mM β-mercaptoethanol, and neurites appear in the cultured cells. Has been. However, it has not been proved that the cell process obtained by this method is a neurite, and even if it begins to differentiate into a neuronal cell, what level of differentiation is the level of the neuronal cell It is unknown.
本発明はこのような事情に基づきなされたものであり、脂肪組織間質細胞をより簡便、且つより確実に神経細胞へ分化させる方法、そのために用いる培地の組成及び当該誘導細胞を提供することを目的とする。 The present invention has been made based on such circumstances, and provides a method for differentiating adipose tissue stromal cells into nerve cells more easily and reliably, the composition of the medium used therefor, and the induced cells. Objective.
本発明は、脂肪組織間質細胞の分化誘導方法であって、脂肪組織間質細胞を脂肪組織から採取する段階と、脂肪組織間質細胞をdcAMP(dibutyryl cyclic AMP)又はホルスコリン(forskolin)を含む培地で培養する段階を備え、脂肪組織間質細胞が幼若な神経細胞のマーカーを発現するように分化誘導することを特徴とする。 The present invention relates to a method for inducing differentiation of adipose tissue stromal cells, comprising collecting adipose tissue stromal cells from adipose tissue, and the adipose tissue stromal cells containing dcAMP (dibutyryl cyclic AMP) or forskolin (forskolin). It comprises a step of culturing in a medium, and is characterized by inducing differentiation so that adipose tissue stromal cells express a marker of young neurons.
また、本発明の異なる態様として、本発明は、脂肪組織間質細胞の分化誘導方法であって、脂肪組織間質細胞を脂肪組織から採取する段階と、脂肪組織間質細胞を塩基性線維芽細胞増殖因子および上皮細胞増殖因子を含む培地で培養して、ネスチンおよびNSEを発現するように分化誘導する第1分化誘導段階と、第1分化誘導段階で分化誘導した細胞を、レチノイン酸、dcAMP、およびソニックヘッジホッグ(Sonic hedgehog)を含む培地で培養して、NSEの発現を増強するとともに、MAP-2を発現するように分化誘導する第2分化誘導段階とを備え、脂肪組織間質細胞が神経細胞の表現型を発現するように分化誘導することを特徴とする。 As another aspect of the present invention, the present invention relates to a method for inducing differentiation of adipose tissue stromal cells, the step of collecting adipose tissue stromal cells from the adipose tissue; A first differentiation inducing stage that is cultured in a medium containing cell growth factor and epidermal growth factor to induce differentiation so as to express nestin and NSE, and cells that have been induced to differentiate in the first differentiation inducing stage are treated with retinoic acid, dcAMP And a second differentiation-inducing step for enhancing differentiation of NSE and inducing differentiation to express MAP-2 by culturing in a medium containing Sonic hedgehog and Sonic hedgehog. Is characterized by inducing differentiation to express a neuronal phenotype.
本発明によれば、本発明に係る培地で脂肪組織間質細胞を培養することにより、脂肪組織間質細胞からより簡便、且つより確実に神経細胞を分化誘導することができる。したがって、再生医療を実現するための神経細胞を得ることが可能となる。 According to the present invention, by culturing adipose tissue stromal cells in the medium according to the present invention, it is possible to induce differentiation of nerve cells more easily and more reliably from adipose tissue stromal cells. Therefore, it is possible to obtain nerve cells for realizing regenerative medicine.
(第1実施形態)
以下に、本発明の第1実施形態について詳述する。
(First embodiment)
The first embodiment of the present invention will be described in detail below.
本発明の第1実施形態は、脂肪組織間質細胞の分化誘導方法であって、脂肪組織間質細胞を脂肪組織から採取する段階と、脂肪組織に由来する間質細胞(脂肪組織間質細胞)を、例えば試験管内においてdcAMP(dibutyryl cyclic AMP)又はホルスコリン(forskolin)を含む培地で培養する段階とを備え、脂肪組織間質細胞が幼若な神経細胞のマーカーを発現するように分化誘導することを特徴とする。 A first embodiment of the present invention is a method for inducing differentiation of adipose tissue stromal cells, comprising collecting adipose tissue stromal cells from adipose tissue, and stromal cells derived from adipose tissue (adipose tissue stromal cells) ) In a test tube in a medium containing dcAMP (dibutyryl cyclic AMP) or forskolin, for example, to induce differentiation so that adipose tissue stromal cells express markers of young neurons It is characterized by that.
分化誘導により、紡錘形を呈した脂肪組織間質細胞は、円形の細胞体から複数の突起を伸ばす神経細胞様の形態を示すようになる。また、分化誘導された脂肪組織間質細胞は、幼若な神経細胞のマーカーを発現する。幼若な神経細胞のマーカーとしては、例えばNSE(neuron specific enolase)を挙げることができる。分化誘導された脂肪組織間質細胞は、NSEを強く発現する。 Due to differentiation induction, spindle-shaped adipose tissue stromal cells show a neuron-like morphology extending a plurality of processes from a circular cell body. In addition, differentiation-induced adipose tissue stromal cells express immature neuronal markers. Examples of young neuronal markers include NSE (neuron specific enolase). Adipose tissue stromal cells induced to differentiate strongly express NSE.
ここで、幼若な神経細胞とは、胎児期に認められる神経前駆細胞のような細胞をいう。 Here, juvenile nerve cells refer to cells such as neural progenitor cells found in the fetal period.
まず、本第1実施形態において分化誘導させる、脂肪組織間質細胞の採取、および分化誘導前の培養について説明する。 First, the collection of adipose tissue stromal cells and the culture before differentiation induction that are induced to differentiate in the first embodiment will be described.
脂肪組織間質細胞 (adipose tissue-derived stromal cells: ATSCs) は、脂肪組織から得ることができる体性幹細胞であり、生体に対して最小限の傷害を与えるのみで採取することが可能である。脂肪組織間質細胞は、生体中の様々な部位の脂肪組織に存在している間葉系幹細胞であり、FBSを含む単純な培地中で、未分化な状態で容易に増殖する。また、脂肪組織は生体内に多量に存在しているため、他の体性幹細胞に比べて得られる細胞数が多い。 Adipose tissue-derived stromal cells (ATSCs) are somatic stem cells that can be obtained from adipose tissue, and can be collected with minimal damage to the living body. Adipose tissue stromal cells are mesenchymal stem cells present in adipose tissue at various sites in the living body, and easily proliferate in an undifferentiated state in a simple medium containing FBS. In addition, since adipose tissue is present in large amounts in the living body, the number of cells obtained is larger than that of other somatic stem cells.
ここで、本第1実施形態に係る脂肪組織間質細胞は、犬の脂肪組織から効率よく確実に採取でき、本第1実施形態及び後述の第2実施形態に係る分化誘導の効率が高いため、犬の脂肪組織から採取することが好ましい。言い換えれば、本第1実施形態に係る分化誘導方法は、犬の脂肪組織間質細胞を用いて、幼若な神経細胞のマーカーを発現するように分化誘導するのが好適である。 Here, the adipose tissue stromal cells according to the first embodiment can be efficiently and reliably collected from the adipose tissue of the dog, and the differentiation induction efficiency according to the first embodiment and the second embodiment described later is high. It is preferable to collect from adipose tissue of dogs. In other words, in the differentiation induction method according to the first embodiment, it is preferable to induce differentiation using canine adipose tissue stromal cells so as to express a marker of young nerve cells.
また、本第1実施形態に係る脂肪組織間質細胞は、採取する脂肪組織は特に限定されないが、好ましい脂肪組織としては、生体内で最も多量に存在している、腹腔脂肪組織が挙げられる。 In addition, the adipose tissue stromal cells according to the first embodiment are not particularly limited in the collection of adipose tissue, but preferred adipose tissue includes abdominal abdominal adipose tissue present in a large amount in vivo.
本第1実施形態に係る脂肪組織間質細胞は、例えば脂肪吸引により採取された腹腔脂肪組織について、コラゲナーゼなどの消化酵素を処理して細胞ごとに分離することにより、得ることができる。ここで、分離された脂肪組織間質細胞が含まれる細胞溶液をナイロンメッシュに通した後、溶血緩衝液を用いて細胞溶液に含まれる赤血球を溶血させ、次いでこれを培養液で遠心洗浄すると、純度の高い脂肪組織間質細胞を得ることが可能である。 The adipose tissue stromal cells according to the first embodiment can be obtained by, for example, treating peritoneal adipose tissue collected by liposuction with a digestive enzyme such as collagenase and separating the cells. Here, after passing the cell solution containing the separated adipose tissue stromal cells through a nylon mesh, hemolyzing erythrocytes contained in the cell solution using a hemolysis buffer, and then centrifugally washing this with a culture solution, It is possible to obtain adipose tissue stromal cells with high purity.
また、得られた脂肪組織間質細胞は、10%FBSを含むDMEMで培養することにより、未分化な状態でその細胞数を増やすことができる。 The obtained adipose tissue stromal cells can be cultured in DMEM containing 10% FBS to increase the number of cells in an undifferentiated state.
続いて、得られた脂肪組織間質細胞を、幼若な神経細胞のマーカーを発現するように分化誘導する過程について説明する。 Subsequently, a process of inducing differentiation of the obtained adipose tissue stromal cells so as to express a marker of young nerve cells will be described.
本第1実施形態に係る分化誘導は、脂肪組織から採取した脂肪組織間質細胞、若しくは脂肪組織から採取して培養した脂肪組織間質細胞を、dcAMP又はホルスコリンを含有する、無血清DMEMで培養することにより行われる。 In the differentiation induction according to the first embodiment, adipose tissue stromal cells collected from adipose tissue or adipose tissue stromal cells collected and cultured from adipose tissue are cultured in serum-free DMEM containing dcAMP or forskolin. Is done.
dcAMPは、細胞内cAMP濃度を上昇させる化学薬剤である。細胞内cAMP濃度が上昇すると、細胞の生存が促進される。 dcAMP is a chemical agent that increases intracellular cAMP concentration. Increasing intracellular cAMP concentration promotes cell survival.
dcAMPを用いて分化誘導させる場合、cAMPを分解するホスホジエステラーゼの阻害剤である、IBMX (Isobutyl-methylxanthine) も併せて添加することが好ましい。 When differentiation induction is performed using dcAMP, it is preferable to add IBMX (Isobutyl-methylxanthine), which is an inhibitor of phosphodiesterase that degrades cAMP.
一方、ホルスコリンもまた、dcAMPと同様に細胞内cAMP濃度を増加させる。 On the other hand, forskolin also increases intracellular cAMP concentration, similar to dcAMP.
ホルスコリンを用いて分化誘導させる場合、BHA(Butylhydroxyanisole)、およびバルプロ酸も併せて添加することが分化誘導の確実性を高めることから好ましい。 When differentiation is induced using forskolin, it is preferable to add BHA (Butylhydroxyanisole) and valproic acid together in order to increase the certainty of differentiation induction.
dcAMPおよびIBMXを含む培地、もしくはホルスコリン、BHA、およびバルプロ酸を含む培地で脂肪組織間質細胞を培養して分化誘導させると、いずれも50%ないし60%の細胞で、神経細胞に特徴的な複数の突起を伸ばす形態に変化した細胞が認められる。 When differentiation is induced by culturing adipose tissue stromal cells in a medium containing dcAMP and IBMX, or a medium containing forskolin, BHA, and valproic acid, both are 50% to 60% of cells and are characteristic of neurons. Cells that have changed into a form that extends multiple protrusions are observed.
また、分化誘導した脂肪組織間質細胞では、NSEの著明な発現増加が認められる。すなわち、本第1実施形態の分化誘導方法により、脂肪組織間質細胞が幼若な神経細胞へ分化する。 In addition, differentiation-induced adipose tissue stromal cells show a marked increase in NSE expression. That is, adipose tissue stromal cells are differentiated into young neurons by the differentiation induction method of the first embodiment.
(第2実施形態)
続いて、本発明の第2実施形態について説明する。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described.
本発明の第2実施形態は、脂肪組織間質細胞の分化誘導方法であって、脂肪組織間質細胞を脂肪組織から採取する段階と、脂肪組織間質細胞を塩基性線維芽細胞増殖因子 (basic fibroblast growth factor: bFGF) および上皮細胞増殖因子 (epidermal growth factor: EGF) を含む培地で培養し、神経幹細胞のマーカーであるネスチン (nestin) 、およびNSEが発現されるように分化誘導する第1分化誘導段階と、レチノイン酸、dcAMP、およびソニックヘッジホッグ(Sonic hedgehog) を含む培地で培養し、NSEの発現が増強されるとともに、神経細胞のマーカーであるMAP-2が発現されるように分化誘導する第2分化誘導段階とを備え、脂肪組織間質細胞が神経細胞の表現型を発現するように分化誘導することを特徴とする。 A second embodiment of the present invention is a method for inducing differentiation of adipose tissue stromal cells, comprising collecting adipose tissue stromal cells from adipose tissue, and adipose tissue stromal cells as basic fibroblast growth factor ( Incubate in a medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) to induce differentiation so that nestin, a marker of neural stem cells, and NSE are expressed Differentiation induction stage and culture in a medium containing retinoic acid, dcAMP, and Sonic hedgehog to enhance NSE expression and differentiate to express MAP-2, a neuronal marker And a second differentiation-inducing step for inducing differentiation of the adipose tissue stromal cells to express a neuronal phenotype.
ここで、本第2実施形態に係る脂肪組織間質細胞は、第1実施形態と同様に、犬の脂肪組織から効率よく確実に採取でき、本第2実施形態に係る分化誘導の効率が高いため、犬の脂肪組織から採取することが好ましい。言い換えれば、本第2実施形態に係る分化誘導方法は、犬の脂肪組織間質細胞を用いて、神経細胞の表現型を発現するように分化誘導するのが好適である。 Here, as in the first embodiment, the adipose tissue stromal cells according to the second embodiment can be efficiently and reliably collected from the adipose tissue of the dog, and the efficiency of differentiation induction according to the second embodiment is high. Therefore, it is preferable to collect from the adipose tissue of the dog. In other words, in the differentiation induction method according to the second embodiment, it is preferable to induce differentiation using canine adipose tissue stromal cells so as to express a neuronal phenotype.
また、本第2実施形態に係る脂肪組織間質細胞についても、採取する脂肪組織は特に限定されないが、好ましい脂肪組織としては、生体内で最も多量に存在している、腹腔脂肪組織が挙げられる。 Further, the adipose tissue stromal cells according to the second embodiment are not particularly limited in the adipose tissue to be collected, but preferable adipose tissue includes abdominal adipose tissue that is present in a large amount in vivo. .
本第2実施形態に係る脂肪組織間質細胞は、第1実施形態と同様に、例えば脂肪吸引により採取された腹腔脂肪組織について、コラゲナーゼなどの消化酵素を処理して細胞ごとに分離することにより、得ることができる。ここで、分離された脂肪組織間質細胞が含まれる細胞溶液をナイロンメッシュに通した後、溶血緩衝液を用いて細胞溶液に含まれる赤血球を溶血させ、次いでこれを培養液で遠心洗浄すると、純度の高い脂肪組織間質細胞を得ることが可能である。 As in the first embodiment, the adipose tissue stromal cells according to the second embodiment are obtained by, for example, treating peritoneal adipose tissue collected by liposuction with a digestive enzyme such as collagenase and separating the cells into cells. Can get. Here, after passing the cell solution containing the separated adipose tissue stromal cells through a nylon mesh, hemolyzing erythrocytes contained in the cell solution using a hemolysis buffer, and then centrifugally washing this with a culture solution, It is possible to obtain adipose tissue stromal cells with high purity.
また、得られた脂肪組織間質細胞は、10%FBSを含むDMEMで継代培養することにより、未分化な状態でその細胞数を増やすことができる。 The obtained adipose tissue stromal cells can be subcultured with DMEM containing 10% FBS to increase the number of cells in an undifferentiated state.
続いて、得られた脂肪組織間質細胞を、神経細胞の表現型を発現するように分化誘導する過程について説明する。 Subsequently, a process of inducing differentiation of the obtained adipose tissue stromal cells so as to express a neuronal phenotype will be described.
本第2実施形態に係る第1分化誘導段階は、脂肪組織から採取した脂肪組織間質細胞、若しくは脂肪組織から採取して培養した脂肪組織間質細胞を、塩基性線維芽細胞増殖因子および上皮細胞増殖因子を含有する培地、例えば好ましい培地として、無血清ダルベッコ(Dulbecco)改変イーグル培地(DMEM)で培養することにより行われる。 In the first differentiation induction step according to the second embodiment, adipose tissue stromal cells collected from adipose tissue, or adipose tissue stromal cells collected from adipose tissue and cultured, a basic fibroblast growth factor and epithelium It is performed by culturing in a serum-free Dulbecco modified Eagle medium (DMEM) as a medium containing a cell growth factor, for example, a preferable medium.
第1分化誘導段階により、脂肪組織間質細胞は、神経幹細胞から得られたneurosphereに酷似した浮遊細胞塊 (sphere)を形成する。 During the first differentiation induction stage, adipose tissue stromal cells form a floating cell mass (sphere) that closely resembles the neurosphere obtained from neural stem cells.
また、神経幹細胞のマーカーであるネスチンのmRNA発現は、第1分化誘導段階前の脂肪組織間質細胞では認められないのに対し、第1分化誘導段階後の脂肪組織間質細胞では、神経幹細胞から得られたneurosphereと同様に、ネスチンのmRNAを発現する。 In addition, the expression of nestin mRNA, a marker of neural stem cells, is not observed in adipose tissue stromal cells before the first differentiation induction stage, whereas in the adipose tissue stromal cells after the first differentiation induction stage, neural stem cells Similar to the neurosphere obtained from nestin, it expresses nestin mRNA.
続いて、第1分化誘導段階で得られた、sphereを形成した細胞について、第2分化誘導段階を行う。 Subsequently, a second differentiation induction step is performed on the cells formed in the first differentiation induction step and having formed spheres.
本第2実施形態に係る第2分化誘導段階は、sphereを形成した細胞を、レチノイン酸、dcAMP、およびソニックヘッジホッグを含有する培地、例えば好ましい培地として無血清DMEMで培養することにより行われる。 The second differentiation inducing step according to the second embodiment is performed by culturing the sphere-formed cells in a medium containing retinoic acid, dcAMP, and sonic hedgehog, for example, serum-free DMEM as a preferred medium.
第2分化誘導段階は、例えばPDL/lamininコートしたカバースリップ上で行うことができる。 The second differentiation induction step can be performed, for example, on a PDL / laminin coated cover slip.
第2分化誘導段階により、細胞塊を形成した細胞から、突起を伸ばす細胞が出現する。 In the second differentiation induction stage, cells that extend the process appear from the cells that have formed cell clusters.
また、第1分化誘導段階後では発現が微弱だったNSEの発現が、第2分化誘導段階により増強されるほか、神経細胞のマーカーであるMAP-2の発現が確認される。 In addition, the expression of NSE, whose expression was weak after the first differentiation induction stage, is enhanced by the second differentiation induction stage, and the expression of MAP-2, which is a neuronal marker, is confirmed.
さらに、分化誘導前の脂肪組織間質細胞を神経興奮性薬剤であるグルタミン酸で刺激すると、刺激の前後で、細胞内カルシウム濃度に有意な差は見られないが、第1および第2分化誘導段階を受けた細胞をグルタミン酸で刺激すると、細胞内カルシウム濃度の上昇が認められる。すなわち、本第2実施形態の分化誘導方法により、脂肪組織間質細胞が、神経細胞へ分化する。 Furthermore, when the adipose tissue stromal cells before differentiation induction are stimulated with glutamic acid, which is a neuroexcitatory drug, there is no significant difference in intracellular calcium concentration before and after stimulation, but the first and second differentiation induction stages. When intracellular cells are stimulated with glutamic acid, an increase in intracellular calcium concentration is observed. That is, adipose tissue stromal cells are differentiated into nerve cells by the differentiation induction method of the second embodiment.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
実施に当たって以下の試薬を用いた。 The following reagents were used in the implementation.
抗ヒトNSE (neuron specific enolase)モノクローナル抗体はDako社から、抗ブタNF-68 (Neurofilament68)モノクローナル抗体および、抗ウシMAP-2 (microtubule associated protein 2)モノクローナル抗体はSigma社から購入した。Goat serumはBethyl社から、FITC標識した抗mouse IgG抗体はSantacruz社から購入した。蛍光色素である、fluo-3 AM (fluo-3 acetoxymethylester)はMolecular Probe社から購入した。DMEM(Dulbecco’s modified Eagle medium)はSigma社から、牛胎仔血清 (FBS)、NB (Neurobasal medium -A)、B27 (B27supplement without vitamin A)はGibco社から購入した。dcAMP (Dybutyril cyclic AMP)はSigma社から、ホルスコリン (forskolin)およびIBMX (isoburylmethylxanthine)、BHA (butylated hydroxyanisole)、バルプロ酸はWako社から購入した。塩基性線維芽細胞増殖因子 (Basic fibroblast growth factor, bFGF)はPeprotech社から、上皮細胞増殖因子 (epidermal growth factor, EGF)はSigma社から購入した。レチノイン酸はSigma社から、ソニックヘッジホッグ(Sonic Hedgehog, SHH)はR&D社から購入した。Triton-X 100(TX-100)、Tween-20はSigma社から購入した。上記以外の試薬はWako社から購入した。また、各種mRNAをRT-PCRにより検出するために用いたプライマーの配列を塩基配列表に示した。 Anti-human NSE (neuron specific enolase) monoclonal antibody was purchased from Dako, and anti-porcine NF-68 (Neurofilament68) monoclonal antibody and anti-bovine MAP-2 (microtubule associated protein 2) monoclonal antibody were purchased from Sigma. Goat serum was purchased from Bethyl, and FITC-labeled anti-mouse IgG antibody was purchased from Santacruz. Fluoro-3 AM (fluo-3 acetoxymethylester), a fluorescent dye, was purchased from Molecular Probe. DMEM (Dulbecco ’s modified Eagle medium) was purchased from Sigma, and fetal bovine serum (FBS), NB (Neurobasal medium-A), and B27 (B27 supplement without vitamin A) were purchased from Gibco. dcAMP (Dybutyril cyclic AMP) was purchased from Sigma, forskolin, IBMX (isoburylmethylxanthine), BHA (butylated hydroxyanisole), and valproic acid from Wako. Basic fibroblast growth factor (bFGF) was purchased from Peprotech, and epidermal growth factor (EGF) was purchased from Sigma. Retinoic acid was purchased from Sigma and Sonic Hedgehog (SHH) from R & D. Triton-X 100 (TX-100) and Tween-20 were purchased from Sigma. Reagents other than the above were purchased from Wako. The sequences of primers used for detecting various mRNAs by RT-PCR are shown in the nucleotide sequence table.
(実施例1)
実施例1は、本第1実施形態に即した、犬に由来する脂肪組織間質細胞(犬脂肪組織間質細胞)の分化誘導を示す。
Example 1
Example 1 shows the induction of differentiation of adipose tissue stromal cells derived from a dog (canine adipose tissue stromal cells) in accordance with the first embodiment.
犬脂肪組織間質細胞 (ATSCs)として、犬の腹腔脂肪組織に由来する間質細胞を採取した。すなわち、1〜2歳齢の健常ビーグル犬の腹腔脂肪組織を無菌的に採取し、コラゲナーゼ溶液 (2mg/ml Collagenase、4mg/ml bovine serum albumin (BSA)、20mM HEPESを含むDMEM)を用いて37℃で1時間消化した。次いで、得られた溶液を100μmナイロンメッシュに通し、溶血緩衝液 (154mM NH4Cl、10mM KHCO3、0.1mM EDTA)を加えた後、10%FBSを含むDMEMで3回洗浄し、得られた沈渣を犬脂肪組織間質細胞とした。得られた犬脂肪組織間質細胞はφ90mmシャーレ内で10%FBSを含むDMEMで培養し(図 1 上)、3回継代したものを実験に供した。なお、培養液は5日に一度交換した。 As dog adipose tissue stromal cells (ATSCs), stromal cells derived from canine abdominal adipose tissue were collected. That is, aseptically collecting peritoneal adipose tissue of 1 to 2 year old healthy beagle dogs, using a collagenase solution (2mg / ml Collagenase, 4mg / ml bovine serum albumin (BSA), DMEM containing 20mM HEPES) 37 Digested for 1 hour at ° C. Next, the obtained solution was passed through a 100 μm nylon mesh, hemolysis buffer (154 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) was added, then washed 3 times with DMEM containing 10% FBS, and the resulting precipitate was washed with a dog. Adipose tissue stromal cells were used. The obtained canine adipose tissue stromal cells were cultured in DMEM containing 10% FBS in a φ90 mm petri dish (FIG. 1 top), and those passaged 3 times were used for the experiment. The culture medium was changed once every 5 days.
分化誘導は、a) 培養液を100μM dcAMPと125μM IBMXを含むDMEMに交換する方法、ならびにb) 培養液を10μMホルスコリン (fsk)、200μM BHA、2μM バルプロ酸を含むDMEMに交換する方法の2種を行い、いずれも交換後10日目まで培養した。 Differentiation is induced by two methods: a) a method in which the culture medium is replaced with DMEM containing 100 μM dcAMP and 125 μM IBMX, and b) a method in which the culture medium is replaced with DMEM containing 10 μM forskolin (fsk), 200 μM BHA, and 2 μM valproic acid. All were cultured until the 10th day after the exchange.
dcAMPを含む誘導培地に交換したところ、交換3日後から、小さく丸い細胞体から複数の突起を伸ばす形態に変化した細胞が認められた (図1 左下)。誘導培地に換えた後10日後には、形態的に変化の見られた細胞は、全体の約60%であった。 When the medium was changed to an induction medium containing dcAMP, cells that had changed from a small round cell body to a plurality of protrusions were observed 3 days after the exchange (Fig. 1, lower left). Ten days after switching to the induction medium, about 60% of the cells showed morphological changes.
一方、ホルスコリンを含む誘導培地に交換した場合も、やはり交換3日後から、丸い細胞体から複数の突起を伸長する細胞が見られた (図1右下)。しかし、dcAMPで誘導した場合と比べて細胞体が大きく、また、培地を交換して10日後に形態の変化していた細胞は、全体の約50%であった。 On the other hand, when the medium was replaced with an induction medium containing forskolin, cells extending several processes from the round cell body were also observed 3 days after the exchange (lower right in FIG. 1). However, the cell body was larger than that induced by dcAMP, and about 50% of the cells had changed in morphology 10 days after the medium was changed.
犬脂肪組織間質細胞をdcAMPで分化誘導した細胞では、NSEの著明な発現増加が見られ、さらにNF-68の微弱な発現が見られた。しかしながら、MAP-2の発現は見られなかった (図2左)。また、分化誘導後の、NSEの発現を経時的に比較したところ、誘導培地に換えた後10日目までは増加し (図3)、その後はプラトーであった。 In cells in which canine adipose tissue stromal cells were differentiated with dcAMP, NSE expression was significantly increased and NF-68 expression was weak. However, no expression of MAP-2 was observed (Figure 2 left). Further, when NSE expression after differentiation induction was compared over time, it increased until day 10 after changing to the induction medium (FIG. 3), and then plateau.
一方、犬脂肪組織間質細胞をホルスコリンで分化誘導した細胞にも、NSEの発現増加が見られたが、NF-68の発現は見られなかった。また、MAP-2の発現は見られなかった (図2右)。ホルスコリンによる分化誘導後の犬脂肪組織間質細胞においては、形態の変化した細胞に限って細胞体、および突起にNSEの強い発現が見られた(図4中)。発現の見られた細胞は、ホルスコリンを処理した細胞全体の約60%だった。 On the other hand, the expression of NSE was increased in cells obtained by inducing differentiation of canine adipose tissue stromal cells with forskolin, but NF-68 expression was not observed. Moreover, the expression of MAP-2 was not observed (Fig. 2 right). In canine adipose tissue stromal cells after differentiation induction with forskolin, strong expression of NSE was observed in cell bodies and processes only in cells with altered morphology (in FIG. 4). Approximately 60% of all cells treated with forskolin were expressed.
これに対し、分化誘導前の犬脂肪組織間質細胞にはNSEの発現が見られたものは全体の3%程度で、いずれも微弱な発現だった (図4 左)。 In contrast, NSE expression was observed in about 3% of canine adipose tissue stromal cells before differentiation induction, all of which were weakly expressed (Fig. 4, left).
分化誘導前の犬脂肪組織間質細胞には、すでにグリア細胞トランスポーターであるGLUT-3、GLT-1、神経細胞トランポーターであるEAAC1のmRNAの発現が見られたが (図5下段)、脂肪組織間質細胞をdcAMPで分化誘導した細胞においては、GLUT-3、 GLT-1、EAAC1の発現増加が見られた。また、神経細胞トランポーターであるEAAT4の発現は、分化誘導前と変わらず見られなかった (図5 上段)。 In canine adipose tissue stromal cells before differentiation induction, GLUT-3 and GLT-1 which are glial cell transporters and EAAC1 mRNA which is a neuronal transporter were already expressed (Fig. 5 bottom). Increased expression of GLUT-3, GLT-1, and EAAC1 was observed in cells in which adipose tissue stromal cells were induced to differentiate with dcAMP. In addition, the expression of EAAT4, a neuronal transporter, was not seen as before differentiation induction (FIG. 5, upper panel).
(実施例2)
実施例2は、本第2実施形態に即した犬脂肪組織間質細胞の分化誘導を示す。
(Example 2)
Example 2 shows the induction of canine adipose tissue stromal cell differentiation according to the second embodiment.
実施例1と同様に、犬脂肪組織間質細胞として、犬の腹腔脂肪組織に由来する間質細胞を採取した。すなわち、1〜2歳齢の健常ビーグル犬の腹腔脂肪組織を無菌的に採取し、コラゲナーゼ溶液 (2mg/ml Collagenase、4mg/ml bovine serum albumin(BSA)、20mM HEPESを含むDMEM)を用いて37℃で1時間消化した。次いで、得られた溶液を100μm ナイロンメッシュに通し、溶血緩衝液 (154mM NH4Cl、10mM KHCO3、0.1mM EDTA)を加えた後、10%FBSを含むDMEMで3回洗浄し、得られた沈渣を犬脂肪組織間質細胞とした。得られた犬脂肪組織間質細胞はφ90mmシャーレ内で10%FBSを含むDMEMで培養し (図1 上)、3回継代したものを実験に供した。なお、培養液は5日に一度交換した。 In the same manner as in Example 1, stromal cells derived from canine adipose tissue were collected as canine adipose tissue stromal cells. That is, aseptically collecting peritoneal adipose tissue of healthy beagle dogs of 1 to 2 years of age, using a collagenase solution (2mg / ml Collagenase, 4mg / ml bovine serum albumin (BSA), DMEM containing 20mM HEPES) 37 Digested for 1 hour at ° C. Next, the obtained solution was passed through a 100 μm nylon mesh, hemolysis buffer (154 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) was added, and then washed 3 times with DMEM containing 10% FBS. Adipose tissue stromal cells were used. The obtained canine adipose tissue stromal cells were cultured in DMEM containing 10% FBS in a φ90 mm petri dish (FIG. 1 top), and those passaged 3 times were used for the experiment. The culture medium was changed once every 5 days.
また、実施例2において対照として用いるために、犬神経幹細胞 (NSCs)を採取した。すなわち、1〜2歳齢の健常ビーグル犬の大脳脳室下領域を無菌的に採取し、0.05% Trypsin溶液で、37℃、1時間消化した後、25ゲージのシリンジを3回通した。その後、B27を含むNB (NB/B27)で3回洗浄し、φ90mmシャーレで20ng/ml塩基性線維芽細胞増殖因子および20ng/ml 上皮細胞増殖因子を含むNB/B27で培養し、neurosphereを形成させた。培養液は、5日に一度全体の70%を交換した。 In addition, canine neural stem cells (NSCs) were collected for use as a control in Example 2. Specifically, the subcerebral ventricular region of a healthy beagle dog of 1 to 2 years old was aseptically collected and digested with a 0.05% Trypsin solution at 37 ° C. for 1 hour, and then passed through a 25 gauge syringe three times. Then, wash 3 times with NB (NB / B27) containing B27, and culture in NB / B27 containing 20 ng / ml basic fibroblast growth factor and 20 ng / ml epidermal growth factor in a φ90 mm petri dish to form a neurosphere I let you. The culture medium was changed 70% of the whole once every 5 days.
犬脂肪組織間質細胞は、塩基性線維芽細胞増殖因子、および上皮細胞増殖因子を含む無血清培地に交換した後、3日目からneurosphere様の浮遊細胞塊 (sphere)が見られ、細胞塊を形成した状態で、増殖した。生存している細胞はほとんどがsphereを形成した (図6 左上) 。その後、得られたsphereをレチノイン酸、dcAMP、ソニックヘッジホッグを含む培地でPDL/lamininコートしたカバースリップ上に培養したところ、交換した翌日にはカバースリップ上に付着し、その後、3日目から突起を伸ばす細胞が見られた (図6 下段)。 After replacing the adipose tissue stromal cells with serum-free medium containing basic fibroblast growth factor and epidermal growth factor, a neurosphere-like floating cell mass (sphere) is seen from the third day, and the cell mass It grew in the state which formed. Most of the surviving cells formed spheres (Figure 6, upper left). After that, when the obtained sphere was cultured on a cover slip coated with PDL / laminin in a medium containing retinoic acid, dcAMP, and sonic hedgehog, it adhered to the cover slip the next day after replacement, and then from the third day Cells that extended the protrusions were seen (FIG. 6, bottom).
一方、対照として用いた神経幹細胞は、塩基性線維芽細胞増殖因子、上皮細胞増殖因子を含む培地内でneurosphereを形成し、増殖した (図6 右上)。レチノイン酸を含む培地に交換すると、交換後3日目からPDL/lamininコートしたカバースリップ上に付着し、突起を伸ばす神経細胞が見られた (図6 右下)。 On the other hand, the neural stem cell used as a control formed a neurosphere in a medium containing basic fibroblast growth factor and epidermal growth factor and proliferated (upper right of FIG. 6). When the medium was replaced with a medium containing retinoic acid, neurons that attached to the PDL / laminin-coated coverslip and extended the protrusions were observed from the third day after the replacement (FIG. 6, lower right).
分化誘導前の犬脂肪組織間質細胞には、ネスチンのmRNAの発現が検出されなかった。それに対して、犬脂肪組織間質細胞から分化誘導したsphereには、対照として用いたneurosphereと同様にネスチンのmRNAの発現が検出された (図7)。 Nestin mRNA expression was not detected in canine adipose tissue stromal cells before differentiation induction. In contrast, in the spheres induced to differentiate from canine adipose tissue stromal cells, the expression of nestin mRNA was detected in the same manner as in the neurosphere used as a control (FIG. 7).
第1分化誘導段階により、犬脂肪組織間質細胞から得たsphereは、NSEについてのみ、neurosphereと同程度の微弱な発現が見られた。これに対し、第2分化誘導段階によりsphereから得た細胞には、neurosphereを分化誘導した細胞よりさらに強いNSEの発現が見られた (図8 上段)。また、抗MAP-2モノクローナル抗体を用いてイムノブロットしたところ、sphereから分化誘導した細胞、neurosphereから分化誘導した細胞ともに、脳ホモジナイズで検出された分子量 (280Kda)と異なる分子量 (50KDa)のバンドが見られた。犬脂肪組織間質細胞から得たsphereを分化誘導した細胞の方がその分子量のタンパク発現が強かった (図8 下段)。 The sphere obtained from the canine adipose tissue stromal cells in the first differentiation induction stage showed weak expression similar to the neurosphere only for NSE. In contrast, cells obtained from spheres in the second differentiation induction stage showed stronger NSE expression than cells in which neurospheres were differentiation-induced (FIG. 8, upper panel). In addition, when immunoblotting was performed using an anti-MAP-2 monoclonal antibody, both the cells induced to differentiate from the sphere and the cells induced to differentiate from the neurosphere showed a band with a molecular weight (50 KDa) different from the molecular weight (280 Kda) detected by brain homogenization. It was seen. Cells with differentiated spheres obtained from canine adipose tissue stromal cells showed stronger protein expression of that molecular weight (lower part of FIG. 8).
sphereを分化誘導した細胞、およびneurosphereを分化誘導した細胞では、グルタミン酸刺激後に、カルシウムイオンの蛍光モニターであるfluo-3の蛍光強度の著明な増加が検出された (図9 上)。sphereを分化誘導した細胞では、刺激を与えた後の蛍光強度が、刺激する前の約2.5倍に増強された。一方、対照として用いたneurosphereを分化誘導した細胞では、グルタミン酸による刺激によって、蛍光強度が刺激する前の3.5倍程度に増強された。蛍光強度は、ともに刺激後すぐに減少し、刺激から200秒を経過するとプラトーに達した。誘導前の犬脂肪組織間質細胞では、刺激の前後で、蛍光強度に有意な差は見られなかった (図9下)。 In cells in which sphere differentiation was induced and in cells in which neurosphere differentiation was induced, a significant increase in the fluorescence intensity of fluo-3, a calcium ion fluorescence monitor, was detected after stimulation with glutamate (upper figure 9). In cells in which sphere differentiation was induced, the fluorescence intensity after the stimulation was enhanced about 2.5 times before the stimulation. On the other hand, in cells in which neurosphere used as a control was induced to differentiate, the fluorescence intensity was enhanced by about 3.5 times that by stimulation with glutamic acid. Both fluorescence intensities decreased immediately after stimulation and reached a plateau 200 seconds after stimulation. In the canine adipose tissue stromal cells before induction, there was no significant difference in the fluorescence intensity before and after the stimulation (bottom of FIG. 9).
本発明によれば、神経組織を対象とした再生医療に必要とされる、分化誘導方法、分化誘導された神経細胞、および当該分化誘導方法に用いられる培地が提供される。本発明の分化誘導方法により、神経組織の再生を必要とする個体から幹細胞を得、神経細胞へ分化させ、その細胞をその個体へ戻すことにより、免疫学的な拒絶を受けずに再生させた神経組織を成着させることができる。 According to the present invention, there are provided a differentiation induction method, a differentiation-induced nerve cell, and a medium used for the differentiation induction method, which are required for regenerative medicine targeting nerve tissue. According to the differentiation induction method of the present invention, stem cells were obtained from an individual in need of regeneration of neural tissue, differentiated into nerve cells, and regenerated without receiving immunological rejection by returning the cells to the individual. Nervous tissue can be deposited.
Claims (5)
前記第1分化誘導段階で分化誘導した細胞を、レチノイン酸、dcAMP、およびソニックヘッジホッグ(Sonic hedgehog)を含む培地で培養して、NSEの発現を増強するとともに、MAP-2を発現するように分化誘導する第2分化誘導段階とを備え、
前記脂肪組織間質細胞が神経細胞の表現型を発現するように分化誘導することを特徴とする脂肪組織間質細胞の分化誘導方法。 A first differentiation induction stage in which adipose tissue stromal cells collected from adipose tissue are cultured in a medium containing basic fibroblast growth factor and epidermal growth factor to induce differentiation to express nestin and NSE;
The cells induced to differentiate in the first differentiation induction stage are cultured in a medium containing retinoic acid, dcAMP, and Sonic hedgehog so as to enhance NSE expression and express MAP-2. A second differentiation induction stage for inducing differentiation,
A method of inducing differentiation of adipose tissue stromal cells, wherein the differentiation of the adipose tissue stromal cells is induced to express a neuronal phenotype.
DMEMと、
塩基性線維芽細胞増殖因子と、
上皮細胞増殖因子とを含み、
培養される脂肪組織間質細胞が、ネスチンおよびNSEを発現するように分化誘導することを特徴とする培地。 A medium used in the differentiation induction method according to any one of claims 1 to 4,
DMEM,
Basic fibroblast growth factor, and
Epidermal growth factor and
A medium characterized by inducing differentiation of cultured adipose tissue stromal cells to express nestin and NSE.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273080A JP2013063088A (en) | 2012-12-14 | 2012-12-14 | Method for inducing differentiation to neurocyte from adipose tissue stromal cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273080A JP2013063088A (en) | 2012-12-14 | 2012-12-14 | Method for inducing differentiation to neurocyte from adipose tissue stromal cells |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007128467A Division JP2008278842A (en) | 2007-05-14 | 2007-05-14 | Differentiating and inducing method of adipose tissue-derived stromal cell to nerve cell and differentiated and induced nerve cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013063088A true JP2013063088A (en) | 2013-04-11 |
Family
ID=48187220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012273080A Pending JP2013063088A (en) | 2012-12-14 | 2012-12-14 | Method for inducing differentiation to neurocyte from adipose tissue stromal cells |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013063088A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019103423A (en) * | 2017-12-11 | 2019-06-27 | 学校法人日本大学 | Method for producing neurons from mammalian-derived dedifferentiated adipocytes, and kit for inducing differentiation of mammalian-derived dedifferentiated adipocytes into neurons |
CN114438025A (en) * | 2022-02-22 | 2022-05-06 | 辛志远 | Induction medium and culture method for preparing adipose-derived mesenchymal stem cell factor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005608A2 (en) * | 2003-06-30 | 2005-01-20 | Lifescan, Inc. | Compositions and methods for differentiating adipose stromal cells into pancratic beta cells |
WO2005042730A2 (en) * | 2003-11-04 | 2005-05-12 | Biomaster, Inc. | Method and system for preparing stem cells from fat tissue |
WO2005090550A1 (en) * | 2004-03-18 | 2005-09-29 | Biomaster, Inc. | Method of proliferating stem cell |
WO2006112684A1 (en) * | 2005-04-21 | 2006-10-26 | Anterogen Co., Ltd. | Transplantation of differentiated immature adipocytes and biodegradable scaffold for tissue augmentation |
WO2008018190A1 (en) * | 2006-08-09 | 2008-02-14 | Biomaster, Inc. | Fat-derived neural crest cells |
-
2012
- 2012-12-14 JP JP2012273080A patent/JP2013063088A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005005608A2 (en) * | 2003-06-30 | 2005-01-20 | Lifescan, Inc. | Compositions and methods for differentiating adipose stromal cells into pancratic beta cells |
WO2005042730A2 (en) * | 2003-11-04 | 2005-05-12 | Biomaster, Inc. | Method and system for preparing stem cells from fat tissue |
WO2005090550A1 (en) * | 2004-03-18 | 2005-09-29 | Biomaster, Inc. | Method of proliferating stem cell |
WO2006112684A1 (en) * | 2005-04-21 | 2006-10-26 | Anterogen Co., Ltd. | Transplantation of differentiated immature adipocytes and biodegradable scaffold for tissue augmentation |
WO2008018190A1 (en) * | 2006-08-09 | 2008-02-14 | Biomaster, Inc. | Fat-derived neural crest cells |
Non-Patent Citations (1)
Title |
---|
JPN6014022542; J.Craniofac.Surg. Vol.18, No.1, 200701, p.49-53 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019103423A (en) * | 2017-12-11 | 2019-06-27 | 学校法人日本大学 | Method for producing neurons from mammalian-derived dedifferentiated adipocytes, and kit for inducing differentiation of mammalian-derived dedifferentiated adipocytes into neurons |
JP7020667B2 (en) | 2017-12-11 | 2022-02-16 | 学校法人日本大学 | A method for producing nerve cells from mammalian-derived dedifferentiated adipocytes and a kit for inducing differentiation of mammalian-derived dedifferentiated adipocytes into nerve cells. |
CN114438025A (en) * | 2022-02-22 | 2022-05-06 | 辛志远 | Induction medium and culture method for preparing adipose-derived mesenchymal stem cell factor |
CN114438025B (en) * | 2022-02-22 | 2024-01-12 | 深圳市华晨阳科技有限公司 | Induction medium for preparing adipose-derived mesenchymal stem cell factor and culture method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6080871B2 (en) | Culture medium and its use for preparing neural stem cells | |
Xu et al. | Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro | |
Qian et al. | Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification | |
Cipriani et al. | Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain | |
Jones et al. | Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia | |
Bae et al. | Hypoxia enhances the generation of retinal progenitor cells from human induced pluripotent and embryonic stem cells | |
Hu et al. | [Retracted] Side‐by‐Side Comparison of the Biological Characteristics of Human Umbilical Cord and Adipose Tissue‐Derived Mesenchymal Stem Cells | |
US20150366918A1 (en) | Method of constructing masses of myocardial cells and use of the myocardial cell mass | |
Yang et al. | The isolation and cultivation of bone marrow stem cells and evaluation of differences for neural-like cells differentiation under the induction with neurotrophic factors | |
JP5700301B2 (en) | Method for inducing differentiation of neural crest cells from pluripotent stem cells | |
JP6824267B2 (en) | Methods for inducing differentiation of human-induced pluripotent stem cells into Leydig cells and their uses | |
US20160326487A1 (en) | Stem Cells Derived from Pure Chorionic Trophoblast Layer and Cell Therapy Comprising Same | |
Kaka et al. | In vitro differentiation of bone marrow stromal cells into oligodendrocyte-like cells using triiodothyronine as inducer | |
US20190055519A1 (en) | A method for the regeneration and differentiation of human perinephric fat derived mesenchymal stromal cells into astroglial, renal, neuronal and pancreatic progenitor cells | |
Jung et al. | Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum‐free condition: in vitro and in vivo assessment | |
CN104540936A (en) | Stem cell culture medium and method for culturing stem cells using same | |
CN105814196A (en) | Method of obtaining terminally differentiated neuronal lineages and uses thereof | |
Nakano et al. | Differentiation of canine bone marrow stromal cells into voltage-and glutamate-responsive neuron-like cells by basic fibroblast growth factor | |
CN113046309A (en) | Culture medium for suspension culture of brain organoid and application thereof | |
CN106244548A (en) | Luteolin purposes in inducing mesenchymal stem cell neurad cell directional breaks up | |
KR101896803B1 (en) | Method for increasing the rate of inducing differentiation of human pluripotent stem cells to mesenchymal stem cells, and mesenchymal stem cells produced by thereof | |
JP7198524B2 (en) | Method for producing spheroids and method for expressing pluripotent stem cell markers | |
JP2013063088A (en) | Method for inducing differentiation to neurocyte from adipose tissue stromal cells | |
Zhang et al. | Effects of RPE‑conditioned medium on the differentiation of hADSCs into RPE cells, and their proliferation and migration | |
JP2008278842A (en) | Differentiating and inducing method of adipose tissue-derived stromal cell to nerve cell and differentiated and induced nerve cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140610 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141021 |