JP2013061128A - Guidance system and guidance method - Google Patents

Guidance system and guidance method Download PDF

Info

Publication number
JP2013061128A
JP2013061128A JP2011200775A JP2011200775A JP2013061128A JP 2013061128 A JP2013061128 A JP 2013061128A JP 2011200775 A JP2011200775 A JP 2011200775A JP 2011200775 A JP2011200775 A JP 2011200775A JP 2013061128 A JP2013061128 A JP 2013061128A
Authority
JP
Japan
Prior art keywords
target
command
search
measurement
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011200775A
Other languages
Japanese (ja)
Other versions
JP5728342B2 (en
Inventor
Takahiro Koyanagi
隆裕 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011200775A priority Critical patent/JP5728342B2/en
Publication of JP2013061128A publication Critical patent/JP2013061128A/en
Application granted granted Critical
Publication of JP5728342B2 publication Critical patent/JP5728342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a guidance system and a guidance method capable of accurately guidance a missile even when a target is a low heat source small target.SOLUTION: Respective search command vehicles 1i are moved and deployed in separate distances (S11), and after the deployment, whether or not search preparation is completed is confirmed (S12). After confirmation of the completion of the preparation, the self position is measured in each search command vehicle 1i (S13). A measurement result is mutually delivered by each search command vehicle 1i (S14). When each search command vehicle 1i confirms completion of reception of each measurement result (S15), mutual measurement angle and measurement distance are measured based on each positional information, and a measurement result is corrected with respect to one another (S16). By using triangulation, a more precise position of a target O is searched. At this time, since in the triangulation, in particular angle measurement of two points most needs accuracy, mutual angle measurement is further corrected.

Description

本発明の実施形態は、移動する目標物に飛しょう体を誘導する誘導システム及び誘導方法に関する。   Embodiments described herein relate generally to a guidance system and a guidance method for guiding a flying object to a moving target.

一般に、移動する目標物に向かって飛しょう体を誘導する誘導システムにあっては、例えば、目標物の発する赤外線やレーダー波を捕捉し追随することでその目標物に飛しょう体を誘導する技術、目標物に向かってレーザを照射し測距することにより自己位置から目標物までの位置を検出して、そのレーザに沿って飛しょう体を誘導する技術、目視又は赤外線索敵システムからの情報により飛しょう体を目標物へ指向させ、目標物捕捉後、目標物に向かって飛しょう体を誘導する技術等がある。   In general, in a guidance system that guides a flying object toward a moving target, for example, a technology that guides the flying object to the target by capturing and following infrared rays and radar waves emitted by the target. Detecting the position from the self position to the target by irradiating the target with a laser and measuring the distance, and guiding the flying object along the laser, using information from the visual or infrared search system There are techniques for directing a flying object to a target, guiding the flying object toward the target after capturing the target, and the like.

しかしながら、目標物の熱源が小さい場合、目標物の発する赤外線が小さくなるため、赤外線による目標物の捕捉精度が低くなる。また、目標物そのものが小さい場合、レーザによる測距精度が低くなり、飛しょう体を目標物へ誘導する精度も低くなるため、飛しょう体による目標物への対処が難しくなる。   However, when the heat source of the target is small, the infrared rays emitted from the target are small, so that the accuracy of capturing the target by infrared rays is low. In addition, when the target itself is small, the distance measurement accuracy by the laser is low, and the accuracy of guiding the flying object to the target is also low, so that it is difficult to deal with the target by the flying object.

特開2009−276289号公報JP 2009-276289 A

以上のように、従来の誘導システムでは、移動する目標物の熱源が小さい場合、目標物の発する赤外線が小さくなるため、赤外線による目標物の捕捉精度が低くなる。また、目標物そのものが小さい場合、レーザによる測距精度が低くなり、飛しょう体を目標物へ誘導する精度も低くなるため、飛しょう体による目標物への対処が難しくなる。   As described above, in the conventional guidance system, when the heat source of the moving target is small, the infrared ray emitted from the target becomes small, so that the accuracy of capturing the target by infrared ray is low. In addition, when the target itself is small, the distance measurement accuracy by the laser is low, and the accuracy of guiding the flying object to the target is also low, so that it is difficult to deal with the target by the flying object.

そこで、本実施形態は、上記を鑑みてなされたもので、目標物が低熱源小目標であっても、精度よく飛しょう体を誘導することのできる誘導システム及び誘導方法を提供することを目的とする。   Therefore, the present embodiment has been made in view of the above, and an object thereof is to provide a guidance system and a guidance method that can accurately guide a flying object even if the target is a low heat source small target. And

上記の目的を達成するために、本実施形態に係る誘導システムは、任意の位置に配置され、飛しょう体を発射する発射装置及び前記発射装置を制御する指令装置の組を一組以上用意し、前記指令装置からの発射指令に基づいて前記発射装置から発射される飛しょう体を目標物へ誘導する誘導システムであって、前記指令装置同士で通信するための第1の通信手段と、前記組となっている発射装置及び指令装置間で通信するための第2の通信手段と、前記指令装置及び発射装置それぞれで少なくとも前記目標物の位置を把握し、測角及び測距を行う索敵手段とを具備し、前記指令装置は、自己位置、方位及び傾斜角を検出する検出手段と、前記索敵手段及び前記検出手段でそれぞれ得られる情報から三角測量によって前記目標物の位置を計算し、前記計算された目標物の位置に基づいて前記測角及び測距を補正し、要求に応じて前記飛しょう体の発射指令を出す指令手段とを備える態様とする。   In order to achieve the above object, the guidance system according to the present embodiment has one or more sets of a launching device that launches a flying object and a commanding device that controls the launching device, which are arranged at arbitrary positions. A guidance system for guiding a flying object launched from the launching device to a target based on a launch command from the commanding device, the first communication means for communicating between the commanding devices; A second communication means for communicating between the launching device and the commanding device, and an enemy searching means for measuring at least the position of the target by each of the commanding device and the launching device, and performing angle measurement and distance measurement. The command device calculates a position of the target by triangulation from detection means for detecting a self-position, azimuth and inclination angle, and information obtained by the search means and the detection means, respectively. Wherein said angle measuring and ranging corrected based on the position of the calculated target, the manner and a command means for issuing a firing command of said spacecraft in response to a request.

また、本実施形態に係る誘導方法は、任意の位置に配置され、飛しょう体を発射する発射装置及び前記発射装置を制御する指令装置の組を一組以上用意し、前記指令装置からの発射指令に基づいて前記発射装置から発射される飛しょう体を目標物へ誘導する誘導方法であって、前記指令装置同士を相互に通信し、前記組となっている発射装置及び指令装置間で通信を行い、前記指令装置及び発射装置それぞれで少なくとも前記目標物の位置を把握し、測角及び測距を行って索敵し、前記指令装置にて自己位置、方位及び傾斜角を検出し、前記索敵及び前記検出でそれぞれ得られる情報から三角測量によって前記目標物の位置を計算し、前記計算された目標物の位置に基づいて前記測角及び測距を補正し、要求に応じて前記飛しょう体の発射指令を出す態様とする。   In addition, the guidance method according to the present embodiment prepares at least one set of a launching device that launches a flying object and a command device that controls the launching device, which is arranged at an arbitrary position, and launches from the commanding device. A guidance method for guiding a flying object launched from the launching device to a target based on a command, wherein the commanding devices communicate with each other, and communicate between the launching device and the commanding device that are in the set. The command device and the launch device grasp at least the position of the target, perform angle measurement and distance measurement, search for the enemy, detect the self-position, azimuth and tilt angle with the command device, And calculating the position of the target by triangulation from the information respectively obtained by the detection, correcting the angle measurement and distance measurement based on the calculated position of the target, and the flying object as required. Firing finger And aspects that issue.

本実施形態に係る誘導システムの概要を示す図である。It is a figure showing an outline of a guidance system concerning this embodiment. 図1に示す誘導システムの構成を示すブロック図である。It is a block diagram which shows the structure of the guidance system shown in FIG. 図1に示す誘導システムにおいて、複数の索敵指令車及び索敵発射装置を設置するまでの流れを示すフローチャートである。It is a flowchart which shows the flow until it installs a plurality of enemy command vehicles and an enemy launcher in the guidance system shown in FIG. 図1に示す各索敵指令車の測角補正方法及び測距補正方法を示す図である。It is a figure which shows the angle correction method and distance measurement correction method of each search command vehicle shown in FIG. 図1に示す複数の索敵指令車及び索敵発射装置による誘導処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the guidance process by the several enemy command vehicle and enemy search device shown in FIG. 1つの索敵指令車及び索敵発射装置での誘導システムの概要を示す図である。It is a figure which shows the outline | summary of the guidance system in one search enemy command vehicle and an enemy search launcher.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、本実施形態に係る誘導システムの概要を示す図である。この誘導システムは、索敵指令車1i(iは1〜3)及び索敵発射装置2iの対を複数組備える。図1では、索敵指令車1i及び索敵発射装置2iを3組用いた場合の構成を示している。索敵指令車1iは互いに無線で接続可能であり、さらに無線ネットワーク通信網3を通じて外部から対空情報を得られるようになされている。   FIG. 1 is a diagram showing an overview of a guidance system according to the present embodiment. This guidance system includes a plurality of pairs of a search command vehicle 1i (i is 1 to 3) and a search enemy launcher 2i. In FIG. 1, the structure at the time of using 3 sets of the search command vehicle 1i and the search launcher 2i is shown. The search command vehicle 1i can be connected to each other wirelessly, and further, air-to-air information can be obtained from the outside through the wireless network communication network 3.

図2は、図1に示す誘導システムの具体的な構成を示すブロック図である。尚、索敵指令車1i及び索敵発射装置2iはいずれも同一構成であるので、図2では索敵指令車11及び索敵発射装置21について説明する。   FIG. 2 is a block diagram showing a specific configuration of the guidance system shown in FIG. Since the search command vehicle 1i and the search enemy launching device 2i have the same configuration, the search command vehicle 11 and the search launching device 21 will be described with reference to FIG.

図2において、索敵指令車11は、目標物O、他の組の索敵指令車12,13及び索敵発射装置22,23の位置を把握する索敵部4、自己の位置、方位及び傾斜角を検出する検出部6、索敵部4で得られる情報及び検出部6で得られる情報から目標物Oの位置を計算し、計算された目標物Oの位置に基づいて索敵部4の測角及び測距を補正し、飛しょう体の発射指令を出す計算指令部7、無線ネットワーク通信網3との無線接続を行うと共に、索敵発射装置21との有線(無線でもよい)接続を行う第1の接続部8、場所の移動、展開ための移動部M、索敵発射装置21へ電力を供給する電力供給部Eを備える。   In FIG. 2, the search command vehicle 11 detects the target O, another set of search command vehicles 12 and 13, and the search unit 4 that grasps the positions of the search launchers 22 and 23, and detects its own position, direction, and inclination angle. The position of the target object O is calculated from the information obtained by the detection unit 6 and the enemy search unit 4 and the information obtained by the detection unit 6, and the angle measurement and distance measurement of the enemy search unit 4 based on the calculated position of the target O The first connection unit that performs the wired connection (may be wireless) connection with the enemy launching device 21 while performing wireless connection with the calculation command unit 7 that corrects the flying object and issues the flying object launch command, and the wireless network communication network 3 8. A moving part M for moving and deploying the place and a power supply part E for supplying power to the enemy launching device 21 are provided.

上記索敵部4は、目標物Oの画像を撮像する撮像部41、撮像部41により取得した画像から目標物Oを捜索し、位置を検出する画像捜索検出部42、他の索敵指令車12,13及び索敵発射装置22,23に測角及び測距情報を提供する情報提供部45、画像捜索検出部42により得た目標物Oの位置方向に撮像部41及びレーザ測距部46を指向させる指向部43、指向部43で検出される目標物Oまでの指向角を検出する指向角検出部44、レーザ測距により目標物Oとの距離を算出するレーザ測距部46を備える。   The search unit 4 includes an image pickup unit 41 that picks up an image of the target object O, an image search detection unit 42 that searches the target object O from the image acquired by the image pickup unit 41 and detects the position thereof, and other search target command vehicles 12, 13, the information providing unit 45 for providing angle measurement and ranging information to the enemy launching devices 22 and 23, and the imaging unit 41 and the laser ranging unit 46 in the direction of the target O obtained by the image search detecting unit 42. A directivity unit 43, a directivity angle detection unit 44 that detects a directivity angle to the target object O detected by the directivity unit 43, and a laser distance measurement unit 46 that calculates a distance from the target object O by laser distance measurement.

上記計算指令部7は、全ての索敵指令車1i及び索敵発射装置2iにより得られる目標物Oの指向角、自己位置、方位及び傾斜角の情報に基づいて目標物Oの位置を算出し、要撃計算を行う計算部71、計算部71により計算される目標物Oの位置に基づいて自己の測角及び測距を校正する校正部72、目標物Oに向けて飛しょう体発射の指令を出す指令部73を備える。   The calculation command unit 7 calculates the position of the target object O based on the information on the directivity angle, the self-position, the azimuth, and the tilt angle of the target object O obtained by all the search target command vehicles 1i and the search target launching device 2i. A calculation unit 71 that performs calculation, a calibration unit 72 that calibrates its own angle measurement and distance measurement based on the position of the target O calculated by the calculation unit 71, and issues a flying object launch command to the target O A command unit 73 is provided.

一方、上記索敵発射装置22は、索敵指令車目標物O、他の索敵指令車12,13及び索敵発射装置22,23の位置を把握する索敵部5、発射指令に応じて飛しょう体を発射する発射部9、索敵指令車11の第1の接続部8と接続して位置、方向、距離、プログラム飛しょう情報及び発射指令を受け取る第2の接続部10、索敵指令車11の牽引を受けるための牽引部T、電力を供給する電源部Sを具備する。上記電源部Sは、有線接続時に索敵指令車11の電力供給部Eより供給される電力を入力して索敵発射装置22に供給する。また、上記電源部Sはバッテリーを備え、無線接続時でもバッテリーに蓄積した電力を供給可能となされている。上記索敵部5は、基本的に索敵指令車11の索敵部4と同一構成であるため、ここではその説明を省略する。   On the other hand, the search enemy launching device 22 launches a flying object in response to the launch command, the search target unit O, the other search command vehicles 12 and 13, and the search enemy unit 5 that grasps the positions of the search launching devices 22 and 23. Connected to the first connecting part 8 of the search commanding vehicle 11 and the second connecting part 10 for receiving the position, direction, distance, program flight information and launch command, and towed by the search commanding car 11 A traction section T for power supply and a power supply section S for supplying power. The power supply unit S inputs the power supplied from the power supply unit E of the search command vehicle 11 at the time of wired connection and supplies it to the search launcher 22. The power supply unit S includes a battery, and can supply power stored in the battery even when connected wirelessly. Since the searching portion 5 basically has the same configuration as the searching portion 4 of the searching command vehicle 11, the description thereof is omitted here.

上記のように構成される誘導システムの処理の流れについて、図3を参照して説明する。   A processing flow of the guidance system configured as described above will be described with reference to FIG.

図3は、図1に示す複数の索敵指令車1i及び索敵発射装置2iをそれぞれ配置するまでの流れを示すフローチャートである。まず、各索敵指令車1iを数百m以上離れた距離に移動、展開させる(ステップS11)。展開後、索敵準備が完了したかを確認し(ステップS12)、準備完了の確認後、各索敵指令車1iにおいて自己の位置を計測し(ステップS13)、計測結果を各索敵指令車1iにて互いに配信する(ステップS14)。各索敵指令車1iにおいて、互いの計測結果の受信完了を確認した場合には(ステップS15)、それぞれの位置情報から相互の測角及び測距を計測し、その計測値を相互に補正する(ステップS16)。   FIG. 3 is a flowchart showing a flow until the plurality of enemy command vehicles 1i and the enemy launcher 2i shown in FIG. 1 are arranged. First, each search command vehicle 1i is moved and deployed at a distance of several hundred meters or more (step S11). After deployment, it is confirmed whether or not the search enemy preparation is completed (step S12). After the preparation completion is confirmed, the position of each vehicle is measured in each search command vehicle 1i (step S13), and the measurement result is transmitted to each search command vehicle 1i. Distribute to each other (step S14). In each of the search command vehicles 1i, when it is confirmed that the reception of the mutual measurement results is completed (step S15), the mutual angle measurement and distance measurement are measured from the respective position information, and the measurement values are mutually corrected ( Step S16).

すなわち、今回の誘導システムでは、三角測量を用いて、より精密な目標物の位置を索敵する。三角測量において、特に2点の測角は最も精度を必要とする。そのため、さらに相互の測角を補正する必要がある。そこで、補正の方法として図4を示す。   That is, in this guidance system, a more precise target position is searched using triangulation. In triangulation, angle measurement at two points requires the most accuracy. Therefore, it is necessary to correct the mutual angle measurement. Therefore, FIG. 4 shows a correction method.

図4は、図1に示す各索敵指令車1iの測角補正方法及び測距補正方法を示す図である。測角補正は、磁北を基準として、相互の方位角から求めることができる。また、GPS等による位置座標から相互の直線距離を求め、レーザによる測距距離により補正を行う。図4において、索敵指令車11は位置座標P1 を(x1, y1, h1)、磁北方向に対する測角をθ1 、索敵指令車12までのレーザ測距距離をL12とする。また、索敵指令車12は位置座標P2 =(x2, y2, h2)、磁北方向に対する測角をθ2 、索敵指令車12までのレーザ測距距離をL21であるとする。測定指令車11を基準とした場合、索敵指令車12との位置座標距離R12は、

Figure 2013061128
FIG. 4 is a diagram showing an angle measurement correction method and a distance measurement correction method for each search command vehicle 1i shown in FIG. Angle measurement correction can be obtained from the mutual azimuth with magnetic north as a reference. Further, a mutual linear distance is obtained from position coordinates by GPS or the like, and correction is performed by a distance measured by a laser. In FIG. 4, the search command vehicle 11 has a position coordinate P1 of (x1, y1, h1), a measurement angle with respect to the magnetic north direction is θ1, and a laser distance measurement distance to the search command vehicle 12 is L12. Further, the search command vehicle 12 is assumed to have position coordinates P2 = (x2, y2, h2), the angle of measurement with respect to the magnetic north direction is θ2, and the laser distance measurement distance to the search command vehicle 12 is L21. When the measurement command vehicle 11 is used as a reference, the position coordinate distance R12 with the search command vehicle 12 is
Figure 2013061128

と表すことができ、索敵指令車12の方位補正角は、
θ12 =θ2 −θ1 −180°
と表すことができる。
The direction correction angle of the search command vehicle 12 is
θ12 = θ2 −θ1 −180 °
It can be expressed as.

このように、測角及び測距補正は、各索敵指令車1iで計測した測角及び測距のうち相互の計測精度が高い数値を基準として補正値を求めて、各索敵指令車1iの計測精度の低い測角及び測距を補正する。 As described above, the angle measurement and the distance measurement correction are performed by obtaining a correction value with reference to a numerical value having a high mutual measurement accuracy among the angle measurement and distance measurement measured by each enemy command vehicle 1i, and measuring each enemy command vehicle 1i. Correct the angle and distance measurement with low accuracy.

次に、目標物(ここでは飛しょう体とする)Oを索敵し、目標物Oへ飛しょう体を発射し誘導する処理の流れについて、図5を参照して説明する。   Next, a flow of processing for searching for a target object (here, a flying object) O, launching and guiding the flying object to the target object O will be described with reference to FIG.

図5は、図1に示す索敵指令車1i及び索敵発射装置2iによる誘導処理の流れを示すフローチャートである。まず、目標情報を受信する(ステップS21)。目標情報により要撃計算できるか判定する(ステップS22)。要撃計算できる場合、ステップS214へ進む。要撃計算できない場合、目標物Oを追随中か確認する(ステップS23)。追随中の場合、ステップS29へ進む。追随していない場合、目標方向情報の有無を確認する(ステップS24)。目標方向情報がある場合、目標方面を捜索する(ステップS261)。目標方向情報がない場合、さらに対空情報の有無を確認する(ステップS25)。対空情報がある場合、目標方面を捜索し(ステップS262)、対空情報がない場合、索敵指令車1iの全周を捜索する(ステップS263)。目標物Oを捕捉した場合、その目標物Oを追随する(ステップS27,S28)。同時に、捕捉した目標物Oの方位角情報を各索敵指令車1iに配信する(ステップS29)。目標物Oを捕捉できない場合、ステップS21へ戻る。ここで、目標情報により要撃計算できるか判定する(ステップS210)。要撃計算できる場合、ステップS214へ進む。要撃計算できない場合、レーザ測距を試みる(ステップS211)。ここで、レーザ測距の完了を確認する(ステップS212)。レーザ測距が完了しない場合、ステップS21へ戻る。レーザ測距が完了した場合、目標距離情報を各索敵指令車1iに配信する(ステップS213)。その後、複数の目標情報から補正した三角測量により目標物Oの位置及び方向を算出し、要撃計算を行う(ステップS214)。   FIG. 5 is a flowchart showing the flow of guidance processing by the enemy command vehicle 1i and the enemy launcher 2i shown in FIG. First, target information is received (step S21). It is determined whether or not a critical attack can be calculated based on the target information (step S22). If the critical attack can be calculated, the process proceeds to step S214. If the critical attack cannot be calculated, it is confirmed whether the target O is being followed (step S23). In the case of following, the process proceeds to step S29. When not following, the presence or absence of target direction information is confirmed (step S24). If there is target direction information, the target direction is searched (step S261). If there is no target direction information, the presence / absence of anti-air information is further confirmed (step S25). When there is anti-air information, the target area is searched (step S262), and when there is no anti-air information, the entire circumference of the search command vehicle 1i is searched (step S263). When the target object O is captured, the target object O is followed (steps S27 and S28). At the same time, the azimuth angle information of the captured target O is distributed to each search command vehicle 1i (step S29). If the target O cannot be captured, the process returns to step S21. Here, it is determined whether or not the target can be calculated based on the target information (step S210). If the critical attack can be calculated, the process proceeds to step S214. If the critical shot cannot be calculated, laser ranging is attempted (step S211). Here, completion of laser ranging is confirmed (step S212). If laser ranging is not completed, the process returns to step S21. When the laser distance measurement is completed, the target distance information is distributed to each enemy command vehicle 1i (step S213). Thereafter, the position and direction of the target object O are calculated by triangulation corrected from a plurality of target information, and a critical attack calculation is performed (step S214).

発射準備完了後、目標画像を表示しながら、発射許可を待つ(ステップS215,S216)。発射許可が出ない場合、ステップ21へ戻る。発射許可が出た場合、飛しょう体へ飛しょうプログラムを送り、発射指令を出し(ステップS217)、プログラム飛しょうにより目標物Oへ飛しょう体を発射する(ステップS218)。このとき、空中捕捉するための制限時間を設け(ステップS219)、もし、制限時間以内に目標物Oを空中捕捉できた場合、飛しょう体で追随、ホーミングし、目標物Oに飛しょう体を直撃させて一連の処理を終了させる(ステップS220,S221)。もし、制限時間以内に目標物Oを空中捕捉できなかった場合、飛しょう体を自爆させて一連の処理を終了させる(ステップS222)。   After completion of the preparation for launch, the launch permission is waited while displaying the target image (steps S215 and S216). If the launch permission is not given, the process returns to step 21. When the launch permission is given, a flying program is sent to the flying object, a firing command is issued (step S217), and the flying object is launched to the target object O by the program flying (step S218). At this time, a time limit for capturing in the air is set (step S219). If the target object O can be captured in the air within the time limit, the flying object follows and homs, and the flying object is placed on the target object O. A series of processes is terminated by direct hitting (steps S220 and S221). If the target object O cannot be captured in the air within the time limit, the flying object is self-destructed and the series of processes is terminated (step S222).

以上のように、上記実施形態に係る誘導システムでは、複数組の索敵指令車1i及び索敵発射装置2iが相互に測定位置、測角、測距を行って三角測量で目標位置を算出する上で、互いの測定結果に基づいてそれぞれの測定結果の補正を行うようにしているので、個々の測定精度が向上することになり、その結果、目標物Oの熱源が小さい場合であっても、また、目標物Oそのものが小さい場合であっても、精度よく飛しょう体を捕捉し追尾して誘導することが可能となる。さらに、多数の索敵指令車1i及び索敵発射装置2iを展開すれば、よりいっそうの計測精度向上も期待することができる。さらに、自機で目標物Oを捕捉及びレーザ測距できない場合であっても、他の索敵指令車1iからの目標情報より要撃計算を行い、飛しょう体を発射することが可能となる。   As described above, in the guidance system according to the above embodiment, a plurality of sets of the enemy command vehicle 1i and the enemy launcher 2i mutually perform measurement positions, angle measurements, and distance measurements to calculate the target position by triangulation. Since each measurement result is corrected based on the mutual measurement result, the individual measurement accuracy is improved. As a result, even when the heat source of the target O is small, Even if the target object O itself is small, it is possible to accurately capture and track the flying object and guide it. Furthermore, if a large number of search command vehicles 1i and search weapon launchers 2i are deployed, further improvement in measurement accuracy can be expected. Furthermore, even when the target object O cannot be captured and laser range-measured by the own aircraft, it is possible to perform a hit calculation from target information from the other search command vehicle 1i and to launch a flying object.

図6は、他の実施形態として、一組の索敵指令車1及び索敵発射装置2で実現する場合の誘導システムの概要を示す図である。尚、図6において図1と同一部分には同一符号を付して示し、ここでは重複する説明を省略する。   FIG. 6 is a diagram showing an outline of a guidance system in the case where it is realized by a set of search command vehicle 1 and search launcher 2 as another embodiment. In FIG. 6, the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted here.

この実施形態における誘導システムでは、索敵指令車1と索敵発射装置2それぞれに設置した検出部6により相互の位置情報及び目標物Oの位置情報を取得する。この構成では、先の実施形態の場合と比較して目標捕捉精度が低下するものの、レーザ測距による捕捉精度が低い目標物Oについても、索敵指令車1、索敵発射装置2及び対空情報それぞれの位置情報、測角及び測距情報に基づいて三角測量で目標位置を算出して誘導するので、飛しょう体を高精度に誘導することが可能となる。   In the guidance system according to this embodiment, the mutual position information and the position information of the target object O are acquired by the detection units 6 installed in the search command vehicle 1 and the search launcher 2 respectively. In this configuration, although the target acquisition accuracy is lower than that in the previous embodiment, the target command vehicle 1, the enemy launching device 2, and the anti-air information of each of the target objects O having low acquisition accuracy by laser ranging are also included. Since the target position is calculated and guided by triangulation based on the position information, the angle measurement, and the distance measurement information, the flying object can be guided with high accuracy.

以上、実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment was described, these embodiment was shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1i…索敵指令車、2i…索敵発射装置、3…無線ネットワーク通信網、4,5…索敵部、41…撮像部、42…画像捜索検出部、43…指向部、44…指向角検出部、45…情報提供部、46…レーザ測距部、6…検出部、7…計算指令部、71…計算部、72…校正部、73…指令部、8…第1の接続部、9…発射部、10…第2の接続部、M…移動部、T…牽引部、E…電力供給部、S…電源部、O…目標物。   DESCRIPTION OF SYMBOLS 1i ... Searching command vehicle, 2i ... Searching launch device, 3 ... Wireless network communication network, 4,5 ... Searching part, 41 ... Imaging part, 42 ... Image search detection part, 43 ... Direction part, 44 ... Direction angle detection part, 45 ... Information providing unit, 46 ... Laser ranging unit, 6 ... Detection unit, 7 ... Calculation command unit, 71 ... Calculation unit, 72 ... Calibration unit, 73 ... Command unit, 8 ... First connection unit, 9 ... Launching Parts 10, second connection part, M moving part, T pulling part, E power supply part, S power supply part, O target.

Claims (5)

任意の位置に配置され、飛しょう体を発射する発射装置及び前記発射装置を制御する指令装置の組を一組以上用意し、前記指令装置からの発射指令に基づいて前記発射装置から発射される飛しょう体を目標物へ誘導する誘導システムであって、
前記指令装置同士で通信するための第1の通信手段と、
前記組となっている発射装置及び指令装置間で通信するための第2の通信手段と、
前記指令装置及び発射装置それぞれで少なくとも前記目標物の位置を把握し、測角及び測距を行う索敵手段と
を具備し、
前記指令装置は、自己位置、方位及び傾斜角を検出する検出手段と、前記索敵手段及び前記検出手段でそれぞれ得られる情報から三角測量によって前記目標物の位置を計算し、前記計算された目標物の位置に基づいて前記測角及び測距を補正し、要求に応じて前記飛しょう体の発射指令を出す指令手段とを備えることを特徴とする誘導システム。
One or more sets of launching devices that are arranged at arbitrary positions and that launch flying objects and command devices that control the launching devices are prepared, and fired from the launching device based on the firing commands from the commanding device A guidance system for guiding a flying object to a target,
First communication means for communicating between the command devices;
A second communication means for communicating between the launching device and the commanding device in the set;
A commanding means and a launching device, each of which has at least a position of the target, and has a searching means for measuring and measuring a distance,
The command device calculates a position of the target by triangulation from detection means for detecting a self-position, an azimuth and an inclination angle, and information obtained by the enemy search means and the detection means, respectively, and the calculated target And a command unit that corrects the angle measurement and the distance measurement based on the position and issues a launch command for the flying object in response to a request.
前記発射装置及び指令装置の組を複数備えるとき、前記発射装置及び指令装置の各組で得られる目標情報を互いに共有すると共に、各測定結果に基づいて互いに補正し合うことを特徴とする請求項1記載の誘導システム。   When the plurality of sets of the launching device and the commanding device are provided, the target information obtained by each set of the launching device and the commanding device is shared with each other, and corrected with each other based on each measurement result. The guidance system according to 1. 前記索敵手段は、
目標物の画像を撮像する撮像手段と、
前記撮像手段により得られた画像から前記目標物を捜索する捜索手段と、
前記捜索手段により得られた目標物に前記撮像手段指向させる指向手段と、
前記指向手段で検出する目標物までの指向角を検出する指向角検出手段と
前記目標物との距離をレーザにより測距するレーザ測距手段と、
を具備することを特徴とする請求項1記載の誘導システム。
The enemy search means
An imaging means for capturing an image of the target;
Search means for searching for the target from the image obtained by the imaging means;
Directing means for directing the imaging means to the target obtained by the search means;
A directivity angle detection means for detecting a directivity angle to a target detected by the directivity means, and a laser distance measurement means for measuring a distance between the target and the laser,
The guidance system according to claim 1, further comprising:
前記目標物の位置計算は、前記指令装置及び発射装置に設置する索敵手段と前記検出手段より得られる目標物への指向角、前記指令装置の自己位置、方位及び傾斜角の情報に基づいて前記目標物の位置を算出し、その算出結果に基づいて要撃計算を行い、計算される目標物の位置に基づいて前記指令装置の測角及び測距を補正することを特徴とする請求項1記載の誘導システム。   The calculation of the position of the target object is based on information on the directivity angle to the target object obtained from the search means and the detection means installed in the command device and the launch device, and the self-position, azimuth and tilt angle of the command device. 2. The position of the target is calculated, a critical attack is calculated based on the calculation result, and the angle measurement and distance measurement of the command device are corrected based on the calculated position of the target. Induction system. 任意の位置に配置され、飛しょう体を発射する発射装置及び前記発射装置を制御する指令装置の組を一組以上用意し、前記指令装置からの発射指令に基づいて前記発射装置から発射される飛しょう体を目標物へ誘導する誘導方法であって、
前記指令装置同士を相互に通信し、
前記組となっている発射装置及び指令装置間で通信を行い、
前記指令装置及び発射装置それぞれで少なくとも前記目標物の位置を把握し、測角及び測距を行って索敵し、
前記指令装置にて自己位置、方位及び傾斜角を検出し、前記索敵及び前記検出でそれぞれ得られる情報から三角測量によって前記目標物の位置を計算し、前記計算された目標物の位置に基づいて前記測角及び測距を補正し、要求に応じて前記飛しょう体の発射指令を出すことを特徴とする誘導システム。
One or more sets of launching devices that are arranged at arbitrary positions and that launch flying objects and command devices that control the launching devices are prepared, and fired from the launching device based on the firing commands from the commanding device A guidance method for guiding a flying object to a target,
The command devices communicate with each other,
Communicate between the launching device and the commanding device in the set,
Grasping at least the position of the target with each of the commanding device and the launching device, performing angle measurement and range finding,
The command device detects the self-position, azimuth, and tilt angle, calculates the position of the target by triangulation from the information obtained by the search enemy and the detection, respectively, and based on the calculated position of the target A guidance system that corrects the angle measurement and the distance measurement and issues a launch command for the flying object in response to a request.
JP2011200775A 2011-09-14 2011-09-14 Guidance system and guidance method Active JP5728342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011200775A JP5728342B2 (en) 2011-09-14 2011-09-14 Guidance system and guidance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200775A JP5728342B2 (en) 2011-09-14 2011-09-14 Guidance system and guidance method

Publications (2)

Publication Number Publication Date
JP2013061128A true JP2013061128A (en) 2013-04-04
JP5728342B2 JP5728342B2 (en) 2015-06-03

Family

ID=48185938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200775A Active JP5728342B2 (en) 2011-09-14 2011-09-14 Guidance system and guidance method

Country Status (1)

Country Link
JP (1) JP5728342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101662443B1 (en) * 2015-04-29 2016-10-04 현대로템 주식회사 Device of sharing the direction data of the receiving Laser beam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090100995A1 (en) * 2007-06-13 2009-04-23 Efw Inc. Integrated Weapons Pod
US20110174917A1 (en) * 2010-01-21 2011-07-21 Diehl Bgt Defence Gmbh & Co. Kg Method and apparatus for determining a location of a flying target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090100995A1 (en) * 2007-06-13 2009-04-23 Efw Inc. Integrated Weapons Pod
US20110174917A1 (en) * 2010-01-21 2011-07-21 Diehl Bgt Defence Gmbh & Co. Kg Method and apparatus for determining a location of a flying target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101662443B1 (en) * 2015-04-29 2016-10-04 현대로템 주식회사 Device of sharing the direction data of the receiving Laser beam

Also Published As

Publication number Publication date
JP5728342B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
EP2623921B1 (en) Low-altitude low-speed small target intercepting method
CN108507403B (en) Self propelled Antiaircraft Gun multi-axial cord consistency detection device based on intelligent photoelectric calibration technique
US8415596B2 (en) Method and apparatus for determining a location of a flying target
US20130206896A1 (en) System and method for tracking and guiding at least one object
EP3055638B1 (en) Missile system including ads-b receiver
US11815335B2 (en) Guided munition systems for detecting off-axis targets
JP5728342B2 (en) Guidance system and guidance method
KR101750498B1 (en) Guidance system and method for guided weapon using inertial navigation
CN109029126B (en) Intelligent full-automatic weapon station
WO2007063537A1 (en) A method and system for locating an unknown emitter
KR101645565B1 (en) Guided weapon system
JP6286160B2 (en) Position acquisition apparatus and method
KR101645566B1 (en) Method for cooperatively operating guided weapon
JP2007247952A (en) Missile and missile guidance system
RU2433370C1 (en) Optoelectronic system for air defence missile system
JP6023850B2 (en) Flying object guidance system
JP5521594B2 (en) Guided flying vehicle device
RU2534206C1 (en) Guided missile firing method
US9574851B1 (en) Gun alignment technique
RU2540152C2 (en) Antitank missile system
KR101094190B1 (en) Method for tracking a missile by rotary multifunctional radar
RU2288424C1 (en) Method for guiding rocket missile and optoelectronic command guidance system
RU118735U1 (en) Small-caliber anti-aircraft artillery complex
US9360372B2 (en) System and method for using a portable near IR LED light source and photogrammetry for boresight harmonization of aircraft and ground vehicle components
KR102312653B1 (en) Guided weapon system using weather data and operation method of the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5728342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151