JP2013059376A - Medical liquid transport pipe, medical liquid transport device, and medical liquid transport method - Google Patents

Medical liquid transport pipe, medical liquid transport device, and medical liquid transport method Download PDF

Info

Publication number
JP2013059376A
JP2013059376A JP2011198059A JP2011198059A JP2013059376A JP 2013059376 A JP2013059376 A JP 2013059376A JP 2011198059 A JP2011198059 A JP 2011198059A JP 2011198059 A JP2011198059 A JP 2011198059A JP 2013059376 A JP2013059376 A JP 2013059376A
Authority
JP
Japan
Prior art keywords
pipe
liquid transport
transport pipe
flow path
pharmaceutical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198059A
Other languages
Japanese (ja)
Other versions
JP5738725B2 (en
Inventor
Seiichi Tan
誠一 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Mechanical Kk
Original Assignee
Clean Mechanical Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Mechanical Kk filed Critical Clean Mechanical Kk
Priority to JP2011198059A priority Critical patent/JP5738725B2/en
Publication of JP2013059376A publication Critical patent/JP2013059376A/en
Application granted granted Critical
Publication of JP5738725B2 publication Critical patent/JP5738725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a medical liquid transport pipe, a medical liquid transport device, and a medical liquid transport device which suppress the change of temperature of the medical liquid and deal with sterilization treatment by steam.SOLUTION: The medical liquid transport pipe 1 has an inner tube 2, an outer tube 3, and a support member 4 for holding an interval between the inner tube 2 and the outer tube 3. The inside of the inner tube 2 is the flow path 6 of objects to be transported. A annular space 7 held between the inner tube 2 and the outer tube 3 is formed so as to be depressurized, and there is a bend part 23 in a route. By depressurizing the circular space 7, a heat insulating effect is achieved, and by having the bend part 23, the medical transport pipe 1 can deal with a difference in thermal expansion between the inner tube 2 and the outer tube 3.

Description

本発明は、液状の医薬品を輸送するための輸送管、輸送装置および輸送方法に関する。   The present invention relates to a transport pipe, a transport device, and a transport method for transporting a liquid medicine.

多くの医薬品では、その品質を維持するために、温度管理が必要とされる。特に生物製剤や血液製剤など生物由来の医薬品は、菌の増殖等の活動を起こさせないために、その温度は3〜4℃で一定に保たれる。このことは生物製剤等の原液や注射液等の製造工程においても同様で、これら液状の医薬品(医薬液)を配管等を通して輸送するときにも、その温度を3〜4℃で一定に保ちながら輸送される。   Many pharmaceutical products require temperature control to maintain their quality. In particular, bio-derived drugs such as biologics and blood products are kept at a constant temperature of 3 to 4 ° C. in order to prevent activities such as bacterial growth. This also applies to the manufacturing process of undiluted solutions such as biopharmaceuticals and injection solutions. When transporting these liquid medicines (pharmaceutical solutions) through piping, etc., the temperature is kept constant at 3 to 4 ° C. Transported.

そのため医薬液輸送管には、図3に示すような多重管が用いられる。図3において、最内層は輸送する医薬液の流路16であり、内管12と外管13に挟まれた環状空間17は冷媒の流路であり、最外層は断熱材15である。この構造により、医薬液が冷媒で冷却されながら輸送される。   Therefore, a multiple tube as shown in FIG. 3 is used for the medical solution transport tube. In FIG. 3, the innermost layer is a flow path 16 of the pharmaceutical liquid to be transported, an annular space 17 sandwiched between the inner tube 12 and the outer tube 13 is a refrigerant flow path, and the outermost layer is a heat insulating material 15. With this structure, the pharmaceutical solution is transported while being cooled by the refrigerant.

また、医薬液輸送以外の分野では、二重構造の真空断熱管が用いられることがある。特許文献1には、寒冷地における水道管などに用いるのに好適な断熱パイプとして、二重管の内管と外管に挟まれた空間を真空状態にした断熱パイプが記載されている。特許文献2には、二重構造管の内側の管と外側の管の間を真空ポンプで排気して真空に保ちながら、化学原料や半導体原料などを輸送することが記載されている。特許文献3には、極低温域の液化ガスの移送などに真空断熱二重配管を用いることが記載されており、さらに、内外管の温度差により発生する熱収縮差を吸収するために、内管の途中に内管ベロー(蛇腹状の伸縮性の管)を設けることが記載されている。   In fields other than drug solution transportation, a vacuum heat insulating tube having a double structure may be used. Patent Document 1 describes a heat insulating pipe in which a space sandwiched between an inner pipe and an outer pipe of a double pipe is evacuated as a heat insulating pipe suitable for use in a water pipe or the like in a cold region. Patent Document 2 describes that chemical raw materials, semiconductor raw materials, and the like are transported while a vacuum pump is used to evacuate and maintain a vacuum between an inner tube and an outer tube of a double structure tube. Patent Document 3 describes that a vacuum heat insulating double pipe is used for transferring a liquefied gas in a cryogenic temperature region, and further, in order to absorb a difference in heat shrinkage caused by a temperature difference between the inner and outer pipes, It is described that an inner tube bellow (a bellows-like stretchable tube) is provided in the middle of the tube.

特開昭62−204096号公報JP-A-62-204096 特開平8−285147号公報JP-A-8-285147 実開昭57−94779号公報Japanese Utility Model Publication No. 57-94779

しかしながら、冷媒を用いる輸送管では、冷媒の循環系のために装置全体が複雑になる他、医薬液流路の滅菌作業に関しても問題があった。医薬液を輸送するに当たっては、輸送開始前に流路を純粋蒸気等で滅菌することが行われる。一方、冷媒には水に凝固点降下のために少量のアルコール類を混合したものが多く用いられる。純粋蒸気によって輸送管の温度が100℃以上に上昇すると、冷媒が沸騰して変質したり、冷媒の蒸気によって輸送管や冷媒循環系が変形したり、損傷を受けたりすることがある。そのため、純粋蒸気による滅菌処理前にすべての冷媒を輸送管から排出し、滅菌処理後に輸送管に戻すなどの作業が行われ、手間がかかった。   However, in the transport pipe using the refrigerant, the entire apparatus is complicated due to the refrigerant circulation system, and there is a problem with the sterilization operation of the medical fluid flow path. In transporting the pharmaceutical solution, the flow path is sterilized with pure steam or the like before the start of transport. On the other hand, the refrigerant is often a mixture of water and a small amount of alcohol to lower the freezing point. If the temperature of the transport pipe rises to 100 ° C. or more due to pure vapor, the refrigerant may boil and change its quality, or the transport pipe or the refrigerant circulation system may be deformed or damaged by the refrigerant vapor. For this reason, work such as discharging all the refrigerant from the transport pipe before sterilization with pure steam and returning it to the transport pipe after sterilization processing was performed, which was troublesome.

また、真空断熱管を用いるとしても、従来の真空断熱管では医薬液輸送に用いる上でいくつかの問題があった。特許文献1に記載された真空断熱管では、内管と外管に挟まれた空間を予め真空状態にしてシールする。しかし、真空状態を保つためのシールを形成するにはコストがかかるし、そのようなシールを形成しても、長期間にわたる使用中に当該空間の真空度が徐々に下がることは避けられない。   Even if the vacuum heat insulating tube is used, the conventional vacuum heat insulating tube has some problems when used for transporting a pharmaceutical solution. In the vacuum heat insulating tube described in Patent Document 1, the space sandwiched between the inner tube and the outer tube is sealed in advance in a vacuum state. However, it is costly to form a seal for maintaining a vacuum state, and even if such a seal is formed, it is inevitable that the degree of vacuum in the space gradually decreases during long-term use.

さらに、純粋蒸気を用いた滅菌処理では内外管の温度差が非常に大きくなるが、特許文献1および2には、内外管の温度差に起因する熱膨張差を吸収する方法については記載されていない。特許文献3には、内外管の熱収縮差を吸収するために、内管の途中に内管ベローを設けることが記載されている。しかし、医薬液輸送管では、種類の異なる医薬液や洗浄水等の混入を避ける必要があり、輸送処理後に医薬液が残留しやすく、洗浄処理後に洗浄水が残留しやすい蛇腹状のベローを流路に使用することは望ましくない。   Furthermore, the temperature difference between the inner and outer tubes becomes very large in the sterilization process using pure steam, but Patent Documents 1 and 2 describe a method for absorbing the difference in thermal expansion caused by the temperature difference between the inner and outer tubes. Absent. Patent Document 3 describes that an inner tube bellow is provided in the middle of the inner tube in order to absorb the heat shrinkage difference between the inner and outer tubes. However, it is necessary to avoid mixing different types of liquid medicines and washing water in the medicine liquid transport pipe, and flow of bellows-shaped bellows where the liquid medicine tends to remain after the transportation process and the washing water tends to remain after the washing process. It is not desirable to use it on the road.

本発明は以上の点を考慮してなされたものであり、医薬液の輸送に適した輸送管、輸送装置、および輸送方法を提供することを目的とする。   The present invention has been made in consideration of the above points, and an object of the present invention is to provide a transport pipe, a transport device, and a transport method suitable for transporting a pharmaceutical solution.

本発明の医薬液輸送管は、内管と外管と前記内管と外管の間隔を保持するためサポート部材とを有し、前記内管の内部は輸送物の流路であり、前記内管と外管に挟まれた環状空間は減圧可能に形成され、経路の途中に屈曲部を有することを特徴とする。この構造により、環状空間を減圧して断熱効果を得ることができる。また、輸送管がその経路の途中に屈曲部を有することによって、簡易な構造によって、内外管の温度差に起因する熱膨張差を吸収することができる。つまり、内管と外管に寸法差が発生しても、それによる歪みを緩和して、輸送管が変形、破損することを防止することができる。   The pharmaceutical solution transport pipe of the present invention has an inner tube, an outer tube, and a support member for maintaining a space between the inner tube and the outer tube, and the inside of the inner tube is a flow path of a transported article, An annular space sandwiched between the tube and the outer tube is formed so as to be able to be depressurized, and has a bent portion in the middle of the path. With this structure, the annular space can be decompressed to obtain a heat insulating effect. Further, since the transport pipe has a bent portion in the middle of the path, a difference in thermal expansion caused by the temperature difference between the inner and outer pipes can be absorbed by a simple structure. That is, even if a dimensional difference occurs between the inner tube and the outer tube, distortion caused by the difference can be alleviated and the transport tube can be prevented from being deformed or broken.

好ましくは、前記サポート部材は前記内管に固定され、前記外管には固定されておらず、前記サポート部材は前記輸送管の屈曲部以外の部分に設けられていることを特徴とする。これによって、内外管の熱膨張差をよりよく吸収することができる。   Preferably, the support member is fixed to the inner pipe and is not fixed to the outer pipe, and the support member is provided at a portion other than the bent portion of the transport pipe. As a result, the difference in thermal expansion between the inner and outer tubes can be better absorbed.

また、好ましくは、前記内管は蛇腹状の伸縮継手を有しないことを特徴とする。これによって、医薬液や洗浄水等が継手部分に残留しにくくなり、当該医薬液等が次に輸送する医薬液に混入することを防止することが容易となる。   Preferably, the inner tube does not have a bellows-like expansion joint. This makes it difficult for pharmaceutical liquid, washing water, and the like to remain in the joint portion, and it is easy to prevent the pharmaceutical liquid and the like from being mixed into the next transported pharmaceutical liquid.

本発明の医薬液輸送装置は、上記いずれかの医薬液輸送管と、医薬液輸送管の前記環状空間に冷温空気を供給するためのエアクーラーとを有することを特徴とする。これによって、何らかの原因によって医薬液の輸送が停止したときにも、環状空間に冷温空気を供給することによって、流路に滞留している医薬液の温度上昇を抑制することができる。   The pharmaceutical liquid transport device of the present invention includes any one of the above pharmaceutical liquid transport pipes and an air cooler for supplying cold / warm air to the annular space of the pharmaceutical liquid transport pipe. As a result, even when the transportation of the pharmaceutical liquid is stopped for some reason, the temperature rise of the pharmaceutical liquid staying in the flow path can be suppressed by supplying the cold air to the annular space.

本発明の医薬液輸送方法は、上記いずれかの医薬液輸送管を用い、医薬液輸送管の前記流路に純粋蒸気を供給する工程と、前記環状空間を減圧する工程と、前記環状空間を減圧しながら前記流路に医薬液を流通させる工程とを有することを特徴とする。これによって、雑菌の混入を防止し、かつ温度変化を抑えながら、医薬液を輸送することができる。   The method for transporting a medicinal liquid according to the present invention uses any one of the medicinal liquid transport pipes described above, supplying pure vapor to the flow path of the medicinal liquid transport pipe, depressurizing the annular space, and And a step of circulating a pharmaceutical solution through the flow path while reducing the pressure. As a result, it is possible to transport the pharmaceutical solution while preventing contamination of bacteria and suppressing temperature changes.

好ましくは、前記医薬液輸送方法は、医薬液の輸送が停止したときには、医薬液輸送管の前記環状空間に冷温空気を供給することにより、前記流路に滞留する医薬液の温度上昇を抑制することを特徴とする。これによって、何らかの原因によって医薬液の輸送が停止したときにも、流路に滞留している医薬液の温度上昇を抑制することができる。   Preferably, in the method for transporting the pharmaceutical liquid, when the transport of the pharmaceutical liquid is stopped, the temperature of the pharmaceutical liquid staying in the flow path is suppressed by supplying cold / warm air to the annular space of the pharmaceutical liquid transport pipe. It is characterized by that. Thereby, even when the transportation of the pharmaceutical solution is stopped for some reason, the temperature rise of the pharmaceutical solution staying in the flow path can be suppressed.

上記のとおり、本発明の医薬液輸送管によれば、二重管構造の内管と外管に挟まれた環状空間を減圧することによって断熱効果を得ることができ、輸送管がその経路の途中に屈曲部を有することによって、内外管の温度差に起因する熱膨張差を吸収することができる。また、本発明の医薬液輸送装置によれば、医薬液の輸送が何らかの原因によって停止したときにも、流路に滞留している医薬液の温度上昇を抑制することができる。また、本発明の医薬液輸送方法によれば、雑菌の混入を防止し、かつ温度変化を抑えながら、医薬液を輸送することができる。   As described above, according to the pharmaceutical solution transport pipe of the present invention, it is possible to obtain a heat insulating effect by reducing the pressure of the annular space sandwiched between the inner pipe and the outer pipe of the double pipe structure, and the transport pipe is in the path. By having the bent portion in the middle, it is possible to absorb the difference in thermal expansion caused by the temperature difference between the inner and outer tubes. In addition, according to the pharmaceutical solution transport device of the present invention, it is possible to suppress the temperature rise of the pharmaceutical solution staying in the flow path even when the transport of the pharmaceutical solution is stopped for some reason. In addition, according to the method for transporting a pharmaceutical solution of the present invention, it is possible to transport a pharmaceutical solution while preventing contamination of bacteria and suppressing temperature changes.

本発明の一実施形態である医薬液輸送管の断面構造を示す図である。It is a figure which shows the cross-sectional structure of the pharmaceutical liquid transport pipe | tube which is one Embodiment of this invention. 本発明の一実施形態である医薬液輸送管の配管図である。It is a piping diagram of the pharmaceutical liquid transport pipe which is one embodiment of the present invention. 従来の医薬液輸送管の断面構造を示す図である。It is a figure which shows the cross-section of the conventional pharmaceutical liquid transport pipe. 従来の医薬液輸送管の配管図である。It is a piping diagram of the conventional pharmaceutical liquid transport pipe. 本発明の実施例である実験装置の配管図である。It is a piping diagram of the experimental apparatus which is an Example of this invention. 屈曲部の断面図である。It is sectional drawing of a bending part.

本発明の医薬液輸送管の一実施形態を図1および図2に基づいて説明する。   One embodiment of the pharmaceutical liquid transport tube of the present invention will be described with reference to FIGS. 1 and 2.

図1に本実施形態の輸送管の断面構造を示す。本実施形態の輸送管1は、内管2と外管3からなる二重管構造を有し、内管2と外管3の間隙を保持するための板状のサポート部材4を有している。内管2の内側は医薬液の流路6である。内管2と外管3に挟まれた環状空間7は減圧可能に形成されている。   FIG. 1 shows a cross-sectional structure of the transport pipe of this embodiment. The transport pipe 1 of the present embodiment has a double pipe structure composed of an inner pipe 2 and an outer pipe 3, and has a plate-like support member 4 for holding a gap between the inner pipe 2 and the outer pipe 3. Yes. The inside of the inner tube 2 is a flow path 6 for a pharmaceutical solution. An annular space 7 sandwiched between the inner tube 2 and the outer tube 3 is formed to be depressurized.

内管2および外管3の径や厚さは用途に応じて適宜設計することができる。輸送する医薬液は少量であることが多いので、内管2の内径が14〜48mmのものを好適に用いることができる。内管2および外管3の材質は、輸送する医薬液の品質に影響せず、環状空間の減圧を維持することが可能であり、純粋蒸気による滅菌処理に耐える耐熱性を有する材料を用いることができる。例えばステンレス鋼を好適に用いることができる。   The diameter and thickness of the inner tube 2 and the outer tube 3 can be appropriately designed according to the application. Since the pharmaceutical solution to be transported is often a small amount, the inner tube 2 having an inner diameter of 14 to 48 mm can be suitably used. The material of the inner tube 2 and the outer tube 3 should be made of a heat-resistant material that can maintain the reduced pressure of the annular space without affecting the quality of the pharmaceutical solution to be transported and can withstand sterilization with pure steam. Can do. For example, stainless steel can be suitably used.

サポート部材4の形状は、内管2と外管3の間隙を保持できることを要し、かつ環状空間7内の空気を排出する際に流体抵抗が大き過ぎないことを要するが、その範囲内であれば特に限定されない。図1には板状のサポート部材を示したが、板状以外の形状であってもよい。また、図1には切れ目のない環状のサポート部材を示したが、内管に填めやすいように切れ目のある環状のものであってもよい。サポート部材4の材質は、内管2と外管3の間隙を保持するために十分な強度があり、純粋蒸気による滅菌処理に耐える耐熱性を有する材料を用いることができる。例えばステンレス鋼を好適に用いることができる。   The shape of the support member 4 requires that the gap between the inner tube 2 and the outer tube 3 can be maintained, and that the fluid resistance is not too large when the air in the annular space 7 is discharged. If there is no particular limitation. Although a plate-like support member is shown in FIG. 1, shapes other than the plate shape may be used. Moreover, although the annular support member without a cut | interruption was shown in FIG. 1, it may be a cyclic | annular thing with a cut | disconnection so that it may be easy to fit in an inner tube | pipe. The support member 4 may be made of a material having sufficient strength to maintain the gap between the inner tube 2 and the outer tube 3 and having heat resistance capable of withstanding sterilization with pure steam. For example, stainless steel can be suitably used.

サポート部材4は、輸送管1使用中の振動などによって移動しないよう、内管2に固定されていることが好ましい。また、サポート部材4は外管3には固定されていないことが好ましい。サポート部材が内管2、外管3の両方に固定されていると、内外管に熱膨張差が発生したときに、輸送管1が変形してしまうからである。また、サポート材4が外管3のみに固定されていると、輸送管1の組み立てが難しくなるからである。サポート部材4を内管2に固定する方法は、溶接、ろう付け、接着、その他種々の方法を用いることができる。   The support member 4 is preferably fixed to the inner tube 2 so as not to move due to vibrations or the like during use of the transport tube 1. The support member 4 is preferably not fixed to the outer tube 3. This is because if the support member is fixed to both the inner tube 2 and the outer tube 3, the transport tube 1 is deformed when a difference in thermal expansion occurs between the inner and outer tubes. Further, if the support material 4 is fixed only to the outer tube 3, it is difficult to assemble the transport tube 1. As a method of fixing the support member 4 to the inner tube 2, various methods such as welding, brazing, adhesion, and the like can be used.

図2に、本実施形態である輸送管および輸送装置の配管系統図を示す。 図2の左上から右下にかけて、輸送管1の流路入口21から流路出口22へ流路6を通って医薬液が輸送される。輸送管1には2か所に屈曲部23が形成されている。流路6には、滅菌処理を行うための純粋蒸気製造機24が接続され、凝集した水や流路内に残留した医薬液を流し出すためのドレイン25、および温度センサー29が設けられている。また、環状空間7には、圧力センサー28が設けられ、環状空間内を減圧するための真空ポンプ26、および環状空間に冷温空気を供給するためのエアクーラー27が接続されている。   In FIG. 2, the piping system figure of the transport pipe and transport apparatus which are this embodiment is shown. From the upper left to the lower right of FIG. 2, the pharmaceutical liquid is transported through the flow path 6 from the flow path inlet 21 of the transport pipe 1 to the flow path outlet 22. The transport pipe 1 is formed with bent portions 23 at two locations. The flow path 6 is connected to a pure steam production machine 24 for performing a sterilization process, and is provided with a drain 25 and a temperature sensor 29 for flowing out the agglomerated water and the drug solution remaining in the flow path. . In addition, a pressure sensor 28 is provided in the annular space 7, and a vacuum pump 26 for reducing the pressure in the annular space and an air cooler 27 for supplying cold / warm air to the annular space are connected.

輸送管1の長さは典型的には10〜50mであるが、100mに及ぶこともある。輸送管1の経路中には、輸送完了後に流路6内の医薬液や洗浄水等の溜まりができないように、その前後よりも低い場所がないことが好ましい。また、流路6の内壁や、輸送管1を接続する場合の継手部分にも、大きな段差がないことが好ましい。また、流路6内の医薬液や洗浄水等を完全に排出しやすいように、輸送管1の経路全体に緩やかな勾配、例えば1/100〜1/200の勾配が付けられていることが好ましい。医薬液の輸送においては、1日から1週に数回、異なる医薬液を処理することも多いので、医薬液や洗浄水等を流路6から排出しやすいことは重要な特徴である。   The length of the transport pipe 1 is typically 10 to 50 m, but may extend to 100 m. It is preferable that there is no place in the path of the transport pipe 1 lower than before and after that so as to prevent accumulation of a medical solution or washing water in the flow path 6 after completion of transport. Moreover, it is preferable that there is no big level | step difference also in the joint part in the case of connecting the inner wall of the flow path 6, and the transport pipe 1. FIG. In addition, the entire path of the transport pipe 1 is provided with a gentle gradient, for example, 1/100 to 1/200, so that the drug solution, washing water, and the like in the flow path 6 can be easily discharged. preferable. In transporting a pharmaceutical solution, since different pharmaceutical solutions are often processed several times a day to a week, it is an important feature that the pharmaceutical solution, washing water, and the like are easily discharged from the flow path 6.

本実施形態にかかる輸送管1または輸送装置20の多くは医薬液の工場内で用いられ、設置場所の雰囲気温度は空調によって23〜25℃に保たれていることが多い。一方、純粋蒸気による滅菌処理は、多くは120〜140℃、典型的には約132℃(絶対圧力0.29MPaにおける飽和蒸気温度)の蒸気を用いて行われる。したがって、医薬液の輸送管は、内管2の熱膨張に対応できる構造を有する必要がある。図4に示す従来の医薬液輸送管11では、長さが約2m以下のユニット18を作製し、これを継手で接続して使用されることが多かった。これに対して本実施形態では、屈曲部23を設けることによって、全経路を1本の輸送管1で構成することも可能である。内外管に熱膨張差が生じた場合にも、屈曲部において、内管2と外管3が偏心することによって、内外管の長さの違いを吸収できるからである。図6に内外管に熱膨張差がない場合(A)と、内外管の熱膨張差を内管2と外管3の偏心によって吸収する場合(B)を示す。   Most of the transport pipe 1 or the transport device 20 according to the present embodiment is used in a pharmaceutical solution factory, and the atmospheric temperature of the installation place is often kept at 23 to 25 ° C. by air conditioning. On the other hand, sterilization with pure steam is often performed using steam at 120 to 140 ° C., typically about 132 ° C. (saturated steam temperature at an absolute pressure of 0.29 MPa). Therefore, it is necessary that the transport pipe for the medical liquid has a structure that can cope with the thermal expansion of the inner pipe 2. In the conventional medicinal liquid transport pipe 11 shown in FIG. 4, a unit 18 having a length of about 2 m or less is produced and is often used by connecting it with a joint. On the other hand, in the present embodiment, it is possible to configure the entire path with one transport pipe 1 by providing the bent portion 23. This is because even when a difference in thermal expansion occurs between the inner and outer tubes, the difference in length between the inner and outer tubes can be absorbed by the eccentricity of the inner tube 2 and the outer tube 3 at the bent portion. FIG. 6 shows a case where there is no difference in thermal expansion between the inner and outer tubes (A) and a case where the difference in thermal expansion between the inner and outer tubes is absorbed by the eccentricity of the inner tube 2 and the outer tube 3 (B).

屈曲部23の数は、輸送管の径、長さ、材質、使用条件等に基づいて定めることができる。内管2および外管3をステンレス鋼で作製する場合には、屈曲部23の数は、輸送管1の長さが30mまでは1か所、以後30mを超える毎に1か所ずつ設けることが好ましい。   The number of the bent portions 23 can be determined based on the diameter, length, material, use conditions, etc. of the transport pipe. When the inner tube 2 and the outer tube 3 are made of stainless steel, the number of the bent portions 23 should be one at a time when the length of the transport tube 1 is up to 30 m and one every time the length exceeds 30 m. Is preferred.

サポート部材4の設置間隔(図2のa)は、短すぎるとサポート部材を通じた熱伝達量が多くなり、長すぎると内管2と外管3が接触しやすくなるので好ましくない。サポート部材の間隔aは、1.5〜2mの範囲とするのが好ましい。   If the installation interval of the support member 4 (a in FIG. 2) is too short, the amount of heat transfer through the support member increases, and if it is too long, the inner tube 2 and the outer tube 3 are likely to come into contact with each other. The distance a between the support members is preferably in the range of 1.5 to 2 m.

ただし、屈曲部23にはサポート部材4を設けないことが好ましい。屈曲部にサポート部材が設置されていると、内外管の熱膨張差をうまく吸収することができないからである。また、輸送管1の直線部分においても、屈曲部23からの距離が1m以内にはサポート部材を設けないことが好ましく、0.5m以内にはサポート部材を設けないことがさらに好ましい。   However, it is preferable not to provide the support member 4 at the bent portion 23. This is because if the support member is installed at the bent portion, the difference in thermal expansion between the inner and outer tubes cannot be absorbed well. Also, in the straight portion of the transport pipe 1, it is preferable not to provide a support member within a distance of 1 m from the bent portion 23, and it is more preferable not to provide a support member within 0.5 m.

次に本実施形態の医薬液輸送管1および医薬液輸送装置20を用いた医薬液輸送方法を、図2に基づいて説明する。   Next, a method for transporting a pharmaceutical solution using the pharmaceutical solution transport tube 1 and the pharmaceutical solution transport apparatus 20 according to the present embodiment will be described with reference to FIG.

医薬液の輸送を開始する前に、純粋蒸気発生機24で約132℃の純粋な蒸気を発生し、これを輸送管1の流路6に流通させて滅菌処理を行い、蒸気および結露した水をドレイン25から排出する。その後、流路6内に乾燥空気を流通させるエアブローを行う。次に、真空ポンプ26を稼働させて、輸送管1の環状空間7を減圧する。次に、輸送する医薬液を流路入口21から供給し、流路6を通して、流路出口22まで輸送する。このとき、前後工程との連携等のために、輸送が5〜10分程度停止されることがあるが、環状空間7が断熱層として機能することによって、流路6内の医薬液の温度上昇は緩やかであり、問題とならない程度に抑えられる。医薬液が流路出口22からすべて排出されて輸送が完了すると、再び純粋蒸気を用いて流路6内を洗浄、滅菌処理し、蒸気および結露した水はトレイン25から排出する。   Before starting the transportation of the pharmaceutical solution, pure steam at about 132 ° C. is generated by the pure steam generator 24 and is circulated through the flow path 6 of the transport pipe 1 for sterilization. Is discharged from the drain 25. Thereafter, air blowing is performed to circulate dry air in the flow path 6. Next, the vacuum pump 26 is operated to decompress the annular space 7 of the transport pipe 1. Next, the liquid medicine to be transported is supplied from the flow path inlet 21 and transported through the flow path 6 to the flow path outlet 22. At this time, transportation may be stopped for about 5 to 10 minutes due to cooperation with the front and back processes, etc., but the temperature of the pharmaceutical solution in the flow path 6 increases due to the annular space 7 functioning as a heat insulating layer. Is moderate and can be suppressed to an extent that does not cause a problem. When the medical solution is completely discharged from the channel outlet 22 and the transportation is completed, the inside of the channel 6 is again cleaned and sterilized using pure steam, and the vapor and condensed water are discharged from the train 25.

医薬液輸送中には、何らかのトラブル等によって、輸送が長時間停止されることが起こり得る。その際、流路6内に滞留する医薬液の温度が上昇しすぎると、高価な医薬液が変質して無駄になるおそれがある。図3に示した医薬液輸送管のように冷媒を循環させて冷却できれば、医薬液の温度が上昇することはない。しかし、本実施形態では輸送管1の環状空間7の断熱性のみによって流路6内の医薬液の温度上昇を防止するので、停止が長時間にわたると医薬液の温度が許容限度以上に上昇することがあり得る。したがって、医薬液の輸送が長時間にわたって停止したときには、環状空間7に冷温空気を流通させて、流路6に滞留する医薬液の温度上昇を抑制することが好ましい。   During transportation of a medical fluid, transportation may be stopped for a long time due to some trouble or the like. At that time, if the temperature of the drug solution staying in the flow path 6 is excessively increased, the expensive drug solution may be altered and wasted. If the refrigerant can be circulated and cooled as in the medical liquid transport pipe shown in FIG. 3, the temperature of the medical liquid will not rise. However, in this embodiment, since the temperature rise of the drug solution in the flow path 6 is prevented only by the heat insulating property of the annular space 7 of the transport pipe 1, the temperature of the drug solution rises above the allowable limit when the stop is continued for a long time. It can happen. Therefore, when the transportation of the pharmaceutical liquid is stopped for a long time, it is preferable that cold air is circulated through the annular space 7 to suppress the temperature rise of the pharmaceutical liquid staying in the flow path 6.

図5に示す実験装置を組み立て、医薬液の代わりに水を用いて、輸送中および輸送停止後の水の温度変化を測定した。   The experimental apparatus shown in FIG. 5 was assembled and the temperature change of the water during and after transportation was measured using water instead of the pharmaceutical solution.

まず図5の実験装置を説明する。輸送管の断面構造は図1と同じである。内管2にはステンレス鋼製で一般ガス管規格15A(外径21.7mm、内径17.5mm)を、外管3にはステンレス鋼製でJIS G3447規格1.5S(外径38.1mm、内径35.7mm)を用いた。サポート部材4は、ステンレス鋼製で厚さ1mmの板材を図1に示す形状に切断し、内管2に溶接で固定して用いた。輸送管1は、全長が30mで、材料となる管を溶接して全体が連続した1本の管に形成されており、途中にフランジ等による接続部分はない。輸送管1の経路の途中には、2か所に屈曲部23が設けられ、3本の直線部の長さはそれぞれ約14.5m、約1m、約14.5mである。輸送管の経路全体には1/100の勾配が付けられ、流路入口21から流路出口22にかけて緩やかに下っている。流路6には、純粋蒸気製造機24、圧縮空気供給機35が接続され、ドレイン25が設けられている。環状空間7には、圧力センサーPR5、真空ポンプ26およびエアクーラー27が接続されている。また、装置の各所に温度センサーTR1〜TR5、T6、TR7が設置されている。   First, the experimental apparatus of FIG. 5 will be described. The cross-sectional structure of the transport pipe is the same as in FIG. The inner pipe 2 is made of stainless steel and has a general gas pipe standard 15A (outer diameter 21.7 mm, inner diameter 17.5 mm). The outer pipe 3 is made of stainless steel and is JIS G3447 standard 1.5S (outer diameter 38.1 mm, An inner diameter of 35.7 mm) was used. The support member 4 was made of stainless steel and was cut into a shape having a thickness of 1 mm as shown in FIG. 1 and fixed to the inner tube 2 by welding. The transport pipe 1 has a total length of 30 m, and is formed as a single continuous pipe by welding pipes as materials, and there is no connection portion by a flange or the like in the middle. In the middle of the route of the transport pipe 1, bent portions 23 are provided at two places, and the lengths of the three straight portions are about 14.5 m, about 1 m, and about 14.5 m, respectively. The entire path of the transport pipe is given a 1/100 gradient, and gradually falls from the flow path inlet 21 to the flow path outlet 22. A pure steam production machine 24 and a compressed air supply machine 35 are connected to the flow path 6, and a drain 25 is provided. A pressure sensor PR5, a vacuum pump 26, and an air cooler 27 are connected to the annular space 7. In addition, temperature sensors TR1 to TR5, T6, and TR7 are installed at various places in the apparatus.

(実験1) 実験1では、環状空間7の圧力(PR5)を大気圧比−0.097MPaまで減圧し、水を約10L/分の流速で循環させながら、水の温度を流路入口21(TR1)と流路出口22(TR2)で測定した。貯水タンク31内の水はハンディークーラー32によって冷却され、攪拌機33によって撹拌されている。水は貯水タンク31から送液ポンプ34によって流路入口21から輸送管1内に供給され、流路出口22から排出され、ホース40を通って貯水タンク31に還流する。流路の径および長さから計算すると、水は平均約1分で循環することになる。 (Experiment 1) In Experiment 1, the pressure of the annular space 7 (PR5) was reduced to an atmospheric pressure ratio of -0.097 MPa, and the water temperature was circulated at a flow rate of about 10 L / min. TR1) and the channel outlet 22 (TR2). Water in the water storage tank 31 is cooled by a handy cooler 32 and stirred by a stirrer 33. Water is supplied from the water storage tank 31 to the transport pipe 1 from the flow path inlet 21 by the liquid feed pump 34, discharged from the flow path outlet 22, and returns to the water storage tank 31 through the hose 40. When calculated from the diameter and length of the flow path, the water circulates in an average of about 1 minute.

(実験2) 実験2では、環状空間7を減圧せずに、水を約10L/分の流速で循環させながら、実験1と同様の測定を行った。 (Experiment 2) In Experiment 2, the same measurement as Experiment 1 was performed while circulating the water at a flow rate of about 10 L / min without reducing the pressure in the annular space 7.

実験1および実験2の実験条件および結果を表1に示す。輸送中の水の温度上昇(TR2−TR1)は、それぞれ0.43℃、0.35℃であり、いずれの実験でも十分に小さかった。このことから、本実験装置では、医薬液が滞留することなく輸送される場合には、特に環状空間7を減圧しなくとも、輸送中の医薬液の温度上昇は小さいと判断できる。   Table 1 shows the experimental conditions and results of Experiment 1 and Experiment 2. The temperature rise of water during transport (TR2-TR1) was 0.43 ° C. and 0.35 ° C., respectively, and was sufficiently small in both experiments. From this, in this experimental apparatus, when the pharmaceutical solution is transported without stagnation, it can be determined that the temperature rise of the pharmaceutical solution during transportation is small even if the annular space 7 is not decompressed.

Figure 2013059376
Figure 2013059376

(実験3) 実験3は、実験1に引き続いて実施したもので、環状空間7を減圧したまま、水の循環を停止し、その8分後および60分後までに流路出口22付近の水の温度(TR2)が何度上昇するかを測定した。 (Experiment 3) Experiment 3 was carried out following Experiment 1, and the circulation of water was stopped while the annular space 7 was decompressed, and the water in the vicinity of the flow path outlet 22 was reached after 8 and 60 minutes. It was measured how many times the temperature (TR2) increased.

(実験4) 実験4は、実験3と同様の条件で行った。 (Experiment 4) Experiment 4 was performed under the same conditions as Experiment 3.

(実験5) 実験5は、実験2に引き続いて実施したもので、環状空間7を大気圧に保ったままで、実験3と同じ測定を行った。 (Experiment 5) Experiment 5 was performed following Experiment 2, and the same measurement as Experiment 3 was performed while the annular space 7 was maintained at atmospheric pressure.

(実験6) 実験6は、水の循環を停止した後、環状空間7に冷温空気を流通させながら、実験3と同じ測定を行った。冷温空気は、室内の空気を、ベントフィルター38を通してごみ等を除去した後、エアクーラー27を通すことで冷却した。エアクーラー27には約10℃の冷水を循環させており、エアクーラーを通った空気は約10℃まで冷却される。実験6では、冷温空気供給配管の表面温度(TR7)は11.6℃であった。実験では、真空ポンプ24を作動させながら、冷温空気を環状空間7に吸引して流通させた。そのため、環状空間内の圧力(PR5)は、大気圧よりもわずかに低かった(−0.005MPa)。 (Experiment 6) In Experiment 6, after the circulation of water was stopped, the same measurement as in Experiment 3 was performed while circulating the cold / warm air through the annular space 7. The cool / warm air was cooled by passing through the air cooler 27 after removing dust and the like through the vent filter 38. Cold air of about 10 ° C. is circulated through the air cooler 27, and the air that has passed through the air cooler is cooled to about 10 ° C. In Experiment 6, the surface temperature (TR7) of the cold / hot air supply pipe was 11.6 ° C. In the experiment, cold / warm air was sucked into the annular space 7 and circulated while operating the vacuum pump 24. Therefore, the pressure in the annular space (PR5) was slightly lower than the atmospheric pressure (−0.005 MPa).

実験3ないし実験6の実験条件および結果を表2に示す。   The experimental conditions and results of Experiment 3 to Experiment 6 are shown in Table 2.

まず、通常の輸送条件でも起こり得る8分間の循環停止によって、水の温度がどの程度上昇したかを確認する。   First, it is confirmed how much the temperature of the water has increased due to the 8-minute circulation stoppage that can occur even under normal transportation conditions.

環状空間7を減圧した実験3および実験4では、循環停止後8分間の水の温度上昇(TR2,8−TR2,0)はいずれも約1℃であった。このことから、環状空間7を減圧しておけば、医薬液を輸送中に8分間の輸送停止があっても、医薬液の温度上昇は問題とならないものと判断できる。一方、環状空間が大気圧である実験5では、水の温度上昇(TR2,8−TR2,0)は2.84℃であった。このことから、環状空間7を減圧しない場合には、輸送が停止されることがなければ輸送中の医薬液の温度上昇は小さいが(実験2)、8分間の輸送停止があると医薬液の温度上昇が問題になる可能性がある。   In Experiment 3 and Experiment 4 in which the annular space 7 was decompressed, the water temperature rise (TR2, 8-TR2, 0) for 8 minutes after the circulation was stopped was about 1 ° C. From this, it can be determined that if the annular space 7 is decompressed, an increase in the temperature of the pharmaceutical solution does not cause a problem even if the transportation of the pharmaceutical solution is stopped for 8 minutes. On the other hand, in Experiment 5 in which the annular space was atmospheric pressure, the temperature rise of water (TR2, 8-TR2, 0) was 2.84 ° C. From this, when the annular space 7 is not decompressed, the temperature rise of the pharmaceutical solution during transportation is small unless the transportation is stopped (Experiment 2), but if the transportation is stopped for 8 minutes, Temperature rise can be a problem.

なお、環状空間に冷温空気を流通させた実験6では、水の温度上昇(TR2,8−TR2,0)は2.64℃と大きかった。この理由は、循環停止時の水の温度(TR2,0)が2.36℃であったのに対して、実験上の制約により、流通させた空気の温度が約10℃(≒TR6)であったため、むしろ流路に滞留する水を温めたためと考えられる。冷温空気の流通については、改めて後述する。   In Experiment 6 in which cold / warm air was circulated through the annular space, the temperature rise (TR2, 8-TR2, 0) of water was as large as 2.64 ° C. This is because the water temperature (TR2, 0) at the time of circulation stop was 2.36 ° C, but the temperature of the circulated air was about 10 ° C (≈TR6) due to experimental restrictions. This is probably because the water staying in the flow path was warmed. The distribution of cold / warm air will be described later.

次に、通常の輸送条件では起こらないが、何らかのトラブルによって輸送が中断された場合を想定して、60分間の循環停止によって、水の温度がどの程度上昇したかを確認する。   Next, although it does not occur under normal transportation conditions, assuming that the transportation is interrupted due to some trouble, it is confirmed how much the temperature of the water has increased due to the circulation stop for 60 minutes.

実験3および実験4では、循環停止後60分間の水の温度上昇(TR2,60−TR2,0)は、それぞれ3.92℃および3.44℃であった。この値は、輸送する医薬液の種類によっては、許容範囲であるとは言えない。一方、実験5での水の温度上昇(TR2,60−TR2,0)は13.72℃で、明らかに許容できない値であった。   In Experiment 3 and Experiment 4, the water temperature rise (TR2, 60-TR2, 0) for 60 minutes after the circulation was stopped was 3.92 ° C and 3.44 ° C, respectively. This value cannot be said to be in an acceptable range depending on the type of pharmaceutical liquid to be transported. On the other hand, the water temperature rise (TR2, 60-TR2, 0) in Experiment 5 was 13.72 ° C., which was clearly unacceptable.

実験6では、水の温度上昇(TR2,60−TR2,0)は6.96℃と小さくはなかったが、ここでは60分経過後の温度(TR2,60)が9.32℃と冷温空気の温度に近いことに着目すべきである。実験5と実験6を比較すると、循環停止後8分間の水の温度上昇(TR2,8−TR2,0)は、実験5が2.84℃、実験6が2.64℃で、両者はほぼ同じであった。それに対して、循環停止後60分間の水の温度上昇(TR2,60−TR2,0)は、実験5の13.72℃に対して、実験6では6.96℃で半分程度であった。実験6では、冷温空気を流通させることによって、流路6に滞留する水の温度が冷温空気の温度以上に高くなることが抑制されたことが分かる。   In Experiment 6, the temperature rise of water (TR2, 60-TR2, 0) was not as small as 6.96 ° C, but here the temperature after 60 minutes (TR2, 60) was 9.32 ° C and cold air. It should be noted that this is close to the temperature. Comparing Experiment 5 and Experiment 6, the water temperature rise (TR2,8-TR2,0) for 8 minutes after the circulation stop was 2.84 ° C in Experiment 5 and 2.64 ° C in Experiment 6, both of which were almost It was the same. On the other hand, the temperature rise (TR2, 60-TR2, 0) of water for 60 minutes after the circulation stop was about half at 6.96 ° C in Experiment 6 compared to 13.72 ° C in Experiment 5. In Experiment 6, it is understood that the temperature of water staying in the flow path 6 is suppressed from becoming higher than the temperature of the cold / warm air by circulating the cold / warm air.

この結果から、環状空間7に冷温空気を流通させることによっても、十分に内管2を冷却し、流路6に滞留する医薬液の温度上昇を防ぐ効果が得られることが分かった。冷温空気の好ましい使用方法は以下のとおりと考えられる。まず、エアクーラー27の温度を適切に、例えば5℃に設定する。そして、医薬液の輸送が中断した場合には、まず環状空間7内の減圧状態を保って流路6に滞留する医薬液の温度上昇を抑える。さらに停止状態が続いて、医薬液の温度が5℃近くまで上昇したら、冷温空気の流通を開始する。以後、冷温空気の流通を続けることにより、医薬液の温度がそれ以上に上昇することを抑えることができる。   From this result, it was found that the effect of cooling the inner tube 2 sufficiently and preventing the temperature rise of the pharmaceutical solution staying in the flow path 6 can be obtained also by circulating the cool / warm air through the annular space 7. A preferred method of using cold / warm air is considered as follows. First, the temperature of the air cooler 27 is appropriately set to 5 ° C., for example. When the transportation of the medical liquid is interrupted, first, the pressure rise in the annular space 7 is maintained, and the temperature rise of the medical liquid staying in the flow path 6 is suppressed. When the stopped state continues and the temperature of the pharmaceutical solution rises to near 5 ° C., the circulation of cold / warm air is started. Thereafter, by continuing the circulation of the cold and hot air, it is possible to suppress the temperature of the pharmaceutical solution from rising further.

Figure 2013059376
Figure 2013059376

1 医薬液輸送管
2 内管
3 外管
4 サポート部材
6 医薬液流路
7 環状空間
11 従来の医薬液輸送管
12 内管
13 外管
15 断熱材
16 医薬液流路
17 冷媒流路
18 従来の医薬液輸送管のユニット
20 医薬液輸送装置
21 流路入口
22 流路出口
23 輸送管の屈曲部
24 純粋蒸気発生機
25 ドレイン
26 真空ポンプ
27 エアクーラー(冷温空気供給機)
28 圧力センサー
29 温度センサー
30 実験装置
31 貯水タンク
32 ハンディークーラー(水冷却装置)
33 攪拌機
34 送液ポンプ
35 圧縮空気供給機
38 ベントフィルター
39 排気口
40 ホース
PR5 環状空間7内の圧力センサー
TR1 流路6内、入口付近の温度センサー
TR2 流路6内、出口付近の温度センサー
TR3 外管3表面の温度センサー(前段)
TR4 外管3表面の温度センサー(後段)
TR5 外管3表面の温度センサー(中段)
T6 貯水タンク31内の温度センサー
TR7 冷温空気供給配管表面の温度センサー
1 Drug transport tube 2 Inner tube 3 Outer tube
DESCRIPTION OF SYMBOLS 4 Support member 6 Pharmaceutical liquid flow path 7 Annular space 11 Conventional pharmaceutical liquid transport pipe 12 Inner pipe 13 Outer pipe 15 Thermal insulation material 16 Pharmaceutical liquid flow path 17 Refrigerant flow path 18 Unit of conventional pharmaceutical liquid transport pipe 20 Pharmaceutical liquid transport apparatus 21 Channel inlet 22 Channel outlet 23 Bent part of transport pipe 24 Pure steam generator 25 Drain 26 Vacuum pump 27 Air cooler (cold air supply machine)
28 Pressure sensor 29 Temperature sensor 30 Experimental device 31 Water storage tank 32 Handy cooler (water cooling device)
33 Stirrer 34 Liquid feed pump 35 Compressed air supply machine 38 Vent filter 39 Exhaust port 40 Hose PR5 Pressure sensor in the annular space 7 TR1 Temperature sensor in the flow path 6 and near the inlet TR2 Temperature sensor in the flow path 6 and near the outlet TR3 Temperature sensor on the outer tube 3 surface (front)
TR4 Temperature sensor on the outer tube 3 surface (after stage)
TR5 Temperature sensor on outer tube 3 surface (middle)
T6 Temperature sensor in the water storage tank 31 TR7 Temperature sensor on the surface of the cold air supply pipe

Claims (6)

内管と、外管と、前記内管と外管の間隙を保持するためサポート部材とを有し、
前記内管の内部は輸送物の流路であり、
前記内管と外管に挟まれた環状空間は減圧可能に形成され、
経路の途中に屈曲部を有する
ことを特徴とする医薬液輸送管。
An inner tube, an outer tube, and a support member for holding a gap between the inner tube and the outer tube;
The inside of the inner pipe is a flow path for transported goods,
An annular space sandwiched between the inner tube and the outer tube is formed to be depressurized,
A pharmaceutical solution transporting pipe characterized by having a bent part in the middle of the route.
前記サポート部材は前記内管に固定され、前記外管には固定されておらず、
前記サポート部材は前記輸送管の屈曲部以外の部分に設けられている
ことを特徴とする請求項1に記載の医薬液輸送管。
The support member is fixed to the inner pipe, not fixed to the outer pipe,
The pharmaceutical liquid transport pipe according to claim 1, wherein the support member is provided in a portion other than the bent portion of the transport pipe.
前記内管は蛇腹状の伸縮継手を有しない
ことを特徴とする請求項1または2に記載の医薬液輸送管。
The pharmaceutical liquid transport pipe according to claim 1 or 2, wherein the inner pipe does not have a bellows-like expansion joint.
請求項1〜3のいずれか一項に記載された医薬液輸送管と、
医薬液輸送管の前記環状空間に冷温空気を供給するためのエアクーラーとを有する 医薬液輸送装置。
The pharmaceutical liquid transport tube according to any one of claims 1 to 3,
A pharmaceutical liquid transport apparatus, comprising: an air cooler for supplying cold and warm air to the annular space of the pharmaceutical liquid transport pipe.
請求項1〜3のいずれか一項に記載された医薬液輸送管を用いた医薬液輸送方法であって、医薬液輸送管の前記流路に純粋蒸気を供給する工程と、
前記環状空間を減圧する工程と、
前記環状空間を減圧しながら前記流路に医薬液を流通させる工程とを有する
ことを特徴とする医薬液輸送方法。
A method for transporting a pharmaceutical liquid using the pharmaceutical liquid transport pipe according to any one of claims 1 to 3, wherein the step of supplying pure vapor to the flow path of the pharmaceutical liquid transport pipe;
Depressurizing the annular space;
And a step of circulating the medicinal liquid through the flow path while decompressing the annular space.
医薬液の輸送が停止したときには、医薬液輸送管の前記環状空間に冷温空気を供給することにより、前記流路に滞留する医薬液の温度上昇を抑制する
ことを特徴とする請求項5に記載の医薬液輸送方法。
The temperature rise of the pharmaceutical liquid staying in the flow path is suppressed by supplying cold / warm air to the annular space of the pharmaceutical liquid transport pipe when the transportation of the pharmaceutical liquid is stopped. A method for transporting a pharmaceutical solution.
JP2011198059A 2011-09-12 2011-09-12 Medicament liquid transport tube, medicinal liquid transport apparatus, and medicinal liquid transport method Active JP5738725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198059A JP5738725B2 (en) 2011-09-12 2011-09-12 Medicament liquid transport tube, medicinal liquid transport apparatus, and medicinal liquid transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198059A JP5738725B2 (en) 2011-09-12 2011-09-12 Medicament liquid transport tube, medicinal liquid transport apparatus, and medicinal liquid transport method

Publications (2)

Publication Number Publication Date
JP2013059376A true JP2013059376A (en) 2013-04-04
JP5738725B2 JP5738725B2 (en) 2015-06-24

Family

ID=48184642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198059A Active JP5738725B2 (en) 2011-09-12 2011-09-12 Medicament liquid transport tube, medicinal liquid transport apparatus, and medicinal liquid transport method

Country Status (1)

Country Link
JP (1) JP5738725B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104586632A (en) * 2015-01-21 2015-05-06 常熟市雷号医疗器械有限公司 Nutrient feeding bag
WO2019189343A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Liquid storage container and nucleic acid separation device comprising same
CN112944051A (en) * 2021-01-14 2021-06-11 吴嘉文 Environment-friendly PVC (polyvinyl chloride) pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667845B (en) * 2016-03-14 2017-12-15 中国计量学院 A kind of steam-type antivirus fine setting screening production line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231586A (en) * 1991-12-27 1993-09-07 Nkk Corp Multiple structure duct
JPH08285147A (en) * 1995-04-11 1996-11-01 Sony Corp Double structure pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231586A (en) * 1991-12-27 1993-09-07 Nkk Corp Multiple structure duct
JPH08285147A (en) * 1995-04-11 1996-11-01 Sony Corp Double structure pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104586632A (en) * 2015-01-21 2015-05-06 常熟市雷号医疗器械有限公司 Nutrient feeding bag
WO2019189343A1 (en) * 2018-03-30 2019-10-03 株式会社カネカ Liquid storage container and nucleic acid separation device comprising same
CN112944051A (en) * 2021-01-14 2021-06-11 吴嘉文 Environment-friendly PVC (polyvinyl chloride) pipe
CN112944051B (en) * 2021-01-14 2023-12-29 河北鑫鹏通信设备有限公司 Environment-friendly PVC tubular product

Also Published As

Publication number Publication date
JP5738725B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5738725B2 (en) Medicament liquid transport tube, medicinal liquid transport apparatus, and medicinal liquid transport method
CN204433178U (en) A kind of dairy beverage miniature sterilizing homogeneous bulking system
JP5783810B2 (en) Beverage processing equipment
WO2017221575A1 (en) Germ-free liquefied gas production apparatus
CN103182094B (en) Pulsation vacuum sterilizer water cooling device and cooling method
CN208074310U (en) Multimedium is the same as defeated high vacuum multiple layer heat insulation pipe
JP6349566B2 (en) Uniaxial eccentric screw pump
CN102726806B (en) Steam heating sterilization device for beverages
CN102175457B (en) Flat-shaped liquid-nitrogen and liquid-helium dual-media compatible heat sink device and cooling method thereof
CN104929896B (en) Cold pump and semiconductor processing equipment
US20110107789A1 (en) Liquefier for a Heat Pump and Heat Pump
JP2002147976A (en) Heat exchanger
CN204214318U (en) U-shaped double tubesheet heat exchanger
CN110801523A (en) Fast cooling high-temperature steam sterilization cabinet
JP2010192632A (en) Cooling apparatus
WO2019092934A1 (en) Aseptic liquefied gas apparatus and tie-in pipe for aseptic liquefied gas device
CN101596323A (en) The cooling sterilization laminar flow group that is used for the sterilizing and drying machine
CN215930211U (en) Liquid nitrogen sterile purification device
CN205284885U (en) Pasteurization machine cooling hot water recovery utilizes device
CN210190316U (en) Cold roll and cooling device comprising same
CN104056825A (en) Method and system for sweeping inner wall of disc tube
CN214665394U (en) Multi-temperature-zone constant temperature treatment device for cooling water centralized cooling
AU2013100041A4 (en) A Solar Assisted Chiller System
JP2001262322A (en) Exhaust pipe with flexibility and heat radiation
CN216692499U (en) High vacuum type integral adsorption type heat insulation double-wall pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150422

R150 Certificate of patent or registration of utility model

Ref document number: 5738725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250