JP2013058418A - Connection terminal and manufacturing method therefor - Google Patents

Connection terminal and manufacturing method therefor Download PDF

Info

Publication number
JP2013058418A
JP2013058418A JP2011196642A JP2011196642A JP2013058418A JP 2013058418 A JP2013058418 A JP 2013058418A JP 2011196642 A JP2011196642 A JP 2011196642A JP 2011196642 A JP2011196642 A JP 2011196642A JP 2013058418 A JP2013058418 A JP 2013058418A
Authority
JP
Japan
Prior art keywords
plating layer
terminal
lubricant
cst
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011196642A
Other languages
Japanese (ja)
Inventor
Akifumi Onodera
暁史 小野寺
Akira Sugawara
章 菅原
Hideki Endo
秀樹 遠藤
Yuichi Kanemitsu
裕一 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2011196642A priority Critical patent/JP2013058418A/en
Publication of JP2013058418A publication Critical patent/JP2013058418A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a connection terminal having a low friction coefficient, and to provide a low cost manufacturing method therefor.SOLUTION: In the connection terminal consisting of a male terminal and a female terminal abutting each other, the male terminal and female terminal are composed, respectively, of a plating material where a plating layer such as an Sn plating layer, an Ag plating layer or an Au plating layer is formed on the surface of a conductor substrate composed of copper or a copper alloy. The part where the male terminal and female terminal are abutting each other is coated with a lubricant having a composition only of a base oil such as liquid paraffin or silicon oil having a kinetic viscosity of 6000 cSt or higher, preferably 8000 cSt or higher, and further preferably 10000 cSt or higher.

Description

本発明は、接続端子およびその製造方法に関し、特に、挿抜可能な接続端子およびその製造方法に関する。   The present invention relates to a connection terminal and a manufacturing method thereof, and more particularly to a connection terminal that can be inserted and removed and a manufacturing method thereof.

従来、挿抜可能な接続端子の材料として、銅や銅合金などの導体素材の最外層にSnめっきを施したSnめっき材が使用されている。特に、Snめっき材は、接触抵抗が小さく、接触信頼性、耐食性、はんだ付け性、経済性などの観点から、自動車、携帯電話、パソコンなどの情報通信機器、ロボットなどの産業機器の制御基板、コネクタ、リードフレーム、リレー、スイッチなどの端子やバスバーの材料として使用されている。   Conventionally, an Sn plated material obtained by applying Sn plating to the outermost layer of a conductor material such as copper or copper alloy has been used as a material for a connection terminal that can be inserted and removed. In particular, Sn plating materials have low contact resistance, and from the viewpoints of contact reliability, corrosion resistance, solderability, economy, etc., control boards for industrial equipment such as automobiles, mobile phones, personal computers and other industrial equipment such as robots, Used as a material for terminals and bus bars of connectors, lead frames, relays, switches, etc.

一般に、このようなSnめっきは、電気めっきによって行われており、Snめっき材の内部応力を除去してウイスカの発生を抑制するために、電気めっきの直後にリフロー処理(Sn溶融処理)が行われている。このようにSnめっき後にリフロー処理を行うと、Snの一部が素材や下地成分に拡散して化合物層を形成し、この化合物層の上に柔らかい溶融凝固組織になったSn層(以下「純Sn層」という)が形成される。この純Sn層は、優れた接触信頼性、耐食性およびはんだ付け性を得るために極めて重要な役割を果たす。   In general, such Sn plating is performed by electroplating, and a reflow process (Sn melting process) is performed immediately after electroplating in order to remove internal stress of the Sn plating material and suppress the generation of whiskers. It has been broken. When the reflow treatment is performed after Sn plating in this way, a part of Sn diffuses into the material and the base component to form a compound layer, and a Sn layer (hereinafter referred to as “pure”) having a soft molten and solidified structure on this compound layer. Sn layer ") is formed. This pure Sn layer plays an extremely important role in order to obtain excellent contact reliability, corrosion resistance and solderability.

しかし、純Sn層は軟質で変形し易いため、リフロー処理を施したSnめっき材を挿抜可能な接続端子などの材料として使用すると、接続端子の挿入時に表面が削れて摩擦係数が高くなって挿入力が高くなるという問題がある。また、自動車などの接続端子では、端子の多極化が進んでおり、端子の数に比例して組立て時の挿入力が上昇し、作業負荷が問題になっている。   However, since the pure Sn layer is soft and easily deformed, if the Sn-plated material subjected to reflow processing is used as a material such as a connection terminal that can be inserted and removed, the surface is scraped when the connection terminal is inserted and the friction coefficient is increased. There is a problem that power becomes high. In connection terminals of automobiles and the like, the number of terminals is increasing, and the insertion force at the time of assembly increases in proportion to the number of terminals, and the work load becomes a problem.

このような問題を解消するため、リフロー処理を施したSnめっき材では、軟質層である純Sn層の膜厚を薄くして、リフロー処理により硬質なCu−Sn化合物層などの化合物層を下地に形成することによって、摩擦係数の低減を図っている。しかし、純Sn層を薄くすると、素材や下地の成分が経時変化により最表面に速く拡散して耐熱性や接触信頼性が低下する。そのため、母材の表面にNiめっき層と、Cuめっき層と、厚さ0.4〜1.1μmの薄いSnめっき層とをこの順で積層する方法が提案されている(例えば、特許文献1参照)。   In order to solve such problems, in the Sn plating material subjected to reflow treatment, the film thickness of the pure Sn layer, which is a soft layer, is reduced, and a compound layer such as a hard Cu—Sn compound layer is ground by reflow treatment. Thus, the friction coefficient is reduced. However, when the pure Sn layer is thinned, the material and the base component diffuse quickly to the outermost surface due to changes over time, and heat resistance and contact reliability are lowered. Therefore, a method of laminating a Ni plating layer, a Cu plating layer, and a thin Sn plating layer having a thickness of 0.4 to 1.1 μm in this order on the surface of the base material has been proposed (for example, Patent Document 1). reference).

また、素材の表面に算術平均粗さRaが0.15μm以上の凹凸を形成して接触面積を少なくするとともに、凸部においてCu−Sn化合物層を露出させることによって、挿入力を低くする方法も提案されている(例えば、特許文献2参照)。   Also, there is a method of reducing the insertion force by forming irregularities having an arithmetic average roughness Ra of 0.15 μm or more on the surface of the material to reduce the contact area and exposing the Cu—Sn compound layer at the convex portions. It has been proposed (see, for example, Patent Document 2).

また、基材の表面にフッ素系樹脂微粒子とフッ素系油を塗布することにより、摩擦係数を低くして挿入力を低くする方法も提案されている(例えば、特許文献3参照)。   There has also been proposed a method in which the friction coefficient is lowered and the insertion force is lowered by applying fluorine resin fine particles and fluorine oil to the surface of the substrate (see, for example, Patent Document 3).

また、Snを含む鋼合金の基材を加熱して酸化処理し、水素イオン濃度を所定の範囲に調整したフッ素化合物溶液に浸した後に、下地用金属をめっきすることにより直径10〜100μmの基材の複数の凹部を形成し、接触用金属をめっきし、潤滑物質を塗布して、充分な耐摩耗性および高潤滑性を有するコンタクトを得る方法も提案されている(例えば、特許文献4参照)。   In addition, a base material having a diameter of 10 to 100 μm is obtained by plating a base metal after heating and oxidizing a base material of a steel alloy containing Sn and immersing it in a fluorine compound solution whose hydrogen ion concentration is adjusted to a predetermined range. There has also been proposed a method of forming a plurality of recesses in a material, plating a contact metal, and applying a lubricating material to obtain a contact having sufficient wear resistance and high lubricity (see, for example, Patent Document 4). ).

さらに、炭化水素系物質とこの炭化水素系物質を乳化するための界面活性剤とを含む水溶性金属表面潤滑剤をコネクタなどの電子部品の表面に塗布することにより、摩擦係数を低くして接触抵抗値を低くする方法も提案されている(例えば、特許文献5参照)。   Furthermore, by applying a water-soluble metal surface lubricant containing a hydrocarbon-based material and a surfactant for emulsifying this hydrocarbon-based material to the surface of an electronic component such as a connector, the friction coefficient is lowered and contact is made. A method of reducing the resistance value has also been proposed (see, for example, Patent Document 5).

特開2003−147579号公報(段落番号0007)JP 2003-147579 A (paragraph number 0007) 特開2006−183068号公報(段落番号0012−0013)JP 2006-183068 A (paragraph number 0012-0013) 特開2005−19103号公報(段落番号0034)Japanese Patent Laying-Open No. 2005-19103 (paragraph number 0034) 特開2006−202569号公報(段落番号0012、0018)JP 2006-202569 A (paragraph numbers 0012 and 0018) 特開2002−212582号公報(段落番号0007、0014)JP 2002-212582 A (paragraph numbers 0007 and 0014)

しかし、特許文献1のように、Ni層を挿入する方法では、Niめっきの工程の分だけ工程数が多くなり、めっきラインの管理コストやイニシャルコストが増大し、また、摩擦係数の低減の効果が十分ではない。   However, as in Patent Document 1, in the method of inserting the Ni layer, the number of steps increases by the Ni plating step, the plating line management cost and the initial cost increase, and the effect of reducing the friction coefficient. Is not enough.

また、特許文献2のように、素材の表面に算術平均粗さRaが0.15μm以上の凹凸を形成してCu−Sn化合物層を露出させる方法では、Cu−Sn化合物層の露出により、はんだ付け性や耐食性が劣化し、また、凹凸の形成にコストがかかる。   Further, as disclosed in Patent Document 2, in the method of forming irregularities having an arithmetic average roughness Ra of 0.15 μm or more on the surface of the material to expose the Cu—Sn compound layer, the solder is exposed due to the exposure of the Cu—Sn compound layer. Adhesiveness and corrosion resistance are deteriorated, and the formation of irregularities is expensive.

また、特許文献3のように、基材の表面にフッ素系樹脂微粒子とフッ素系油を塗布する方法では、潤滑剤としてフッ素系油に加えてフッ素系樹脂微粒子が必要となるため、潤滑剤の原料コストや管理コストが高くなる。   Further, as disclosed in Patent Document 3, in the method of applying the fluorine resin fine particles and the fluorine oil to the surface of the base material, the fluorine resin fine particles are required in addition to the fluorine oil as the lubricant. Raw material costs and management costs increase.

また、特許文献4のように、Snを含む銅合金の基材の表面に凹凸を形成する方法では、基材の種類がSnを含む銅合金に限定され、また、素材の処理に多大なコストがかかり、素材の処理により生産性が低くなる。   In addition, as in Patent Document 4, in the method of forming irregularities on the surface of a copper alloy substrate containing Sn, the type of the substrate is limited to the copper alloy containing Sn, and the material processing costs are enormous. And the processing of the material reduces the productivity.

さらに、特許文献5のように、水溶性金属表面潤滑剤をコネクタなどの電子部品の表面に塗布する方法では、水溶性金属表面潤滑剤を使用するため、非水系潤滑剤を使用する場合と比べて摩擦係数の低減の効果が小さくなる。   Furthermore, as in Patent Document 5, the method of applying a water-soluble metal surface lubricant to the surface of an electronic component such as a connector uses a water-soluble metal surface lubricant, and therefore, compared with the case of using a non-aqueous lubricant. Thus, the effect of reducing the friction coefficient is reduced.

したがって、本発明は、このような従来の問題点に鑑み、摩擦係数が低い接続端子およびその接続端子を低コストで製造する方法を提供することを目的とする。   Therefore, in view of such a conventional problem, an object of the present invention is to provide a connection terminal having a low friction coefficient and a method for manufacturing the connection terminal at a low cost.

本発明者らは、上記課題を解決するために鋭意研究した結果、互いに当接する雄端子と雌端子からなる接続端子において、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤を塗布することにより、摩擦係数が低い接続端子を低コストで製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that in a connection terminal composed of a male terminal and a female terminal that are in contact with each other, a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact. By applying, it has been found that a connection terminal having a low friction coefficient can be produced at a low cost, and the present invention has been completed.

すなわち、本発明による接続端子は、互いに当接する雄端子と雌端子からなる接続端子において、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤が塗布されていることを特徴とする。この接続端子において、雄端子および雌端子が、それぞれ導体基材の表面にSnめっき層、Agめっき層またはAuめっき層などのめっき層が形成されためっき材からなるのが好ましく、導体基材が銅または銅合金からなるのが好ましい。また、潤滑剤が流動パラフィンまたはシリコンオイルであるのが好ましい。   That is, the connection terminal according to the present invention is characterized in that a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact with each other in the connection terminal composed of the male terminal and the female terminal that are in contact with each other. . In this connection terminal, the male terminal and the female terminal are each preferably made of a plating material in which a plating layer such as an Sn plating layer, an Ag plating layer, or an Au plating layer is formed on the surface of the conductor base material. It is preferably made of copper or a copper alloy. The lubricant is preferably liquid paraffin or silicone oil.

また、本発明による接続端子の製造方法は、互いに当接する雄端子と雌端子からなる接続端子の製造方法において、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤を塗布することを特徴とする。この接続端子の製造方法において、雄端子および雌端子が、それぞれ導体基材の表面にSnめっき層、Agめっき層またはAuめっき層などのめっき層が形成されためっき材からなるのが好ましく、導体基材が銅または銅合金からなるのが好ましい。また、潤滑剤が流動パラフィンまたはシリコンオイルであるのが好ましい。   Further, the manufacturing method of the connection terminal according to the present invention is a method of manufacturing a connection terminal comprising a male terminal and a female terminal that are in contact with each other, and a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact. It is characterized by. In this connection terminal manufacturing method, the male terminal and the female terminal are preferably made of a plating material in which a plating layer such as an Sn plating layer, an Ag plating layer, or an Au plating layer is formed on the surface of the conductor base material. The substrate is preferably made of copper or a copper alloy. The lubricant is preferably liquid paraffin or silicone oil.

本発明によれば、摩擦係数が低い接続端子を低コストで製造することができる。   According to the present invention, a connection terminal having a low coefficient of friction can be manufactured at low cost.

実施例1〜6および比較例1〜7で得られた試験片の摩擦係数と潤滑剤の動粘度との関係を示す図である。It is a figure which shows the relationship between the friction coefficient of the test piece obtained in Examples 1-6 and Comparative Examples 1-7, and kinematic viscosity of a lubricant.

本発明による接続端子の実施の形態は、互いに当接する雄端子と雌端子からなり、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤が塗布されている。   The embodiment of the connection terminal according to the present invention includes a male terminal and a female terminal that are in contact with each other, and a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact.

この接続端子では、雄端子および雌端子が、それぞれ導体基材の表面にSnめっき層、Agめっき層またはAuめっき層などのめっき層が形成されためっき材からなるのが好ましく、特にSnめっき層が形成されたSnめっき材からなるのが好ましい。また、導体基材の表面にSnめっき層を形成する場合、導体基材の表面とSnめっき層との間に、Niめっき層とCuめっき層をこの順で形成してもよく、Niめっき層とCuめっき層とCuSnめっき層をこの順で形成してもよく、CuSnめっき層またはNiめっき層を形成してもよい。なお、めっき層の形成には、通常の電気めっきなどを行えばよく、表面への微細な凹凸加工などを行う必要はない。   In this connection terminal, the male terminal and the female terminal are each preferably made of a plating material in which a plating layer such as an Sn plating layer, an Ag plating layer, or an Au plating layer is formed on the surface of the conductor base material. It is preferable to be made of a Sn plating material on which is formed. Moreover, when forming the Sn plating layer on the surface of the conductor base material, the Ni plating layer and the Cu plating layer may be formed in this order between the surface of the conductor base material and the Sn plating layer. Cu plating layer and CuSn plating layer may be formed in this order, or CuSn plating layer or Ni plating layer may be formed. The plating layer may be formed by ordinary electroplating or the like, and it is not necessary to perform fine uneven processing on the surface.

潤滑剤は、動粘度6000cSt以上の潤滑剤であり、動粘度8000cSt以上の潤滑剤であるのが好ましく、動粘度10000cSt以上の潤滑剤であるのがさらに好ましい。このように非常に高い動粘度の潤滑剤は、従来の潤滑剤として使用されている動粘度1〜1000cStの潤滑剤と比べて、摩擦係数を大きく低下させることができる。また、潤滑剤は、流動パラフィンまたはシリコンオイルであるのが好ましく、その組成は、流動パラフィンやシリコンオイルなどのベースオイルのみの組成でもよい。すなわち、ベースオイルに種々の添加剤を加えた組成の潤滑剤を使用しなくても、流動パラフィンやシリコンオイルなどのベースオイルのみの組成の潤滑剤でも、極端に高い動粘度の潤滑剤を使用すれば、従来の潤滑剤として使用されている動粘度1〜100cStの潤滑剤と比べて、大きく摩擦係数を低下させることができる。   The lubricant is a lubricant having a kinematic viscosity of 6000 cSt or more, preferably a lubricant having a kinematic viscosity of 8000 cSt or more, and more preferably a lubricant having a kinematic viscosity of 10,000 cSt or more. As described above, the lubricant having a very high kinematic viscosity can greatly reduce the friction coefficient as compared with the lubricant having a kinematic viscosity of 1 to 1000 cSt which is used as a conventional lubricant. The lubricant is preferably liquid paraffin or silicone oil, and the composition thereof may be a composition of only base oil such as liquid paraffin or silicone oil. That is, even if a lubricant with a composition of only a base oil such as liquid paraffin or silicone oil is used without using a lubricant having a composition in which various additives are added to the base oil, a lubricant having an extremely high kinematic viscosity may be used. As compared with a lubricant having a kinematic viscosity of 1 to 100 cSt used as a conventional lubricant, the friction coefficient can be greatly reduced.

なお、このような極端に高い動粘度の潤滑剤は、雄端子または雌端子の表面の雄端子と雌端子が当接する部分(雄端子と雌端子の接点部)に塗布されていればよく、雄端子と雌端子を嵌合などにより当接させる作業を行う前に雄端子の雌端子との接点部に付着させてもよいし、あるいは、雌端子を端子形状に形成した後に雌端子の雄端子との接点部(インデント先端部)に付着させてもよい。   It should be noted that such an extremely high kinematic viscosity lubricant may be applied to a portion where the male terminal and the female terminal on the surface of the male terminal or the female terminal abut (the contact portion of the male terminal and the female terminal). The male terminal and the female terminal may be attached to the contact portion of the male terminal with the female terminal before the work is brought into contact by fitting or the male terminal of the female terminal after the female terminal is formed into a terminal shape. You may make it adhere to the contact part (indent front-end | tip part) with a terminal.

また、このような高い動粘度の潤滑剤は、雄端子と雌端子の接点部に塗布すると、接点部から流出することなく保持され、少量でも接点部の摩擦係数を低減させることができるので、潤滑剤の塗布量は少量でもよい。なお、同じ組成の潤滑剤では粘度が高いほど揮発性が低くなるため、このような高い動粘度の潤滑剤は、揮発性が低く、高温環境下に長時間放置されても、摩擦係数の低減の効果を維持することができるので、高温環境における耐久性に優れている。また、このような高い動粘度の潤滑剤は、雄端子と雌端子の接点部に塗布しても、接触抵抗値が増加することなく、電気接点としての機能を損なうことはない。   In addition, when such a high kinematic viscosity lubricant is applied to the contact portion of the male terminal and the female terminal, it is retained without flowing out from the contact portion, and even a small amount can reduce the friction coefficient of the contact portion. A small amount of lubricant may be applied. Note that the higher the viscosity of the lubricant of the same composition, the lower the volatility.Therefore, such a high kinematic viscosity lubricant has a low volatility and reduces the friction coefficient even when left in a high temperature environment for a long time. Therefore, the durability in a high temperature environment is excellent. Moreover, even if such a high kinematic viscosity lubricant is applied to the contact portions of the male terminal and the female terminal, the contact resistance value does not increase and the function as an electrical contact is not impaired.

導体基材は、銅または銅合金からなるのが好ましく、CDA番号でC19025合金(例えば、DOWAメタルテック株式会社製のNB−109合金)やC19020合金(例えば、NB−105合金)などのCu−Ni−Sn系合金、Cu−Ni−Si系合金、りん青銅、黄銅などを使用することができる。特に、雌端子の導体基材はBe銅やチタン銅などの高強度で高コストの銅合金でなく、Cu−Ni−Sn系合金やりん青銅からなるのが好ましく、雄端子の導体基材は黄銅からなるのが好ましい。なお、ステンレス(SUS)などの鉄系材料や、アルミニウム合金などからなる導体基材を使用してもよい。   The conductor base material is preferably made of copper or a copper alloy, and has a CDA number such as C19025 alloy (for example, NB-109 alloy manufactured by DOWA Metaltech Co., Ltd.) or C19020 alloy (for example, NB-105 alloy). Ni-Sn alloy, Cu-Ni-Si alloy, phosphor bronze, brass and the like can be used. In particular, the conductor base material of the female terminal is preferably made of a Cu—Ni—Sn alloy or phosphor bronze rather than a high-strength and high-cost copper alloy such as Be copper or titanium copper. It is preferably made of brass. A conductive base material made of an iron-based material such as stainless steel (SUS) or an aluminum alloy may be used.

以下、本発明による接続端子およびその製造方法の実施例について詳細に説明する。   Examples of the connection terminal and the manufacturing method thereof according to the present invention will be described in detail below.

[実施例1]
まず、厚さ0.25mmのCu−Ni−Sn合金からなる平板状の導体基材(DOWAメタルテック株式会社製のNB−109−EH材(0.1質量%のNiと0.9質量%のSnと0.9質量%のPを含み、残部がCuである銅合金の基材))に厚さ1μmのSnめっきを施した後にリフロー処理を施したSnめっき材を2枚用意した。
[Example 1]
First, a flat conductor substrate made of a Cu-Ni-Sn alloy having a thickness of 0.25 mm (NB-109-EH material (0.1% by mass of Ni and 0.9% by mass of DOWA Metaltech Co., Ltd.) Of Sn and 0.9% by mass of P, with a balance of Cu being a Cu alloy base material)), a Sn plating material having a thickness of 1 μm was applied, and two reflow-treated Sn plating materials were prepared.

次に、一方のSnめっき材の70mm×70mmの領域に、潤滑剤として、40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs、引火点315℃、流動点−50℃、密度0.98g/cm)1mLを室温(25℃)で滴下して広がらせて塗布することにより得られた試験片を評価試料(雄端子としての試験片)とした。また、他方のSnめっき材をインデント加工(R1mm)して得られた試験片を圧子(雌端子としての試験片)とした。なお、このインデント加工した試験片(圧子)には、潤滑剤が塗布されていないが、平板状の評価試料に接触させることにより、圧子にも潤滑剤が塗布された状態になる。 Next, silicon oil (KF-96-10000 cs, flash point 315 ° C., pour point −50 ° C., density 0) as a lubricant is applied to a region of 70 mm × 70 mm of one Sn plating material as a lubricant at 40 ° C. A test piece obtained by dripping and spreading 1 mL of .98 g / cm 3 ) at room temperature (25 ° C.) was used as an evaluation sample (test piece as a male terminal). Further, a test piece obtained by indenting (R1 mm) the other Sn plating material was used as an indenter (test piece as a female terminal). Although the indented test piece (indenter) is not coated with a lubricant, it is brought into a state where the lubricant is also applied to the indenter by bringing it into contact with a flat evaluation sample.

次に、評価試料を横型荷重測定器(株式会社山崎精機研究所製の電気接点シミュレータと、ステージコントローラと、ロードセルと、ロードセルアンプとを組み合わせた装置)の水平台上に固定し、その評価試料に圧子を接触させた後、それぞれ荷重1N、2N、3N、5N、10Nおよび13Nで圧子を評価試料の表面に押し付けながら、評価試料を摺動速度80mm/分で水平方向に摺動距離10mm引っ張り、1mmから4mmまでの間(測定距離3mm)に水平方向にかかる力を測定してその平均値Fを算出し、試験片同士間の動摩擦係数(μ)をμ=F/Nから算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.17、0.13、0.13、0.14、0.13および0.14であった。   Next, the evaluation sample is fixed on a horizontal platform of a horizontal load measuring instrument (an apparatus combining an electric contact simulator, a stage controller, a load cell, and a load cell amplifier manufactured by Yamazaki Seiki Laboratory Co., Ltd.). After the indenter is brought into contact with each other, the evaluation sample is pulled horizontally by 10 mm with a sliding speed of 80 mm / min while pressing the indenter against the surface of the evaluation sample with a load of 1N, 2N, 3N, 5N, 10N and 13N, respectively. The force applied in the horizontal direction between 1 mm and 4 mm (measurement distance 3 mm) was measured to calculate the average value F, and the dynamic friction coefficient (μ) between the test pieces was calculated from μ = F / N. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.17 and 0, respectively. .13, 0.13, 0.14, 0.13 and 0.14.

[実施例2]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が100000cStのシリコンオイル(KF−96−100000cs、引火点315℃、流動点−50℃、密度0.98g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.19、0.15、0.13、0.12、0.12および0.13であった。
[Example 2]
Instead of silicone oil having a kinematic viscosity at 40 ° C. of 10,000 cSt (KF-96-10000 cs), silicon oil having a kinematic viscosity at 40 ° C. of 100,000 cSt (KF-96-100,000 cs, flash point 315 ° C., pour point−50 ° C., density Except for using 0.98 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.19 and 0, respectively. .15, 0.13, 0.12, 0.12 and 0.13.

[実施例3]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が1000000cStのシリコンオイル(KF−96−1000000cs、引火点315℃、流動点−50℃、密度0.98g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.18、0.14、0.13、0.12、0.12および0.10であった。
[Example 3]
Instead of silicone oil having a kinematic viscosity at 40 ° C. of 10,000 cSt (KF-96-10000 cs), silicon oil having a kinematic viscosity at 40 ° C. of 1,000,000 cSt (KF-96-1000000 cs, flash point 315 ° C., pour point −50 ° C., density) Except for using 0.98 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.18 and 0, respectively. .14, 0.13, 0.12, 0.12, and 0.10.

[実施例4]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が1000000cStより高い真空グリス(引火点>101℃、密度1.1g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.22、0.17、0.15、0.19、0.17および0.16であった。
[Example 4]
Instead of silicon oil having a kinematic viscosity at 40 ° C. of 10,000 cSt (KF-96-10000 cs), vacuum grease having a kinematic viscosity at 40 ° C. higher than 1,000,000 cSt (flash point> 101 ° C., density 1.1 g / cm 3 ) was used. Except for the above, after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.22 and 0, respectively. .17, 0.15, 0.19, 0.17 and 0.16.

[比較例1]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が1000cStのシリコンオイル(KF−96−10000cs、引火点315℃、流動点−50℃、密度0.97g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.26、0.21、0.19、0.17、0.16および0.16であった。
[Comparative Example 1]
Instead of silicon oil (KF-96-10000cs) with a kinematic viscosity at 40 ° C of 10,000 cSt, silicon oil with a kinematic viscosity at 40 ° C of 1000 cSt (KF-96-10000cs, flash point 315 ° C, pour point -50 ° C, density Except for using 0.97 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.26 and 0, respectively. .21, 0.19, 0.17, 0.16 and 0.16.

[比較例2]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が5000cStのシリコンオイル(KF−96−5000cs、引火点315℃、流動点−50℃、密度0.98g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.26、0.22、0.20、0.17、0.16および0.16であった。
[Comparative Example 2]
Instead of silicone oil (KF-96-10000cs) having a kinematic viscosity at 40 ° C of 10,000 cSt, silicon oil (KF-96-5000cs, flash point 315 ° C, pour point-50 ° C, density at 40 ° C) Except for using 0.98 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.26 and 0, respectively. .22, 0.20, 0.17, 0.16 and 0.16.

[比較例3]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)を塗布しなかった以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.48、0.34、0.33、0.28、0.24および0.21であった。
[Comparative Example 3]
After obtaining two test pieces by the same method as in Example 1 except that silicon oil (KF-96-10000cs) having a kinematic viscosity at 40 ° C. of 10,000 cSt was not applied, the dynamic friction coefficient between the test pieces was obtained. (Μ) was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.48, 0, respectively. .34, 0.33, 0.28, 0.24 and 0.21.

[比較例4]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が5cStの流動パラフィン(No.40−S、引火点134℃、流動点−8℃、密度0.83g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.38、0.32、0.24、0.22、0.19および0.18であった。
[Comparative Example 4]
Instead of silicon oil (KF-96-10000cs) with a kinematic viscosity at 40 ° C of 10,000 cSt, liquid paraffin with a kinematic viscosity at 40 ° C of 5 cSt (No. 40-S, flash point 134 ° C, pour point -8 ° C, density) Except for using 0.83 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.38 and 0, respectively. .32, 0.24, 0.22, 0.19 and 0.18.

[比較例5]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が28cStの流動パラフィン(No.150−S、引火点220℃、流動点−8℃、密度0.86g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.33、0.24、0.23、0.19、0.17および0.16であった。
[Comparative Example 5]
Instead of silicone oil (KF-96-10000cs) with a kinematic viscosity at 40 ° C of 10,000 cSt, liquid paraffin with a kinematic viscosity at 40 ° C of 28 cSt (No. 150-S, flash point 220 ° C, pour point -8 ° C, density) Except for using 0.86 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.33 and 0, respectively. .24, 0.23, 0.19, 0.17 and 0.16.

[比較例6]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が78cStの流動パラフィン(No.350−S、引火点224℃、流動点−8℃、密度0.88g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.27、0.22、0.20、0.15、0.15および0.15であった。
[Comparative Example 6]
Instead of silicon oil (KF-96-10000cs) having a kinematic viscosity at 40 ° C. of 10,000 cSt, liquid paraffin (No. 350-S having a kinematic viscosity at 40 ° C. of 78 cSt, flash point 224 ° C., pour point −8 ° C., density Except for using 0.88 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.27 and 0, respectively. .22, 0.20, 0.15, 0.15 and 0.15.

[比較例7]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が10cStのシリコンオイル(KF−96−10cs、引火点160℃、流動点−100℃、密度0.94g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.33、0.30、0.25、0.23、0.19および0.14であった。
[Comparative Example 7]
Instead of silicone oil (KF-96-10000cs) having a kinematic viscosity at 40 ° C of 10,000 cSt, silicon oil having a kinematic viscosity of 10 cSt at 40 ° C (KF-96-10cs, flash point 160 ° C, pour point -100 ° C, density Except for using 0.94 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.33 and 0, respectively. .30, 0.25, 0.23, 0.19 and 0.14.

[比較例8]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が100cStのシリコンオイル(KF−96−100cs、引火点315℃、流動点−50℃、密度0.97g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.28、0.22、0.20、0.19、0.17および0.16であった。
[Comparative Example 8]
Instead of silicone oil (KF-96-10000cs) having a kinematic viscosity at 40 ° C of 10,000 cSt, silicon oil (KF-96-100cs, flash point 315 ° C, pour point -50 ° C, density) having a kinematic viscosity at 40 ° C of 100 cSt Except for using 0.97 g / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the dynamic friction coefficient (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.28 and 0, respectively. .22, 0.20, 0.19, 0.17 and 0.16.

[比較例9]
40℃における動粘度が10000cStのシリコンオイル(KF−96−10000cs)の代わりに、40℃における動粘度が6cStのプレス油(ユニプレスPA5、引火点140℃、流動点−38℃、密度0.83g/cm)を使用した以外は、実施例1と同様の方法により、2つの試験片を得た後、試験片同士間の動摩擦係数(μ)を算出した。その結果、荷重1N、2N、3N、5N、10Nおよび13Nの場合の本実施例で得られた試験片の動摩擦係数(それぞれ2回ずつ測定した値の平均値)は、それぞれ0.31、0.26、0.23、0.22、0.18および0.17であった。
[Comparative Example 9]
Instead of silicon oil (KF-96-10000cs) with a kinematic viscosity at 40 ° C of 10,000 cSt, press oil with a kinematic viscosity of 6 cSt at 40 ° C (Unipress PA5, flash point 140 ° C, pour point -38 ° C, density 0.83g Except for using / cm 3 ), after obtaining two test pieces by the same method as in Example 1, the coefficient of dynamic friction (μ) between the test pieces was calculated. As a result, the dynamic friction coefficients (average values of the values measured twice each) of the test pieces obtained in this example in the case of loads 1N, 2N, 3N, 5N, 10N and 13N were 0.31 and 0, respectively. .26, 0.23, 0.22, 0.18 and 0.17.

これらの実施例および比較例で得られた試験片の潤滑剤の種類および特性を表1に示し、摩擦係数および潤滑剤がない場合に対する摩擦係数の割合を表2に示す。また、実施例および比較例で得られた試験片の摩擦係数と潤滑剤の動粘度との関係を図1に示す。   Table 1 shows the types and characteristics of the lubricants of the test pieces obtained in these Examples and Comparative Examples, and Table 2 shows the friction coefficient and the ratio of the friction coefficient with respect to the absence of the lubricant. Moreover, the relationship between the friction coefficient of the test piece obtained by the Example and the comparative example and kinematic viscosity of a lubricant is shown in FIG.

Figure 2013058418
Figure 2013058418

Figure 2013058418
Figure 2013058418

Claims (10)

互いに当接する雄端子と雌端子からなる接続端子において、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤が塗布されていることを特徴とする、接続端子。 A connection terminal comprising a male terminal and a female terminal which are in contact with each other, wherein a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact with each other. 前記雄端子および前記雌端子が、それぞれ導体基材の表面にめっき層が形成されためっき材からなることを特徴とする、請求項1に記載の接続端子。 2. The connection terminal according to claim 1, wherein each of the male terminal and the female terminal is made of a plating material in which a plating layer is formed on a surface of a conductor base material. 前記めっき層がSnめっき層、Agめっき層またはAuめっき層であることを特徴とする、請求項2に記載の接続端子。 The connection terminal according to claim 2, wherein the plating layer is a Sn plating layer, an Ag plating layer, or an Au plating layer. 前記導体基材が銅または銅合金からなることを特徴とする、請求項2または3に記載の接続端子。 The connection terminal according to claim 2, wherein the conductor base is made of copper or a copper alloy. 前記潤滑剤が流動パラフィンまたはシリコンオイルであることを特徴とする、請求項1乃至4のいずれかに記載の接続端子。 The connection terminal according to claim 1, wherein the lubricant is liquid paraffin or silicon oil. 互いに当接する雄端子と雌端子からなる接続端子の製造方法において、雄端子と雌端子が当接する部分に動粘度6000cSt以上の潤滑剤を塗布することを特徴とする、接続端子の製造方法。 A method of manufacturing a connection terminal comprising a male terminal and a female terminal which are in contact with each other, wherein a lubricant having a kinematic viscosity of 6000 cSt or more is applied to a portion where the male terminal and the female terminal are in contact. 前記雄端子および前記雌端子が、それぞれ導体基材の表面にめっき層が形成されためっき材からなることを特徴とする、請求項6に記載の接続端子の製造方法。 The method of manufacturing a connection terminal according to claim 6, wherein each of the male terminal and the female terminal is made of a plating material in which a plating layer is formed on a surface of a conductor base material. 前記めっき層がSnめっき層、Agめっき層またはAuめっき層であることを特徴とする、請求項7に記載の接続端子の製造方法。 The method for manufacturing a connection terminal according to claim 7, wherein the plating layer is a Sn plating layer, an Ag plating layer, or an Au plating layer. 前記導体基材が銅または銅合金からなることを特徴とする、請求項7または8に記載の接続端子の製造方法。 The method for manufacturing a connection terminal according to claim 7, wherein the conductor base material is made of copper or a copper alloy. 前記潤滑剤が流動パラフィンまたはシリコンオイルであることを特徴とする、請求項6乃至9のいずれかに記載の接続端子の製造方法。 The method for manufacturing a connection terminal according to claim 6, wherein the lubricant is liquid paraffin or silicon oil.
JP2011196642A 2011-09-09 2011-09-09 Connection terminal and manufacturing method therefor Pending JP2013058418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196642A JP2013058418A (en) 2011-09-09 2011-09-09 Connection terminal and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196642A JP2013058418A (en) 2011-09-09 2011-09-09 Connection terminal and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013058418A true JP2013058418A (en) 2013-03-28

Family

ID=48134113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196642A Pending JP2013058418A (en) 2011-09-09 2011-09-09 Connection terminal and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013058418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093317B2 (en) 2019-02-06 2022-06-29 Jx金属株式会社 Traverse coil and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888467A (en) * 1972-02-25 1973-11-20
JPH10302866A (en) * 1997-04-28 1998-11-13 Harness Sogo Gijutsu Kenkyusho:Kk Connection terminal of fitting type
JP2003147579A (en) * 2001-11-13 2003-05-21 Yazaki Corp Terminal
JP2003183882A (en) * 2001-12-11 2003-07-03 Kobe Steel Ltd Tinned electronic material
JP2004139875A (en) * 2002-10-18 2004-05-13 Yazaki Corp Female terminal
JP2006206702A (en) * 2005-01-27 2006-08-10 Japan Aviation Electronics Industry Ltd Lubricant
JP2010195958A (en) * 2009-02-26 2010-09-09 Alps Electric Co Ltd Lubricating composition for use in electric contact

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888467A (en) * 1972-02-25 1973-11-20
JPH10302866A (en) * 1997-04-28 1998-11-13 Harness Sogo Gijutsu Kenkyusho:Kk Connection terminal of fitting type
JP2003147579A (en) * 2001-11-13 2003-05-21 Yazaki Corp Terminal
JP2003183882A (en) * 2001-12-11 2003-07-03 Kobe Steel Ltd Tinned electronic material
JP2004139875A (en) * 2002-10-18 2004-05-13 Yazaki Corp Female terminal
JP2006206702A (en) * 2005-01-27 2006-08-10 Japan Aviation Electronics Industry Ltd Lubricant
JP2010195958A (en) * 2009-02-26 2010-09-09 Alps Electric Co Ltd Lubricating composition for use in electric contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093317B2 (en) 2019-02-06 2022-06-29 Jx金属株式会社 Traverse coil and its manufacturing method

Similar Documents

Publication Publication Date Title
KR102058344B1 (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
TWI489002B (en) Surface treatment plating material and manufacturing method thereof, and electronic parts
KR102355331B1 (en) Tin-plated copper alloy terminal material and method for producing same
CN103227369A (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP5464284B1 (en) Connector terminal and method for manufacturing connector terminal
JP2013174006A (en) Tin-plated copper alloy terminal material excellent in insertion-extraction property
JP2015063750A (en) Tin-plated copper alloy terminal material excellent in insertability/extractability
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP5692799B2 (en) Sn plating material and method for producing the same
JP5479789B2 (en) Metal materials for connectors
JP6543216B2 (en) Sn plated material and method of manufacturing the same
JP2015055003A (en) Fitting type connection terminal
JP2011111663A (en) REFLOW Sn PLATED MEMBER
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2014041807A (en) Metallic material for an electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP2015046268A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2013058418A (en) Connection terminal and manufacturing method therefor
JP2015229791A (en) Metal material for electronic part and connector terminal, connector and electronic part using the same
JP2015124434A (en) Tin-plated copper-alloy terminal material
WO2017169765A1 (en) Terminal
JP2015045057A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045051A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability
WO2022219904A1 (en) Male pin for connector and manufacturing method of male pin for connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160705