JP2013056473A - Low density resin laminated sheet and method for manufacturing the same - Google Patents

Low density resin laminated sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2013056473A
JP2013056473A JP2011196173A JP2011196173A JP2013056473A JP 2013056473 A JP2013056473 A JP 2013056473A JP 2011196173 A JP2011196173 A JP 2011196173A JP 2011196173 A JP2011196173 A JP 2011196173A JP 2013056473 A JP2013056473 A JP 2013056473A
Authority
JP
Japan
Prior art keywords
resin
specific gravity
thermosetting resin
type epoxy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196173A
Other languages
Japanese (ja)
Other versions
JP5924893B2 (en
Inventor
Kazuaki Toshikura
一彰 利倉
Shinichi Yamamoto
伸一 山元
Masaki Tanabe
政樹 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO KASEI KK
Original Assignee
NIKKO KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO KASEI KK filed Critical NIKKO KASEI KK
Priority to JP2011196173A priority Critical patent/JP5924893B2/en
Publication of JP2013056473A publication Critical patent/JP2013056473A/en
Application granted granted Critical
Publication of JP5924893B2 publication Critical patent/JP5924893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a low density resin laminated sheet that enables further low specific gravity without spoiling other characteristics such as the appearance, electrical characteristics, mechanical strength, and thermal conductivity.SOLUTION: A method for manufacturing the low density resin laminated sheet in that the thermosetting resin powder has putting on temporary to the reinforcement material made of the fiber particle size 20-40 μm, includes: (i) a step of forming the powder composition by uniformly mixing (a) thermosetting resin powders (b) organic balloons, inorganic balloons, and the filler selected from a group comprising those mixtures; (ii) a step of making the powder composition uniformly contact the surface of the reinforcement material made of the fiber; (iii) a step of heating the powder composition under pressurization and perform tack welding of the fiber made reinforcement material to make the sheet-like material; and (iv) a step of performing fusion integration by laminating, heating and pressing a plurality of sheets.

Description

本発明は、電気絶縁板、板状断熱材その他の軽量板状素材として用いられる低比重樹脂積層板およびその製造方法に関する。   The present invention relates to a low specific gravity resin laminate used as an electrical insulating plate, a plate-like heat insulating material and other lightweight plate-like materials, and a method for producing the same.

一般に、合成樹脂積層板を製造するには、まず、ガラス繊維、カーボン繊維その他の合成繊維もしくは天然繊維からなる編織布また不織布を補強材とし、これに所要濃度の溶液またはエマルジョン化した熱硬化性樹脂を含浸する。そして、得られたウェブ片を複数枚積層して、上下対の熱盤を備えたホットプレスに収容し、所要の圧力下で加熱して硬化成形している。   In general, in order to produce a synthetic resin laminate, first, a woven or non-woven fabric made of glass fiber, carbon fiber, other synthetic fiber or natural fiber is used as a reinforcing material, and a solution or emulsion of the required concentration is used for this. Impregnate with resin. Then, a plurality of the obtained web pieces are stacked, accommodated in a hot press provided with a pair of upper and lower hot plates, and heated and cured by a required pressure.

このように成形される合成樹脂積層板は、主に補強材との組み合わせで所要の比重に調整されており、例えばガラス繊維を補強材にしたときの比重は約1.8〜2.0であり、綿布を補強材としたときの比重は約1.35〜1.4である。また、このような合成樹脂積層板をさらに軽量化するため、主要バインダ成分である熱硬化性樹脂に、低比重の充填材を均一に分散させるかまたは補強材に対するバインダの含浸量や濃度を調節する手法も考えられる。   The synthetic resin laminate formed in this way is adjusted to the required specific gravity mainly in combination with a reinforcing material. For example, the specific gravity when glass fiber is used as a reinforcing material is about 1.8 to 2.0. There is a specific gravity of about 1.35 to 1.4 when a cotton cloth is used as a reinforcing material. In addition, in order to further reduce the weight of such synthetic resin laminates, the filler of low specific gravity is uniformly dispersed in the thermosetting resin, which is the main binder component, or the amount and concentration of the binder impregnated in the reinforcing material are adjusted. A technique to do this is also possible.

しかし、上記した合成樹脂積層板をより軽量化するバインダーの充填材として、泡状の空気を包含した微粒子状のバルーンを使用すると、液相中で浮いてしまい合成樹脂中に均一に分散しないため、含浸によって補強材に効率よく保持されないという問題点があった。   However, if a fine particle balloon containing foamy air is used as a filler for reducing the weight of the synthetic resin laminate described above, it will float in the liquid phase and will not be uniformly dispersed in the synthetic resin. However, there is a problem in that the impregnation is not efficiently held by the reinforcing material.

また、成形される積層板の比重を調整する他の手法として、ロール体から連続供給されるウェブ状の繊維製補強材に対するバインダの含浸量や濃度を制御する手法があるが、ウェブの進行速度、バインダの流動性や粘性等の多くの要因が関与しており、そのような制御は煩雑で他に適当な手法がないという問題点もあった。   In addition, as another method for adjusting the specific gravity of the laminate to be molded, there is a method for controlling the amount of binder impregnated or the concentration of the web-like fiber reinforcing material continuously supplied from the roll body. However, many factors such as the fluidity and viscosity of the binder are involved, and there is a problem that such control is complicated and there is no other appropriate method.

本発明者らは、バインダ中に低比重の充填材を均一に分散させ、しかもこのバインダの補強材への保持量すなわち積層板の比重調整を簡便な手法で行うことができるようにするため、上記低比重の充填材として、有機質バルーン、無機質バルーンのそれぞれ単独または両者の併用を用いて、熱硬化性樹脂粉末との混合物を、繊維製補強材表面に付着させ、次いで加熱および加圧下で前記混合物を前記補強材に仮着してシート状材料とし、得られたシート状材料を複数枚積層して加熱および加圧下で融着一体化する、低比重樹脂積層板の製造方法を提案した(特許文献1)。   In order to uniformly disperse the low specific gravity filler in the binder and to adjust the holding amount of the binder to the reinforcing material, that is, to adjust the specific gravity of the laminate, in a simple manner, As the low specific gravity filler, the organic balloon and the inorganic balloon are used alone or in combination of both, and the mixture with the thermosetting resin powder is adhered to the surface of the fiber reinforcing material, and then heated and under pressure. A method for producing a low specific gravity resin laminate was proposed in which the mixture was temporarily attached to the reinforcing material to form a sheet-like material, and a plurality of the obtained sheet-like materials were laminated and fused and integrated under heat and pressure ( Patent Document 1).

上記製造方法を用いることによって、低比重の充填材として上記バルーンを熱硬化性樹脂粉末に所要の割合で均一に分散して、補強材に保持させることができるので、顕著な軽量化を図ることができ、また、バインダの付着量の調整も容易であるから、比重調整を容易に行なうことができ、製造工程の効率が良く、バインダーの配合容易性によって製造コストの低減も図ることができた。   By using the above manufacturing method, the balloon can be uniformly dispersed in the thermosetting resin powder at a required ratio and held by the reinforcing material as a low specific gravity filler. In addition, since it is easy to adjust the adhesion amount of the binder, it is possible to easily adjust the specific gravity, the efficiency of the manufacturing process is high, and the manufacturing cost can be reduced by the ease of blending of the binder. .

しかしながら、環境問題を視野に入れて、自動車の低燃比化や電気エネルギー利用への移行、鉄道車両の更なる高速化などを図るため、燃料や電気エネルギーの消費を低減しようとする要求はますます高まり、自動車や鉄道車両などに使用される材料に関して、強度等の他の特性を損なうことなく、更なる軽量化が要求されている。   However, with a view to environmental issues, there is an increasing demand to reduce fuel and electric energy consumption in order to lower the fuel ratio of automobiles, shift to the use of electric energy, and further increase the speed of railway vehicles. Increasingly, materials used for automobiles, railway vehicles, and the like are required to be further reduced in weight without impairing other properties such as strength.

特開平5‐476号公報JP-A-5-476

本発明は、上記のような従来の低比重樹脂積層板の有する問題点を解決し、外観や、電気特性、機械的強度および熱伝導率などの他の特性を損なうことなく、更に低比重化を可能とした低比重樹脂積層板およびその製造方法を提供することを目的とする。   The present invention solves the problems of the conventional low specific gravity resin laminate as described above, and further lowers the specific gravity without impairing other characteristics such as appearance, electrical characteristics, mechanical strength, and thermal conductivity. An object of the present invention is to provide a low specific gravity resin laminate and a method for producing the same.

本発明者等は、上記目的を解決すべく鋭意研究を重ねた結果、低比重充填材と混合する熱硬化性樹脂粉末の粒径を非常に小さくすることによって両者を均一に分散させることができ、他の特性を損なうことなく、更に低比重化を可能とした低比重樹脂積層板およびその製造方法を提供し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned object, the present inventors can disperse both uniformly by making the particle size of the thermosetting resin powder mixed with the low specific gravity filler very small. The present inventors have found that it is possible to provide a low specific gravity resin laminate capable of further reducing the specific gravity without impairing other characteristics and a method for producing the same, and have completed the present invention.

即ち、本発明は、
(i)(a)熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と
を均一に混合して粉体組成物を形成する工程、
(ii)該粉体組成物を繊維製補強材の表面に均一に接触させる工程、
(iii)該粉体組成物を加圧下で加熱して、該繊維製補強材に仮着してシート状材料を形成する工程、および
(iv)該シート状材料を複数枚積層し、加熱プレスして、融着一体化する工程
を含み、
該熱硬化性樹脂粉末が粒径1〜100μmを有することを特徴とする低比重樹脂積層板の製造方法に関する。
That is, the present invention
(I) (a) thermosetting resin powder;
(B) a step of uniformly mixing a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof to form a powder composition;
(Ii) a step of bringing the powder composition into uniform contact with the surface of the fiber reinforcing material;
(Iii) a step of heating the powder composition under pressure to temporarily attach the fiber composition to the fiber reinforcing material to form a sheet-like material; and (iv) laminating a plurality of the sheet-like materials, and heating press And including the step of fusing and integrating,
The thermosetting resin powder has a particle size of 1 to 100 μm, and relates to a method for producing a low specific gravity resin laminate.

更に、本発明を好適に実施するために、
前記工程(iv)において、前記シート状材料を複数枚積層すると共に、その最上層、最下層およびこれらの中間層から選ばれる1以上の層に繊維製補強材に熱硬化性樹脂を含浸したプリプレグシートを積層し、加熱プレスして、融着一体化し;
前記熱硬化性樹脂が、ビスフェノールA型エポキシ樹脂およびノボラック型エポキシ樹脂の混合物であり;
前記ビスフェノールA型エポキシ樹脂が軟化点60〜120℃およびエポキシ当量450〜2000を有し、前記ノボラック型エポキシ樹脂が軟化点60〜120℃を有し、該ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂の配合比が8/1〜1/1である;
ことが望ましい。
Furthermore, in order to implement this invention suitably,
In the step (iv), a plurality of the sheet-like materials are laminated, and at least one layer selected from the uppermost layer, the lowermost layer and an intermediate layer thereof is impregnated with a thermosetting resin in a fiber reinforcing material. Laminate sheets, heat press and fuse and integrate;
The thermosetting resin is a mixture of a bisphenol A type epoxy resin and a novolac type epoxy resin;
The bisphenol A type epoxy resin has a softening point of 60 to 120 ° C. and an epoxy equivalent of 450 to 2000, the novolac type epoxy resin has a softening point of 60 to 120 ° C., and the bisphenol A type epoxy resin / novolac type epoxy resin The blending ratio of 8/1 to 1/1;
It is desirable.

本発明の他の態様として、
(a)熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と、
(c)繊維製補強材と
を含有し、比重0.6〜1.1、曲げ強さ100MPa以上および圧縮強さ150MPa以上を有することを特徴とする低比重樹脂積層板がある。
As another aspect of the present invention,
(A) a thermosetting resin powder;
(B) a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof;
(C) There is a low specific gravity resin laminate comprising a fiber reinforcing material, having a specific gravity of 0.6 to 1.1, a bending strength of 100 MPa or more and a compressive strength of 150 MPa or more.

本発明の更に他の態様として、
(i)(a)粒径1〜100μmを有する熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と
を均一に混合して粉体組成物を形成し、
(ii)該粉体組成物を繊維製補強材の表面に均一に接触させ、
(iii)該粉体組成物を加圧下で加熱して、該繊維製補強材に仮着してシート状材料を形成し、
(iv)該シート状材料を複数枚積層し、加熱プレスして、融着一体化する
ことによって製造され、
比重0.6〜1.1、曲げ強さ100MPa以上および圧縮強さ150MPa以上を有することを特徴とする低比重樹脂積層板がある。
As still another aspect of the present invention,
(I) (a) a thermosetting resin powder having a particle size of 1 to 100 μm;
(B) uniformly mixing a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof to form a powder composition;
(Ii) contacting the powder composition uniformly with the surface of the fiber reinforcement;
(Iii) heating the powder composition under pressure to temporarily attach the fiber composition to the fiber reinforcing material to form a sheet-like material;
(Iv) It is manufactured by laminating a plurality of the sheet-like materials, heat-pressing, and fusing and integrating them,
There is a low specific gravity resin laminate having a specific gravity of 0.6 to 1.1, a bending strength of 100 MPa or more, and a compressive strength of 150 MPa or more.

また、本発明を好適に実施するために、前記熱硬化性樹脂が、ビスフェノール型エポキシ樹脂およびノボラック型エポキシ樹脂の混合物であり、該ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂の配合比が8/1〜1/1であることが望ましい。   In order to suitably carry out the present invention, the thermosetting resin is a mixture of a bisphenol type epoxy resin and a novolac type epoxy resin, and the blending ratio of the bisphenol A type epoxy resin / novolac type epoxy resin is 8 / It is desirable that it is 1-1 / 1.

本発明の低比重樹脂積層板の製造方法は、有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される低比重充填材を熱硬化性樹脂粉末に所要の割合で均一に分散した粉末組成物として、繊維製補強材に保持させることができるので、顕著な軽量化を図ることができ、また、バインダの付着量の調整も容易であるから、比重調整を容易に行なうことができる。従って、製造工程の効率が良く、バインダーの配合容易性によって製造コストの低減も図れることとなり、この発明の産業上の利用価値はきわめて高いものであるということができる。加えて、本発明の低比重樹脂積層板の製造方法においては、上記熱硬化性樹脂粉末の粒径を非常に小さくすることによって、外観や、電気特性、機械的強度および熱伝導率などの他の特性を損なうことなく、更に低比重の樹脂積層板を提供することができる。   The method for producing a low specific gravity resin laminate of the present invention comprises a powder composition in which a low specific gravity filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof is uniformly dispersed in a thermosetting resin powder at a required ratio. As a product, it can be held by a fiber reinforcing material, so that a significant weight reduction can be achieved, and the adjustment of the specific amount of the binder can be easily performed because the amount of the binder attached can be easily adjusted. Therefore, the efficiency of the manufacturing process is good, and the manufacturing cost can be reduced by the ease of blending of the binder, and it can be said that the industrial utility value of the present invention is extremely high. In addition, in the method for producing a low specific gravity resin laminate of the present invention, by making the particle size of the thermosetting resin powder very small, the appearance, electrical characteristics, mechanical strength, thermal conductivity, etc. A resin laminate having a lower specific gravity can be provided without impairing the above characteristics.

本発明の低比重樹脂積層板の製造方法の1つの態様を説明する製造工程の概略説明図である。It is a schematic explanatory drawing of the manufacturing process explaining one aspect of the manufacturing method of the low specific gravity resin laminated board of this invention. 図1のホットプレス機の要部概略説明図である。FIG. 2 is a schematic explanatory diagram of a main part of the hot press machine of FIG. 1. 図2のシート状材料の積層状態を示す概略説明図である。It is a schematic explanatory drawing which shows the lamination | stacking state of the sheet-like material of FIG. 本発明の低比重樹脂積層板の製造方法におけるシート状材料の他の積層状態を示す概略説明図である。It is a schematic explanatory drawing which shows the other lamination | stacking state of the sheet-like material in the manufacturing method of the low specific gravity resin laminated board of this invention. 本発明の低比重樹脂積層板の製造方法におけるシート状材料の更に他の積層状態を示す概略説明図である。It is a schematic explanatory drawing which shows the other laminated state of the sheet-like material in the manufacturing method of the low specific gravity resin laminated board of this invention.

前述のように、本発明は、
(i)(a)熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と
を均一に混合して粉体組成物を形成する工程、
(ii)該粉体組成物を繊維製補強材の表面に均一に接触させる工程、
(iii)該粉体組成物を加圧下で加熱して、該繊維製補強材に仮着してシート状材料を形成する工程、および
(iv)該シート状材料を複数枚積層し、加熱プレスして、融着一体化する工程
を含み、
該熱硬化性樹脂粉末が粒径1〜100μmを有することを特徴とする低比重樹脂積層板の製造方法に関する。
As mentioned above, the present invention
(I) (a) thermosetting resin powder;
(B) a step of uniformly mixing a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof to form a powder composition;
(Ii) a step of bringing the powder composition into uniform contact with the surface of the fiber reinforcing material;
(Iii) a step of heating the powder composition under pressure to temporarily attach the fiber composition to the fiber reinforcing material to form a sheet-like material; and (iv) laminating a plurality of the sheet-like materials, and heating press And including the step of fusing and integrating,
The thermosetting resin powder has a particle size of 1 to 100 μm, and relates to a method for producing a low specific gravity resin laminate.

以下、本発明の低比重樹脂積層板の製造方法を、工程(i)〜(iv)の順に、図面を参照して詳細に説明する。   Hereinafter, the manufacturing method of the low specific gravity resin laminated board of this invention is demonstrated in detail with reference to drawings in order of process (i)-(iv).

工程(i)
まず、工程(i)においては、(a)熱硬化性樹脂粉末と、(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材とを均一に混合して粉体組成物を形成する。上記混合を行う方法としては、混合時に上記バルーンが割れずに熱硬化性樹脂粉末と均一に混合できるものであれば特に限定されず、回転混合機など当業者に公知の混合機を用いることができる。
Step (i)
First, in step (i), (a) thermosetting resin powder and (b) a filler selected from the group consisting of organic balloons, inorganic balloons, and mixtures thereof are uniformly mixed to form a powder composition. Form things. The mixing method is not particularly limited as long as the balloon can be uniformly mixed with the thermosetting resin powder without cracking at the time of mixing, and a mixer known to those skilled in the art such as a rotary mixer may be used. it can.

(a)熱硬化性樹脂粉末
本発明の上記製造方法に用いる上記熱硬化性樹脂は、特にその種類を限定するものでなく、たとえば、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル樹脂、メラミン樹脂、熱硬化型のポリイミド樹脂その他の熱硬化性樹脂のそれぞれ単独または複数種混合した樹脂粉末が挙げられる。上記熱硬化性樹脂の中でも、積層板としての成形性や作業性、繊維製補強材との接着性、得られる積層板の電気絶縁性などがバランスよく優れるエポキシ樹脂が好ましい。
(A) Thermosetting resin powder The thermosetting resin used in the production method of the present invention is not particularly limited in its type. For example, phenol resin, epoxy resin, silicone resin, polyester resin, melamine resin, Examples thereof include resin powders, each of which is a thermosetting polyimide resin or other thermosetting resin, or a mixture of two or more of them. Among the above-mentioned thermosetting resins, an epoxy resin excellent in a good balance of moldability and workability as a laminate, adhesion to a fiber reinforcing material, and electrical insulation of the resulting laminate is preferable.

上記エポキシ樹脂として、常温で固体状であり粉末化可能なエポキシ樹脂であれば特に限定されないが、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAD型エポキシ樹脂などの2官能性のビスフェノール型エポキシ樹脂、およびフェノールノボラック、o‐クレゾールノボラック、m‐クレゾールノボラック、p‐クレゾールノボラックなどの多官能性のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられ、これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。上記ビスフェノール型エポキシ樹脂としてはビスフェノールA型エポキシ樹脂が好ましく、上記ノボラック型エポキシ樹脂としては、o‐クレゾールノボラックエポキシ樹脂が好ましい。   The epoxy resin is not particularly limited as long as it is solid at room temperature and can be pulverized, but bifunctional bisphenol types such as bisphenol A type, bisphenol F type, bisphenol S type, and bisphenol AD type epoxy resin. Examples include epoxy resins, and polyfunctional novolac type epoxy resins such as phenol novolak, o-cresol novolak, m-cresol novolak, and p-cresol novolak, and biphenyl type epoxy resins. Two or more kinds can be mixed and used. The bisphenol type epoxy resin is preferably a bisphenol A type epoxy resin, and the novolak type epoxy resin is preferably an o-cresol novolac epoxy resin.

本発明に用いる熱硬化性樹脂粉末は、粒径1〜100μmを有することを要件とするが、好ましくは10〜60μm、より好ましくは20〜40μmである。上記熱硬化性樹脂粉末の粒径が、1μm未満では低比重充填材との粒子径の差が大きく、均一な混合が難しく、また1μm未満への粉砕は、粉砕時に発生する熱による樹脂の溶融防止等のために、特別な設備が必要となり、粉砕工程に時間とコストがかかってしまう。また、100μmを超えると樹脂のかさ比重が高いために、低比重充填材との均一な混合に必要な樹脂量を減らすことができず、その結果、低比重充填材の配合割合を増加することができないため低比重樹脂積層板を製造できなくなる。本明細書中で用いられる熱硬化性樹脂粉末の粒径とは、株式会社堀場製作所製、レーザ回折/散乱式粒子径分布測定装置「Partica LA−950V2」を使用し、乾式法によって測定した平均粒径を意味する。   The thermosetting resin powder used in the present invention is required to have a particle size of 1 to 100 μm, preferably 10 to 60 μm, more preferably 20 to 40 μm. If the particle size of the thermosetting resin powder is less than 1 μm, the difference in particle size from the low specific gravity filler is large, making uniform mixing difficult, and pulverization to less than 1 μm is caused by melting of the resin due to heat generated during pulverization. For prevention, special equipment is required, and the grinding process takes time and cost. Moreover, since the bulk specific gravity of the resin exceeds 100 μm, the amount of resin necessary for uniform mixing with the low specific gravity filler cannot be reduced, and as a result, the blending ratio of the low specific gravity filler is increased. This makes it impossible to produce a low specific gravity resin laminate. The particle size of the thermosetting resin powder used in the present specification is an average measured by a dry method using a laser diffraction / scattering particle size distribution measuring device “Partica LA-950V2” manufactured by Horiba, Ltd. Means particle size.

上記のように、本発明に用いられる熱硬化性樹脂粉末は特定の粒径を有することを要件とするが、通常、フレークやビーズ形状で供給される熱硬化性樹脂を粉砕することによって、上記特定粒径に調節する。従って、粉砕のし易さから、上記熱硬化性樹脂の軟化点は、60〜120℃、好ましくは70〜110℃、より好ましくは80〜105℃であることが望ましい。上記熱硬化性樹脂の軟化点が、60℃より低いと粉砕時に発生する熱で樹脂が溶融して粉砕が困難となり、120℃より高いと繊維製補強材への仮着が不十分になる可能性がある。   As described above, the thermosetting resin powder used in the present invention is required to have a specific particle size, but usually, by pulverizing the thermosetting resin supplied in the form of flakes or beads, the above-mentioned Adjust to a specific particle size. Therefore, it is desirable that the softening point of the thermosetting resin is 60 to 120 ° C., preferably 70 to 110 ° C., more preferably 80 to 105 ° C. from the viewpoint of ease of pulverization. If the softening point of the thermosetting resin is lower than 60 ° C., the resin melts due to heat generated during pulverization and pulverization becomes difficult, and if it is higher than 120 ° C., temporary attachment to the fiber reinforcing material may be insufficient. There is sex.

また、上記熱硬化性樹脂としてエポキシ樹脂を用いる場合、プリプレグの作製時の加圧下での加熱工程や加熱プレス工程における成形性の優れたビスフェノール型エポキシ樹脂と、同等の軟化点を有していても、粉砕時のベトツキなどが少なく粉砕の容易さや耐熱性などの優れたノボラック型エポキシ樹脂を混合して用いることが好ましい。上記ビスフェノール型エポキシ樹脂(c)とノボラック型エポキシ樹脂(d)の配合比(c/d)は、8/1〜1/1、好ましくは6/1〜2/1、より好ましくは5/1〜3/1であることが望ましい。全エポキシ樹脂の質量をベースとして、上記ノボラック型エポキシ樹脂(d)が11.1質量%未満では得られる低比重樹脂積層板の耐熱性が低くなり、50質量%を超えると樹脂の溶融粘度が高くなりすぎて繊維製補強材への樹脂の含浸が不十分となる。   In addition, when an epoxy resin is used as the thermosetting resin, it has a softening point equivalent to that of a bisphenol-type epoxy resin having excellent moldability in a heating process or a heating press process under pressure at the time of producing a prepreg. However, it is preferable to mix and use a novolac type epoxy resin which has less stickiness at the time of pulverization and is excellent in ease of pulverization and heat resistance. The blending ratio (c / d) of the bisphenol type epoxy resin (c) and the novolak type epoxy resin (d) is 8/1 to 1/1, preferably 6/1 to 2/1, more preferably 5/1. It is desirable to be ˜3 / 1. Based on the mass of all epoxy resins, the heat resistance of the low specific gravity resin laminate obtained when the above novolac type epoxy resin (d) is less than 11.1% by mass is low, and when it exceeds 50% by mass, the melt viscosity of the resin is low. It becomes too high and the impregnation of the resin into the fiber reinforcement becomes insufficient.

本発明の低比重樹脂積層板の製造方法に用いる熱硬化性樹脂粉末(a)には、上記のようなエポキシ樹脂を用いる場合、硬化剤および硬化促進剤を含有する。上記硬化剤としては、ジシアンジアミド、m−フェニレンジアミンやジアミノジフェニルメタンなどのアミン類、無水フタル酸や無水トリメリット酸等の酸無水物類などが挙げられ、これらの中でも常温で固体状(粉末状)のものが好ましい。上記硬化剤の配合量は、当業者に公知のように、使用するエポキシ樹脂のエポキシ当量と硬化剤の活性水素量により算出する。これらは単独で用いてもよく、併用してもよい。   When using the epoxy resin as described above, the thermosetting resin powder (a) used in the method for producing the low specific gravity resin laminate of the present invention contains a curing agent and a curing accelerator. Examples of the curing agent include dicyandiamide, amines such as m-phenylenediamine and diaminodiphenylmethane, and acid anhydrides such as phthalic anhydride and trimellitic anhydride. Among these, solid (powder) at room temperature. Are preferred. As known to those skilled in the art, the blending amount of the curing agent is calculated from the epoxy equivalent of the epoxy resin used and the amount of active hydrogen in the curing agent. These may be used alone or in combination.

尚、上記のように熱硬化性樹脂として2種のエポキシ樹脂の混合物を用いる場合、両者を溶融混合または混練して均一な混合物とし、冷却したものを粉砕して、熱硬化性樹脂粉末を得る。そのような方法としては特に限定されず、混合機、混練ロール、押出機などの当業者に公知の方法を用いることができる。   In addition, when using the mixture of two types of epoxy resins as a thermosetting resin as mentioned above, both are melt-mixed or kneaded to make a uniform mixture, and the cooled one is pulverized to obtain a thermosetting resin powder. . Such a method is not particularly limited, and methods known to those skilled in the art such as a mixer, a kneading roll, and an extruder can be used.

(b)低比重充填材
また、本発明に用いる充填材としての有機質バルーンまたは無機質バルーンは、比重が0.05〜0.70の範囲であれば、その材質を特に限定するものでなく、合成樹脂、セルロースその他の有機質、シラス、ガラス、アルミナその他の無機質を材料として造粒時に極微泡を含有させたバルーン、たとえばプラスチックバルーン、ガラスバルーン、シラスバルーン、アルミナバルーンなどであって、積層板の用途に応じて、耐熱性、耐酸性、剛性、耐久性を備えたものを選択使用する。このうちガラスバルーンの粒径は、例えば、10〜120μmのものが好ましく、市販のものとしては住友スリーエム株式会社製の「グラスバブルズ」が挙げられる。また、ビニリデンクロライドとアクリロニトリルのコポリマーからなる有機質バルーンの粒径は、10〜100μm(中心値40〜60μm)を例示できる。このような有機質バルーンまたは無機質バルーンの粒径は、いずれのものでも粒度分布の範囲が狭いほど分散が均一で好ましいのは言うまでもない。
(B) Low specific gravity filler The organic balloon or inorganic balloon as the filler used in the present invention is not particularly limited as long as the specific gravity is in the range of 0.05 to 0.70. Balloons made of resin, cellulose and other organic materials, shirasu, glass, alumina and other inorganic materials that contain microbubbles during granulation, such as plastic balloons, glass balloons, shirasu balloons, alumina balloons, etc. Depending on the conditions, heat resistance, acid resistance, rigidity and durability are selected and used. Among these, the particle size of the glass balloon is preferably 10 to 120 μm, for example, and “Glass Bubbles” manufactured by Sumitomo 3M Limited is mentioned as a commercially available product. The particle size of the organic balloon made of a copolymer of vinylidene chloride and acrylonitrile can be 10 to 100 μm (center value 40 to 60 μm). It goes without saying that the particle size of such organic balloons or inorganic balloons is more uniform and preferable as the particle size distribution range is narrower.

前記した熱硬化性樹脂粉末(a)とガラスバルーン(b)の配合割合(a/b)は、質量比で、2/1〜0.8/1、好ましくは1.8/1〜1/1、より好ましくは1.5/1〜1/1であることが望ましい。上記配合割合(a/b)が、2/1より大きいと(ガラスバルーンが33.3質量%より少ないと)ガラスバルーンが少なくなりすぎて得られる低比重樹脂積層板の軽量化が十分に行えず、0.8/1より小さいと(ガラスバルーンが55.6質量%より多いと)ガラスバルーンと繊維製補強材とを十分に繋ぎとめるだけの樹脂が不足して機械的強度が低下する等、十分な物性が得られなくなる。   The blending ratio (a / b) of the thermosetting resin powder (a) and the glass balloon (b) described above is 2/1 to 0.8 / 1, preferably 1.8 / 1 to 1/1 / by mass ratio. 1, more preferably 1.5 / 1 to 1/1. When the blending ratio (a / b) is greater than 2/1 (when the glass balloon is less than 33.3% by mass), the weight of the low specific gravity resin laminate obtained by reducing the glass balloon can be sufficiently reduced. However, if it is smaller than 0.8 / 1 (if the glass balloon is more than 55.6% by mass), there is insufficient resin to sufficiently bond the glass balloon and the fiber reinforcing material, and the mechanical strength is lowered. Therefore, sufficient physical properties cannot be obtained.

工程(ii)
工程(ii)において、上記工程(i)において得られた上記粉体組成物を繊維製補強材の表面に均一に接触させる。そのような方法としては、例えば、上記繊維製補強材の表面に上記粉体組成物を載せて、スキージ板などを用いて粉体組成物層が一定の厚さとなるように余分な粉体組成物を掻き取ったり、均一な高さに調整したギャップを通過させたりすることによって行うことができる。上記粉体組成物層の厚さは、次の工程(iii)で得られるシート状材料の所望の厚さによって適宜調整する。
Step (ii)
In step (ii), the powder composition obtained in step (i) is uniformly contacted with the surface of the fiber reinforcing material. As such a method, for example, the powder composition is placed on the surface of the fiber reinforcing material, and an excess powder composition is used so that the powder composition layer has a certain thickness using a squeegee plate or the like. This can be done by scraping an object or passing through a gap adjusted to a uniform height. The thickness of the powder composition layer is appropriately adjusted depending on the desired thickness of the sheet-like material obtained in the next step (iii).

この発明に用いる繊維製補強材は、ガラス繊維、カーボン繊維、ロックウール、金属繊維等の無機繊維もしくはウィスカまたは綿、麻その他の天然繊維もしくは合成繊維からなる有機質繊維をその材料としてシート状の編織布または不織布としたものであって、成形後に所要の機械的強度を有するものが好ましい。更に、上記繊維製補強材としては、得られる積層板の強度、電気特性、熱的特性などから、ガラス繊維の織布、即ち、ガラスクロスが好ましい。   The fiber reinforcing material used in the present invention is a sheet-like knitted fabric made of inorganic fibers such as glass fibers, carbon fibers, rock wool, metal fibers, or whiskers, or organic fibers made of cotton, hemp or other natural fibers or synthetic fibers. A cloth or non-woven fabric having a required mechanical strength after molding is preferable. Further, the fiber reinforcing material is preferably a glass fiber woven fabric, that is, a glass cloth, in view of the strength, electrical characteristics, thermal characteristics, and the like of the resulting laminate.

工程(iii)
工程(iii)において、上記粉体組成物を加圧下で加熱して、上記繊維製補強材に仮着してシート状材料を形成する。上記工程(ii)において得られた粉体組成物を表面に均一に接触させた繊維製補強材を、例えば加熱加圧ロール間を通過させることによって、上記粉体組成物を上記繊維製補強材に仮着する。上記加熱加圧ロールの温度範囲は60〜160℃、好ましくは80〜150℃、より好ましくは100〜150℃であり、線圧は2〜40N/cm、好ましくは5〜30N/cm、より好ましくは10〜25N/cmである。上記加熱加圧ロールの温度が、60℃未満では、熱硬化性樹脂粉末が溶融しないため、繊維製補強材に仮着できず、160℃を超えると加熱加圧ロール通過中に硬化反応が進行し過ぎてしまう。例えば熱硬化性樹脂としてエポキシ樹脂を選択した場合は約140℃が適温といえる。上記加熱加圧ロールの線圧が、2N/cm未満では、粉体組成物に十分に熱が伝わらないために繊維製補強材に仮着できず、40N/cmを超えると繊維製補強材表面に接触させた粉体組成物が崩れてしまい、均一な厚さでなくなる。
Step (iii)
In the step (iii), the powder composition is heated under pressure and temporarily attached to the fiber reinforcing material to form a sheet-like material. By passing the fiber reinforcement obtained by uniformly contacting the surface of the powder composition obtained in the step (ii), for example, between heating and pressing rolls, the powder composition is made to be the fiber reinforcement. Temporarily wear. The temperature range of the heating and pressing roll is 60 to 160 ° C, preferably 80 to 150 ° C, more preferably 100 to 150 ° C, and the linear pressure is 2 to 40 N / cm, preferably 5 to 30 N / cm, more preferably. Is 10 to 25 N / cm. When the temperature of the heating and pressing roll is less than 60 ° C., the thermosetting resin powder does not melt, so it cannot be temporarily attached to the fiber reinforcing material. When the temperature exceeds 160 ° C., the curing reaction proceeds while passing through the heating and pressing roll. Too much. For example, when an epoxy resin is selected as the thermosetting resin, an appropriate temperature is about 140 ° C. If the linear pressure of the heating and pressing roll is less than 2 N / cm, heat cannot be sufficiently transferred to the powder composition, so that it cannot be temporarily attached to the fiber reinforcement, and if it exceeds 40 N / cm, the surface of the fiber reinforcement The powder composition brought into contact with the material collapses, and the thickness is not uniform.

工程(iv)
工程(iv)において、上記工程(iii)において得られたシート状材料を複数枚積層し、加熱プレスして、融着一体化することによって、本発明の低比重樹脂積層板を作製する。上記のように加熱プレスする装置としては、例えば図1に示すようなホットプレス機を用いる。上記ホットプレス機12は、複数の加熱加圧盤13を積み重ねた構造であり、それぞれの間に、図2および図3に示すようにシート状材料Pを複数枚積層配置して、2〜8MPa、好ましくは3〜7MPa、より好ましくは4〜6MPaの圧力下で、130〜180℃、好ましくは150〜180℃、より好ましくは160〜175℃に加熱し、これらを融着一体化する。
Step (iv)
In step (iv), a plurality of the sheet-like materials obtained in the above step (iii) are laminated, heat-pressed, and fused and integrated to produce the low specific gravity resin laminate of the present invention. As an apparatus for performing heat pressing as described above, for example, a hot press machine as shown in FIG. 1 is used. The hot press 12 has a structure in which stacked plurality of heating the pressing plates 13, between each, arranged stacking a plurality sheet material P 2 as shown in FIGS. 2 and 3, 2 to 8 MPa The mixture is heated to 130 to 180 ° C, preferably 150 to 180 ° C, more preferably 160 to 175 ° C under a pressure of 3 to 7 MPa, more preferably 4 to 6 MPa, and these are fused and integrated.

上記圧力が、2MPa未満ではシート状材料が互いに十分に接着しないために所望の物性が得られず、8MPaを超えると低比重充填材が破壊する可能性が高くなる。上記加熱温度が、130℃より低いとシート状材料に十分な熱が伝わらず、硬化不足になる可能性があり、また成形時間が長くなるため生産性が悪くなり、180℃より高いと樹脂の溶融粘度が低くなり過ぎて成形条件のコントロールが難しくなる。例えばエポキシ樹脂を選択使用すれば、175℃が適温である。   If the pressure is less than 2 MPa, the sheet-like materials do not sufficiently adhere to each other, so that desired physical properties cannot be obtained. If the pressure exceeds 8 MPa, the low specific gravity filler is likely to break. If the heating temperature is lower than 130 ° C., sufficient heat is not transmitted to the sheet-like material, which may result in insufficient curing. Also, the molding time becomes longer, resulting in poor productivity. The melt viscosity becomes too low, making it difficult to control the molding conditions. For example, if an epoxy resin is selectively used, 175 ° C. is an appropriate temperature.

図3に示す上記シート状材料Pを複数枚積層して得られる積層板の成形に際しては、シート状材料Pを所望の成形品に重量換算し、その換算量に相当する枚数のシート状材料Pを重ねて加熱加圧盤13間に収容する。このとき、成形品の平面精度をより高める必要のある場合には、図2に示す加熱加圧盤13とシート状材料Pとの間に鏡面板14を介して挾持してもよい。このようにしてホットプレス機12による加熱成形を経たシート状材料Pの積層体は、次に、図1に示す切断機15によって所定の大きさに切断し、最終製品である低比重樹脂積層板Aを得ることができる。 In the molding of the laminate obtained by laminating plural sheets of the sheet-like material P 2 shown in FIG. 3, the sheet material P 2 is the weight converted into the desired shaped article, the number of sheet to be equivalent to the equivalent amount overlapping material P 2 accommodated between heated press plate 13. At this time, when it is necessary to improve the planar precision of the molded article may be clamped via a mirror plate 14 between the heating platen 13 and the sheet-like material P 2 shown in FIG. Thus the sheet material P 2 of a laminate subjected to heat forming by a hot press 12 is then cut into a predetermined size by the cutting machine 15 shown in FIG. 1, a low specific gravity resin laminate which is the final product Plate A can be obtained.

また、上記工程(iv)において、上記シート状材料を複数枚積層すると共に、その最上層、最下層およびこれらの中間層から選ばれる1以上の層に、繊維製補強材に熱硬化性樹脂を含浸したプリプレグシートを積層し、加熱プレスして、融着一体化することが好ましい。上記繊維製補強材に熱硬化性樹脂を含浸したプリプレグシートとは、本発明の上記シート状材料とは異なって低比重充填材を含まず、かつ上記繊維製補強材を粉体組成物ではなく熱硬化性樹脂溶液に含浸して得られたプリプレグであり、上記シート状材料より高い機械的強度を得られる積層板に付与するものである。   In the step (iv), a plurality of the sheet-like materials are laminated, and one or more layers selected from the uppermost layer, the lowermost layer, and an intermediate layer thereof are coated with a thermosetting resin on the fiber reinforcement. It is preferable to laminate the impregnated prepreg sheets, heat-press them, and fuse and integrate them. Unlike the sheet-like material of the present invention, the prepreg sheet in which the fiber reinforcement is impregnated with a thermosetting resin does not contain a low specific gravity filler, and the fiber reinforcement is not a powder composition. It is a prepreg obtained by impregnating a thermosetting resin solution, and is applied to a laminate that can obtain higher mechanical strength than the sheet-like material.

例えば、図4に示すように、シート状材料Pを複数枚積層配置した際、最上層および最下層に繊維製補強材に熱硬化性樹脂を含浸したプリプレグシートPを積層し、得られる積層板Aの機械的強度を高めてもよい。また、図5に示すように、複数枚積層したシート状材料Pの中間層に更にプリプレグシートPを積層し、得られる積層板Aの機械的強度を更に高めてもよい。 For example, as shown in FIG. 4, when the sheet material P 2 are arranged plurally stacked, laminated prepreg sheets P 3 impregnated with a thermosetting resin to textile reinforcement in the top layer and bottom layer, obtained the mechanical strength of the laminated plate a 1 may be enhanced. Further, as shown in FIG. 5, further laminating a prepreg sheet P 3 to the intermediate layer of the sheet material P 2 in which a plurality of sheets laminated, the mechanical strength of the laminated plate A 2 obtained may further enhance.

前述のように、ガラス繊維を補強材にした合成樹脂積層板の比重が約1.8〜2.0であるのに対して、本発明の低比重樹脂積層板の製造方法によって得られた上記積層板は、比重0.6〜1.1、好ましくは0.7〜1.05を有する。   As described above, the specific gravity of the synthetic resin laminate using glass fiber as a reinforcing material is about 1.8 to 2.0, whereas the above-mentioned obtained by the method for producing a low specific gravity resin laminate of the present invention. The laminate has a specific gravity of 0.6 to 1.1, preferably 0.7 to 1.05.

また、本発明の低比重樹脂積層板の製造方法によって得られた上記積層板は、曲げ強さ100MPa以上、好ましくは110MPa以上、より好ましくは120MPa以上を有する。上記曲げ強さが100MPa未満では、前述のような自動車や鉄道車両などに使用される材料として適さない。上記曲げ強さの上限値は大きいほど上記用途には好ましいが、上記積層板の材料の配合量や割合などから250MPa以下である。上記曲げ強さの測定方法は、JIS K 6911に準拠して行った。   Moreover, the said laminated board obtained by the manufacturing method of the low specific gravity resin laminated board of this invention has bending strength of 100 MPa or more, Preferably it is 110 MPa or more, More preferably, it is 120 MPa or more. If the bending strength is less than 100 MPa, it is not suitable as a material used for the automobiles and railway vehicles as described above. The higher the upper limit of the bending strength, the better for the above application, but it is 250 MPa or less from the blending amount and ratio of the material of the laminate. The bending strength was measured in accordance with JIS K 6911.

更に、本発明の低比重樹脂積層板の製造方法によって得られた上記積層板は、圧縮強さ150MPa以上、好ましくは160MPa以上、より好ましくは180MPa以上を有する。上記圧縮強さが150MPa未満では、前述のような自動車や鉄道車両などに使用される材料として適さない。また、上記圧縮強さは大きいほど上記用途には好ましいが、上記積層板の材料の配合量や割合などから300MPa以下である。上記圧縮強さの測定方法は、JIS K 6911に準拠して行った。   Furthermore, the laminate obtained by the method for producing a low specific gravity resin laminate of the present invention has a compressive strength of 150 MPa or more, preferably 160 MPa or more, more preferably 180 MPa or more. When the compressive strength is less than 150 MPa, it is not suitable as a material used for the automobiles and railway vehicles as described above. Moreover, although the said compressive strength is so preferable that it is the said use, it is 300 Mpa or less from the compounding quantity of the material of the said laminated board, a ratio, etc. The compressive strength was measured according to JIS K 6911.

本発明の低比重樹脂積層板の製造方法では、(a)熱硬化性樹脂粉末と、(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される低比重充填材とからなるバインダが粉体組成物であるため、低比重充填材が樹脂溶液中で浮いてしまい不均一になるということがなく、混合割合に拘らず、これらが相溶性よく均一分散し、繊維製シート状補強材に保持され易い。また、このような保持を行なうとき、補強材表面に前記バインダを付着させた後、加熱および加圧下に仮着しており、バインダの厚みを前記付着時に変更するだけで、その後に成形される樹脂積層板の比重を調整することができる。更に、本発明の低比重樹脂積層板の製造方法では、上記粉体組成物に用いられる上記熱硬化性樹脂粉末の粒径を従来のものより非常に小さい特定範囲内に規定することにより、外観や、電気特性、機械的強度および熱伝導率などのその他の特性を損なうことなく、更に低比重の樹脂積層板を提供することができる。   In the method for producing a low specific gravity resin laminate of the present invention, a binder comprising (a) a thermosetting resin powder and (b) a low specific gravity filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof. Is a powder composition, so that the low specific gravity fillers do not float in the resin solution and become non-uniform, regardless of the mixing ratio, they are uniformly dispersed with good compatibility, and the fiber sheet reinforcement Easy to hold on the material. Further, when performing such holding, after the binder is attached to the surface of the reinforcing material, the binder is temporarily attached under heating and pressurization, and the thickness of the binder is changed at the time of the attachment, and then molded. The specific gravity of the resin laminate can be adjusted. Furthermore, in the method for producing a low specific gravity resin laminate of the present invention, by defining the particle size of the thermosetting resin powder used in the powder composition within a specific range much smaller than the conventional one, In addition, a resin laminate having a lower specific gravity can be provided without impairing other characteristics such as electrical characteristics, mechanical strength, and thermal conductivity.

(i)熱硬化性樹脂粉末(a)の作製
以下の表1〜2に示すエポキシ樹脂AおよびB並びに硬化剤を二軸押出機(シンシナティーエクストルージョン株式会社製の「TITAN−45」)を用いて混練し、冷却して、ペレット状の熱硬化性樹脂組成物を形成し、粉砕機(東京アトマイザー製造株式会社製「ミルスターダム」)を用いて粉砕して熱硬化性樹脂粉末を得た。得られた熱硬化性樹脂粉末の粒径を同表に示す。
(I) Preparation of thermosetting resin powder (a) Epoxy resins A and B shown in Tables 1 and 2 below and a curing agent were twin-screw extruder (“TITAN-45” manufactured by Cincinnati Extrusion Co., Ltd.) Kneaded and cooled to form a pellet-shaped thermosetting resin composition, and pulverized using a pulverizer (“Milstar Dam” manufactured by Tokyo Atomizer Manufacturing Co., Ltd.) to produce a thermosetting resin powder. Obtained. The particle size of the obtained thermosetting resin powder is shown in the same table.

Figure 2013056473
Figure 2013056473

Figure 2013056473


(注1)新日鐵化学株式会社から商品名「YD−012」で市販されているビスフェノールA型エポキシ樹脂(エポキシ当量750g/eq、軟化点80℃)
(注2)新日鐵化学株式会社から商品名「YDCN−700−10」で市販されているo−クレゾールノボラック型エポキシ樹脂(エポキシ当量206g/eq、軟化点80℃)
(注3)エアープロダクツジャパン株式会社から商品名「アミキュアCG−325」で市販されているジシアンジアミド硬化剤
(注4)住友スリーエム株式会社から商品名「グラスバブルズ」で市販されているガラスバルーン(粒径40μm、比重0.38)
(注6)樹脂含有率(R.C.):積層板の全重量(熱硬化性樹脂粉末+充填材+繊維製補強材)に対する上記熱硬化性樹脂粉末(a)の配合割合
Figure 2013056473


(Note 1) Bisphenol A type epoxy resin marketed by Nippon Steel Chemical Co., Ltd. under the trade name “YD-012” (epoxy equivalent 750 g / eq, softening point 80 ° C.)
(Note 2) o-cresol novolac type epoxy resin marketed by Nippon Steel Chemical Co., Ltd. under the trade name “YDCN-700-10” (epoxy equivalent 206 g / eq, softening point 80 ° C.)
(Note 3) Dicyandiamide curing agent marketed by Air Products Japan Co., Ltd. under the trade name “Amicure CG-325” (Note 4) Glass balloon marketed by Sumitomo 3M Co., Ltd. under the trade name “Glass Bubbles” Particle size 40μm, specific gravity 0.38)
(Note 6) Resin content (RC): blending ratio of the thermosetting resin powder (a) with respect to the total weight of the laminate (thermosetting resin powder + filler + fiber reinforcing material)

(ii)低比重樹脂積層板の製造
図1に示す製造装置を用いて、まず、ウェブ状のガラス繊維織布からなる繊維製補強材P(日東紡績株式会社から商品名「WEA26」で市販されているガラスクロスを3〜4m/分の一定速度でロール体1から繰り出し、上下面開口の枠型容器2の下面に沿わせてテンションがかる状態で進行させる。このとき補強材Pの下面にはロール体3から引き出されたポリエステル製剥離シートSを同じくテンションがかかる状態で密接させ、上記補強材Pと同じ速度で移送した。枠型容器2の上方には、ホッパー4、さらに上方には回転式混合機5が設置されており、上記回転式混合機5中に、上記(i)で作製した熱硬化性樹脂粉末(a)と低比重充填材(b)を入れて均一に混合して粉体組成物Mを作製した。得られた粉体組成物Mを、ホッパー4を通って、枠型容器2内に連続的に供給した。
(Ii) Production of Low Specific Density Resin Laminate Using the production apparatus shown in FIG. 1, first, a fiber reinforcing material P made of a web-like glass fiber woven fabric (commercially available from Nitto Boseki Co., Ltd. under the trade name “WEA26”) The glass cloth is fed out from the roll body 1 at a constant speed of 3 to 4 m / min, and is advanced in a tensioned state along the lower surface of the frame-type container 2 having an opening on the upper and lower surfaces. the polyester release sheet S 1 pulled out from the roll body 3 was also closely tension in such a state, above the said reinforcing material was transferred at the same rate as P. frame type container 2, a hopper 4, and more upward A rotary mixer 5 is installed, and the thermosetting resin powder (a) and the low specific gravity filler (b) prepared in (i) above are put into the rotary mixer 5 and mixed uniformly. Thus, a powder composition M was produced. The obtained powder composition M was continuously supplied into the frame container 2 through the hopper 4.

枠型容器2の下流側の端部には上記補強材Pの幅方向にわたって均一な高さ(1.4mm)に調整した厚み制御ギャップ6が形成されており、上記補強材Pの表面に厚さ約1.13mmの粉体組成物層を均一に形成した。厚み制御ギャップ6は、容器2の下流側の側面を上下方向にスライド可能としてその高さを変えることにより、所望の厚みに粉体組成物層を適宜調整できるようになっている。また、別途剥離シートSをロール体7から引き出して、粉体組成物層上面に添着した。 A thickness control gap 6 adjusted to a uniform height (1.4 mm) over the width direction of the reinforcing material P is formed at the downstream end of the frame container 2, and the thickness of the reinforcing material P is thick on the surface of the reinforcing material P. A powder composition layer having a thickness of about 1.13 mm was uniformly formed. The thickness control gap 6 is configured such that the powder composition layer can be appropriately adjusted to a desired thickness by changing the height so that the downstream side surface of the container 2 can slide in the vertical direction. Also, pull separately release sheet S 2 from the roll body 7 was affixed to the powder composition layer top surface.

このようにして得られた均一な粉体組成物層を有するウェブ状の上記補強材Pは、剥離シートSおよびSで上下面を挟まれた状態で、140℃に加熱された一対の加熱ロール8および9の周面に通過させ、加圧ロール10による線圧20N/cmの加圧下で加熱した。このとき、粉体組成物中のエポキシ樹脂は部分的に溶融してガラスバルーンと一体化した状態でウェブ状の上記補強材Pに一部含浸しながら固着され、半硬化状態のプリプレグPが形成された。 The web-shaped reinforcing material P having a uniform powder composition layer thus obtained is a pair of heated to 140 ° C. with the upper and lower surfaces sandwiched between release sheets S 1 and S 2 . It passed through the peripheral surfaces of the heating rolls 8 and 9 and heated under a pressure of 20 N / cm of linear pressure by the pressure roll 10. At this time, the epoxy resin in the powder composition is partially melted and fixed to the web-like reinforcing material P while being partly impregnated with the glass balloon, so that a semi-cured prepreg P 1 is obtained. Been formed.

プリプレグPは2枚の刃が対抗して接離する切断装置11によって、所定の大きさ(1000mm×1000mm)の方形状に切断してシート状材料Pとし、剥離シートS、Sを剥してから、上記シート状材料P複数枚を積層してホットプレス機12に収容して融着成形した。 The prepreg P 1 is cut into a rectangular shape with a predetermined size (1000 mm × 1000 mm) by a cutting device 11 in which two blades face each other, and is formed into a sheet-like material P 2, and release sheets S 1 , S 2 from peeled off, was fused molded accommodated in hot press 12 by laminating a 2 plurality said sheet material P.

図1に示すようにホットプレス機12は、複数の加熱加圧盤13を積み重ねた構造であり、それぞれの間にシート状材料Pを7枚積層配置して5MPaの圧力下で175℃に加熱し、これらを融着一体化した。 Hot press, as shown in FIG. 1 12 has a structure in which stacked plurality of heating the pressing plates 13, heating the sheet material P 2 7 sheets stacked to the 175 ° C. under a pressure of 5MPa between each These were fused and integrated.

このようにしてホットプレス12による加熱成形を経たシート状材料Pの積層体は、つぎに切断機15によって所定の大きさに切断され、最終製品である樹脂積層板Aを得た。 Thus the sheet material P 2 of a laminate subjected to heat forming by a hot press 12 is then by cutting machine 15 is cut into a predetermined size to obtain a resin laminated plate A is the final product.

また、図1に示すように、剥離シートSおよびSは、無端環状として、それぞれ加圧ロール10または加熱ロール9の周面を経由するよう周回させると、これらをプリプレグPの上下面から自動的に剥すことができ、しかも剥離シートS、Sの再使用によって生産コストが低減する。なお、上記した剥離シートS、Sはポリエステル製のものを示したが、その他の合成樹脂製または紙であってよいのはもちろんである。 Further, as shown in FIG. 1, when the release sheets S 1 and S 2 are endless annular and are circulated through the peripheral surface of the pressure roll 10 or the heating roll 9, respectively, the upper and lower surfaces of the prepreg P 1 are provided. Can be automatically peeled off, and the production cost is reduced by reusing the release sheets S 1 and S 2 . The release sheet S 1, S 2 described above showed a made of polyester, the may be other synthetic resin or paper, as a matter of course.

得られた上記樹脂積層板の比重、絶縁抵抗(常態および煮沸後)、曲げ強さ、圧縮強さ、吸水率および熱伝導率を測定して、それらの結果を以下の表3〜4に示す。熱伝導率の測定はASTM D4351に準拠し、芝山式(アセトン‐ベンゼン法)により行い、その他の測定方法は、JIS K 6911に準拠して行った。   The specific gravity, insulation resistance (normal state and after boiling), bending strength, compressive strength, water absorption and thermal conductivity of the obtained resin laminate were measured, and the results are shown in Tables 3 to 4 below. . The thermal conductivity was measured according to ASTM D4351 and the Shibayama method (acetone-benzene method), and the other measurement methods were performed according to JIS K 6911.

(試験結果)

Figure 2013056473
(Test results)
Figure 2013056473

Figure 2013056473
Figure 2013056473

実施例1の本発明の樹脂積層板は、熱硬化性樹脂粉末の粒径が大きい以外は同様にして作製した比較例1の従来の樹脂積層板と比べて、比重は同等でも、曲げ強さ、圧縮強さ、絶縁抵抗(常態および煮沸後)、吸水率などの他の物性が非常に優れたものとなった。   The resin laminate of the present invention of Example 1 has the same specific gravity and the same bending strength as the conventional resin laminate of Comparative Example 1 except that the particle size of the thermosetting resin powder is large. , Other physical properties such as compressive strength, insulation resistance (normal and after boiling), water absorption, etc. were very excellent.

また、実施例2〜4の本発明の樹脂積層板は、比較例の従来の樹脂積層板と比べて、絶縁抵抗(常態および煮沸後)、曲げ強さ、圧縮強さおよび吸水率などの他の特性を損なうことなく、熱伝導率は小さくなり、比重が非常に低くなっていることがわかる。   In addition, the resin laminates of the present invention in Examples 2 to 4 have other insulation resistance (normal state and after boiling), bending strength, compressive strength, water absorption rate, and the like than the conventional resin laminates of Comparative Examples. It can be seen that the thermal conductivity is small and the specific gravity is very low without impairing the characteristics.

更に、粉体組成物の塗布量を増加した以外は実施例4と同様にして作製した実施例5の本発明の樹脂積層板は、煮沸後の絶縁抵抗、曲げ強さおよび吸水率が若干低下しているものの、熱伝導率が更に低く断熱性に優れ、比重が0.83と更に非常に低い値を示し、大きな軽量化が可能となった。また、熱硬化性樹脂粉末の粒径を変更した以外は実施例5と同様にして作製した実施例6〜7の本発明の樹脂積層板も、煮沸後の絶縁抵抗、曲げ強さおよび吸水率が若干低下しているものの、熱伝導率が低く断熱性に優れ、比重が0.83と更に非常に低い値を示し、大きな軽量化が可能となった。   Furthermore, the resin laminate of the invention of Example 5 produced in the same manner as Example 4 except that the coating amount of the powder composition was increased, the insulation resistance, bending strength and water absorption after boiling were slightly reduced. However, the thermal conductivity is further low, the thermal insulation is excellent, the specific gravity is 0.83, which is a very low value, and a large weight reduction is possible. Also, the resin laminates of the present inventions of Examples 6 to 7 produced in the same manner as Example 5 except that the particle size of the thermosetting resin powder was changed were also the insulation resistance after boiling, bending strength and water absorption rate. However, the thermal conductivity was low and the heat insulation was excellent, the specific gravity was 0.83, which was a very low value, and a large weight reduction was possible.

比較例1は、熱硬化性樹脂粉末の粒径が大きいため、熱硬化性樹脂粉末の粒径が小さい以外は同様にして作製した実施例1の樹脂積層板と比較すると、比重値は同等であるが、上記他の物性が非常に劣るものとなっており、
比較例2は、熱硬化性樹脂粉末の粒径が小さい以外は同様にして作製した実施例5の樹脂積層板と比較すると、熱硬化性樹脂粉末の粒径が大きいため、粉体組成物を繊維製補強材に仮着するバインダー量が不足し、シート状材料を作製できず、成形できなかった(従って、特性評価ができなかった)。
Since the comparative example 1 has a large particle size of the thermosetting resin powder, the specific gravity value is equivalent when compared with the resin laminate of Example 1 prepared in the same manner except that the particle size of the thermosetting resin powder is small. There are other physical properties that are very inferior,
In Comparative Example 2, the particle size of the thermosetting resin powder is large compared to the resin laminate of Example 5 prepared in the same manner except that the particle size of the thermosetting resin powder is small. The amount of the binder temporarily attached to the fiber reinforcing material was insufficient, and a sheet-like material could not be produced and molded (thus, the characteristic evaluation could not be performed).

比較例3は、熱硬化性樹脂粉末の粒径が110μmと大きく、熱硬化性樹脂粉末の粒径が小さい以外は同様にして作製した実施例5〜7の樹脂積層板と比較すると、比重値および熱伝導率値は同等であるが、その他の特性が非常に劣るものとなっており、また粉体組成物の繊維製補強材への仮着が不十分であるため、ハンドリング性が悪く、生産性に劣るものとなった。   Comparative Example 3 has a specific gravity value as compared with the resin laminates of Examples 5 to 7 prepared in the same manner except that the particle size of the thermosetting resin powder is as large as 110 μm and the particle size of the thermosetting resin powder is small. And the thermal conductivity values are equivalent, but other properties are very inferior, and because the temporary attachment to the fiber reinforcement of the powder composition is insufficient, the handling properties are poor, Productivity was inferior.

また、熱硬化性樹脂粉末の粒径を0.5μmで粉砕しようとした結果、粉砕時に発生する熱により、樹脂が溶融したため粉砕できなかった。   Further, as a result of trying to grind the particle size of the thermosetting resin powder to 0.5 μm, the resin was melted by the heat generated at the time of pulverization and could not be pulverized.

即ち、本発明の低比重樹脂積層板の製造方法を用いることによって、従来の積層板の製造方法では製造できなかった上記実施例5〜7の比重0.83の積層板が製造可能となったのである。   That is, by using the method for producing a low specific gravity resin laminate of the present invention, it became possible to produce a laminate having a specific gravity of 0.83 in Examples 5 to 7 that could not be produced by the conventional laminate production method. It is.

P … 繊維製補強材
… プリプレグ
… シート状材料
… 低比重充填材を含まない繊維製補強材を熱硬化性樹脂溶液に含浸して得られたプリプレグ
M … 粉体組成物
A、A、A … 低比重樹脂積層板
、S … 剥離シート
1 … 繊維製補強材ロール体
2 … 枠型容器
3、7 … 剥離シートロール体
4 … ホッパー
5 … 回転式混合機
6 … 厚さ制御ギャップ
8、9 … 加熱ロール
10 … 加圧ロール
11 … 切断装置
12 … ホットプレス機
13 … 加熱加圧盤
14 … 鏡面板
15 … 切断機
P ... Fiber reinforcing material P 1 ... Prepreg P 2 ... Sheet-like material P 3 ... Prepreg obtained by impregnating a thermosetting resin solution with a fiber reinforcing material not containing a low specific gravity filler M ... Powder composition A, A 1 , A 2 ... low specific gravity resin laminate S 1 , S 2 ... release sheet 1 ... fiber reinforcing material roll body 2 ... frame-type container 3, 7 ... release sheet roll body 4 ... hopper 5 ... rotary mixing Machine 6 ... Thickness control gap 8, 9 ... Heating roll 10 ... Pressure roll 11 ... Cutting device 12 ... Hot press machine 13 ... Heating and pressing panel 14 ... Mirror plate 15 ... Cutting machine

Claims (8)

(i)(a)熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と
を均一に混合して粉体組成物を形成する工程、
(ii)該粉体組成物を繊維製補強材の表面に均一に接触させる工程、
(iii)該粉体組成物を加圧下で加熱して、該繊維製補強材に仮着してシート状材料を形成する工程、および
(iv)該シート状材料を複数枚積層し、加熱プレスして、融着一体化する工程
を含み、
該熱硬化性樹脂粉末が粒径1〜100μmを有することを特徴とする低比重樹脂積層板の製造方法。
(I) (a) thermosetting resin powder;
(B) a step of uniformly mixing a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof to form a powder composition;
(Ii) a step of bringing the powder composition into uniform contact with the surface of the fiber reinforcing material;
(Iii) a step of heating the powder composition under pressure to temporarily attach the fiber composition to the fiber reinforcing material to form a sheet-like material; and (iv) laminating a plurality of the sheet-like materials, and heating press And including the step of fusing and integrating,
The method for producing a low specific gravity resin laminate, wherein the thermosetting resin powder has a particle size of 1 to 100 μm.
前記工程(iv)において、前記シート状材料を複数枚積層すると共に、その最上層、最下層およびこれらの中間層から選ばれる1以上の層に繊維製補強材に熱硬化性樹脂を含浸したプリプレグシートを積層し、加熱プレスして、融着一体化する請求項1記載の製造方法。   In the step (iv), a plurality of the sheet-like materials are laminated, and at least one layer selected from the uppermost layer, the lowermost layer and an intermediate layer thereof is impregnated with a thermosetting resin in a fiber reinforcing material. The manufacturing method according to claim 1, wherein the sheets are laminated, heat-pressed, and fused and integrated. 前記熱硬化性樹脂が、ビスフェノール型エポキシ樹脂およびノボラック型エポキシ樹脂の混合物である請求項1記載の製造方法。   The method according to claim 1, wherein the thermosetting resin is a mixture of a bisphenol type epoxy resin and a novolac type epoxy resin. 前記ビスフェノール型エポキシ樹脂が軟化点60〜120℃およびエポキシ当量450〜2000)を有し、前記ノボラック型エポキシ樹脂が軟化点60〜120℃を有し、該ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂の配合比が8/1〜1/1である請求項3記載の製造方法。   The bisphenol type epoxy resin has a softening point of 60 to 120 ° C. and an epoxy equivalent of 450 to 2000), the novolac type epoxy resin has a softening point of 60 to 120 ° C., and the bisphenol A type epoxy resin / novolac type epoxy resin The manufacturing method of Claim 3 whose compounding ratio of is 8/1-1/1. 請求項1〜4のいずれか1項記載の製造方法により製造される低比重樹脂積層板。   The low specific gravity resin laminated board manufactured by the manufacturing method of any one of Claims 1-4. (a)熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と、
(c)繊維製補強材と
を含有し、比重0.6〜1.1、曲げ強さ100MPa以上および圧縮強さ150MPa以上を有することを特徴とする低比重樹脂積層板。
(A) a thermosetting resin powder;
(B) a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof;
(C) A low specific gravity resin laminate comprising a fiber reinforcing material and having a specific gravity of 0.6 to 1.1, a bending strength of 100 MPa or more, and a compressive strength of 150 MPa or more.
(i)(a)粒径1〜100μmを有する熱硬化性樹脂粉末と、
(b)有機質バルーン、無機質バルーンおよびそれらの混合物から成る群から選択される充填材と
を均一に混合して粉体組成物を形成し、
(ii)該粉体組成物を繊維製補強材の表面に均一に接触させ、
(iii)該粉体組成物を加圧下で加熱して、該繊維製補強材に仮着してシート状材料を形成し、
(iv)該シート状材料を複数枚積層し、加熱プレスして、融着一体化する
ことによって製造され、
比重0.6〜1.1、曲げ強さ100MPa以上および圧縮強さ150MPa以上を有することを特徴とする低比重樹脂積層板。
(I) (a) a thermosetting resin powder having a particle size of 1 to 100 μm;
(B) uniformly mixing a filler selected from the group consisting of organic balloons, inorganic balloons and mixtures thereof to form a powder composition;
(Ii) contacting the powder composition uniformly with the surface of the fiber reinforcement;
(Iii) heating the powder composition under pressure to temporarily attach the fiber composition to the fiber reinforcing material to form a sheet-like material;
(Iv) It is manufactured by laminating a plurality of the sheet-like materials, heat-pressing, and fusing and integrating them,
A low specific gravity resin laminate having a specific gravity of 0.6 to 1.1, a bending strength of 100 MPa or more, and a compressive strength of 150 MPa or more.
前記熱硬化性樹脂が、ビスフェノール型エポキシ樹脂およびノボラック型エポキシ樹脂の混合物であり、該ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂の配合比が8/1〜1/1である請求項7記載の低比重樹脂積層板。   The thermosetting resin is a mixture of a bisphenol type epoxy resin and a novolac type epoxy resin, and a blending ratio of the bisphenol A type epoxy resin / novolak type epoxy resin is 8/1 to 1/1. Low specific gravity resin laminate.
JP2011196173A 2011-09-08 2011-09-08 Low specific gravity resin laminate and method for producing the same Active JP5924893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196173A JP5924893B2 (en) 2011-09-08 2011-09-08 Low specific gravity resin laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196173A JP5924893B2 (en) 2011-09-08 2011-09-08 Low specific gravity resin laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013056473A true JP2013056473A (en) 2013-03-28
JP5924893B2 JP5924893B2 (en) 2016-05-25

Family

ID=48132794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196173A Active JP5924893B2 (en) 2011-09-08 2011-09-08 Low specific gravity resin laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5924893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339721A (en) * 2013-06-04 2016-02-17 霓佳斯株式会社 Heat insulation material and method of manufacturing heat insulation material
CN106715995A (en) * 2014-09-11 2017-05-24 霓佳斯株式会社 Heat insulation material and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05476A (en) * 1991-06-25 1993-01-08 Nikko Kasei Kk Manufacture of resin-bonded laminated sheet with low specific gravity
JPH09272155A (en) * 1996-04-04 1997-10-21 Toshiba Corp Laminated plate and its manufacture
JPH10278166A (en) * 1997-04-09 1998-10-20 Nikko Kasei Kk Heat-resistant insulating laminate
WO2002006399A1 (en) * 2000-07-18 2002-01-24 Kyocera Chemical Corporation Halogen-free flame-retardant epoxy resin compoisition, halogen-free flame-retardant epoxy resin composition for build-up type multilayer boards, prepregs, copper-clad laminates, printed wiring boards, resin films with copper foil or carriers, and build-up type laminates and multilayer boards
JP2010137513A (en) * 2008-12-15 2010-06-24 Nitto Shinko Kk Laminate sheet and printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05476A (en) * 1991-06-25 1993-01-08 Nikko Kasei Kk Manufacture of resin-bonded laminated sheet with low specific gravity
JPH09272155A (en) * 1996-04-04 1997-10-21 Toshiba Corp Laminated plate and its manufacture
JPH10278166A (en) * 1997-04-09 1998-10-20 Nikko Kasei Kk Heat-resistant insulating laminate
WO2002006399A1 (en) * 2000-07-18 2002-01-24 Kyocera Chemical Corporation Halogen-free flame-retardant epoxy resin compoisition, halogen-free flame-retardant epoxy resin composition for build-up type multilayer boards, prepregs, copper-clad laminates, printed wiring boards, resin films with copper foil or carriers, and build-up type laminates and multilayer boards
JP2010137513A (en) * 2008-12-15 2010-06-24 Nitto Shinko Kk Laminate sheet and printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339721A (en) * 2013-06-04 2016-02-17 霓佳斯株式会社 Heat insulation material and method of manufacturing heat insulation material
EP3006806A4 (en) * 2013-06-04 2017-02-01 Nichias Corporation Heat insulation material and method of manufacturing heat insulation material
US10215325B2 (en) 2013-06-04 2019-02-26 Nichias Corporation Heat insulation material and method of manufacturing heat insulation material
CN111457194A (en) * 2013-06-04 2020-07-28 霓佳斯株式会社 Thermal insulation material and method for manufacturing thermal insulation material
CN111457194B (en) * 2013-06-04 2021-11-23 霓佳斯株式会社 Thermal insulation material and method for manufacturing thermal insulation material
CN106715995A (en) * 2014-09-11 2017-05-24 霓佳斯株式会社 Heat insulation material and method for producing same

Also Published As

Publication number Publication date
JP5924893B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP6953438B2 (en) Metal-fiber reinforced resin material composite, its manufacturing method and adhesive sheet
CN113547814B (en) Surface material for composite structures
CN109790311B (en) Prepreg, prepreg laminate, and fiber-reinforced composite material
CN104194454B (en) For the lightning stroke of same with thermosetting compound material and the co-curing conductivity meter facial mask of electromagnetic interference shield
CN103889711B (en) Conducting composite junction structure or laminates
TWI709482B (en) Base material laminate and manufacturing method of fiber reinforced plastic
JP6272598B1 (en) Prepreg and fiber reinforced composite materials, and surface modified reinforcing fibers
WO2015083820A1 (en) Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
JP6713792B2 (en) Prepreg and fiber reinforced composite materials
CN103347706A (en) Method of manufacturing panel including wear resistant layer, and panel
WO2013093053A2 (en) Improvements in or relating to fibre reinforced materials
JP2009286895A (en) Prepreg and method for forming fiber-reinforced composite material
CA2793944C (en) Composite materials
JP5924893B2 (en) Low specific gravity resin laminate and method for producing the same
EP3237504B1 (en) Improved fast cure epoxy resins and prepregs obtained therefrom
JP2005506394A (en) Adhesive prepreg sheet for sandwich panels
JP2005082802A (en) Recycled product using waste textile material as reinforcing material and method for producing the same
Chen et al. In Situ Filler Addition for Homogeneous Dispersion of Carbon Nanotubes in Multi Jet Fusion–Printed Elastomer Composites
JP2612109B2 (en) Manufacturing method of low specific gravity resin laminate
US20190111669A1 (en) Filler-reinforced solid resin multilayered structure
JP3373164B2 (en) Method for producing prepreg and laminate
JP2012240348A (en) Composite sheet, method for manufacturing the composite sheet, electronic component, and electronic instrument
JP3582770B2 (en) Manufacturing method of laminated board
WO2023190319A1 (en) Carbon fiber reinforced composite material and prepreg
JP6739178B2 (en) Prepreg manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5924893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250