JP2013055836A - Voltage-balance correction device - Google Patents

Voltage-balance correction device Download PDF

Info

Publication number
JP2013055836A
JP2013055836A JP2011193583A JP2011193583A JP2013055836A JP 2013055836 A JP2013055836 A JP 2013055836A JP 2011193583 A JP2011193583 A JP 2011193583A JP 2011193583 A JP2011193583 A JP 2011193583A JP 2013055836 A JP2013055836 A JP 2013055836A
Authority
JP
Japan
Prior art keywords
batteries
battery
voltage
balance correction
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011193583A
Other languages
Japanese (ja)
Inventor
Mamoru Kuraishi
守 倉石
Masaaki Suzuki
正彰 鈴木
Munetaka Yamamoto
宗隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011193583A priority Critical patent/JP2013055836A/en
Publication of JP2013055836A publication Critical patent/JP2013055836A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect a voltage difference between a plurality of secondary batteries connected in series and accurately correct a voltage balance of the batteries without being affected, in particular, by noise, in a balance correction device that corrects the voltage balance of the batteries connected in series.SOLUTION: A voltage-balance correction circuit includes: first and second batteries that are connected in series; first to fourth resistive elements that are connected in parallel to the series circuit of the first and second batteries; control means that is disposed between the connection portion of the first and second batteries and the connection portion of the second and third resistive elements, detects the potential difference between both the connection portions, and performs balance correction of output voltages of the first and second batteries according to the potential difference; and a capacitive element that is disposed between the connection portion of the first and second resistive elements and the connection portion of the third and fourth resistive elements.

Description

本発明は直列に接続された複数の二次電池の電圧バランスを補正する電圧バランス補正装置に関する。   The present invention relates to a voltage balance correction device that corrects the voltage balance of a plurality of secondary batteries connected in series.

今日、リチウムイオン電池やニッケル水素蓄電池等の二次電池は、所謂ハイブリットカーや電気自動車のみならず、フォークリフトや各種産業用機械のバックアップ電源等としても広く使用されている。したがって、このような用途に使用される二次電池には大きな出力が要求され、多数の電池を直列に接続して使用している。この場合、特に直列に接続した各電池の出力電圧が一致することが重要であり、このため電圧バランス補正回路が組み込まれている。   Nowadays, secondary batteries such as lithium ion batteries and nickel metal hydride storage batteries are widely used not only for so-called hybrid cars and electric vehicles, but also as backup power sources for forklifts and various industrial machines. Therefore, a large output is required for a secondary battery used for such an application, and a large number of batteries are connected in series. In this case, it is particularly important that the output voltages of the batteries connected in series match, and therefore a voltage balance correction circuit is incorporated.

図5は直列に接続された2個の二次電池の電圧バランス補正装置に使用される回路の一部を示す図である。直列に接続された電池B1とB2には並列に分圧抵抗R1、R2が接続され、電池B1の負極端子と電池B2の正極端子の接続部mと分圧抵抗R1とR2の接続部nの間に電圧差を検出する不図示の電圧差検出回路が配設されている。この検出回路の検出結果に基づいて、電池B1から電池B2への充電、又は電池B2から電池B1への充電が行われる。   FIG. 5 is a diagram showing a part of a circuit used in a voltage balance correction apparatus for two secondary batteries connected in series. The voltage dividing resistors R1 and R2 are connected in parallel to the batteries B1 and B2 connected in series, and the connection m of the negative terminal of the battery B1 and the positive terminal of the battery B2 and the connection n of the voltage dividing resistors R1 and R2 are connected. A voltage difference detection circuit (not shown) for detecting a voltage difference is disposed between them. Based on the detection result of the detection circuit, charging from the battery B1 to the battery B2 or charging from the battery B2 to the battery B1 is performed.

特許文献1は、上記電圧差の検出結果に基づいて、電池B1から電池B2への充電、又は電池B2から電池B1へ充電を行い、電圧バランスの補正を行う電圧バランス補正回路を開示する。図6はこの特許文献1に開示された回路の一例である。上記接続部mの電位Vmと接続部nの電位Vnをコンパレータ21によって比較し、この比較結果である電圧Vxを可変パルス発生回路12に供給し、この電圧Vxに従った制御信号φ1、φ2を対応するスイッチング素子S1、S2に出力する。この処理によって、インダクタLに電磁エネルギーを蓄積し、電池B1から電池B2へ、又は電池B2から電池B1へ充電を行い、電池B1とB2の出力電圧を一致させる。   Patent Document 1 discloses a voltage balance correction circuit that performs voltage balance correction by charging from the battery B1 to the battery B2 or charging from the battery B2 to the battery B1 based on the detection result of the voltage difference. FIG. 6 shows an example of the circuit disclosed in Patent Document 1. The comparator 21 compares the potential Vm of the connection portion m with the potential Vn of the connection portion n, supplies a voltage Vx as a result of the comparison to the variable pulse generation circuit 12, and supplies control signals φ1 and φ2 according to the voltage Vx. It outputs to corresponding switching element S1, S2. By this processing, electromagnetic energy is accumulated in the inductor L, charging is performed from the battery B1 to the battery B2, or from the battery B2 to the battery B1, and the output voltages of the batteries B1 and B2 are made to coincide.

特開2008−17605号公報JP 2008-17605 A

上記従来の電圧バランス補正回路では消費電力を抑えるため、高抵抗(例えば数MΩ)の分圧抵抗R1、R2を使用している。このため、ノイズの影響を受け易い。例えば、電気自動車に搭載された電圧バランス補正装置の場合、近くにモータを駆動するためインバータ回路が使用され、この回路駆動の際発生する高調波を含むノイズによって、上記Vnの電位が変動し、正確な電位差の検出を行うことができない。また、インバータ回路に限らず、装置の周囲に配設された他の回路や電子機器からのノイズの影響も受け、上記電位差を正確に検出することができない。   In the conventional voltage balance correction circuit, voltage dividing resistors R1 and R2 having high resistance (for example, several MΩ) are used in order to reduce power consumption. For this reason, it is easily affected by noise. For example, in the case of a voltage balance correction device mounted on an electric vehicle, an inverter circuit is used to drive a motor nearby, and the potential of Vn fluctuates due to noise including harmonics generated when driving the circuit. An accurate potential difference cannot be detected. In addition to the inverter circuit, it is also affected by noise from other circuits and electronic devices arranged around the device, and the potential difference cannot be accurately detected.

そこで、本発明はノイズの影響を受けることなく、直列に接続された2個の電池の電圧差を正確に検出し、電池の電圧バランス補正を正確に行うことが可能な電圧バランス補正装置を提供することを目的とする。   Therefore, the present invention provides a voltage balance correction device capable of accurately detecting a voltage difference between two batteries connected in series without being affected by noise and accurately correcting the voltage balance of the batteries. The purpose is to do.

上記課題は本発明によれば、直列に接続された第1、第2の電池と、上記第1、第2の電池の直列回路に並列に接続された第1乃至第4の抵抗素子と、上記第1、第2の電池の接続部と上記第2、第3の抵抗素子の接続部間に配設され、該両接続部の電位差を検出し、該電位差に従って上記第1、第2の電池の出力電圧のバランス補正を行う制御手段と、上記第1と第2の抵抗素子の接続部と上記第3と第4の抵抗素子の接続部間に配設された容量素子とを有する電圧バランス補正装置を提供することによって達成できる。すなわち、上記第1乃至第4の抵抗素子と容量素子によってノイズフィルタを形成し、第1、第2の電池の周囲に配設されたインバータ回路等の各種電子機器からのノイズの影響を排除し、基準電圧となる上記第2、第3の抵抗素子の接続部の電圧変動を少なくする。   According to the present invention, the above-described problem is achieved by the first and second batteries connected in series, the first to fourth resistance elements connected in parallel to the series circuit of the first and second batteries, It is arranged between the connection part of the first and second batteries and the connection part of the second and third resistance elements, detects the potential difference between the two connection parts, and detects the first and second according to the potential difference. A voltage having control means for correcting the balance of the output voltage of the battery, and a capacitive element disposed between the connection portion of the first and second resistance elements and the connection portion of the third and fourth resistance elements This can be achieved by providing a balance correction device. That is, a noise filter is formed by the first to fourth resistor elements and the capacitor element, and the influence of noise from various electronic devices such as inverter circuits arranged around the first and second batteries is eliminated. The voltage fluctuation at the connection portion of the second and third resistance elements, which becomes the reference voltage, is reduced.

また、上記課題は本発明によれば、上記第1、第3の抵抗素子は、上記第1の電池に沿って配設され、上記第2、第4の抵抗素子は、上記第2の電池に沿って配設される構成である。このように構成することによって、第1、第2の電池の内部抵抗による発熱の影響を第1、第2の抵抗素子と第3、第4の抵抗素子間で均等に与え、温度に伴って変化する抵抗値の変動を均等化し、第1、第2の抵抗素子と第3、第4の抵抗素子間の分圧精度を向上させる。   According to the present invention, the first and third resistance elements are arranged along the first battery, and the second and fourth resistance elements are the second battery. It is the structure arrange | positioned along. With this configuration, the heat generated by the internal resistance of the first and second batteries is evenly applied between the first and second resistance elements and the third and fourth resistance elements, and the temperature increases. The variation of the changing resistance value is equalized, and the voltage dividing accuracy between the first and second resistance elements and the third and fourth resistance elements is improved.

さらに、上記制御手段は、検出された上記両接続部の電位差に基づいて制御信号を出力し、この制御信号に従って上記第1、第2の電池間の電圧バランスの補正を行う。   Further, the control means outputs a control signal based on the detected potential difference between the two connection portions, and corrects the voltage balance between the first and second batteries according to the control signal.

本発明によれば、第1、第2の電池の出力電圧差を検出する際、ノイズによる影響を無くし、正確な基準電圧に基づいて電圧差の検出を行うことができ、正確に第1、第2の電池の電圧バランス補正を行うことができる。また、第1、第2の電池の内部抵抗による発熱の影響を、第1、第2の抵抗素子と第3、第4の抵抗素子に均等に付与し、抵抗素子間の分圧精度を向上させ、より正確な電圧バランスの補正を行うことができる。   According to the present invention, when detecting the output voltage difference between the first and second batteries, the influence of noise can be eliminated and the voltage difference can be detected based on an accurate reference voltage. The voltage balance correction of the second battery can be performed. In addition, the effect of heat generation due to the internal resistance of the first and second batteries is equally applied to the first and second resistance elements and the third and fourth resistance elements to improve the voltage dividing accuracy between the resistance elements. Thus, more accurate voltage balance correction can be performed.

本実施形態の電圧バランス補正装置に使用する電圧差検出回路を示す図である。It is a figure which shows the voltage difference detection circuit used for the voltage balance correction apparatus of this embodiment. 分圧抵抗にコンデンサを配設した構成を示す回路図である。It is a circuit diagram which shows the structure which has arrange | positioned the capacitor | condenser to the voltage dividing resistor. 電池に分圧抵抗及びコンデンサを配設した模式図である。It is the schematic diagram which arrange | positioned the voltage dividing resistor and the capacitor | condenser in the battery. 分圧抵抗及びコンデンサによって形成されるノイズフィルタの特性を示す図である。It is a figure which shows the characteristic of the noise filter formed with a voltage dividing resistor and a capacitor | condenser. 電圧バランス補正装置に使用される電圧差の検出回路の一部の構成を示す図である。It is a figure which shows the structure of a part of detection circuit of the voltage difference used for a voltage balance correction apparatus. 特許文献に開示する電圧バランス補正回路の一例を示す図である。It is a figure which shows an example of the voltage balance correction circuit disclosed by patent document.

以下、本発明の実施形態について、図面を参照しながら説明する。
図1は本実施形態の電圧バランス補正装置に使用される電位差検出回路の回路図である。電池E1、E2は直列に接続された多数の電池の中の任意の2個の電池を示し、電池E1の正極端子には同じ構成の不図示の電池の負極端子が接続され、電池E2の負極端子にも同じ構成の不図示の電池の正極端子が接続されている。尚、本実施形態では電池E1、E2として、例えばリチウムイオン電池が使用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram of a potential difference detection circuit used in the voltage balance correction apparatus of this embodiment. Batteries E1 and E2 represent any two of a number of batteries connected in series, and a negative terminal of a battery (not shown) having the same configuration is connected to the positive terminal of the battery E1, and the negative electrode of the battery E2 The positive terminal of a battery (not shown) having the same configuration is also connected to the terminal. In the present embodiment, for example, lithium ion batteries are used as the batteries E1 and E2.

また、本実施形態の電圧バランス補正装置では、電池E1、電池E2の直列回路に並列に抵抗R11(第1の抵抗素子)、抵抗R12(第2の抵抗素子)、抵抗R21(第3の抵抗素子)、抵抗R22(第4の抵抗素子)の直列回路が接続され、抵抗R11、R12、R21、R22は、電池E1と電池E2の直列回路間の電圧を分圧する。また、抵抗R11とR12の接続部と抵抗R21とR22の接続部との間にはコンデンサ(容量素子)Cが接続されている。尚、本実施形態で使用される抵抗R1、R12、R21、R22の抵抗値は、消費電力を抑えるため、例えば数MΩの高抵抗を使用している。   In the voltage balance correction apparatus of the present embodiment, the resistor R11 (first resistor element), the resistor R12 (second resistor element), and the resistor R21 (third resistor) are connected in parallel to the series circuit of the battery E1 and the battery E2. Element) and a series circuit of a resistor R22 (fourth resistor element) are connected, and the resistors R11, R12, R21, and R22 divide the voltage between the series circuit of the battery E1 and the battery E2. Further, a capacitor (capacitance element) C is connected between the connection portion of the resistors R11 and R12 and the connection portion of the resistors R21 and R22. Note that the resistance values of the resistors R1, R12, R21, and R22 used in the present embodiment are, for example, high resistances of several MΩ in order to reduce power consumption.

また、電池E1の負極端子と電池E2の正極端子の接続部aと、抵抗R12とR21の接続部bとの間には、接続部aの電位Vaと接続部bの電位Vbの電位差を比較し、この電位差に基づく制御信号を出力する制御回路2が接続されている。この制御回路2は、上記両接続部a、b間の電位差に基づいて制御信号を出力し、この制御信号に従って不図示のスイッチング素子を駆動し、インダクタに電磁エネルギーを蓄積し、電池E1から電池E2、又は電池E2から電池E1を充電する。   Further, the potential difference between the potential Va of the connection portion a and the potential Vb of the connection portion b is compared between the connection portion a of the negative electrode terminal of the battery E1 and the positive electrode terminal of the battery E2 and the connection portion b of the resistors R12 and R21. A control circuit 2 that outputs a control signal based on this potential difference is connected. The control circuit 2 outputs a control signal based on the potential difference between the two connection portions a and b, drives a switching element (not shown) according to the control signal, accumulates electromagnetic energy in the inductor, and from the battery E1 to the battery The battery E1 is charged from E2 or the battery E2.

図2は上記図1に示す抵抗R11、R12、R21、R22の直列回路と、コンデンサCの接続関係を分かり易く示す図である。上記のように、コンデンサCは抵抗R11とR12の接続部と抵抗R21とR22の接続部との間に配設され、ノイズファルタの機能を有する。また、図2において、bは図1における接続部bであり、この接続部bに発生する電圧Vbを基準電圧として、接続部aの電圧Vaと比較される。   FIG. 2 is a diagram showing the connection relationship between the series circuit of the resistors R11, R12, R21, and R22 shown in FIG. As described above, the capacitor C is disposed between the connection portion of the resistors R11 and R12 and the connection portion of the resistors R21 and R22, and has a function of a noise filter. In FIG. 2, b is the connection portion b in FIG. 1, and is compared with the voltage Va of the connection portion a by using the voltage Vb generated at the connection portion b as a reference voltage.

図3は上記構成の本実施形態の回路を実際の電池E1、E2に配設した模式的な外観図である。前述のように、電池E1、E2は直列に接続された多数の電池の中の任意の2個の電池であり、同図に示すように、電池E1、E2の前後に多数の電池Eが配設されている。   FIG. 3 is a schematic external view in which the circuit of the present embodiment having the above-described configuration is disposed in actual batteries E1 and E2. As described above, the batteries E1 and E2 are any two of the many batteries connected in series, and as shown in the figure, a large number of batteries E are arranged before and after the batteries E1 and E2. It is installed.

回路基板1は電池E1、E2に跨って配設され、回路基板1は不図示の螺子等によって電池E1及びE2に取り付けられている。この回路基板1には上記抵抗R11、R12、R21、R22、及びコンデンサCが配設され、抵抗R11とR21は電池E1に接する回路基板1上に配設され、抵抗R12とR22は電池E2に接する回路基板1上に配設されている。したがって、抵抗R11(第1の抵抗素子)とR21(第3の抵抗素子)は電池E1が駆動する際発生する熱の影響を受ける回路基板1上の位置に配設され、抵抗R12(第2の抵抗素子)とR22(第4の抵抗素子)は電池E2が駆動する際発生する熱の影響を受ける回路基板1上の位置に配設されている。   The circuit board 1 is disposed across the batteries E1 and E2, and the circuit board 1 is attached to the batteries E1 and E2 by screws or the like (not shown). The circuit board 1 is provided with the resistors R11, R12, R21, and R22, and the capacitor C. The resistors R11 and R21 are provided on the circuit board 1 in contact with the battery E1, and the resistors R12 and R22 are provided with the battery E2. It is disposed on the circuit board 1 in contact therewith. Accordingly, the resistors R11 (first resistor element) and R21 (third resistor element) are disposed at positions on the circuit board 1 that are affected by the heat generated when the battery E1 is driven, and the resistor R12 (second resistor element). ) And R22 (fourth resistance element) are disposed at positions on the circuit board 1 that are affected by the heat generated when the battery E2 is driven.

尚、抵抗R11、R12、R21、R22、及びコンデンサCは、回路基板1に配設されたパターン配線によって図1及び図2に示す回路接続が行われている。また、図3には示していないが、電池E1と電池E1の隣に配設された電池Eとの間にも、同じ構成の回路基板が配設され、電池E2と電池E2の隣に配設された電池Eとの間にも、同じ構成の回路基板が配設されている。   The resistors R11, R12, R21, R22, and the capacitor C are connected to each other as shown in FIGS. Although not shown in FIG. 3, a circuit board having the same configuration is disposed between the battery E1 and the battery E disposed next to the battery E1, and is disposed next to the battery E2 and the battery E2. A circuit board having the same configuration is also disposed between the installed battery E and the battery E.

本実施形態の回路は図1及び図2に示す構成であり、従来例で示した図5に示す回路と比較した場合、以下の相違がある。先ず、図5に示す従来の回路では、抵抗R1とR2の直列回路を使用し、分圧抵抗の特性インピーダンスは抵抗分のみであり、Z=R
R=R1+R2
である。
一方、本実施形態の回路の場合、図1及び図2に示すようにコンデンサCを含む回路であり、特性インピーダンスは、Z=Ra+Rb/(1+jωCRb)
Ra=R11+R22
Rb=R12+R21
である。
The circuit of this embodiment has the configuration shown in FIGS. 1 and 2 and has the following differences when compared with the circuit shown in FIG. 5 shown in the conventional example. First, in the conventional circuit shown in FIG. 5, a series circuit of resistors R1 and R2 is used, and the characteristic impedance of the voltage dividing resistor is only the resistance component, and Z = R
R = R1 + R2
It is.
On the other hand, the circuit of this embodiment is a circuit including a capacitor C as shown in FIGS. 1 and 2, and the characteristic impedance is Z = Ra + Rb / (1 + jωCRb).
Ra = R11 + R22
Rb = R12 + R21
It is.

したがって、本実施形態では上記のように抵抗R11とR12の接続部と抵抗R21とR22の接続部との間にコンデンサCが配設されており、ノイズフィルタを形成し、装置周辺の各種電子機器が発生するノイズの影響を除去することができる。   Therefore, in the present embodiment, as described above, the capacitor C is disposed between the connection portion of the resistors R11 and R12 and the connection portion of the resistors R21 and R22 to form a noise filter, and various electronic devices around the device. It is possible to eliminate the influence of noise generated.

図4は図2に示す回路のフィルタ特性を示す図である。この特性FはCRの時定数に基づき、所定周波数以上の周波数をカットオフするローパスフィルタの特性である。ここで、本例におけるカットオフ周波数は、電圧バランス補正装置が使用される電池の用途によって設定され、例えば電気自動車に使用される場合、モータを駆動させるために発生するインバータ回路等からのノイズ除去の周波数である。   FIG. 4 is a diagram showing filter characteristics of the circuit shown in FIG. This characteristic F is a characteristic of a low-pass filter that cuts off a frequency above a predetermined frequency based on the CR time constant. Here, the cut-off frequency in this example is set according to the use of the battery in which the voltage balance correction device is used. For example, when used in an electric vehicle, noise removal from an inverter circuit or the like generated to drive the motor is removed. Frequency.

図4では、ノイズとしてモータに起因するノイズの例を示しており、同図に示すAはアイドリング時のモータの回転数に対応するノイズの周波数を示す。実際には周波数Aを中心として、左右に高調波に基づくノイズA1、A2の周波数群が含まれる。例えば、アイドリング時のモータの回転数が2,000rpmの場合、対応するノイズの周波数Aは30Hzであり、この周波数A(30Hz)を中心として、左右の高調波を含むノイズとなる。   FIG. 4 shows an example of noise caused by the motor as noise, and A shown in FIG. 4 indicates the frequency of noise corresponding to the rotational speed of the motor during idling. Actually, a frequency group of noises A1 and A2 based on harmonics is included on the left and right with the frequency A as the center. For example, when the number of rotations of the motor at idling is 2,000 rpm, the corresponding noise frequency A is 30 Hz, and the noise includes left and right harmonics centering on this frequency A (30 Hz).

自動車の場合、モータの回転数はアイドリング時に最も低く、速度を上げるに従ってモータの回転数が高くなる。したがって、モータに起因するノイズの場合、このアイドリング時の回転数に対応するノイズの周波数Aをカットオフ周波数の設定の基準とする。尚、同図に示す網点で囲った「モータに起因するノイズ」の記載は、上記周波数Aより高い周波数の範囲を示し、モータに起因するノイズの周波数(周波数の中心)は、上記周波数A以上の範囲であることを示す。   In the case of an automobile, the rotational speed of the motor is the lowest during idling, and the rotational speed of the motor increases as the speed increases. Therefore, in the case of noise caused by the motor, the noise frequency A corresponding to the number of revolutions during idling is used as a reference for setting the cutoff frequency. The description of “noise due to the motor” surrounded by the halftone dots shown in the figure indicates a range of frequencies higher than the frequency A, and the frequency of noise due to the motor (the center of the frequency) is the frequency A. It is in the above range.

したがって、図4に示すフィルタ特性を回路定数を設定することによって決定し、電圧バランス補正装置のノイズ除去を行う。すなわち、抵抗値Ra(R11+R22)とRb(R12+R21)、及びコンデンサCの容量を、カットオフ周波数が上記Aより低い周波数になるように設定し、モータに起因するノイズを除去する。   Therefore, the filter characteristics shown in FIG. 4 are determined by setting circuit constants, and noise removal of the voltage balance correction apparatus is performed. That is, the resistance values Ra (R11 + R22) and Rb (R12 + R21) and the capacitance of the capacitor C are set so that the cut-off frequency is lower than the frequency A, and noise caused by the motor is removed.

尚、図4の説明では、モータに起因するノイズの場合について説明したが、他の電子機器からのノイズを除去する場合にも、同様にノイズの周波数に対応してカットオフ周波数を設定し、Ra、Rb、及びCの回路定数を決定することによって同様に実施することができる。   In the description of FIG. 4, the case of noise caused by the motor has been described. However, when removing noise from other electronic devices, the cutoff frequency is set corresponding to the frequency of the noise in the same manner. A similar implementation can be made by determining the circuit constants for Ra, Rb, and C.

したがって、上記図1に示す電位差検出回路を本例の電圧バランス補正装置に含めることによって、ノイズの影響を受けることなく、直列に接続された2個の電池の出力電圧差を正確に検出し、電池の電圧バランス補正を正確に行うことができる。   Therefore, by including the potential difference detection circuit shown in FIG. 1 in the voltage balance correction apparatus of this example, the output voltage difference between two batteries connected in series can be accurately detected without being affected by noise, The battery voltage balance can be accurately corrected.

また、本実施形態の場合、抵抗R11(第1の抵抗素子)とR21(第3の抵抗素子)は電池E1が駆動する際発生する熱の影響を受ける回路基板1上の位置に配設され、抵抗R12(第2の抵抗素子)とR22(第4の抵抗素子)は電池E2が駆動する際発生する熱の影響を受ける回路基板1上の位置に配設されている。したがって、電池E1、E2の内部抵抗による発熱の影響が均等になり、温度に伴って変化する抵抗値の変動を均等化して抵抗素子間の分圧精度を向上することができる。   In the case of the present embodiment, the resistors R11 (first resistor element) and R21 (third resistor element) are disposed at positions on the circuit board 1 that are affected by heat generated when the battery E1 is driven. The resistors R12 (second resistor element) and R22 (fourth resistor element) are disposed at positions on the circuit board 1 that are affected by heat generated when the battery E2 is driven. Therefore, the influence of heat generated by the internal resistances of the batteries E1 and E2 is equalized, and the variation in resistance value that varies with temperature can be equalized to improve the voltage dividing accuracy between the resistive elements.

尚、上記実施形態の説明では、直列に接続された電池E1とE2の電圧バランス補正装置について説明したが、電池E1とE2は直列に多数の電池が接続された中の任意の2個の電池を示すものであり、他の連続する2個の電池の電圧バランス補正についても同様に実施することができる。   In the above description of the embodiment, the voltage balance correction device for the batteries E1 and E2 connected in series has been described. The voltage balance correction of the other two consecutive batteries can be similarly performed.

さらに、上記実施形態の説明では、電池E1、E2としてリチウムイオン電池の例で説明したが、ニッケル水素蓄電池やニッケルカドミウム蓄電池等であってもよい。   Furthermore, in the description of the above embodiment, the example of the lithium ion battery has been described as the batteries E1 and E2, but a nickel hydride storage battery, a nickel cadmium storage battery, or the like may be used.

1・・回路基板
2・・制御回路
E1、E2・・電池
R11、R12、R21、R22・・抵抗
C・・コンデンサ
F・・フィルタ特性
A・・周波数
1. Circuit board 2. Control circuit E1, E2. Battery R11, R12, R21, R22. Resistance C. Capacitor F. Filter characteristics A. Frequency

Claims (3)

直列に接続された第1、第2の電池と、
前記第1、第2の電池の直列回路に並列に接続された第1乃至第4の抵抗素子と、
前記第1、第2の電池の接続部と前記第2、第3の抵抗素子の接続部間に配設され、該両接続部の電位差を検出し、該電位差に従って前記第1、第2の電池の出力電圧のバランス補正を行う制御手段と、
前記第1と第2の抵抗素子の接続部と前記第3と第4の抵抗素子の接続部間に配設された容量素子と
を有することを特徴とする電圧バランス補正装置。
First and second batteries connected in series;
First to fourth resistance elements connected in parallel to a series circuit of the first and second batteries;
It is arranged between the connection part of the first and second batteries and the connection part of the second and third resistance elements, detects a potential difference between the connection parts, and the first and second according to the potential difference. Control means for correcting the balance of the output voltage of the battery;
A voltage balance correction apparatus comprising: a connection portion between the first and second resistance elements; and a capacitance element disposed between the connection portions between the third and fourth resistance elements.
前記第1、第3の抵抗素子は、前記第1の電池に沿って配設され、前記第2、第4の抵抗素子は、前記第2の電池に沿って配設されていることを特徴とする請求項1に記載の電圧バランス補正装置。   The first and third resistance elements are disposed along the first battery, and the second and fourth resistance elements are disposed along the second battery. The voltage balance correction apparatus according to claim 1. 前記制御手段は、検出された前記両接続部の電位差に基づいて制御信出力し、該制御信号に従って前記第1、第2の電池間の電圧バランスの補正を行うことを特徴とする請求項1、又は2に記載の電圧バランス補正装置。   The control means outputs a control signal based on the detected potential difference between the two connection portions, and corrects the voltage balance between the first and second batteries according to the control signal. Or the voltage balance correction apparatus according to 2.
JP2011193583A 2011-09-06 2011-09-06 Voltage-balance correction device Withdrawn JP2013055836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193583A JP2013055836A (en) 2011-09-06 2011-09-06 Voltage-balance correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193583A JP2013055836A (en) 2011-09-06 2011-09-06 Voltage-balance correction device

Publications (1)

Publication Number Publication Date
JP2013055836A true JP2013055836A (en) 2013-03-21

Family

ID=48132344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193583A Withdrawn JP2013055836A (en) 2011-09-06 2011-09-06 Voltage-balance correction device

Country Status (1)

Country Link
JP (1) JP2013055836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588437A (en) * 2018-06-12 2019-12-20 三星Sdi株式会社 Voltage equalizing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588437A (en) * 2018-06-12 2019-12-20 三星Sdi株式会社 Voltage equalizing device
CN110588437B (en) * 2018-06-12 2022-10-25 三星Sdi株式会社 Voltage equalizing device

Similar Documents

Publication Publication Date Title
JP5406614B2 (en) Insulation state detector
JP5303528B2 (en) Parameter estimation device using filter
US9255957B2 (en) Earth fault detection circuit and power source device
JP6637749B2 (en) Insulation abnormality detection device and insulation abnormality detection method
JP7226147B2 (en) battery monitor
JP6494327B2 (en) Degradation detection apparatus and degradation detection method
US10197635B2 (en) Filter circuit
WO2015141580A1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
CN107688132B (en) Determination device for determining electric leakage in prescribed time period
JPWO2018074394A1 (en) Ground fault detection device and power storage system
JP2016161358A (en) Deterioration detector and method for detecting deterioration
JPWO2017217092A1 (en) Management device and power storage system
JP2017203659A (en) Degradation determination device, computer program and degradation determination method
JP2016099323A (en) Insulation state detector
JP5169949B2 (en) Voltage detector
JP2010060323A (en) Method and device for detecting ground fault of battery cell unit of automobile
JP2016211923A (en) Charging amount estimation method and charging amount estimation device
WO2016039098A1 (en) Temperature sensing device
JP2013055836A (en) Voltage-balance correction device
JP6428197B2 (en) Vehicle ground fault detection circuit with high voltage power supply system
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
JP5239975B2 (en) Earth leakage detection system
JP5533010B2 (en) Battery voltage monitoring device
WO2020003850A1 (en) Integrated circuit, battery monitoring device, and battery monitoring system
JP6451609B2 (en) Current sensor abnormality detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202