JP2013055752A - Permanent magnet type motor - Google Patents

Permanent magnet type motor Download PDF

Info

Publication number
JP2013055752A
JP2013055752A JP2011191155A JP2011191155A JP2013055752A JP 2013055752 A JP2013055752 A JP 2013055752A JP 2011191155 A JP2011191155 A JP 2011191155A JP 2011191155 A JP2011191155 A JP 2011191155A JP 2013055752 A JP2013055752 A JP 2013055752A
Authority
JP
Japan
Prior art keywords
refrigerant
permanent magnet
flow path
rotor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011191155A
Other languages
Japanese (ja)
Inventor
Takeshi Yamahana
毅 山花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011191155A priority Critical patent/JP2013055752A/en
Publication of JP2013055752A publication Critical patent/JP2013055752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To improve system efficiency of a permanent magnet type motor.SOLUTION: A permanent magnet type motor includes: a rotor shaft 21 having a center hole 22 in which a refrigerant flows and a communication hole 28 communicating the center hole 22 with the outer surface thereof; a rotor core 23 fixed to the outer surface of the rotor shaft 21; a permanent magnet 25 fixed to the rotor core 23; a through hole 31 penetrating through the rotor core 23 axially; a radial hole 29 communicating the communication hole 28 with the through hole 31; and a refrigerant flow passage opening/closing mechanism 70 disposed between the communication hole 28 and the radial hole 29 to open/close the communication hole 28 and the radial hole 29. The refrigerant flow passage opening/closing mechanism 70 closes the communication hole 28 when the rotational frequency of a rotor 20 is ror less, closes the radial hole 29 when the rotational frequency of the rotor 20 is equal to or more than rwhich is larger than r, and opens both of the communication hole 28 and the radial hole 29 when the rotational frequency of the rotor 20 is over rand under r.

Description

本発明は、永久磁石型モータの冷却構造に関する。   The present invention relates to a cooling structure for a permanent magnet motor.

積層鋼板で構成されたロータコアの表面や内部に永久磁石を取り付け、ステータで発生する回転磁界とロータコアに働く電磁力によってロータを回転させる永久磁石型モータが用いられている。このような永久磁石型モータの駆動制御には、インバータによるパルス制御が用いられる場合が多いが、パルスによるリップル電流によって永久磁石が発熱してしまうので、永久磁石の近傍に設けた流路に冷媒を流して永久磁石を冷却する方法が用いられている。   A permanent magnet motor is used in which a permanent magnet is attached to the surface or inside of a rotor core made of laminated steel plates, and the rotor is rotated by a rotating magnetic field generated by the stator and an electromagnetic force acting on the rotor core. For drive control of such a permanent magnet motor, pulse control by an inverter is often used. However, since the permanent magnet generates heat due to a ripple current caused by the pulse, a refrigerant is provided in a flow path provided in the vicinity of the permanent magnet. Is used to cool the permanent magnet.

冷媒流路は、積層鋼板のロータコアを軸方向に貫通させるものであるが、ロータの回転数が高くなると、遠心力のために冷媒流路を流れる冷媒の一部が積層した鋼板の隙間からロータとステータとの隙間に流出し、ロータの回転抵抗となってモータの運転効率を低下させてしまうという問題があった。そこで、ロータの回転数が高くなった際に、永久磁石近傍の冷媒流路への冷媒の供給量を低減する方法が提案されている(例えば、特許文献1参照)。   The refrigerant flow path penetrates the rotor core of the laminated steel sheet in the axial direction. However, when the rotation speed of the rotor increases, the rotor flows from the gap between the steel sheets in which a part of the refrigerant flowing through the refrigerant flow path is laminated due to centrifugal force. It flows out into the gap between the stator and the stator, and there is a problem that it becomes a rotational resistance of the rotor and lowers the operation efficiency of the motor. Thus, a method has been proposed in which the amount of refrigerant supplied to the refrigerant flow path in the vicinity of the permanent magnet is reduced when the rotational speed of the rotor increases (see, for example, Patent Document 1).

また、永久磁石型モータでは、ロータの回転数が低い場合には、永久磁石の発熱が小さいので、永久磁石近傍の冷媒流路への冷媒供給量を制限し、回転数の高い場合に永久磁石の近傍の冷媒流路に冷媒を供給することにより、ロータによる冷媒の攪拌損失や冷媒ポンプの損失を低減し、モータの運転効率を向上させる方法が提案されている(例えば、特許文献2参照)。   Further, in the permanent magnet motor, since the heat generation of the permanent magnet is small when the rotation speed of the rotor is low, the amount of refrigerant supplied to the refrigerant flow path in the vicinity of the permanent magnet is limited, and when the rotation speed is high, the permanent magnet A method has been proposed in which a refrigerant is supplied to a refrigerant flow path in the vicinity of the rotor to reduce the agitation loss of the refrigerant by the rotor and the loss of the refrigerant pump, thereby improving the operation efficiency of the motor (for example, see Patent Document 2). .

特開2009−290979号公報JP 2009-290979 A 特開2009−118714号公報JP 2009-118714 A

ところで、パルス制御によって制御する永久磁石型モータを電動車両の駆動源として用いる場合、出力や車両の運転状態に応じてパルス制御の方式がPWM制御、過変調制御、矩形波制御の間で変化する。このため、モータの回転数が中間程度の回転数領域において、永久磁石の温度が高くなり、ロータの回転数が低回転数領域や高回転数領域では、あまり永久磁石の温度が高くならない傾向がある。   By the way, when a permanent magnet motor controlled by pulse control is used as a drive source for an electric vehicle, the pulse control method varies among PWM control, overmodulation control, and rectangular wave control according to the output and the driving state of the vehicle. . For this reason, the temperature of the permanent magnet is high in the intermediate rotation speed range of the motor, and the temperature of the permanent magnet is not so high in the low rotation speed range or the high rotation speed range of the rotor. is there.

しかし、特許文献1,2に記載された従来技術では、ロータの回転数が高回転領域にある場合、または、ロータの回転数が低回転領域にある場合のいずれか一方においてのみ冷媒流量を低減することができるのみで、永久磁石の温度が高くなる中程度の回転数領域において冷媒の流量を増加させ、それ以外の回転数領域では冷媒の流量を低減することは困難で、冷却系統を含む永久磁石型モータのシステム効率の向上には限度があった。   However, in the prior art described in Patent Documents 1 and 2, the refrigerant flow rate is reduced only when the rotor rotation speed is in the high rotation area or when the rotor rotation speed is in the low rotation area. It is difficult to increase the flow rate of the refrigerant in the medium rotation speed range where the temperature of the permanent magnet becomes high and to reduce the flow rate of the refrigerant in other rotation speed ranges, including the cooling system. There was a limit to improving the system efficiency of permanent magnet motors.

また、特許文献1,2に記載された従来技術は、いずれも部材質量に掛かる遠心力と拮抗する弾性材料の反力によって冷媒流路の開閉を行うため、部材の形状、質量(重量)が精度よく管理されていない場合には、冷媒流量がばらついてしまい、冷媒流量が過剰となってモータの運転効率が低下したり、冷媒流量が不足して永久磁石の温度が高くなり、ロータのトルク損失が増加したりするという問題があった。更に、流量のばらつきを考慮して冷媒供給ホンプを大きくすることが必要となる場合があり、この場合には、さらに永久磁石型モータのシステム効率が低下してしまうという問題があった。   Moreover, since the prior art described in Patent Documents 1 and 2 opens and closes the refrigerant flow path by the reaction force of the elastic material that antagonizes the centrifugal force applied to the member mass, the shape and mass (weight) of the member are If it is not managed accurately, the refrigerant flow rate will vary and the refrigerant flow rate will become excessive, reducing the motor's operating efficiency, or the refrigerant flow rate will be insufficient and the temperature of the permanent magnet will increase, and the rotor torque will increase. There was a problem that the loss increased. Furthermore, it may be necessary to increase the refrigerant supply pump in consideration of the flow rate variation. In this case, there is a problem that the system efficiency of the permanent magnet motor is further reduced.

本発明は、永久磁石型モータのシステム効率を向上させることを目的とする。   An object of this invention is to improve the system efficiency of a permanent magnet type motor.

本発明の永久磁石型モータは、その内部に軸方向に延びて冷媒が流通する第1冷媒流路と、前記第1冷媒流路とその外面とを連通する第2冷媒流路とを有するロータシャフトと、積層鋼板からなり、前記ロータシャフトの外面に固定されるロータコアと、前記ロータコアに固定された永久磁石と、を含むロータと、前記永久磁石の近傍に配置され、前記ロータコアを軸方向に貫通する第3冷媒流路と、前記ロータに設けられ、前記第2冷媒流路と前記第3冷媒流路とを連通する第4冷媒流路と、前記第2冷媒流路と、前記第4冷媒流路との間に配置され、前記第2冷媒流路と前記第4冷媒流路とを開閉する冷媒流路開閉機構と、を備える永久磁石型モータであって、前記冷媒流路開閉機構は、前記ロータの回転数が第1の所定値以下の場合には前記第2冷媒流路を閉とし、前記ロータの回転数が前記第1の所定値よりも大きい第2の所定値以上の場合には、前記第4冷媒流路を閉とし、前記ロータの回転数が前記第1の所定値を超えて第2の所定値未満の場合には、前記第2冷媒流路と前記第4冷媒流路の両方を開とすること、を特徴とする。   A permanent magnet type motor according to the present invention includes a first refrigerant channel that extends in an axial direction and through which a refrigerant flows, and a second refrigerant channel that communicates the first refrigerant channel with an outer surface thereof. A rotor comprising a shaft, a laminated steel plate, and a rotor core fixed to the outer surface of the rotor shaft; and a permanent magnet fixed to the rotor core; and disposed in the vicinity of the permanent magnet, the rotor core in the axial direction A third refrigerant channel penetrating through, a fourth refrigerant channel provided in the rotor and communicating with the second refrigerant channel and the third refrigerant channel, the second refrigerant channel, and the fourth A refrigerant magnet opening / closing mechanism that is disposed between the refrigerant channels and opens and closes the second refrigerant channel and the fourth refrigerant channel, wherein the refrigerant channel opening / closing mechanism is provided. When the rotational speed of the rotor is less than or equal to a first predetermined value When the second refrigerant flow path is closed and the rotational speed of the rotor is equal to or greater than a second predetermined value greater than the first predetermined value, the fourth refrigerant flow path is closed and the rotation of the rotor When the number exceeds the first predetermined value and is less than the second predetermined value, both the second refrigerant channel and the fourth refrigerant channel are opened.

本発明の永久磁石型モータにおいて、前記冷媒流路開閉機構は、前記第2冷媒流路の開度の増減と前記第4冷媒流路の開度の増減とが反対となるように前記第2冷媒流路と前記第4冷媒流路の開度を変化させること、としても好適である。   In the permanent magnet type motor of the present invention, the refrigerant flow path opening / closing mechanism is configured such that the increase / decrease in the opening degree of the second refrigerant flow path is opposite to the increase / decrease in the opening degree of the fourth refrigerant flow path. It is also preferable to change the opening degree of the refrigerant flow path and the fourth refrigerant flow path.

本発明の永久磁石型モータにおいて、前記ロータシャフトは、その外面と前記第1冷媒流路との間を貫通するガイド孔を有し、前記冷媒流路開閉機構は、前記第2冷媒流路を塞ぐ第1弁体部と、前記第4冷媒流路を塞ぐ第2弁体部と、前記第1冷媒流路の冷媒圧力を受圧する受圧部とを含み、前記ガイド孔によってガイドされて半径方向に移動する弁部材と、前記弁部材を前記第1冷媒流路に向かって半径方向に付勢する弾性部材と、を備えること、としても好適である。   In the permanent magnet type motor of the present invention, the rotor shaft has a guide hole penetrating between an outer surface thereof and the first refrigerant channel, and the refrigerant channel opening / closing mechanism includes the second refrigerant channel. A first valve body portion for closing, a second valve body portion for closing the fourth refrigerant flow path, and a pressure receiving portion for receiving the refrigerant pressure of the first refrigerant flow path, and is guided in the radial direction by the guide hole. And a resilient member that urges the valve member radially toward the first refrigerant flow path.

本発明の永久磁石型モータにおいて、前記弁部材の前記第1弁体部が前記第2冷媒流路を塞いだ際に、前記受圧部の冷媒圧力を受ける面が前記第1冷媒流路の表面よりも半径方向外側に位置していること、としても好適であるし、前記ガイド孔の前記第1冷媒流路表面の開口周縁は、前記第1冷媒流路表面から半径方向外側に向かって凹んでいること、としても好適である。   In the permanent magnet type motor of the present invention, when the first valve body portion of the valve member closes the second refrigerant channel, the surface receiving the refrigerant pressure of the pressure receiving unit is the surface of the first refrigerant channel. It is also preferable that the outer circumferential edge of the guide hole is recessed radially outward from the surface of the first refrigerant channel. It is also suitable as being.

本発明の永久磁石型モータにおいて、前記第4冷媒流路は、前記ロータコアの内部に設けられ、半径方向に延びる流路であること、としても好適であるし、前記第4冷媒流路は、前記ロータコアの外部に設けられ、半径方向に延びる流路であること、としても好適である。   In the permanent magnet type motor of the present invention, it is preferable that the fourth refrigerant flow path is a flow path provided in the rotor core and extending in a radial direction. It is also preferable that the flow path is provided outside the rotor core and extends in the radial direction.

本発明は、永久磁石型モータのシステム効率を向上させるという効果を奏する。   The present invention has an effect of improving the system efficiency of a permanent magnet type motor.

本発明の実施形態における永久磁石型モータの断面図である。It is sectional drawing of the permanent magnet type motor in embodiment of this invention. 図1に示すA部の拡大図である。It is an enlarged view of the A section shown in FIG. 本発明の実施形態における永久磁石型モータの軸方向の断面図である。It is sectional drawing of the axial direction of the permanent magnet type motor in embodiment of this invention. 本発明の実施形態における永久磁石型モータの冷媒流路開閉機構の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the refrigerant | coolant flow path opening / closing mechanism of the permanent magnet type motor in embodiment of this invention. 本発明の実施形態における永久磁石型モータの冷媒流路開閉機構の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the refrigerant | coolant flow path opening / closing mechanism of the permanent magnet type motor in embodiment of this invention. 本発明の実施形態における永久磁石型モータの永久磁石高温領域を示すグラフである。It is a graph which shows the permanent magnet high temperature area | region of the permanent magnet type motor in embodiment of this invention. 本発明の実施形態における永久磁石型モータのロータの回転数に対するトルク損失の変化を示すグラフである。It is a graph which shows the change of the torque loss with respect to the rotation speed of the rotor of the permanent magnet type motor in embodiment of this invention. 本発明の永久磁石型モータの他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the permanent magnet type motor of this invention.

以下、図面を参照しながら本発明の実施形態について説明する。図1に示すように、本実施形態の永久磁石型モータ100は、ケーシング10と、ケーシング10の内面に固定されたステータ40と、ステータ40の内周側に配置され、ケーシング10に回転自在に支持されるロータ20とを備えている。ステータ40は、薄い電磁鋼板を積層し、内周側に複数のスロットを備えるステータコア41と、ステータコア41の各スロットに巻回されたコイルがステータコア41の軸方向の両端面からそれぞれ突出した第1、第2コイルエンド42,43とを備えている。ロータ20は、中心孔22を有する中空形状のロータシャフト21と、薄い電磁鋼板24を積層し、ロータシャフト21の外面21bに固定されたロータコア23と、ロータコア23の中に取り付けられた永久磁石25と、ロータコア23と永久磁石25とを軸方向に両側から挟みこむ第1、第2エンドプレート26,27とを備えている。ロータシャフト21の第1、第2端部21e,21fは、ケーシング10の第1端板11、第2端板12にそれぞれ取り付けられた第1、第2ボールベアリング13,14によって回転軸91の周りに回転自在にケーシング10に取り付けられている。ロータシャフト21の中心孔22は、冷媒が回転軸91の方向に流れる第1冷媒流路である。また、各エンドプレート26,27は、ロータコア23と共にロータシャフト21の外面21bに固定されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the permanent magnet type motor 100 of the present embodiment is disposed on a casing 10, a stator 40 fixed to the inner surface of the casing 10, and an inner peripheral side of the stator 40, and is rotatable on the casing 10. And a supported rotor 20. The stator 40 is formed by laminating thin electromagnetic steel plates, and a stator core 41 having a plurality of slots on the inner peripheral side, and a coil wound around each slot of the stator core 41 protrudes from both end surfaces of the stator core 41 in the axial direction. The second coil ends 42 and 43 are provided. The rotor 20 includes a hollow rotor shaft 21 having a center hole 22, a thin electromagnetic steel plate 24, a rotor core 23 fixed to the outer surface 21 b of the rotor shaft 21, and a permanent magnet 25 attached in the rotor core 23. And first and second end plates 26 and 27 that sandwich the rotor core 23 and the permanent magnet 25 from both sides in the axial direction. The first and second end portions 21e and 21f of the rotor shaft 21 are connected to the rotary shaft 91 by first and second ball bearings 13 and 14 respectively attached to the first end plate 11 and the second end plate 12 of the casing 10. It is attached to the casing 10 so as to be rotatable around. The central hole 22 of the rotor shaft 21 is a first refrigerant flow path through which the refrigerant flows in the direction of the rotation shaft 91. The end plates 26 and 27 are fixed to the outer surface 21 b of the rotor shaft 21 together with the rotor core 23.

ロータ20の第1エンドプレート26のロータシャフト21の側は、ロータシャフト21の第1端部21eに向かって軸方向に突き出した突部35が設けられており、その突部35の内部にはリング状のキャビティ34が設けられている。また、第1エンドプレート26の突部35より半径方向外周側の内部には、キャビティ34に連通し、半径方向に延びる半径方向孔29と、半径方向孔29に連通する軸方向孔30とを備えている。   On the rotor shaft 21 side of the first end plate 26 of the rotor 20, a protrusion 35 protruding in the axial direction toward the first end 21 e of the rotor shaft 21 is provided. A ring-shaped cavity 34 is provided. Further, a radial hole 29 that communicates with the cavity 34 and extends in the radial direction and an axial hole 30 that communicates with the radial hole 29 are provided inside the radially outer side of the protrusion 35 of the first end plate 26. I have.

ロータコア23には、永久磁石25に沿って回転軸91の方向にロータコア23を貫通する貫通孔31が設けられており、第1エンドプレート26に設けられた軸方向孔30は、貫通孔31と半径方向及び周方向に同一位置で、貫通孔31に連通している。そして、ロータ20の第2エンドプレート27は、貫通孔31と半径方向及び周方向に同一位置にあり、貫通孔31と連通する軸方向孔32が設けられている。貫通孔31は、第3冷媒流路である。   The rotor core 23 is provided with a through hole 31 penetrating the rotor core 23 along the permanent magnet 25 in the direction of the rotation shaft 91. The axial hole 30 provided in the first end plate 26 is connected to the through hole 31. It communicates with the through hole 31 at the same position in the radial direction and the circumferential direction. The second end plate 27 of the rotor 20 is provided at the same position as the through hole 31 in the radial direction and the circumferential direction, and an axial hole 32 communicating with the through hole 31 is provided. The through hole 31 is a third refrigerant channel.

ロータシャフト21には、第1エンドプレート26に設けられたキャビティ34と連通する連通孔28が設けられている。連通孔28は、キャビティ34、半径方向孔29、軸方向孔30を介して第3冷媒流路である貫通孔31と第1冷媒流路である中心孔22とを連通する第2冷媒流路であり、半径方向孔29は、キャビティ34、軸方向孔30を介して第2冷媒流路である連通孔28と第3冷媒流路である貫通孔31と連通する第4冷媒流路である。また、半径方向孔29は、ロータコア23の外側の第1エンドプレート26に設けられていることから、ロータコア23の外部に設けられた第4冷媒流路である。   The rotor shaft 21 is provided with a communication hole 28 that communicates with a cavity 34 provided in the first end plate 26. The communication hole 28 communicates the through hole 31 that is the third refrigerant channel and the center hole 22 that is the first refrigerant channel via the cavity 34, the radial hole 29, and the axial hole 30. The radial hole 29 is a fourth refrigerant flow path that communicates with the communication hole 28 that is the second refrigerant flow path and the through hole 31 that is the third refrigerant flow path via the cavity 34 and the axial hole 30. . Further, since the radial hole 29 is provided in the first end plate 26 outside the rotor core 23, it is a fourth refrigerant flow path provided outside the rotor core 23.

第2冷媒流路である連通孔28と第4冷媒流路である半径方向孔29との間のキャビティ34には、連通孔28と半径方向孔29を開閉して冷媒の各孔28,29の流通を開放、遮断する冷媒流路開閉機構70が設けられている。図2,3に示す様に、冷媒流路開閉機構70は、弁部材71と、弁部材71を半径方向に付勢する弾性部材76とを含んでいる。弁部材71は、第2冷媒流路である連通孔28のキャビティ34側の端部に嵌まり込んで連通孔28の冷媒の流通を遮断する第1弁体部72と、第4冷媒流路である半径方向孔29のキャビティ34側の端部に嵌まり込んで半径方向孔29の冷媒の流通を遮断する第2弁体部73と、ロータシャフト21に設けられたガイド孔33にガイドされるガイド部74とを備えている。第1弁体部72と第2弁体部は、先端の丸い、すり鉢型の突起であり、先端がそれぞれ連通孔28又は半径方向孔29の中に入り、根元付近のテーパ面が連通孔28、半径方向孔29のキャビティ34側の開口端面に当たると連通孔28、半径方向孔29の冷媒の流通を遮断し、根元付近のテーパ面が連通孔28、半径方向孔29のキャビティ34側の開口端面から離れると連通孔28、半径方向孔29に冷媒を流通させる。また、根元付近のテーパ面と連通孔28、半径方向孔29のキャビティ34側の開口端面との間の隙間によって冷媒の流量を増減させることができる。   In the cavity 34 between the communication hole 28 that is the second refrigerant flow path and the radial hole 29 that is the fourth refrigerant flow path, the communication hole 28 and the radial hole 29 are opened and closed to open the refrigerant holes 28 and 29. A refrigerant flow path opening / closing mechanism 70 that opens and closes the circulation of the refrigerant is provided. As shown in FIGS. 2 and 3, the refrigerant flow path opening / closing mechanism 70 includes a valve member 71 and an elastic member 76 that urges the valve member 71 in the radial direction. The valve member 71 includes a first valve body portion 72 that fits into an end portion on the cavity 34 side of the communication hole 28 that is the second refrigerant flow path, and blocks the flow of the refrigerant in the communication hole 28, and a fourth refrigerant flow path. The second valve body portion 73 that fits into the end portion of the radial hole 29 on the cavity 34 side and blocks the flow of the refrigerant in the radial hole 29, and the guide hole 33 provided in the rotor shaft 21. The guide part 74 is provided. The first valve body part 72 and the second valve body part are round and mortar-shaped protrusions, the tips respectively enter the communication hole 28 or the radial hole 29, and the tapered surface near the root is the communication hole 28. Then, when it hits the opening end surface of the radial hole 29 on the cavity 34 side, the flow of the refrigerant in the communication hole 28 and the radial hole 29 is blocked, and the taper surface near the root is the communication hole 28 and the opening of the radial hole 29 on the cavity 34 side. When separated from the end face, the refrigerant flows through the communication hole 28 and the radial hole 29. In addition, the flow rate of the refrigerant can be increased or decreased by a gap between the tapered surface near the root and the opening end surface of the communication hole 28 and the radial hole 29 on the cavity 34 side.

ガイド孔33は中心孔22とキャビティ34との間を半径方向に連通するようにロータシャフト21に設けられた孔であり、中心孔22側の周縁は、中心孔22の表面、或いは中空状のロータシャフト21の内面21aから半径方向外側に凹むように座グリ36が設けられている。弁部材71のガイド部74の中心孔22側の端面は、中心孔22に流入する冷媒の圧力Pを受ける受圧面75となっている。この受圧面75は、第1弁体部72が連通孔28に嵌まり込んだ際、その半径方向の位置がガイド孔33の領域となるよう構成されている。なお、その際、受圧面75は中心孔22の表面或いはロータシャフト21の内面21aよりも半径方向外側に位置していればよく、ガイド孔33の領域まで入っていなくてもよい。   The guide hole 33 is a hole provided in the rotor shaft 21 so as to communicate between the center hole 22 and the cavity 34 in the radial direction. The peripheral edge on the center hole 22 side is the surface of the center hole 22 or a hollow shape. Spot facings 36 are provided so as to be recessed radially outward from the inner surface 21a of the rotor shaft 21. The end surface of the guide portion 74 of the valve member 71 on the side of the center hole 22 is a pressure receiving surface 75 that receives the pressure P of the refrigerant flowing into the center hole 22. The pressure receiving surface 75 is configured such that when the first valve body portion 72 is fitted into the communication hole 28, the radial position thereof becomes the region of the guide hole 33. At this time, the pressure receiving surface 75 only needs to be positioned radially outside the surface of the center hole 22 or the inner surface 21 a of the rotor shaft 21, and may not enter the region of the guide hole 33.

図3に示す様に、弁部材71の周方向の両端面には、ロータシャフト21の外面に設けられたラグ77との間を周方向に接続する弾性部材76が取り付けられている。図3に示す様に、ラグ77は、ガイド孔33に沿った方向(中心線93の方向)に第1弁体部72よりも水平方向の中心線92に寄った位置に設けられていることから、弾性部材76の張力によって弁部材71の第1弁体部72は連通孔28のキャビティ34側の端面に押し付けられている。つまり、弾性部材76は、弁部材71を半径方向内側に向かって付勢している。   As shown in FIG. 3, elastic members 76 that connect the lugs 77 provided on the outer surface of the rotor shaft 21 in the circumferential direction are attached to both end surfaces of the valve member 71 in the circumferential direction. As shown in FIG. 3, the lug 77 is provided at a position closer to the center line 92 in the horizontal direction than the first valve body portion 72 in the direction along the guide hole 33 (the direction of the center line 93). Thus, the first valve body 72 of the valve member 71 is pressed against the end surface of the communication hole 28 on the cavity 34 side by the tension of the elastic member 76. That is, the elastic member 76 urges the valve member 71 radially inward.

本実施形態の永久磁石型モータ100は、ステータ40の各コイルエンド42,43と、ロータシャフト21の中心孔22とに冷媒を供給する冷媒供給ポンプ51と冷媒供給ポンプ51の出口に接続された冷媒供給管52と、冷媒供給管52から分岐して冷媒を各コイルエンド42,43に導く冷媒管53〜55と、冷媒管54,55に接続され、各コイルエンド42,43に冷媒を吹き付ける第1、第2冷媒吹きつけ管61,62と、冷媒管53〜55に取り付けられ、中心孔22と、各コイルエンド42,43に供給する冷媒の流量割合を調整するオリフィス56〜58と、を備えている。図1に示す様に、冷媒供給ポンプ51で加圧された冷媒の一部は、冷媒供給管52からロータシャフト21の中心孔22に流入し、冷媒流路開閉機構70が開となっている場合には、中心孔22から連通孔28、キャビティ34、半径方向孔29、軸方向孔30を通ってロータコア23の貫通孔31を通って永久磁石25を冷却し、軸方向孔32からケーシング10の内部に排出される。また、冷媒供給ポンプ51によって加圧された冷媒の一部は、冷媒管53,54を通って第1冷媒吹きつけ管61,62から第1、第2コイルエンド42,43に吹き付けられる。   The permanent magnet type motor 100 of the present embodiment is connected to a refrigerant supply pump 51 that supplies refrigerant to the coil ends 42 and 43 of the stator 40 and the center hole 22 of the rotor shaft 21 and an outlet of the refrigerant supply pump 51. Refrigerant supply pipe 52, refrigerant pipes 53 to 55 that branch from refrigerant supply pipe 52 and lead the refrigerant to coil ends 42 and 43, and refrigerant pipes 54 and 55 are connected to each other, and each coil end 42 and 43 is sprayed with refrigerant. Orifices 56 to 58 which are attached to the first and second refrigerant blowing pipes 61 and 62 and the refrigerant pipes 53 to 55 and adjust the flow rate ratio of the refrigerant supplied to the center hole 22 and the coil ends 42 and 43; It has. As shown in FIG. 1, a part of the refrigerant pressurized by the refrigerant supply pump 51 flows into the center hole 22 of the rotor shaft 21 from the refrigerant supply pipe 52, and the refrigerant flow path opening / closing mechanism 70 is opened. In this case, the permanent magnet 25 is cooled from the central hole 22 through the communication hole 28, the cavity 34, the radial hole 29, the axial hole 30, the through hole 31 of the rotor core 23, and the casing 10 through the axial hole 32. It is discharged into the inside. A part of the refrigerant pressurized by the refrigerant supply pump 51 is blown from the first refrigerant blowing pipes 61 and 62 to the first and second coil ends 42 and 43 through the refrigerant pipes 53 and 54.

本実施形態の永久磁石型モータ100は、図6の線aに示す様な回転数と最大出力特性をもっている。図6に示す様に、ロータの回転数がr0以下の場合は、回転数に関わらず最大出力(トルク)は、T0一定で、ロータの回転数がr0を超えると、回転数が高くなるにつれて最大出力(トルク)は次第に低下してくる。また、ロータの回転数がr1を超えると、制御方法がPWM制御となり、出力が線aに近い最大出力近傍において、リップル電流により永久磁石25の温度が高くなる。そして、ロータの回転数がr2を超えると、制御方法が矩形波制御或いは過変調制御に移行するのでリップル電流が少なくなり、永久磁石25の温度はさほど高くならない。図6において、点線bによって囲まれるハッチングした領域cが永久磁石25の温度が高くなる領域である。 The permanent magnet type motor 100 of this embodiment has a rotational speed and a maximum output characteristic as shown by a line a in FIG. As shown in FIG. 6, when the rotational speed of the rotor is equal to or less than r 0 , the maximum output (torque) is constant at T 0 regardless of the rotational speed, and when the rotational speed of the rotor exceeds r 0 , the rotational speed is The maximum output (torque) gradually decreases as the value increases. When the rotational speed of the rotor exceeds r 1 , the control method is PWM control, and the temperature of the permanent magnet 25 increases due to the ripple current in the vicinity of the maximum output whose output is close to the line a. When the rotational speed of the rotor exceeds r 2 , the control method shifts to rectangular wave control or overmodulation control, so that the ripple current is reduced and the temperature of the permanent magnet 25 is not so high. In FIG. 6, a hatched region c surrounded by a dotted line b is a region where the temperature of the permanent magnet 25 increases.

以上説明したような構造と永久磁石25の温度特性とを有する本実施形態の永久磁石型モータ100における冷媒流路開閉機構70の動作と永久磁石25の冷却動作について説明する。   The operation of the refrigerant flow path opening / closing mechanism 70 and the cooling operation of the permanent magnet 25 in the permanent magnet type motor 100 of this embodiment having the structure as described above and the temperature characteristics of the permanent magnet 25 will be described.

ロータの回転数が低い場合には、弁部材71に加わる遠心力は弾性部材76の張力によって弁部材71に加わる図3の中心線92に向かう押し付け力よりも小さく、弁部材71の第1弁体部72の先端は、連通孔28の中に入り、根元付近のテーパ面が連通孔28(第2冷媒流路)のキャビティ34側の開口端面に当たって連通孔28(第2冷媒流路)の冷媒の流通を遮断している。従って、冷媒供給ポンプ51から吐出された冷媒は、ロータシャフト21の中心孔22からロータコア23の貫通孔31には流れず、冷媒管53〜55を通って各コイルエンド42,43に吹き掛けられる。なお、図2,3に示す様に、この状態では、第2弁体部73は半径方向孔29のキャビティ34側の開口から半径方向内側に入った位置にあり、キャビティ34と半径方向孔29とは連通した状態となっている。   When the rotational speed of the rotor is low, the centrifugal force applied to the valve member 71 is smaller than the pressing force toward the center line 92 of FIG. 3 applied to the valve member 71 by the tension of the elastic member 76, and the first valve of the valve member 71. The distal end of the body part 72 enters the communication hole 28, and the tapered surface near the base hits the opening end surface on the cavity 34 side of the communication hole 28 (second refrigerant flow path), so that the communication hole 28 (second refrigerant flow path) The refrigerant flow is blocked. Therefore, the refrigerant discharged from the refrigerant supply pump 51 does not flow from the center hole 22 of the rotor shaft 21 to the through hole 31 of the rotor core 23 but is sprayed to the coil ends 42 and 43 through the refrigerant pipes 53 to 55. . As shown in FIGS. 2 and 3, in this state, the second valve body 73 is located radially inward from the opening on the cavity 34 side of the radial hole 29, and the cavity 34 and the radial hole 29. Is in communication.

ロータ20の回転数が高くなってくると、弁部材71に加わる遠心力が次第に大きくなってくる。また、ロータシャフト21の中心孔22に入っている冷媒にも遠心力が加わるため、弁部材71の受圧面75に加わる冷媒の圧力Pも次第に高くなってくる。本実施形態の永久磁石型モータ100では、中心孔22側の周縁に座グリ36が設けられ、受圧面75は、第1弁体部72が連通孔28に嵌まり込んだ状態では、その半径方向の位置がガイド孔33の領域で、中心孔22の表面或いはロータシャフト21の内面21aよりも半径方向外側に位置するように構成されている。このため、ロータ20が回転した際に受圧面75に掛かる冷媒の圧力は、座グリ36の無いロータシャフト21の内面21a又は中心孔22の表面(第1冷媒流路の表面)に掛かる冷媒の圧力よりも高くなっている。ロータ20の回転数が高くなると、弁部材71に加わる遠心力と、弁部材71の受圧面75に加わる冷媒の圧力Pによる半径方向外側への荷重の合計も増大するが、ロータ20の回転数がr1以下の場合には、弾性部材76の張力によって弁部材71に加わる図3の中心線92に向かう押し付け力よりも半径方向外側への荷重の合計の方が小さいため、弁部材71の第1弁体部72は連通孔28を遮断した状態となっている。弁部材71が半径方向に移動しないので、第2弁体部73は半径方向孔29のキャビティ34側の開口から半径方向内側に入った位置に留まっており、キャビティ34と半径方向孔29とは連通した状態となっている。 As the rotational speed of the rotor 20 increases, the centrifugal force applied to the valve member 71 gradually increases. Further, since centrifugal force is also applied to the refrigerant contained in the center hole 22 of the rotor shaft 21, the pressure P of the refrigerant applied to the pressure receiving surface 75 of the valve member 71 gradually increases. In the permanent magnet type motor 100 of the present embodiment, the spot facings 36 are provided on the peripheral edge on the center hole 22 side, and the pressure receiving surface 75 has a radius in a state where the first valve body 72 is fitted in the communication hole 28. The position in the direction is the region of the guide hole 33, and is configured to be positioned radially outward from the surface of the center hole 22 or the inner surface 21 a of the rotor shaft 21. For this reason, when the rotor 20 rotates, the pressure of the refrigerant applied to the pressure receiving surface 75 is such that the refrigerant applied to the inner surface 21a of the rotor shaft 21 without the spot facings 36 or the surface of the center hole 22 (the surface of the first refrigerant flow path). It is higher than the pressure. As the rotational speed of the rotor 20 increases, the total of the centrifugal force applied to the valve member 71 and the radially outward load due to the refrigerant pressure P applied to the pressure receiving surface 75 of the valve member 71 also increases. 3 is less than or equal to r 1, the total load on the radially outer side is smaller than the pressing force applied to the valve member 71 by the tension of the elastic member 76 toward the center line 92 in FIG. The first valve body 72 is in a state where the communication hole 28 is blocked. Since the valve member 71 does not move in the radial direction, the second valve body portion 73 remains at a position radially inward from the opening on the cavity 34 side of the radial hole 29, and the cavity 34 and the radial hole 29 are It is in a state of communication.

そして、更にロータ20の回転数が高くなり、ロータ20の回転数がr1を超えると、弁部材71に加わる遠心力と、弁部材71の受圧面75に加わる冷媒の圧力Pによる半径方向外側への荷重の合計が、弾性部材76の張力によって弁部材71に加わる図3の中心線92に向かう押し付け力よりも大きくなる。すると、図4に示す様に、弁部材71は半径方向外側に向かって移動し、第1弁体部72の根元付近のテーパ面は連通孔28(第2冷媒流路)のキャビティ34側の開口端面から離れる。この際、図4に示す様に、第2弁体部73の先端は、まだ半径方向孔29に入っておらず、半径方向孔29のキャビティ34側の開口端は開放されている。従って、冷媒供給ポンプ51から吐出された冷媒は、図4に示す矢印のように、ロータシャフト21の中心孔22から連通孔28、キャビティ34、半径方向孔29、軸方向孔30を通ってロータコア23の貫通孔31に流れ、永久磁石25を冷却し始める。 Then, when the rotational speed of the rotor 20 further increases and the rotational speed of the rotor 20 exceeds r 1 , the outer side in the radial direction due to the centrifugal force applied to the valve member 71 and the refrigerant pressure P applied to the pressure receiving surface 75 of the valve member 71. 3 becomes larger than the pressing force toward the center line 92 in FIG. 3 applied to the valve member 71 by the tension of the elastic member 76. Then, as shown in FIG. 4, the valve member 71 moves outward in the radial direction, and the tapered surface near the root of the first valve body 72 is located on the cavity 34 side of the communication hole 28 (second refrigerant flow path). Move away from the open end face. At this time, as shown in FIG. 4, the tip of the second valve body portion 73 has not yet entered the radial hole 29, and the opening end of the radial hole 29 on the cavity 34 side is open. Therefore, the refrigerant discharged from the refrigerant supply pump 51 passes through the communication hole 28, the cavity 34, the radial hole 29, and the axial hole 30 from the center hole 22 of the rotor shaft 21 as shown by the arrows in FIG. The permanent magnets 25 begin to cool through the through holes 31 of the 23.

ロータ20の回転数がr1を超えて上昇すると、それに伴って弁部材71に加わる遠心力と、弁部材71の受圧面75に加わる冷媒の圧力Pによる半径方向外側への荷重の合計が、より大きくなり、弁部材71の半径方向外側への移動量は次第に大きくなってくる。すると、第1弁体部72の根元付近のテーパ面と連通孔28のキャビティ34側の開口端面との隙間が大きくなり、図4に示す矢印のように、ロータシャフト21の中心孔22から連通孔28、キャビティ34、半径方向孔29、軸方向孔30を通ってロータコア23の貫通孔31に流れる冷媒の流量が増加していく。 When the rotational speed of the rotor 20 rises beyond r 1 , the total of the centrifugal force applied to the valve member 71 and the radially outward load due to the refrigerant pressure P applied to the pressure receiving surface 75 of the valve member 71 is as follows: The amount of movement of the valve member 71 radially outward increases gradually. As a result, the gap between the taper surface near the base of the first valve body 72 and the opening end surface of the communication hole 28 on the cavity 34 side becomes large, and the communication from the center hole 22 of the rotor shaft 21 as shown by the arrow in FIG. The flow rate of the refrigerant flowing through the hole 28, the cavity 34, the radial hole 29, and the axial hole 30 into the through hole 31 of the rotor core 23 increases.

そして、ロータ20の回転数が更に上昇すると、弁部材71の半径方向外側への移動によって、第2弁体部73の先端が半径方向孔29の中に進入し始める。すると、第2弁体部73の根元付近のテーパ面と半径方向孔29のキャビティ34側の開口端面との隙間が次第に小さくなり、図4に示す矢印のように、ロータシャフト21の中心孔22から連通孔28、キャビティ34、半径方向孔29、軸方向孔30を通ってロータコア23の貫通孔31に流れる冷媒の流量が減少していく。このように、弁部材71の半径方向外側への移動によって第1弁体部72と連通孔28(第2冷媒流路)との間の隙間、即ち、第2冷媒流路の開度が増加すると、反対に第2弁体部73と半径方向孔29(第4冷媒流路)との間の隙間、即ち、第4冷媒流路の開度が減少する。しかし、ロータ20の回転数がr2未満の場合には、第2弁体部73の根元付近のテーパ面は半径方向孔29のキャビティ34側の開口端面に接しておらず、冷媒は貫通孔31に流れ続けている。 When the rotational speed of the rotor 20 further increases, the distal end of the second valve body 73 starts to enter the radial hole 29 due to the movement of the valve member 71 outward in the radial direction. Then, the gap between the taper surface near the base of the second valve body 73 and the opening end surface of the radial hole 29 on the cavity 34 side is gradually reduced, and the center hole 22 of the rotor shaft 21 is indicated by the arrow shown in FIG. The flow rate of the refrigerant flowing from the through hole 28 to the through hole 31 of the rotor core 23 through the communication hole 28, the cavity 34, the radial hole 29, and the axial hole 30 decreases. Thus, the clearance between the first valve body 72 and the communication hole 28 (second refrigerant flow path), that is, the opening degree of the second refrigerant flow path, is increased by the movement of the valve member 71 outward in the radial direction. Then, conversely, the gap between the second valve body portion 73 and the radial hole 29 (fourth refrigerant channel), that is, the opening degree of the fourth refrigerant channel decreases. However, when the rotational speed of the rotor 20 is less than r 2 , the tapered surface near the root of the second valve body portion 73 is not in contact with the opening end surface of the radial hole 29 on the cavity 34 side, and the refrigerant passes through the through hole. 31 continues to flow.

そして、ロータ20の回転数がr2超えると、弁部材71は大きな遠心力と受圧面75に加わる冷媒の圧力上昇による半径方向外向きの荷重により、弾性部材76の張力によって弁部材71に加わる図3の中心線92に向かう押し付け力に打ち勝って更に半径方向外側に移動する。そして、図5に示す様に、第2弁体部73の先端が、半径方向孔29の中に入り、根元付近のテーパ面が半径方向孔29(第4冷媒流路)のキャビティ34側の開口端面に当たって半径方向孔29(第4冷媒流路)の冷媒の流通を遮断する。すると、冷媒供給ポンプ51から吐出された冷媒は、ロータシャフト21の中心孔22からロータコア23の貫通孔31には流れず、冷媒管53〜55を通って各コイルエンド42,43に吹き掛けられようになる。 When the rotational speed of the rotor 20 exceeds r 2 , the valve member 71 is applied to the valve member 71 by the tension of the elastic member 76 due to a large centrifugal force and a radially outward load due to a pressure increase of the refrigerant applied to the pressure receiving surface 75. It overcomes the pressing force toward the center line 92 in FIG. 3 and moves further outward in the radial direction. Then, as shown in FIG. 5, the tip of the second valve body 73 enters the radial hole 29, and the tapered surface near the root is on the cavity 34 side of the radial hole 29 (fourth refrigerant flow path). The refrigerant flows through the radial hole 29 (fourth refrigerant flow path) by blocking against the opening end face. Then, the refrigerant discharged from the refrigerant supply pump 51 does not flow from the center hole 22 of the rotor shaft 21 to the through hole 31 of the rotor core 23, but is blown to the coil ends 42 and 43 through the refrigerant pipes 53 to 55. It becomes like this.

ロータ20の回転数がr2よりも高い状態から低下してくる場合には上記と反対に、回転数がr2よりも低くなると、第2弁体部73と半径方向孔29とが流通して冷媒が貫通孔31に流れる。回転数が更に低くなると、弁部材71の半径方向内側への移動によって第2弁体部73と半径方向孔29(第4冷媒流路)との間の隙間、即ち、第4冷媒流路の開度が増加すると、反対に第1弁体部72の連通孔28(第2冷媒流路)との間の隙間、即ち、第2冷媒流路の開度が減少する。そして、更にロータ20の回転数が低下してr1以下となると、弾性部材76の張力によって弁部材71に加わる図3の中心線92に向かう押し付け力よって第1弁体部72のテーパ面が連通孔28のキャビティ34側の開口端面に接して連通孔28を遮断し、冷媒の貫通孔31への流通が遮断される。 Contrary to the above, if the rotational speed of the rotor 20 is lowered from the state higher than r 2, the rotational speed is lower than r 2, a second valve body portion 73 and the radial bore 29 is circulated Thus, the refrigerant flows into the through hole 31. When the rotational speed is further reduced, the clearance between the second valve body portion 73 and the radial hole 29 (fourth refrigerant flow path), that is, the fourth refrigerant flow path, due to the movement of the valve member 71 inward in the radial direction. On the contrary, when the opening degree increases, the clearance between the communication hole 28 (second refrigerant flow path) of the first valve body 72, that is, the opening degree of the second refrigerant flow path decreases. When the rotational speed of the rotor 20 further decreases to r 1 or less, the taper surface of the first valve body portion 72 is pressed by the pressing force toward the center line 92 of FIG. 3 applied to the valve member 71 by the tension of the elastic member 76. The communication hole 28 is cut off in contact with the opening end surface of the communication hole 28 on the cavity 34 side, and the flow of the refrigerant to the through hole 31 is cut off.

なお、本実施形態では、ロータ20の回転数がr1において第1弁体部72が連通孔28を開閉し、回転数がr2において第2弁体部73が半径方向孔29を開閉するように、弁部材71の重量、受圧面75の面積、弾性部材76の張力が調整されている。第1、第2弁体部72,73が開閉動作を行うロータ20の回転数は、例えば、弾性部材76の弾性率、受圧面75の面積などを調整することによって、永久磁石型モータ100に適合するよう調整する。 In the present embodiment, the first valve body 72 opens and closes the communication hole 28 when the rotational speed of the rotor 20 is r 1 , and the second valve body 73 opens and closes the radial hole 29 when the rotational speed is r 2 . As described above, the weight of the valve member 71, the area of the pressure receiving surface 75, and the tension of the elastic member 76 are adjusted. The rotational speed of the rotor 20 at which the first and second valve body portions 72 and 73 perform the opening / closing operation is adjusted by, for example, adjusting the elastic modulus of the elastic member 76, the area of the pressure receiving surface 75, etc. Adjust to fit.

以上説明したように、本実施形態の永久磁石型モータ100は、永久磁石25の温度が高くなる中回転数領域で永久磁石25の近傍に冷媒を流して永久磁石25を冷却し、低回転数領域と高回転数領域では、永久磁石25の近傍への冷媒の流通を遮断することができる。これにより、低回転数領域、高回転数領域においては、不必要な冷媒の流通を抑制することにより、冷媒供給ポンプ51の吐出量を低減することによって永久磁石型モータ100のシステム効率を向上させることができる。また、ロータ20の回転数がr2を超えると、ロータコア23の貫通孔31に冷媒が流通しなくなるので、遠心力により貫通孔31から積層された電磁鋼板24の隙間を通ってロータコア23の外面に冷媒が漏れ出してロータコア23とステータコア41との間に滞留することによるロータ20のトルク損失特性が図7の線fで示す状態から線eに示す状態となる。これにより高回転数領域でのトルク損失が大きく低減され、高回転領域でも永久磁石型モータ100のシステム効率を向上させることができる。 As described above, the permanent magnet type motor 100 according to the present embodiment cools the permanent magnet 25 by flowing a refrigerant in the vicinity of the permanent magnet 25 in the middle rotation speed region where the temperature of the permanent magnet 25 becomes high, thereby reducing the low rotation speed. In the region and the high rotational speed region, the refrigerant flow to the vicinity of the permanent magnet 25 can be blocked. Thereby, in the low rotation speed region and the high rotation speed region, the system efficiency of the permanent magnet motor 100 is improved by reducing the discharge amount of the refrigerant supply pump 51 by suppressing the circulation of unnecessary refrigerant. be able to. Further, when the rotational speed of the rotor 20 exceeds r 2 , the refrigerant does not flow through the through holes 31 of the rotor core 23, so that the outer surface of the rotor core 23 passes through the gap between the electromagnetic steel plates 24 stacked from the through holes 31 by centrifugal force. The torque loss characteristic of the rotor 20 due to the refrigerant leaking out and staying between the rotor core 23 and the stator core 41 changes from the state shown by the line f in FIG. 7 to the state shown by the line e. Thereby, torque loss in the high rotation speed region is greatly reduced, and the system efficiency of the permanent magnet motor 100 can be improved even in the high rotation region.

また、本実施形態の永久磁石型モータ100の冷媒流路開閉機構70は、弁部材71に掛かる遠心力のみでなく、受圧面75に掛かる冷媒の圧力Pによる半径方向外側に向かう荷重を合わせた荷重により弁部材71を半径方向に移動させるよう構成されている。このため、従来技術のように、単にその部材に掛かる遠心力のみによって部材を半径方向に移動させて冷媒の流量を調整する方式に比べて、冷媒を流通させるロータ20の回転数範囲を広い範囲で調整することができ、永久磁石型モータ100の大きさ、出力に応じて冷媒が通流するロータ20の回転数を最適化し、そのシステム効率を向上させることができる。また、遠心力のみでなく、冷媒の圧力Pによる荷重を合わせて弁部材71に加わる半径方向外側に向かう荷重としているので、弁部材71の遠心力のみにより弁部材71を半径方向外側に移動させる構造に比較して、弁部材71の重量を小さくすることができ、永久磁石型モータ100を小型化、軽量化することができる。更に、弁部材71の形状、重量の精度があまり高くなくても、所定の回転数において冷媒流路の開閉を確実に行い、永久磁石25を冷却する冷媒流量を精度よく調整することができるので、冷媒流量のばらつき、冷媒流量の過不足を抑制し、運転効率の低下を抑制することができる。   In addition, the refrigerant flow path opening / closing mechanism 70 of the permanent magnet type motor 100 according to the present embodiment combines not only the centrifugal force applied to the valve member 71 but also the load directed outward in the radial direction due to the pressure P of the refrigerant applied to the pressure receiving surface 75. The valve member 71 is configured to move in the radial direction by a load. For this reason, as compared with the method of adjusting the flow rate of the refrigerant by moving the member in the radial direction only by the centrifugal force applied to the member as in the prior art, the rotational speed range of the rotor 20 through which the refrigerant flows is wider. The rotational speed of the rotor 20 through which the refrigerant flows can be optimized according to the size and output of the permanent magnet type motor 100, and the system efficiency can be improved. Moreover, since not only the centrifugal force but also the load due to the pressure P of the refrigerant is combined and applied to the radially outward load applied to the valve member 71, the valve member 71 is moved radially outward only by the centrifugal force of the valve member 71. Compared to the structure, the weight of the valve member 71 can be reduced, and the permanent magnet motor 100 can be reduced in size and weight. Furthermore, even if the accuracy of the shape and weight of the valve member 71 is not so high, the refrigerant flow path can be reliably opened and closed at a predetermined rotational speed, and the refrigerant flow rate for cooling the permanent magnet 25 can be accurately adjusted. In addition, it is possible to suppress variations in the refrigerant flow rate and excess / deficiency of the refrigerant flow rate, thereby suppressing a decrease in operating efficiency.

次に、図8を参照しながら本発明の他の実施形態について説明する。先に図1から図7を参照して説明した実施形態と同様の部分には同様の符号を付し、説明は省略する。図8に示す様に、本実施形態の永久磁石型モータ100は、ロータコア23の回転軸91方向の中央部分の電磁鋼板24を切り欠いてキャビティ37を形成し、電磁鋼板24の一部を切り欠いてキャビティ37から半径方向に延びて貫通孔31(第3冷媒流路)に連通する半径方向孔29(第4冷媒流路)を形成したものである。つまり、半径方向孔29は、ロータコア23の内部に設けられた第4冷媒流路である。また、ロータシャフト21の中心孔22(第1冷媒流路)とキャビティ37と連通する連通孔28(第2冷媒流路)、ガイド孔33はキャビティ37に対向する位置のロータシャフト21に設けられており、弁部材71もガイド孔33、連通孔28、半径方向孔29の回転軸91方向の位置に合わせてロータコア23の回転軸91方向の略中央に配置されている。また、これに合わせて弾性部材76、ラグ77もロータコア23の軸方向の略中央に配置されている。   Next, another embodiment of the present invention will be described with reference to FIG. Parts similar to those of the embodiment described above with reference to FIGS. 1 to 7 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 8, the permanent magnet type motor 100 of this embodiment forms a cavity 37 by cutting out the electromagnetic steel plate 24 at the center of the rotor core 23 in the direction of the rotation axis 91, and cuts a part of the electromagnetic steel plate 24. A radial hole 29 (fourth refrigerant flow path) that extends in the radial direction from the cavity 37 and communicates with the through hole 31 (third refrigerant flow path) is formed. That is, the radial hole 29 is a fourth refrigerant flow path provided in the rotor core 23. Further, the center hole 22 (first refrigerant flow path) of the rotor shaft 21, the communication hole 28 (second refrigerant flow path) communicating with the cavity 37, and the guide hole 33 are provided in the rotor shaft 21 at a position facing the cavity 37. The valve member 71 is also arranged at the approximate center of the rotor core 23 in the direction of the rotation axis 91 in accordance with the position of the guide hole 33, the communication hole 28, and the radial hole 29 in the direction of the rotation axis 91. In accordance with this, the elastic member 76 and the lug 77 are also arranged at substantially the center in the axial direction of the rotor core 23.

本実施形態の永久磁石型モータ100では、ロータシャフト21の第1端部21e側からロータシャフト21の中心孔22(第1冷媒流路)に供給された冷媒は、ロータコア23の軸方向中央位置まで中心孔22を流れてくる。そして、ロータ20の回転数がr1を超えてr2未満の場合、冷媒流路開閉機構70によって連通孔28(第2冷媒流路)、半径方向孔29(第4冷媒流路)が共に開放状態となり、冷媒は、中心孔22(第1冷媒流路)から連通孔28(第2冷媒流路)、キャビティ37、ロータコア23の軸方向中央の位置に配置された半径方向孔29(第4冷媒流路)を通って貫通孔31(第3冷媒流路)に流入する。半径方向孔29を通って貫通孔31に流入した冷媒は、半径方向孔29の位置からロータシャフト21の第1端部21e、第2端部21fの方向に分かれて貫通孔31の中を軸方向に反対方向に流れ、エンドプレート26,27にそれぞれ設けられた軸方向孔30,32からケーシング10の内部に排出される。 In the permanent magnet type motor 100 of the present embodiment, the refrigerant supplied from the first end 21 e side of the rotor shaft 21 to the center hole 22 (first refrigerant flow path) of the rotor shaft 21 is the axial center position of the rotor core 23. Until it flows through the center hole 22. When the rotational speed of the rotor 20 exceeds r 1 and less than r 2, both the communication hole 28 (second refrigerant channel) and the radial hole 29 (fourth refrigerant channel) are formed by the refrigerant channel opening / closing mechanism 70. The refrigerant enters the open state, and the refrigerant is disposed in the radial hole 29 (first hole) disposed at the center position in the axial direction of the communication hole 28 (second refrigerant channel), the cavity 37 and the rotor core 23 from the center hole 22 (first refrigerant channel). The refrigerant flows into the through hole 31 (third refrigerant channel) through the four refrigerant channels. The refrigerant flowing into the through hole 31 through the radial hole 29 is divided from the position of the radial hole 29 in the direction of the first end portion 21e and the second end portion 21f of the rotor shaft 21, and the shaft passes through the through hole 31. It flows in the direction opposite to the direction, and is discharged into the casing 10 through axial holes 30 and 32 provided in the end plates 26 and 27, respectively.

本実施形態の冷媒流路開閉機構70の動作は、先に図1から図7を参照して説明した実施形態と同様であり、その効果も先に図1から図7を参照して説明した実施形態と同様である。   The operation of the refrigerant flow path opening / closing mechanism 70 of the present embodiment is the same as that of the embodiment described above with reference to FIGS. 1 to 7, and the effect thereof has also been described with reference to FIGS. This is the same as the embodiment.

10 ケーシング、11,12 端板、13,14 ボールベアリング、20 ロータ、21 ロータシャフト、21a 内面、21b 外面、21e 第1端部、21f 第2端部、22 中心孔、23 ロータコア、24 電磁鋼板、25 永久磁石、26,27 エンドプレート、28 連通孔、29 半径方向孔、30,32 軸方向孔、31 貫通孔、33 ガイド孔、34,37 キャビティ、35 突部、36 座グリ、40 ステータ、41 ステータコア、42,43 コイルエンド、51 冷媒供給ポンプ、52 冷媒供給管、53〜55 冷媒管、56〜58 オリフィス、61,62 冷媒吹きつけ管、70 冷媒流路開閉機構、71 弁部材、72 第1弁体部、73 第2弁体部、74 ガイド部、75 受圧面、76 弾性部材、77 ラグ、91 回転軸、92,93 中心線、100 永久磁石型モータ。   DESCRIPTION OF SYMBOLS 10 Casing, 11, 12 End plate, 13, 14 Ball bearing, 20 Rotor, 21 Rotor shaft, 21a Inner surface, 21b Outer surface, 21e First end, 21f Second end, 22 Center hole, 23 Rotor core, 24 Electrical steel plate , 25 Permanent magnet, 26, 27 End plate, 28 Communication hole, 29 Radial hole, 30, 32 Axial hole, 31 Through hole, 33 Guide hole, 34, 37 Cavity, 35 Projection, 36 Counterbore, 40 Stator , 41 Stator core, 42, 43 Coil end, 51 Refrigerant supply pump, 52 Refrigerant supply pipe, 53-55 Refrigerant pipe, 56-58 orifice, 61, 62 Refrigerant blowing pipe, 70 Refrigerant flow path opening / closing mechanism, 71 Valve member, 72 1st valve body part, 73 2nd valve body part, 74 guide part, 75 pressure receiving surface, 76 elastic member, 77 Lug, 91 rotating shaft, 92, 93 center line, 100 permanent magnet type motor.

Claims (7)

その内部に軸方向に延びて冷媒が流通する第1冷媒流路と、前記第1冷媒流路とその外面とを連通する第2冷媒流路とを有するロータシャフトと、
積層鋼板からなり、前記ロータシャフトの外面に固定されるロータコアと、
前記ロータコアに固定された永久磁石と、を含むロータと、
前記永久磁石の近傍に配置され、前記ロータコアを軸方向に貫通する第3冷媒流路と、
前記ロータに設けられ、前記第2冷媒流路と前記第3冷媒流路とを連通する第4冷媒流路と、
前記第2冷媒流路と、前記第4冷媒流路との間に配置され、前記第2冷媒流路と前記第4冷媒流路とを開閉する冷媒流路開閉機構と、を備える永久磁石型モータであって、
前記冷媒流路開閉機構は、前記ロータの回転数が第1の所定値以下の場合には前記第2冷媒流路を閉とし、前記ロータの回転数が前記第1の所定値よりも大きい第2の所定値以上の場合には、前記第4冷媒流路を閉とし、前記ロータの回転数が前記第1の所定値を超えて第2の所定値未満の場合には、前記第2冷媒流路と前記第4冷媒流路の両方を開とすること、
を特徴とする永久磁石型モータ。
A rotor shaft having a first refrigerant passage extending in the axial direction therein and through which the refrigerant flows; and a second refrigerant passage communicating the first refrigerant passage and the outer surface thereof;
A rotor core made of a laminated steel plate and fixed to the outer surface of the rotor shaft;
A rotor including a permanent magnet fixed to the rotor core;
A third refrigerant flow path disposed in the vicinity of the permanent magnet and penetrating the rotor core in the axial direction;
A fourth refrigerant channel provided in the rotor and communicating the second refrigerant channel and the third refrigerant channel;
A permanent magnet type, comprising: a refrigerant channel opening / closing mechanism that is disposed between the second refrigerant channel and the fourth refrigerant channel and opens and closes the second refrigerant channel and the fourth refrigerant channel. A motor,
The refrigerant flow path opening / closing mechanism closes the second refrigerant flow path when the rotational speed of the rotor is equal to or less than a first predetermined value, and the rotational speed of the rotor is larger than the first predetermined value. The second refrigerant flow path is closed when the value is equal to or greater than a predetermined value of 2, and when the rotational speed of the rotor is greater than the first predetermined value and less than a second predetermined value, the second refrigerant is Opening both the flow path and the fourth refrigerant flow path;
Permanent magnet type motor characterized by
請求項1に記載の永久磁石型モータであって、
前記冷媒流路開閉機構は、前記第2冷媒流路の開度の増減と前記第4冷媒流路の開度の増減とが反対となるように前記第2冷媒流路と前記第4冷媒流路の開度を変化させること、
を特徴とする永久磁石型モータ。
The permanent magnet type motor according to claim 1,
The refrigerant flow path opening / closing mechanism has the second refrigerant flow path and the fourth refrigerant flow so that the increase / decrease in the opening degree of the second refrigerant flow path is opposite to the increase / decrease in the opening degree of the fourth refrigerant flow path. Changing the opening of the road,
Permanent magnet type motor characterized by
請求項1または2に記載の永久磁石型モータであって、
前記ロータシャフトは、その外面と前記第1冷媒流路との間を貫通するガイド孔を有し、
前記冷媒流路開閉機構は、
前記第2冷媒流路を塞ぐ第1弁体部と、前記第4冷媒流路を塞ぐ第2弁体部と、前記第1冷媒流路の冷媒圧力を受圧する受圧部とを含み、前記ガイド孔によってガイドされて半径方向に移動する弁部材と、
前記弁部材を前記第1冷媒流路に向かって半径方向に付勢する弾性部材と、を備えること、
を特徴とする永久磁石型モータ。
The permanent magnet type motor according to claim 1 or 2,
The rotor shaft has a guide hole penetrating between an outer surface thereof and the first refrigerant flow path,
The refrigerant flow path opening / closing mechanism is
The guide includes: a first valve body portion that closes the second refrigerant flow path; a second valve body portion that closes the fourth refrigerant flow path; and a pressure receiving portion that receives the refrigerant pressure of the first refrigerant flow path. A valve member that is guided by a hole and moves in a radial direction;
An elastic member that urges the valve member in a radial direction toward the first refrigerant flow path,
Permanent magnet type motor characterized by
請求項3に記載の永久磁石型モータであって、
前記弁部材の前記第1弁体部が前記第2冷媒流路を塞いだ際に、前記受圧部の冷媒圧力を受ける面が前記第1冷媒流路の表面よりも半径方向外側に位置していること、
を特徴とする永久磁石型モータ。
The permanent magnet type motor according to claim 3,
When the first valve body portion of the valve member closes the second refrigerant flow path, the surface of the pressure receiving portion that receives the refrigerant pressure is positioned radially outward from the surface of the first refrigerant flow path. Being
Permanent magnet type motor characterized by
請求項3または4に記載の永久磁石型モータであって、
前記ガイド孔の前記第1冷媒流路表面の開口周縁は、前記第1冷媒流路表面から半径方向外側に向かって凹んでいること、
を特徴とする永久磁石型モータ。
The permanent magnet type motor according to claim 3 or 4,
The opening peripheral edge of the surface of the first coolant channel of the guide hole is recessed radially outward from the surface of the first coolant channel;
Permanent magnet type motor characterized by
請求項1から5のいずれか1項に記載の永久磁石型モータであって、
前記第4冷媒流路は、前記ロータコアの内部に設けられ、半径方向に延びる流路であること、
を特徴とする永久磁石型モータ。
It is a permanent magnet type motor given in any 1 paragraph of Claims 1-5,
The fourth refrigerant channel is a channel provided in the rotor core and extending in a radial direction;
Permanent magnet type motor characterized by
請求項1から5のいずれか1項に記載の永久磁石型モータであって、
前記第4冷媒流路は、前記ロータコアの外部に設けられ、半径方向に延びる流路であること、
を特徴とする永久磁石型モータ。
It is a permanent magnet type motor given in any 1 paragraph of Claims 1-5,
The fourth coolant channel is a channel provided outside the rotor core and extending in a radial direction;
Permanent magnet type motor characterized by
JP2011191155A 2011-09-02 2011-09-02 Permanent magnet type motor Pending JP2013055752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191155A JP2013055752A (en) 2011-09-02 2011-09-02 Permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191155A JP2013055752A (en) 2011-09-02 2011-09-02 Permanent magnet type motor

Publications (1)

Publication Number Publication Date
JP2013055752A true JP2013055752A (en) 2013-03-21

Family

ID=48132279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191155A Pending JP2013055752A (en) 2011-09-02 2011-09-02 Permanent magnet type motor

Country Status (1)

Country Link
JP (1) JP2013055752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230393A (en) * 2013-05-22 2014-12-08 トヨタ自動車株式会社 Rotary electric machine
JP2015211543A (en) * 2014-04-25 2015-11-24 本田技研工業株式会社 Cooling structure of rotary electric machine
CN110098680A (en) * 2018-01-29 2019-08-06 本田技研工业株式会社 Rotating electric machine
CN112910284A (en) * 2019-12-03 2021-06-04 丰田自动车株式会社 Cooling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074930A (en) * 2004-09-03 2006-03-16 Honda Motor Co Ltd Device for cooling rotor of motor for electric vehicle
JP2009118686A (en) * 2007-11-08 2009-05-28 Aisin Aw Co Ltd Cooling structure of rotating electric machine
JP2009290979A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Permanent magnet-type motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074930A (en) * 2004-09-03 2006-03-16 Honda Motor Co Ltd Device for cooling rotor of motor for electric vehicle
JP2009118686A (en) * 2007-11-08 2009-05-28 Aisin Aw Co Ltd Cooling structure of rotating electric machine
JP2009290979A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Permanent magnet-type motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230393A (en) * 2013-05-22 2014-12-08 トヨタ自動車株式会社 Rotary electric machine
JP2015211543A (en) * 2014-04-25 2015-11-24 本田技研工業株式会社 Cooling structure of rotary electric machine
CN110098680A (en) * 2018-01-29 2019-08-06 本田技研工业株式会社 Rotating electric machine
JP2019134506A (en) * 2018-01-29 2019-08-08 本田技研工業株式会社 Rotating electric machine
CN112910284A (en) * 2019-12-03 2021-06-04 丰田自动车株式会社 Cooling device
JP2021090267A (en) * 2019-12-03 2021-06-10 トヨタ自動車株式会社 Cooling device

Similar Documents

Publication Publication Date Title
CN107925314B (en) Cooling structure for rotating electric machine
JP5482376B2 (en) Hermetic rotary electric machine
JP5911033B1 (en) Operation method of rotating electric machine
US6091168A (en) Rotor for a dynamoelectric machine
JP5887870B2 (en) Rotating electric machine
JP2014176235A (en) Rotor for rotary electric machine, and rotary electric machine
JP2009290979A (en) Permanent magnet-type motor
JP2013055752A (en) Permanent magnet type motor
KR20150095757A (en) Electrically rotating machine
JP5232088B2 (en) Rotor
JP2012235546A (en) Rotor and rotating electric machine
WO2013136405A1 (en) Rotating electrical machine
US20240088741A1 (en) Stator, motor, and electric vehicle
JP2014230393A (en) Rotary electric machine
JP2011254577A (en) Rotary electric machine
JP5772415B2 (en) Rotor structure of rotating electrical machine
CN114342221A (en) Rotor for an electric machine
JP2012210120A (en) Rotary electric machine
JP2013183483A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2019146387A (en) Cooling structure of rotary electric machine and rotary electric machine
JP2019115142A (en) Rotary electric machine
JP2010172132A (en) Rotating electric machine and method for cooling the rotating electric machine
KR100902118B1 (en) Motor for high-speed ratiotion
JP2011211844A (en) Motor
JP2019161950A (en) Dynamo-electric machine system and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310