JP2013054803A - Beam shaping lens - Google Patents

Beam shaping lens Download PDF

Info

Publication number
JP2013054803A
JP2013054803A JP2011192660A JP2011192660A JP2013054803A JP 2013054803 A JP2013054803 A JP 2013054803A JP 2011192660 A JP2011192660 A JP 2011192660A JP 2011192660 A JP2011192660 A JP 2011192660A JP 2013054803 A JP2013054803 A JP 2013054803A
Authority
JP
Japan
Prior art keywords
lens
beam shaping
shaping lens
anamorphic
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011192660A
Other languages
Japanese (ja)
Inventor
Yoko Sakota
洋子 迫田
Kimihiko Shibuya
公彦 渋谷
Tomoya Sugita
知也 杉田
Akira Morimoto
章 森本
Tatsuhiko Sakamoto
達彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011192660A priority Critical patent/JP2013054803A/en
Publication of JP2013054803A publication Critical patent/JP2013054803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce aspect ratio variations of a beam shaping lens used for adjusting the aspect ratio of an elliptical light beam emitted from a semiconductor laser.SOLUTION: A beam shaping lens 11 of the present invention for correcting the aspect ratio of an elliptical light beam 9 emitted from a semiconductor laser 8 includes an anamorphic lens 13 located on the incident surface thereof, a flange portion 15 located surrounding the anamorphic lens 13, and thick portions 17 located on the flange portion 15 along the vicinity of the width direction of the anamorphic lens 13.

Description

本発明は、半導体レーザから出射された楕円光束のアスペクト比を補正するビーム整形レンズに関する。   The present invention relates to a beam shaping lens that corrects the aspect ratio of an elliptical light beam emitted from a semiconductor laser.

従来、この種のビーム整形レンズは、図6に示すように半導体レーザ1から出射される楕円光束2のアスペクト比を補正するため、ビーム整形レンズ3の入射面側と出射面側の両面に、楕円光束2に対する長手方向と短手方向で開口数が異なるアナモフィックレンズ4,5を一体に設けた構造が検討されている。   Conventionally, since this type of beam shaping lens corrects the aspect ratio of the elliptical light beam 2 emitted from the semiconductor laser 1 as shown in FIG. 6, both the incident surface side and the emission surface side of the beam shaping lens 3 are A structure in which anamorphic lenses 4 and 5 having different numerical apertures in the longitudinal direction and the short direction with respect to the elliptical light beam 2 are integrally studied has been studied.

また、最近のビーム整形レンズ3は、半導体レーザ1から出射される楕円光束2の利用効率を高めるために、入射面側の焦点距離を小さくするとともに開口数を大きくする設計が検討されている。   Further, in order to increase the utilization efficiency of the elliptical light beam 2 emitted from the semiconductor laser 1, the recent beam shaping lens 3 has been studied to reduce the focal length on the incident surface side and increase the numerical aperture.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開昭61−282813号公報JP-A 61-282814

しかしながら、ビーム整形レンズ3の焦点距離を小さくし開口数を大きくする中で、入射面側のアナモフィックレンズ4の有効径は小さくなり、これに入射される楕円光束2による発熱作用も大きくなってくる。   However, as the focal length of the beam shaping lens 3 is reduced and the numerical aperture is increased, the effective diameter of the anamorphic lens 4 on the incident surface side is reduced, and the heat generation action by the elliptical light beam 2 incident thereon is also increased. .

そして、アナモフィックレンズ4に入射する楕円光束2の光強度分布は、図7に示すようにアナモフィックレンズ4の長手方向と短手方向ともにガウシアン分布であり、光強度の大きい部分が中心部分6に集中するため、アナモフィックレンズ4の中心部分6と外周部分7で温度差が生じる。   The light intensity distribution of the elliptical light beam 2 incident on the anamorphic lens 4 is a Gaussian distribution in both the longitudinal direction and the short direction of the anamorphic lens 4 as shown in FIG. Therefore, a temperature difference occurs between the central portion 6 and the outer peripheral portion 7 of the anamorphic lens 4.

特に、入射面側に設けられたアナモフィックレンズ4は、半導体レーザ1から楕円光束2を直接入射されるので光強度分布の影響を大きく受けるため、中心部分6と外周部分7の温度差が大きくなり易く、この温度差により長手方向の屈折率と短手方向の屈折率に差が生じて、結果としてビーム整形レンズ3で補正するアスペクト比が変動してしまうという問題があった。   In particular, the anamorphic lens 4 provided on the incident surface side is directly affected by the light intensity distribution because the elliptical light beam 2 is directly incident from the semiconductor laser 1, so that the temperature difference between the central portion 6 and the outer peripheral portion 7 becomes large. It is easy to cause a difference between the refractive index in the longitudinal direction and the refractive index in the short direction due to this temperature difference, and as a result, the aspect ratio corrected by the beam shaping lens 3 varies.

そこで、本発明はこのような問題を解決し、ビーム整形レンズで補正するアスペクト比の変動を抑制することを目的とする。   Therefore, the present invention aims to solve such problems and suppress fluctuations in the aspect ratio corrected by the beam shaping lens.

そして、この目的を達成するために本発明は、半導体レーザから出射された楕円光束のアスペクト比を補正するビーム整形レンズにおいて、ビーム整形レンズは、楕円光束の入射面側に設けたアナモフィックレンズと、このアナモフィックレンズの周囲に設けられたコバ部を有し、コバ部におけるアナモフィックレンズの短手方向近傍に肉厚部を設けた構造としたのである。   In order to achieve this object, the present invention provides a beam shaping lens for correcting the aspect ratio of an elliptical light beam emitted from a semiconductor laser, wherein the beam shaping lens includes an anamorphic lens provided on the incident surface side of the elliptical light beam, This has a structure in which an edge portion provided around the anamorphic lens is provided, and a thick portion is provided in the vicinity of the short direction of the anamorphic lens in the edge portion.

この構造により本発明は、ビーム整形レンズで補正するアスペクト比の変動を抑制することが出来るのである。   With this structure, the present invention can suppress variations in the aspect ratio corrected by the beam shaping lens.

本発明の一実施の形態におけるビーム整形レンズを用いた光源装置の構成を示す(a)上面模式図、(b)側面模式図BRIEF DESCRIPTION OF THE DRAWINGS (a) Top surface schematic diagram and (b) Side surface schematic diagram which show the structure of the light source device using the beam shaping lens in one embodiment of this invention 同ビーム整形レンズの入射面の正面図Front view of the incident surface of the beam shaping lens 同ビーム整形レンズのA−A断面図AA sectional view of the beam shaping lens 同ビーム整形レンズの成形装置を示す図The figure which shows the shaping device of the same beam shaping lens 同成形装置を構成する成形金型の加工方法を示す図The figure which shows the processing method of the molding die which comprises the molding apparatus 従来のビーム整形レンズを用いた光源装置の構成を示す(a)上面模式図、(b)側面模式図(A) Top view schematic diagram and (b) Side view schematic diagram showing the configuration of a light source device using a conventional beam shaping lens. 同ビーム整形レンズを構成するアナモフィックレンズの光強度分布を示す図The figure which shows the light intensity distribution of the anamorphic lens which comprises the beam shaping lens

以下、本発明の一実施の形態におけるビーム整形レンズについて図を用いて説明する。   Hereinafter, a beam shaping lens according to an embodiment of the present invention will be described with reference to the drawings.

図1は、レーザービームプロジェクタなどに用いられる光源装置を示したものであり、光源となる半導体レーザ8と、この半導体レーザ8から出射された楕円光束9のビーム形状を円光束10に補正するビーム整形レンズ11とを、基台12の主面上で一体化した構造となっている。   FIG. 1 shows a light source device used in a laser beam projector or the like, and a beam for correcting a semiconductor laser 8 serving as a light source and a beam shape of an elliptical light beam 9 emitted from the semiconductor laser 8 into a circular light beam 10. The shaping lens 11 is integrated on the main surface of the base 12.

なお、半導体レーザ8から出射される楕円光束9は、半導体レーザ8の接合面(特に図示せず)の平行方向と垂直方向とで広がり角が異なることに起因するもので、ビーム整形レンズ11はこの楕円光束9を円光束10に補正するため、半導体レーザ8の接合面と水平な方向と垂直な方向とで開口数を異ならせるように、図2に示すように、ビーム整形レンズ11の入射面側には半導体レーザ8の接合面と垂直な方向を長手方向とするアナモフィックレンズ13を配置し、出射面側には半導体レーザ8の接合面と水平な方向を長手方向とする破線で示すアナモフィックレンズ14を配置することで、単玉レンズでのビーム整形を実現している。   The elliptical light beam 9 emitted from the semiconductor laser 8 is caused by the difference in the spread angle between the parallel direction and the vertical direction of the joint surface (not shown) of the semiconductor laser 8. In order to correct this elliptical light beam 9 to a circular light beam 10, the incidence of the beam shaping lens 11 is made different from that of the joining surface of the semiconductor laser 8 in the horizontal and vertical directions as shown in FIG. An anamorphic lens 13 whose longitudinal direction is the direction perpendicular to the bonding surface of the semiconductor laser 8 is arranged on the surface side, and an anamorphic indicated by a broken line whose longitudinal direction is the bonding surface of the semiconductor laser 8 on the emission surface side. By arranging the lens 14, beam shaping with a single lens is realized.

なお、ビーム整形レンズ11の入射面側において、楕円光束9のアスペクト比を補正するアナモフィックレンズ13を光学機能部とし、その周囲の領域をコバ部15とする。   Note that, on the incident surface side of the beam shaping lens 11, the anamorphic lens 13 that corrects the aspect ratio of the elliptical light beam 9 is an optical function part, and the surrounding area is an edge part 15.

そして、このビーム整形レンズ11においては、光源側に配置されるアナモフィックレンズ13の短手方向の近傍にコバ部15の平坦領域16を部分的に盛り上げた肉厚部17を設けたことで、ビーム整形レンズ11のアスペクト比の変動を抑制している。   In the beam shaping lens 11, the thick portion 17 is formed by partially raising the flat region 16 of the edge portion 15 in the vicinity of the short direction of the anamorphic lens 13 disposed on the light source side. Variations in the aspect ratio of the shaping lens 11 are suppressed.

すなわち、入射面側のアナモフィックレンズ13は、図7で説明したように、アナモフィックレンズ13の長手方向と短手方向での温度分布の差が、アナモフィックレンズ13のアスペクト比に影響を与えることを解消するためのもので、図2、図3に示すように、アナモフィックレンズ13における短手方向近傍のコバ部15の厚みを部分的に大きくした肉厚部17を設けている。なお、図3に示した破線は、入射面側のコバ部15における平坦領域16の表面位置を示したもので、肉厚部17の高さ18を測る際の基準面としている。   That is, the anamorphic lens 13 on the incident surface side eliminates the influence of the difference in temperature distribution between the longitudinal direction and the short direction of the anamorphic lens 13 on the aspect ratio of the anamorphic lens 13 as described with reference to FIG. As shown in FIGS. 2 and 3, a thick portion 17 is provided in which the thickness of the edge portion 15 in the vicinity of the short side of the anamorphic lens 13 is partially increased. The broken line shown in FIG. 3 indicates the surface position of the flat region 16 in the edge portion 15 on the incident surface side, and is used as a reference surface for measuring the height 18 of the thick portion 17.

そして、この肉厚部17が、アナモフィックレンズ13の短手方向に対するヒートシンクの役割を果たすようになり、短手方向における温度上昇を積極的に抑制でき、また、アナモフィックレンズ13の短手方向近傍におけるコバ部15の厚みを、肉厚部17により部分的に厚みが増すことで、その部分における強度、つまり、アナモフィックレンズ13の短手方向の熱膨張における形状変化に対する拘束力が増すので、短手方向の温度分布を長手方向の温度分布に整合させることができ、結果としてビーム整形レンズ11で補正するアスペクト比の変動を抑制できる。   And this thick part 17 comes to play the role of the heat sink with respect to the transversal direction of the anamorphic lens 13, can suppress the temperature rise in a transversal direction actively, and the anamorphic lens 13 in the transversal direction vicinity. Since the thickness of the edge portion 15 is partially increased by the thick portion 17, the strength in that portion, that is, the restraining force against the shape change due to thermal expansion in the short direction of the anamorphic lens 13 is increased. The temperature distribution in the direction can be matched with the temperature distribution in the longitudinal direction, and as a result, fluctuations in the aspect ratio corrected by the beam shaping lens 11 can be suppressed.

なお、肉厚部17は、アナモフィックレンズ13の短手方向においてアナモフィックレンズ13を挟んで対称配置することで、よりアスペクト比の変動を抑制できる。   In addition, the thickness part 17 can suppress the fluctuation | variation of an aspect ratio more by arrange | positioning symmetrically about the anamorphic lens 13 on both sides of the anamorphic lens 13 in the transversal direction.

また、このようなビーム整形レンズ11を効率よく生産する場合、図4に示すように、成形金型19,20とこれらの摺動をガイドする胴型21とで形成されるキャビティ内に光学硝材22を配置し、成形可能温度まで加熱して加圧成形する方法が用いられる。   Further, when such a beam shaping lens 11 is efficiently produced, as shown in FIG. 4, an optical glass material is formed in a cavity formed by molding dies 19 and 20 and a barrel die 21 that guides the sliding of these. A method is used in which 22 is placed and heated to a moldable temperature to perform pressure molding.

なお、成形金型19,20における成形面は、タングステンカーバイトなどの超鋼母材の表面を研削加工で成形している。   The molding surfaces of the molding dies 19 and 20 are formed by grinding the surface of a super steel base material such as tungsten carbide.

そして、上述したように、ビーム整形レンズ11のアナモフィックレンズ13の短手近傍側に肉厚部17を設けた構造としたことで、図5に示すように、アナモフィックレンズ13を整形する側の成形金型20において肉厚部17を転写する成形面23が、アナモフィックレンズ13を転写する成形面24を研削する際の、研削ツール25の逃がしとなり、成形金型20の加工性を高めることもできる。   As described above, the thick-shaped portion 17 is provided near the short side of the anamorphic lens 13 of the beam shaping lens 11, so that the anamorphic lens 13 is shaped as shown in FIG. The molding surface 23 to which the thick portion 17 is transferred in the mold 20 serves as a relief for the grinding tool 25 when grinding the molding surface 24 to which the anamorphic lens 13 is transferred, so that the workability of the molding die 20 can be improved. .

なお、ビーム整形レンズ11の入射面側のアナモフィックレンズ13は、上述したごとく形状が小さく、かつ、開口数が大きいため、その外周端部分がコバ部15の平坦領域16に対して急傾斜となり金型加工が難しくなることから、肉厚部17を設けることによる金型加工性の向上は有効となる。   Since the anamorphic lens 13 on the incident surface side of the beam shaping lens 11 has a small shape and a large numerical aperture as described above, the outer peripheral end portion thereof is steeply inclined with respect to the flat region 16 of the edge portion 15, and the gold Since mold processing becomes difficult, the improvement of mold workability by providing the thick portion 17 is effective.

また、この一実施の形態においては、ビーム整形レンズ11を直に基台12に実装した構成を挙げて説明したが、特に図示はしていないが、ビーム整形レンズ11を鏡筒(図示せず)の内部に一体化し、このビーム整形レンズ11が一体化された鏡筒(図示せず)を基台12に実装するような構成であっても同様の効果を得ることができる。   In this embodiment, the beam shaping lens 11 is directly mounted on the base 12 and explained. However, although not particularly shown, the beam shaping lens 11 is not shown. The same effect can be obtained even if the lens barrel (not shown) integrated with the beam shaping lens 11 is mounted on the base 12.

本発明は、ビーム整形レンズのアスペクト比の変動を抑制することが出来るという効果を有し、特に省電力化を考慮して半導体レーザから出射されるビームの利用効率を高めようとする光源ユニット用途において有効となる。   INDUSTRIAL APPLICABILITY The present invention has the effect of suppressing fluctuations in the aspect ratio of a beam shaping lens, and in particular for light source units that are intended to increase the utilization efficiency of a beam emitted from a semiconductor laser in consideration of power saving. It becomes effective in.

8 半導体レーザ
9 楕円光束
11 ビーム整形レンズ
13 アナモフィックレンズ
15 コバ部
17 肉厚部
19,20 成形金型
22 光学硝材
DESCRIPTION OF SYMBOLS 8 Semiconductor laser 9 Elliptic light beam 11 Beam shaping lens 13 Anamorphic lens 15 Edge part 17 Thick part 19,20 Molding die 22 Optical glass material

Claims (3)

半導体レーザから出射された楕円光束のアスペクト比を補正するビーム整形レンズであって、前記ビーム整形レンズは、前記楕円光束の入射面側に設けたアナモフィックレンズと、このアナモフィックレンズの周囲に設けられたコバ部を有し、前記コバ部における前記アナモフィックレンズの短手方向近傍に肉厚部を設けたことを特徴とするビーム整形レンズ。 A beam shaping lens for correcting an aspect ratio of an elliptical light beam emitted from a semiconductor laser, wherein the beam shaping lens is provided on an incident surface side of the elliptical light beam, and provided around the anamorphic lens. A beam shaping lens having an edge portion, and a thick portion provided in the vicinity of a short direction of the anamorphic lens in the edge portion. 肉厚部は、アナモフィックレンズの両側に対称配置したことを特徴とする請求項1に記載のビーム整形レンズ。 2. The beam shaping lens according to claim 1, wherein the thick portion is symmetrically disposed on both sides of the anamorphic lens. 成形可能温度に加熱した光学硝材を成形金型で加圧成形したことを特徴とする請求項1に記載のビーム整形レンズ。 2. The beam shaping lens according to claim 1, wherein an optical glass material heated to a moldable temperature is pressure-molded with a molding die.
JP2011192660A 2011-09-05 2011-09-05 Beam shaping lens Withdrawn JP2013054803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192660A JP2013054803A (en) 2011-09-05 2011-09-05 Beam shaping lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192660A JP2013054803A (en) 2011-09-05 2011-09-05 Beam shaping lens

Publications (1)

Publication Number Publication Date
JP2013054803A true JP2013054803A (en) 2013-03-21

Family

ID=48131655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192660A Withdrawn JP2013054803A (en) 2011-09-05 2011-09-05 Beam shaping lens

Country Status (1)

Country Link
JP (1) JP2013054803A (en)

Similar Documents

Publication Publication Date Title
EP3211734B1 (en) Laser module
US20130306609A1 (en) Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
JP5832412B2 (en) Optical system and laser processing apparatus
JP2013235943A (en) Semiconductor laser module
KR101407993B1 (en) Method for cutting substrate
KR20130096154A (en) Optical system for laser optical rectification and wave front control
US20060250698A1 (en) Glass optical element and manufacturing method thereof
US20120217663A1 (en) Solar concentrator and production method
US10675715B2 (en) Semiconductor element manufacturing method and manufacturing device
US9201198B2 (en) Inclined surface-equipped lens
JP2018072499A (en) Coupling lens and laser optical system
JP2013054803A (en) Beam shaping lens
JP2010156905A (en) Optical lens unit and method for manufacturing same
WO2014050602A1 (en) Lens and molding die
US10118253B2 (en) Method for manufacturing light source assembly
CN212761729U (en) Laser lobe of a leaf device
JP2012237796A (en) Curvature variable unit and laser processing device
JP2015085645A (en) Welding structure and welding device
CN201072460Y (en) Built-in grooved optical fiber bracket used for semiconductor laser coupling tail fiber
JP2011184468A (en) Adhesion fixing method and method for fixing optical element
JPWO2002091038A1 (en) Optical lens base material, optical lens, and optical lens manufacturing method
JPWO2016051619A1 (en) Optical lens
CN104407446B (en) The optical correction device of optical and its system of a kind of high-power semiconductor laser
CN202231301U (en) Resonant cavity device and laser
US10310214B2 (en) Optical element and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202