JP2013054418A - Simulation method for particle filling structure - Google Patents
Simulation method for particle filling structure Download PDFInfo
- Publication number
- JP2013054418A JP2013054418A JP2011190354A JP2011190354A JP2013054418A JP 2013054418 A JP2013054418 A JP 2013054418A JP 2011190354 A JP2011190354 A JP 2011190354A JP 2011190354 A JP2011190354 A JP 2011190354A JP 2013054418 A JP2013054418 A JP 2013054418A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- particle
- mass
- mass points
- simulation method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 116
- 238000004088 simulation Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007787 solid Substances 0.000 abstract description 5
- 238000005381 potential energy Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000007906 compression Methods 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 238000005325 percolation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、ある空間内に充填された粒子の充填構造に係るシミュレーションを行う粒子充填構造シミュレーション方法の技術分野に関する。 The present invention relates to a technical field of a particle packed structure simulation method for performing a simulation related to a packed structure of particles packed in a certain space.
この種の方法として、例えば、粒子集合体を所定の大きさの空間内に配置し、重心が低い粒子から自由落下させ、その落下プロセスで、水平方向の自由度、又は既設置粒子を透過する条件として粒子透過係数を与え、最下部に粒子を設置して粒子充填構造をシミュレートする方法が提案されている(特許文献1参照)。或いは、粒子間接触、並びに静電的及び磁気的相互作用を考慮した個別要素法に基づいた紛体挙動計算方法が提案されている(特許文献2参照)。 As a method of this kind, for example, a particle aggregate is placed in a space of a predetermined size, is allowed to fall freely from a particle having a low center of gravity, and in the dropping process, the degree of freedom in the horizontal direction or existing particles is transmitted. A method has been proposed in which a particle permeation coefficient is given as a condition and a particle packing structure is simulated by placing particles at the bottom (see Patent Document 1). Alternatively, there has been proposed a powder behavior calculation method based on an individual element method in consideration of interparticle contact and electrostatic and magnetic interaction (see Patent Document 2).
ところで、例えばハイブリッド自動車、電気自動車等の車両に搭載される電池の安全性の向上を図るため、例えば固体電解質等を用いた全固体電池の開発が進められている。該全固体電池は、例えば活物質と電解質粒子とが型に入れられた後に、押し固められることによって作成される。このような紛体や粒体等の粒子を取り扱う分野では、粒子の挙動を把握することが重要な課題の一つであり、該粒子の挙動の把握には、上述したようなシミュレーションが利用されることが多い。 By the way, for example, in order to improve the safety of a battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, development of an all-solid battery using, for example, a solid electrolyte or the like has been advanced. The all-solid-state battery is produced, for example, by pressing and solidifying an active material and electrolyte particles after placing them in a mold. In the field of handling particles such as powders and granules, it is one of the important issues to grasp the behavior of the particles, and the above-described simulation is used to grasp the behavior of the particles. There are many cases.
しかしながら、上記特許文献1では、粒子間に働く反発力については考慮されていないという技術的問題点がある。また、上記特許文献2では、粒子間に働く相互作用を計算する際に粒子を点として扱っているため、十分な精度を得られない可能性があるという技術的問題点がある。 However, Patent Document 1 has a technical problem that the repulsive force acting between the particles is not considered. Moreover, in the said patent document 2, since the particle | grain is handled as a point when calculating the interaction which acts between particle | grains, there exists a technical problem that sufficient accuracy may not be acquired.
本発明は、例えば上記問題点に鑑みてなされたものであり、全固体電池を構成する粒子の充填構造を再現可能な粒子充填構造シミュレーション方法を提案することを課題とする。 The present invention has been made in view of the above problems, for example, and an object of the present invention is to propose a particle-packed structure simulation method capable of reproducing the packed structure of particles constituting an all-solid battery.
本発明の粒子充填構造シミュレーション方法は、上記課題を解決するために、複数の粒子各々の大きさにかかわらず、前記複数の粒子各々の表面に同数の質点を配置する質点配置工程と、前記複数の粒子のうち一の粒子の表面に配置された質点の、前記複数の粒子のうち他の粒子の表面に配置された質点に対する反発力を、前記一の粒子の表面に配置された質点同士の間隔に応じて設定する反発力設定工程と、を備える。 In order to solve the above problems, the particle packed structure simulation method of the present invention includes a mass point arranging step of arranging the same number of mass points on the surface of each of the plurality of particles regardless of the size of each of the plurality of particles, The repulsive force of the mass arranged on the surface of one of the particles to the mass arranged on the surface of the other of the plurality of particles is determined between the masses arranged on the surface of the one of the particles. And a repulsive force setting step that is set according to the interval.
本発明の粒子充填構造シミュレーション方法によれば、質点配置工程において、複数の粒子各々の大きさにかかわらず、該複数の粒子各々の表面に同数の質点が配置される。各粒子の表面に配置される質点は、粒子の表面に任意に配置されてもよいが、等間隔に配置されることが望ましい。一つの粒子の表面に配置される質点の個数は、当該粒子充填構造シミュレーション方法を比較的大きな粒子にも適用可能なように、ある程度多いこと(例えば、数十個)が望ましい。 According to the particle packing structure simulation method of the present invention, in the mass point arranging step, the same number of mass points are arranged on the surface of each of the plurality of particles regardless of the size of each of the plurality of particles. The mass points arranged on the surface of each particle may be arbitrarily arranged on the surface of the particle, but are desirably arranged at equal intervals. The number of mass points arranged on the surface of one particle is desirably large to some extent (for example, several tens) so that the particle filling structure simulation method can be applied to relatively large particles.
反発力設定工程において、複数の粒子のうち一の粒子の表面に配置された質点の、該複数の粒子のうち他の粒子の表面に配置された質点に対する反発力が、該一の粒子の表面に配置された質点同士の間隔に応じて設定される。 In the repulsive force setting step, the repulsive force of the mass point arranged on the surface of one of the plurality of particles to the mass point arranged on the surface of the other particle of the plurality of particles is the surface of the one particle It is set according to the interval between the mass points arranged in.
本発明では、上述の如く、粒子の大きさにかかわらず、全ての粒子に同数の質点が配置される。このため、粒子の大きさが小さくなるほど、粒子に係る質点の面密度は大きくなる。仮に全ての質点の反発力が一定値に設定されると、粒子の大きさが小さくなるほど他の粒子に対する反発力が大きくなってしまう。 In the present invention, as described above, the same number of mass points are arranged on all particles regardless of the size of the particles. For this reason, the smaller the size of the particles, the higher the surface density of the mass points related to the particles. If the repulsive force of all the mass points is set to a constant value, the repulsive force against other particles increases as the particle size decreases.
他方で、粒子の大きさに応じて配置される質点の数が変更されると、例えば粒子代表寸法が互いに異なるが同じアスペクト比の粒子(即ち、相似形の粒子)を、同じ密度で同じ個数配置された相似モデルにおいて、本来同じとなるべきパーコレーションの閾値が互いに異なってしまう可能性があることが、本願発明者の研究により判明している。 On the other hand, when the number of mass points arranged according to the size of the particles is changed, for example, the same number of particles having the same aspect ratio (that is, similar-shaped particles) having the same density but different particle representative dimensions are used. It has been found by the inventor's research that there is a possibility that threshold values of percolation that should be essentially the same may be different in the arranged similarity model.
しかるに本発明では、一の粒子の表面に配置された質点同士の間隔に応じて、該一の粒子の表面に配置された質点に係る反発力が設定されている。このため、相似形の粒子間では、他の粒子に対する反発力までも相似とすることができる。すると、相似モデルにおいてパーコレーションの閾値を互いに一致させることができる。従って、本発明の粒子充填構造シミュレーション方法によれば、全固体電池を構成する粒子の充填構造を精度よく再現することができる。 However, in the present invention, the repulsive force related to the mass point arranged on the surface of the one particle is set according to the interval between the mass points arranged on the surface of the one particle. For this reason, repulsive force against other particles can be similar between similar-shaped particles. Then, percolation thresholds can be made to coincide with each other in the similarity model. Therefore, according to the particle filling structure simulation method of the present invention, the particle filling structure constituting the all-solid-state battery can be accurately reproduced.
本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The effect | action and other gain of this invention are clarified from the form for implementing demonstrated below.
以下、本発明に係る粒子充填構造シミュレーション方法の実施形態を、図面に基づいて説明する。 Hereinafter, an embodiment of a particle filling structure simulation method according to the present invention will be described with reference to the drawings.
先ず、本実施形態に係る粒子充填構造シミュレーション方法の全体の処理の流れについて、図1及び図2を参照して説明する。図1は、本実施形態に係るシミュレーション方法の処理を示すフローチャートであり、図2は、本実施形態に係るシミュレーション方法の主要な処理の概念を示す概念図である。 First, an overall processing flow of the particle packing structure simulation method according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a flowchart showing the process of the simulation method according to this embodiment, and FIG. 2 is a conceptual diagram showing the concept of the main process of the simulation method according to this embodiment.
図1において、先ず、圧粉全固体電池を構成する活物質を模擬した、本発明に係る「粒子」の一例としての楕円体100(図2参照)が複数個発生させられる(ステップS101)。ここで、楕円体100は、例えば、楕円体100の長軸半径、該長軸半径の標準偏差、楕円体100のアスペクト比、該アスペクト比の標準偏差、楕円体100の個数等が指定されることにより発生させられる。尚、楕円体100の長軸半径等の各種パラメータの値は、実際の活物質を測定して求めてもよいし、解析者(即ち、ユーザ)が恣意的に決定してもよい。 In FIG. 1, first, a plurality of ellipsoids 100 (see FIG. 2) as an example of “particles” according to the present invention simulating an active material constituting a compacted all-solid battery are generated (step S101). Here, for the ellipsoid 100, for example, the major axis radius of the ellipsoid 100, the standard deviation of the major axis radius, the aspect ratio of the ellipsoid 100, the standard deviation of the aspect ratio, the number of ellipsoids 100, and the like are designated. Is generated. The values of various parameters such as the major axis radius of the ellipsoid 100 may be obtained by measuring an actual active material, or may be arbitrarily determined by an analyst (that is, a user).
次に、図2(a)に示すように、質点配置工程において、楕円体100の表面に、例えば等間隔で複数の質点200が夫々配置される(ステップS102)。この際、楕円体100の表面に配置される質点200の個数は、該楕円体100の大きさにかかわらず一定である。 Next, as shown in FIG. 2A, in the mass point arranging step, a plurality of mass points 200 are arranged on the surface of the ellipsoid 100 at regular intervals, for example (step S102). At this time, the number of mass points 200 arranged on the surface of the ellipsoid 100 is constant regardless of the size of the ellipsoid 100.
尚、圧縮時の楕円体100同士の重なりを回避するためには、質点200の相互間の間隔は狭いほうがよいが、その分質点200の個数が増加するので、圧縮工程に費やされる時間が長くなる。このため、質点200の個数は、例えば、要求されるシミュレーション結果の精度、解析時間等に応じて調整すればよい。 In order to avoid the overlapping of the ellipsoids 100 at the time of compression, the distance between the mass points 200 should be narrow, but since the number of the mass points 200 increases, the time spent for the compression process is long. Become. For this reason, the number of mass points 200 may be adjusted according to, for example, required accuracy of the simulation result, analysis time, and the like.
次に、図2(b)に示すように、粒子配置工程において、複数の楕円体100各々が、空間1内に、相互に重ならないように配置される(ステップS103)。ここで、「空間1」は、複数の粒子各々の体積の合計である総体積よりも十分大きな容積を有するように設定される。 Next, as shown in FIG. 2B, in the particle arrangement step, each of the plurality of ellipsoids 100 is arranged in the space 1 so as not to overlap each other (step S103). Here, the “space 1” is set to have a volume sufficiently larger than the total volume that is the sum of the volumes of the plurality of particles.
尚、楕円体100同士の重なりの発生を回避するためには、例えば、ステップS101で発生した複数の楕円体100各々の長軸半径のうち、最も長い長軸半径よりも長い間隔で空間1内に等間隔で、複数の楕円体100を夫々配置すればよい。 In order to avoid the occurrence of overlapping of the ellipsoids 100, for example, among the major axis radii of each of the plurality of ellipsoids 100 generated in step S101, the space 1 has a longer interval than the longest major axis radius. The plurality of ellipsoids 100 may be arranged at regular intervals.
次に、図2(c)に示すように、圧縮工程において、複数の楕円体100各々の質点200の相対位置が固定された状態で(即ち、楕円体100を剛体とする)、一の楕円体の質点と、該一の楕円体とは異なる他の楕円体の質点との間に働く反発のポテンシャルエネルギー(即ち、反発力)が設定され、例えば分子動力学法で、空間1が所定の密度となる空間1´まで圧縮される(ステップS104)。 Next, as shown in FIG. 2 (c), in the compression process, one ellipse is formed in a state where the relative positions of the mass points 200 of each of the plurality of ellipsoids 100 are fixed (that is, the ellipsoid 100 is a rigid body). A repulsive potential energy (ie, repulsive force) acting between the mass point of the body and the mass point of another ellipsoid different from the one ellipsoid is set. The space is compressed to the density 1 '(step S104).
圧縮後の空間1´の容積は、例えば、複数の楕円体100各々の体積の合計である楕円体総体積と、予め設定された体積密度とにより決定される。また、圧縮工程では、楕円体100の運動速度が低下され、楕円体100同士の重なりを回避するために系の温度が冷却される。 The volume of the space 1 ′ after compression is determined by, for example, an ellipsoid total volume that is the sum of the volumes of the plurality of ellipsoids 100 and a preset volume density. Further, in the compression process, the motion speed of the ellipsoids 100 is reduced, and the system temperature is cooled in order to avoid overlapping of the ellipsoids 100.
上述したステップS101乃至S104の処理の結果、例えば図3に示すような活物質モデルが得られる。図3は、本実施形態に係るシミュレーション結果の一例を示す図である。図3(a)は、粒子(即ち、楕円体100)が比較的小さい場合のシミュレーション結果の一例であり、図3(b)は、粒子が比較的大きい場合のシミュレーション結果の一例である。ここで、図3(a)に係る粒子と、図3(b)に係る粒子とは、互いに相似である。 As a result of the processing in steps S101 to S104 described above, for example, an active material model as shown in FIG. 3 is obtained. FIG. 3 is a diagram illustrating an example of a simulation result according to the present embodiment. FIG. 3A is an example of a simulation result when the particle (that is, the ellipsoid 100) is relatively small, and FIG. 3B is an example of the simulation result when the particle is relatively large. Here, the particles according to FIG. 3A and the particles according to FIG. 3B are similar to each other.
本実施形態では特に、上記反発のポテンシャルエネルギーが次のように設定される。即ち、一の楕円体の一の質点と他の楕円体の一の質点との間の距離rを、該一の楕円体において互いに隣接する質点同士の間隔(以降、適宜“粒子内質点間隔”と称する)ASで割った値が、相似形の楕円体同士で同じであれば、該一の楕円体の一の質点の、該他の楕円体の一の質点に対する反発のポテンシャルエネルギーが、楕円体の大きさにかかわらず同じになるように設定される。 Particularly in the present embodiment, the repulsive potential energy is set as follows. That is, the distance r between one mass point of one ellipsoid and one mass point of another ellipsoid is defined as an interval between adjacent mass points in the one ellipsoid (hereinafter referred to as “particle internal mass point interval” as appropriate). If the value divided by AS is the same between similar ellipsoids, the repulsive potential energy of one mass point of the one ellipsoid to the mass point of the other ellipsoid is Set to be the same regardless of body size.
具体的には、本実施形態では、ポテンシャルエネルギーは、下記式(1)を用いて求められる。 Specifically, in this embodiment, the potential energy is obtained using the following formula (1).
ここで、“E”は、質点間のポテンシャルエネルギーであり、“rc”は、カットオフ値である。上記式(1)は、Morse型のポテンシャル関数であり、パラメータ“D0”、“α”及び“r0”は、夫々、「ポテンシャル曲線の井戸の深さ」、「ポテンシャル曲線の曲率」及び「ポテンシャル曲線の最小点」を意味する。
Here, “E” is a potential energy between mass points, and “r c ” is a cutoff value. The above equation (1) is a Morse-type potential function, and the parameters “D 0 ”, “α”, and “r 0 ” are “depth of well of potential curve”, “curvature of potential curve” and It means “minimum point of potential curve”.
本実施形態では特に、カットオフ値rcが、(粒子内質点間距離AS)×(係数1)として設定されている。また、パラメータr0が、(粒子内質点間距離AS)×(係数2)として設定されている。尚、「係数1」及び「係数2」は、夫々、例えば“3”及び“5”である。 Particularly in this embodiment, the cut-off value r c is set as (between particles in mass distance AS) × (coefficient 1). The parameter r 0 is set as (particle internal point distance AS) × (coefficient 2). “Coefficient 1” and “Coefficient 2” are, for example, “3” and “5”, respectively.
パラメータ“D0”及び“α”各々は、粒子密度が比較的高い(例えば70%以上)領域で粒子の重なりが発生しないように、試行錯誤を繰り返し調整される。これは分子動力学の分野では一般的に行われていることである。 Each of the parameters “D 0 ” and “α” is adjusted by trial and error repeatedly so that particle overlap does not occur in a region where the particle density is relatively high (for example, 70% or more). This is a common practice in the field of molecular dynamics.
図3(a)に示した粒子が比較的小さい場合には、粒子内質点間距離AS、パラメータD0、パラメータα、パラメータr0及びカットオフ値rcは、夫々、例えば“0.23”、“10”、“3.78”、“1.36”及び“1.2”と設定される。他方、図3(b)に示した粒子が比較的大きい場合には、粒子内質点間距離AS、パラメータD0、パラメータα、パラメータr0及びカットオフ値rcは、夫々、例えば“0.5”、“10”、“1.90”、“2.71”及び“2.5”と設定される。 When indicated particles is relatively small in FIG. 3 (a), the distance between the particles in the mass points AS, parameter D 0, the parameter alpha, the parameter r 0 and the cutoff value r c, respectively, for example, "0.23" , “10”, “3.78”, “1.36”, and “1.2”. On the other hand, if the larger particles shown in FIG. 3 (b), between the particles in the mass range AS, parameter D 0, the parameter alpha, the parameter r 0 and the cutoff value r c, respectively, for example, "0. “5”, “10”, “1.90”, “2.71”, and “2.5” are set.
このように設定されたパラメータ等と、上記式(1)とを用いて、ポテンシャルエネルギーEを算出すると、互いに相似の粒子では、例えば図4のようになる。図4は、本実施形態に係る距離rを粒子内質点間距離ASで割った値と、質点間のポテンシャルエネルギーEとの関係の一例を示す図である。 When the potential energy E is calculated using the parameters set in this way and the above equation (1), the similar particles are as shown in FIG. 4, for example. FIG. 4 is a diagram illustrating an example of a relationship between a value obtained by dividing the distance r according to the present embodiment by the inter-particle mass point distance AS and the potential energy E between the mass points.
そして、上述の如く設定された質点間のポテンシャルエネルギーEを用いて、上記ステップS101乃至S104の処理を行うと、結合粒子の割合は、例えば図5のようになる。図5は、本実施形態に係る粒子の体積密度と結合粒子の割合との関係の一例を示す図である。 Then, when the processing of steps S101 to S104 is performed using the potential energy E between the mass points set as described above, the ratio of the coupled particles becomes, for example, as shown in FIG. FIG. 5 is a diagram illustrating an example of the relationship between the volume density of particles and the ratio of bonded particles according to the present embodiment.
図5では、粒子の大きさにかかわらず、結合粒子の割合が同一の粒子密度(ここでは、65%から70%の間)で急激に増加している。ここで、粒子の結合理論によれば、パーコレーションの閾値、互いに相似の粒子であれば、同一となると言われている。 In FIG. 5, regardless of the size of the particles, the proportion of bound particles increases rapidly at the same particle density (here between 65% and 70%). Here, according to the particle coupling theory, the percolation threshold is said to be the same if the particles are similar to each other.
図5に示すように、本実施形態に係る粒子充填構造シミュレーション方法によれば、粒子の結合理論に矛盾しないシミュレーション結果を得ることができる。この結果、本実施形態に係る粒子充填構造シミュレーション方法によれば、全固体電池を構成する粒子の充填構造を好適に再現することができる。 As shown in FIG. 5, according to the particle packing structure simulation method according to the present embodiment, a simulation result consistent with the particle coupling theory can be obtained. As a result, according to the particle filling structure simulation method according to the present embodiment, the particle filling structure constituting the all-solid-state battery can be suitably reproduced.
<比較例>
次に、本実施形態の比較例について、図6及び図7を参照して説明する。比較例では、カットオフ値rc及びパラメータr0が、粒子内質点間距離ASとは無関係に設定されている。
<Comparative example>
Next, a comparative example of this embodiment will be described with reference to FIGS. In the comparative example, the cut-off value r c and the parameter r 0, are set independently of the distance AS between the particles in the mass.
質点間のポテンシャルエネルギーの算出には、上述した式(1)を用いるが、パラメータD0、パラメータα、パラメータr0及びカットオフ値rcは、夫々、例えば“10”、“5.0”、“1.11”及び“1.0”と設定される。算出される質点間のポテンシャルエネルギーEは、例えば図6のようになる。図6は、図4と同趣旨の、比較例に係る質点間距離と、質点間のポテンシャルエネルギーとの関係の一例を示す図である。 The calculation of the potential energy between the mass points, but using Equation (1) above, the parameter D 0, the parameter alpha, the parameter r 0 and the cutoff value r c, respectively, for example, "10", "5.0" , “1.11” and “1.0”. The calculated potential energy E between the mass points is, for example, as shown in FIG. FIG. 6 is a diagram showing an example of the relationship between the mass-point distance according to the comparative example and the potential energy between the mass points, which has the same concept as in FIG. 4.
図6に示された質点間のポテンシャルエネルギーEを用いて、互いに相似の関係にある粒子小モデルと粒子大モデルについて、上述したステップS101乃至S104の処理を行うと、結合粒子の割合は、例えば図7のようになる。図7は、図5と同趣旨の、比較例に係る粒子の体積密度と結合粒子の割合との関係の一例を示す図である。 Using the potential energy E between the mass points shown in FIG. 6 and performing the above-described steps S101 to S104 on the small particle model and the large particle model that are similar to each other, the ratio of the coupled particles is, for example, As shown in FIG. FIG. 7 is a diagram showing an example of the relationship between the volume density of particles and the ratio of bonded particles according to a comparative example having the same meaning as in FIG. 5.
図7に示すように、比較例では、互いに相似の粒子であるにもかかわらず、パーコレーションの閾値が互いに異なっている。つまり、比較例に係るシミュレーション方法では、全固体電池を構成する粒子の充填構造を十分に再現することは、極めて困難であると言える。 As shown in FIG. 7, in the comparative example, although the particles are similar to each other, the percolation thresholds are different from each other. That is, in the simulation method according to the comparative example, it can be said that it is extremely difficult to sufficiently reproduce the packed structure of the particles constituting the all solid state battery.
本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う粒子充填構造シミュレーション方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. Simulation methods are also included in the technical scope of the present invention.
1、1´…空間、100…楕円体、200…質点 1, 1 '... space, 100 ... ellipsoid, 200 ... mass point
Claims (2)
前記複数の粒子のうち一の粒子の表面に配置された質点の、前記複数の粒子のうち他の粒子の表面に配置された質点に対する反発力を、前記一の粒子の表面に配置された質点同士の間隔に応じて設定する反発力設定工程と、
を備えることを特徴とする粒子充填構造シミュレーション方法。 Regardless of the size of each of the plurality of particles, a mass point arrangement step of arranging the same number of mass points on the surface of each of the plurality of particles,
The repulsive force of the mass point arranged on the surface of one of the plurality of particles with respect to the mass point arranged on the surface of another particle of the plurality of particles, the mass point arranged on the surface of the one particle A repulsive force setting step to set according to the interval between each other;
A particle-packed structure simulation method comprising:
前記複数の粒子を相互に重ならないように空間に夫々配置する粒子配置工程と、
を更に備えることを特徴とする請求項1に記載の粒子充填構造シミュレーション方法。 A particle generating step for generating each of the plurality of particles;
A particle disposing step of disposing the plurality of particles in space so as not to overlap each other;
The particle packed structure simulation method according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011190354A JP2013054418A (en) | 2011-09-01 | 2011-09-01 | Simulation method for particle filling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011190354A JP2013054418A (en) | 2011-09-01 | 2011-09-01 | Simulation method for particle filling structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013054418A true JP2013054418A (en) | 2013-03-21 |
Family
ID=48131387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011190354A Withdrawn JP2013054418A (en) | 2011-09-01 | 2011-09-01 | Simulation method for particle filling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013054418A (en) |
-
2011
- 2011-09-01 JP JP2011190354A patent/JP2013054418A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miehe et al. | A phase‐field model for chemo‐mechanical induced fracture in lithium‐ion battery electrode particles | |
Parteli | DEM simulation of particles of complex shapes using the multisphere method: application for additive manufacturing | |
Martin et al. | Simulation of sintering using a Non Smooth Discrete Element Method. Application to the study of rearrangement | |
Cantor et al. | Three-dimensional bonded-cell model for grain fragmentation | |
JP5515955B2 (en) | Particle packing structure simulation method | |
JP2013024711A (en) | Method for creating equilibrium model of filler loading polymer | |
CN103914879A (en) | Method for generating cubic grid data through triangle surface metadata in parabolic equation | |
JP2017059444A (en) | Electrode simulation method and device for all-solid battery, and method of manufacturing electrode for all-solid battery | |
JP5632433B2 (en) | Simulation apparatus, simulation method, and program | |
Lee et al. | Thermal abuse behavior of the LIR2450 micro coin cell battery having capacity of 120 mAh with internal short circuit by penetrating element | |
Zhu et al. | Numerical modeling and safety design for lithium-ion vehicle battery modules subject to crush loading | |
Li et al. | Three-dimensional thermal modeling of internal shorting process in a 20ah lithium-ion polymer battery | |
JP2013054418A (en) | Simulation method for particle filling structure | |
Cianciullo et al. | Simulation of the thermal runaway onset in Li-ion cells—influence of cathode materials and operating conditions | |
Golovnia et al. | Alignment of magnetic uniaxial particles in a magnetic field: Simulation | |
Cai et al. | Analysis and design of a permanent magnet bi-stable electro-magnetic clutch unit for in-wheel electric vehicle drives | |
JP6492438B2 (en) | Method for creating model for analyzing specific substance, computer program for creating model for analyzing specific substance, simulation method for specific substance, and computer program for simulating specific substance | |
Yang et al. | Experimental Investigation of Lithium-Ion Batteries Thermal Runaway Propagation Consequences under Different Triggering Modes | |
Gregorski | High green density metal parts by vibrational compaction of dry powder in the three-dimensional printing process. | |
JP2014041816A (en) | Battery analyzer and battery analysis method | |
JP2014016724A (en) | Packing structure simulation method, packing structure simulation equipment and computer program | |
Sevarin et al. | Influence of cell selection and orientation within the traction battery on the crash safety of electric-powered two-wheelers | |
JP7135900B2 (en) | Damping structure and manufacturing method thereof | |
US20180210861A1 (en) | Battery models, systems, and methods using robust fail-safe iteration free approach for solving differential algebraic equations | |
Tuitz et al. | The influence of particle orientation on the loading condition of pebbles in fluvial gravel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141104 |