JP2013053893A - X-ray analyzer - Google Patents

X-ray analyzer Download PDF

Info

Publication number
JP2013053893A
JP2013053893A JP2011191376A JP2011191376A JP2013053893A JP 2013053893 A JP2013053893 A JP 2013053893A JP 2011191376 A JP2011191376 A JP 2011191376A JP 2011191376 A JP2011191376 A JP 2011191376A JP 2013053893 A JP2013053893 A JP 2013053893A
Authority
JP
Japan
Prior art keywords
ray
preamplifier
temperature
front stage
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011191376A
Other languages
Japanese (ja)
Inventor
Atsushi Fujii
淳 藤井
Minoru Yamada
実 山田
Masaru Shimada
勝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011191376A priority Critical patent/JP2013053893A/en
Publication of JP2013053893A publication Critical patent/JP2013053893A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray analyzer capable of suppressing influence due to variation of performance characteristics of a preamplifier prestage.SOLUTION: The X-ray analyzer comprises: a preamplifier prestage including a semiconductor X-ray detection element for detecting a fluorescent X-ray emitted from a standard sample and a first-stage FET circuit for receiving an output signal of the semiconductor X-ray detection element; a cooler for cooling the preamplifier prestage; a signal analyzer for analyzing a detection signal outputted from the preamplifier prestage; and a controller for monitoring a performance value showing performance characteristics of the preamplifier prestage obtained by analyzing the detection signal, and a temperature of the preamplifier prestage in a real time, controlling the cooler to adjust the temperature of the preamplifier prestage so that the performance value satisfies a specified value. The preamplifier prestage analyzes a fluorescent X ray emitted from a measuring object at the adjusted temperature.

Description

本発明は、半導体X線検出装置を有するX線分析装置に関する。   The present invention relates to an X-ray analyzer having a semiconductor X-ray detector.

物質から放出される物質固有のX線を分析するエネルギー分散型のX線分析装置は、半導体X線検出素子や半導体X線検出素子からの電気的な出力信号を増幅する初段FET回路などを含む半導体X線検出装置を有する。   An energy dispersive X-ray analyzer that analyzes X-rays specific to a substance emitted from a substance includes a semiconductor X-ray detection element, a first stage FET circuit that amplifies an electrical output signal from the semiconductor X-ray detection element, and the like. It has a semiconductor X-ray detector.

半導体X線検出素子や初段FET回路は、温度が低いほど良い性能が得られるのが一般的である。例えば、−20℃〜−160℃付近の範囲で半導体X線検出素子や初段FET回路が使用される。この範囲においてはドナーの凍結が起こらないため、初段FET回路の雑音量は温度が低いほど小さい。   In general, semiconductor X-ray detection elements and first-stage FET circuits have better performance as the temperature is lower. For example, a semiconductor X-ray detection element or a first stage FET circuit is used in the range of −20 ° C. to −160 ° C. In this range, the freezing of the donor does not occur, so the noise amount of the first stage FET circuit is smaller as the temperature is lower.

冷却方法には、液体窒素、多段サーモモジュール、冷凍機などが採用可能である。液体窒素を用いた場合には、半導体X線検出素子を液体窒素温度まで冷却できる。しかし、液体窒素の使用は作業上の危険が伴うため、近年は多段サーモモジュールや冷凍機による冷却手段が主流になりつつある。その背景には、半導体X線検出素子(特にSiを用いた素子)に関して、Siのインゴットの特性が向上したことにより、液体窒素温度まで冷却せずとも良い特性が得られるようになったことが挙げられる。   As the cooling method, liquid nitrogen, a multistage thermo module, a refrigerator, or the like can be used. When liquid nitrogen is used, the semiconductor X-ray detection element can be cooled to the liquid nitrogen temperature. However, since the use of liquid nitrogen involves work risks, in recent years, cooling means using multistage thermomodules or refrigerators are becoming mainstream. In the background, with respect to semiconductor X-ray detection elements (especially elements using Si), the characteristics of Si ingots have been improved, so that it is possible to obtain characteristics that do not require cooling to the liquid nitrogen temperature. Can be mentioned.

例えば、半導体X線検出素子及び初段FET回路(以下において、これらを「前置増幅部前段」という。)がコールドフィンガーによって支持及び冷却され、コールドフィンガーが多段サーモモジュールや冷凍機などの冷却装置によって冷却される(例えば特許文献1参照。)。このとき、前置増幅部前段付近のコールドフィンガーの温度をモニタし、モニタされた温度に基づいて冷却装置を制御することによって、前置増幅部前段が所望の温度に冷却される。   For example, a semiconductor X-ray detection element and a first stage FET circuit (hereinafter referred to as “preamplifier front stage”) are supported and cooled by a cold finger, and the cold finger is cooled by a cooling device such as a multistage thermo module or a refrigerator. It is cooled (for example, refer to Patent Document 1). At this time, the temperature of the cold finger near the front stage of the preamplifier unit is monitored, and the cooling device is controlled based on the monitored temperature, whereby the front stage of the preamplifier unit is cooled to a desired temperature.

特開2009−186403号公報JP 2009-186403 A

半導体X線検出装置の内部は真空断熱され、冷却時にガスが前置増幅部前段に吸着して特性が変動することを防いでいる。しかしながら、真空断熱しても、半導体X線検出装置内部の素材や内壁からの脱ガスにより真空度が劣化する。このため、脱ガスが前置増幅部前段に吸着し、性能特性の変動が生じる。   The inside of the semiconductor X-ray detection apparatus is thermally insulated by a vacuum to prevent the gas from adsorbing to the front stage of the preamplifier during cooling and changing the characteristics. However, even if vacuum insulation is used, the degree of vacuum deteriorates due to degassing from the material and the inner wall inside the semiconductor X-ray detector. For this reason, degassing is adsorbed to the front stage of the preamplifier and fluctuations in performance characteristics occur.

上記問題点に鑑み、本発明は、前置増幅部前段の性能特性の変動による影響が抑制されたX線分析装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an X-ray analysis apparatus in which an influence due to a change in performance characteristics of a pre-amplifier front stage is suppressed.

本発明の一態様によれば、(イ)標準サンプルから放出された蛍光X線を検出する半導体X線検出素子、及び半導体X線検出素子の出力信号を受信する初段FET回路を含む前置増幅部前段と、(ロ)前置増幅部前段を冷却する冷却装置と、(ハ)前置増幅部前段から出力される検出信号を分析する信号分析装置と、(ニ)検出信号を分析して得られる前置増幅部前段の性能特性を示す性能値、及び前置増幅部前段の温度をリアルタイムで監視し、冷却装置を制御して性能値が規定値を満たすように前置増幅部前段の温度を調整させる制御装置とを備え、前置増幅部前段が調整された温度において、測定対象物から放出された蛍光X線を分析するX線分析装置が提供される。   According to one aspect of the present invention, (a) a preamplification including a semiconductor X-ray detection element that detects fluorescent X-rays emitted from a standard sample, and a first-stage FET circuit that receives an output signal of the semiconductor X-ray detection element (B) a cooling device for cooling the front stage of the preamplifier, (c) a signal analyzer for analyzing the detection signal output from the front stage of the preamplifier, and (d) analyzing the detection signal The obtained performance value indicating the performance characteristics of the preamplifier front stage and the temperature of the preamplifier front stage are monitored in real time, and the cooling unit is controlled so that the performance value satisfies the specified value. There is provided an X-ray analyzer that includes a control device that adjusts the temperature and analyzes the fluorescent X-rays emitted from the measurement object at the temperature at which the pre-amplifier front stage is adjusted.

本発明によれば、前置増幅部前段の性能特性の変動による影響が抑制されたX線分析装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the X-ray-analysis apparatus by which the influence by the fluctuation | variation of the performance characteristic of a pre-amplifier front part was suppressed can be provided.

本発明の実施形態に係るX線分析装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the X-ray analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るX線分析装置に使用される、試料搭載用のホルダの構造を示す模式図である。It is a schematic diagram which shows the structure of the holder for sample mounting used for the X-ray analyzer which concerns on embodiment of this invention. 設定温度と前置増幅部前段の分解能との関係を示すグラフである。It is a graph which shows the relationship between preset temperature and the resolution | decomposability of a preamplifier front part. 発生エネルギーとカウント数との関係を示すグラフである。It is a graph which shows the relationship between generated energy and a count number. 温度と前置増幅部前段のゲインの変動量との関係を示すグラフである。It is a graph which shows the relationship between temperature and the variation | change_quantity of the gain of a pre-amplifier front part. 本発明の実施形態に係るX線分析装置を用いた分析方法を説明するためのフローチャートである。It is a flowchart for demonstrating the analysis method using the X-ray analyzer which concerns on embodiment of this invention. 本発明の実施形態に係るX線分析装置による測定対象物の測定状態を示す模式図である。It is a schematic diagram which shows the measurement state of the measuring object by the X-ray analyzer which concerns on embodiment of this invention. 本発明のその他の実施形態に係るX線分析装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the X-ray analyzer which concerns on other embodiment of this invention.

図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。   Embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description.

又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係るX線分析装置1は、図1に示すように、励起X線X1を出射するX線管200と、標準サンプル500及び測定対象物600を格納する測定室300と、励起X線X1を照射された標準サンプル500又は測定対象物600から放出された蛍光X線X2が入射する半導体X線検出装置10を備える。標準サンプル500は、測定室300に配置されたホルダ400に搭載されている。ホルダ400の詳細は後述する。また、図1に示すように、X線管200から見てホルダ400の背後に位置するように、測定対象物600が測定室300内に格納されている。   As shown in FIG. 1, an X-ray analyzer 1 according to an embodiment of the present invention includes an X-ray tube 200 that emits excitation X-rays X1, a measurement chamber 300 that stores a standard sample 500 and a measurement object 600, A semiconductor X-ray detection apparatus 10 on which a fluorescent X-ray X2 emitted from a standard sample 500 irradiated with an excitation X-ray X1 or a measurement object 600 enters is provided. The standard sample 500 is mounted on a holder 400 disposed in the measurement chamber 300. Details of the holder 400 will be described later. Further, as shown in FIG. 1, the measurement object 600 is stored in the measurement chamber 300 so as to be located behind the holder 400 when viewed from the X-ray tube 200.

半導体X線検出装置10は、励起X線X1を照射された標準サンプル500又は測定対象物600から放出された蛍光X線X2のエネルギーに比例した大きさを示す検出信号STを出力する前置増幅部前段100と、前置増幅部前段100を冷却する冷却装置50と、前置増幅部前段100から出力される検出信号STを分析する信号分析装置30と、前置増幅部前段100の性能値が所定の規定値を満たすように、冷却装置50を制御して前置増幅部前段100の温度を調整させる制御装置40とを備える。即ち、X線分析装置1は、X線管200から出力した励起X線X1を対象物に照射し、対象物から放出された蛍光X線X2を検出、分析するエネルギー分散型蛍光X線分析装置である。前置増幅部前段100は、半導体X線検出素子12及び初段FET回路13からなる。   The semiconductor X-ray detection device 10 outputs a detection signal ST indicating a magnitude proportional to the energy of the fluorescent X-ray X2 emitted from the standard sample 500 or measurement object 600 irradiated with the excitation X-ray X1. Pre-amplifier 100, cooling device 50 that cools pre-amplifier pre-stage 100, signal analyzer 30 that analyzes detection signal ST output from pre-amplifier pre-stage 100, and performance value of pre-amplifier pre-stage 100 Includes a control device 40 that controls the cooling device 50 so as to adjust the temperature of the pre-amplifier pre-stage 100 so that the predetermined prescribed value is satisfied. That is, the X-ray analyzer 1 irradiates an object with the excitation X-ray X1 output from the X-ray tube 200, and detects and analyzes the fluorescent X-ray X2 emitted from the object. It is. The preamplifier front stage 100 includes a semiconductor X-ray detection element 12 and a first stage FET circuit 13.

蛍光X線X2が半導体X線検出装置10に入射すると、半導体X線検出素子12によって蛍光X線X2が検出され、半導体X線検出素子12の出力信号を受信した初段FET回路13から蛍光X線X2のエネルギーに比例した大きさを示す検出信号STが出力される。蛍光X線X2は、測定対象物に含まれる元素固有のエネルギーを有する。このため、検出信号STを信号分析装置30によって分析することによって、測定対象物に含まれる元素が特定される。   When the fluorescent X-ray X2 enters the semiconductor X-ray detection device 10, the fluorescent X-ray X2 is detected by the semiconductor X-ray detection element 12, and the fluorescent X-ray is received from the first stage FET circuit 13 that has received the output signal of the semiconductor X-ray detection element 12. A detection signal ST indicating a magnitude proportional to the energy of X2 is output. The fluorescent X-ray X2 has energy specific to the element contained in the measurement object. For this reason, the element contained in the measurement object is specified by analyzing the detection signal ST by the signal analyzer 30.

制御装置40は、標準サンプル500から放出された蛍光X線X2を検出、分析するための検出信号STから得られる前置増幅部前段100の性能特性を示す性能値、及び前置増幅部前段100の温度をリアルタイムで監視することにより、性能値が予め設定された規定値を満たすように前置増幅部前段100の温度を調整する。   The control device 40 includes a performance value indicating the performance characteristics of the preamplifier front stage 100 obtained from the detection signal ST for detecting and analyzing the fluorescent X-ray X2 emitted from the standard sample 500, and the preamplifier front stage 100. Is monitored in real time to adjust the temperature of the preamplifier pre-stage 100 so that the performance value satisfies a preset specified value.

その後、X線分析装置1では、標準サンプル500を用いて調整された温度に設定された前置増幅部前段100によって、測定対象物600から放出された蛍光X線X2を分析する。   Thereafter, the X-ray analyzer 1 analyzes the fluorescent X-ray X2 emitted from the measurement object 600 by the preamplifier pre-stage 100 set to the temperature adjusted using the standard sample 500.

標準サンプル500は、前置増幅部前段100の性能特性変動補正用に用いられる。このため、標準サンプル500には、X線分析装置1による分析結果が判明しているサンプルが採用される。前置増幅部前段100の性能特性の変動を検査する指標としては、例えば、スペクトル特性から得られる分解能やバックグランドノイズなどが使用される。   The standard sample 500 is used for performance characteristic variation correction of the preamplifier pre-stage 100. Therefore, a sample whose analysis result by the X-ray analyzer 1 is known is adopted as the standard sample 500. As an index for inspecting the variation in the performance characteristics of the preamplifier pre-stage 100, for example, resolution obtained from the spectral characteristics, background noise, or the like is used.

図2(a)及び図2(b)に、2種類の標準サンプル501、502が搭載可能であり、入射窓410が形成されたホルダ400の例を示す。標準サンプル501、502の材料は、前置増幅部前段100について検査する性能特性に応じて純度の高い(例えば、99.9999%程度)金属などが選択される。例えば、前置増幅部前段100の分解能について検査する場合には、純度の高いマンガン(Mn)材が標準サンプル500として用意される。或いは、バックグランドノイズについて検査する場合には、純度の高いアンチモン(Sb)材が標準サンプル500として用意される。他に、アルミニウム(Al)材やスズ(Sn)材などの標準サンプル500が適宜使用される。   2A and 2B show an example of a holder 400 on which two types of standard samples 501 and 502 can be mounted and an entrance window 410 is formed. As the material of the standard samples 501 and 502, a metal having a high purity (for example, about 99.9999%) or the like is selected according to the performance characteristics to be inspected for the preamplifier pre-stage 100. For example, when inspecting the resolution of the preamplifier pre-stage 100, a high-purity manganese (Mn) material is prepared as the standard sample 500. Alternatively, when inspecting for background noise, a high purity antimony (Sb) material is prepared as the standard sample 500. In addition, a standard sample 500 such as an aluminum (Al) material or a tin (Sn) material is appropriately used.

なお、図2(a)及び図2(b)に示したホルダ400では、入射窓410を介して、励起X線X1が測定対象物600に照射され、測定対象物600から蛍光X線X2が放出される。したがって、測定対象物600について分析を行う場合には、励起X線X1及び蛍光X線X2が入射窓410を通過するようにホルダ400を移動させる。   In the holder 400 shown in FIGS. 2A and 2B, the excitation X-ray X1 is irradiated onto the measurement object 600 through the incident window 410, and the fluorescent X-ray X2 is emitted from the measurement object 600. Released. Therefore, when analyzing the measurement object 600, the holder 400 is moved so that the excitation X-ray X1 and the fluorescent X-ray X2 pass through the incident window 410.

図2(a)に示したホルダ400はターレットタイプであり、中心を軸にして矢印方向にホルダ400を回転させることにより、標準サンプル501、標準サンプル502、或いは入射窓410のいずれかに励起X線X1を照射させる。これにより、励起X線X1が標準サンプル501、標準サンプル502、測定対象物600のうちの所望の対象物についてX線分析が行われる。例えば、標準サンプル501として分解能検査用のMn材を配置し、標準サンプル502としてバックグランドノイズ検査用のSb材を配置すれば、分解能の検査とバックグランドノイズの検査を連続して行うことができる。   The holder 400 shown in FIG. 2A is a turret type. By rotating the holder 400 in the direction of the arrow about the center, the holder 400 is excited to one of the standard sample 501, the standard sample 502, or the incident window 410. The line X1 is irradiated. As a result, the X-ray analysis is performed on the desired target among the standard sample 501, the standard sample 502, and the measurement target 600 using the excitation X-ray X1. For example, if a Mn material for resolution inspection is disposed as the standard sample 501 and an Sb material for background noise inspection is disposed as the standard sample 502, the resolution inspection and the background noise inspection can be continuously performed. .

図2(b)に示したホルダ400はスライドタイプであり、矢印方向にホルダ400をスライドさせることによって、標準サンプル501、標準サンプル502、測定対象物600のうちの所望の対象物についてX線分析が行われる。   The holder 400 shown in FIG. 2B is a slide type. By sliding the holder 400 in the direction of the arrow, X-ray analysis can be performed on a desired object among the standard sample 501, the standard sample 502, and the measurement object 600. Done.

次に、半導体X線検出装置10の詳細について説明する。図1に示すように、半導体X線検出装置10は、半導体X線検出素子12及び初段FET回路13からなる前置増幅部前段100と、前置増幅部前段100を支持及び冷却するコールドフィンガー14と、前置増幅部前段100及びコールドフィンガー14を格納し、内部の前置増幅部前段100などを外部から真空断熱する真空容器11とを有する。   Next, details of the semiconductor X-ray detection apparatus 10 will be described. As shown in FIG. 1, a semiconductor X-ray detection apparatus 10 includes a preamplifier front stage 100 including a semiconductor X-ray detection element 12 and a first stage FET circuit 13, and a cold finger 14 that supports and cools the preamplifier front stage 100. And a vacuum vessel 11 for storing the preamplifier front stage 100 and the cold finger 14 and vacuum-insulating the internal preamplifier front stage 100 and the like from the outside.

X線検出時に、真空容器11の内部は真空状態に維持される。蛍光X線X2は、真空容器11に配置された入射窓を透過して、半導体X線検出素子12に入射する。入射窓は、例えばベリリウム(Be)からなる。   At the time of X-ray detection, the inside of the vacuum vessel 11 is maintained in a vacuum state. The fluorescent X-ray X2 passes through the incident window disposed in the vacuum vessel 11 and enters the semiconductor X-ray detection element 12. The incident window is made of beryllium (Be), for example.

半導体X線検出素子12は、例えばシリコン(Si)単結晶にリチウム(Li)を拡散させて形成したP−I−N接合を有する半導体素子である。蛍光X線X2が半導体X線検出素子12に入射すると、I層に入射した蛍光X線X2により半導体X線検出素子12内に電子と正孔が生じ、外部に電流パルスとして検出される。半導体X線検出素子12から出力される電気的な出力信号は、初段FET回路13の電界効果トランジスタ(FET)によって増幅される。   The semiconductor X-ray detection element 12 is a semiconductor element having a P-I-N junction formed by, for example, diffusing lithium (Li) into a silicon (Si) single crystal. When the fluorescent X-ray X2 enters the semiconductor X-ray detection element 12, electrons and holes are generated in the semiconductor X-ray detection element 12 by the fluorescent X-ray X2 incident on the I layer, and are detected as current pulses outside. The electrical output signal output from the semiconductor X-ray detection element 12 is amplified by the field effect transistor (FET) of the first stage FET circuit 13.

コールドフィンガー14は例えば筒形状であり、半導体X線検出素子12及び初段FET回路13はコールドフィンガー14の内部に格納される。コールドフィンガー14の前置増幅部前段100付近に温度センサ17が取り付けられており、温度センサ17により測定されたコールドフィンガー14の温度TCは、信号ケーブル19及び真空端子18を介して、制御装置40に伝達される。温度センサ17には、白金抵抗体、サーミスタ又は熱電対などを採用可能である。   The cold finger 14 has, for example, a cylindrical shape, and the semiconductor X-ray detection element 12 and the first stage FET circuit 13 are stored inside the cold finger 14. A temperature sensor 17 is attached in the vicinity of the preamplifier front stage 100 of the cold finger 14, and the temperature TC of the cold finger 14 measured by the temperature sensor 17 is transmitted via the signal cable 19 and the vacuum terminal 18 to the control device 40. Is transmitted to. As the temperature sensor 17, a platinum resistor, a thermistor, a thermocouple, or the like can be used.

上記のように、制御装置40は、温度センサ17によって、コールドフィンガー14の前置増幅部前段100付近の温度を前置増幅部前段100の温度として監視できる。   As described above, the control device 40 can monitor the temperature near the preamplifier front stage 100 of the cold finger 14 as the temperature of the preamplifier front stage 100 by the temperature sensor 17.

また、図1に示すように、冷却装置50は、冷凍機51、冷凍機51を駆動する冷凍機駆動装置52、コールドヘッド53、及び熱伝導線54を有する。冷凍機駆動装置52は、駆動出力SDを調整することによって冷凍機51の冷却能力を制御する。真空容器11の外側で冷凍機51に接続され、一部が真空容器11内に配置されたコールドヘッド53によって、コールドフィンガー14が冷却される。コールドフィンガー14とコールドヘッド53とは熱伝導線54によって連結される。つまり、冷却装置50は、コールドフィンガー14を冷却することによって、前置増幅部前段100を冷却する。   As shown in FIG. 1, the cooling device 50 includes a refrigerator 51, a refrigerator driving device 52 that drives the refrigerator 51, a cold head 53, and a heat conduction wire 54. The refrigerator driving device 52 controls the cooling capacity of the refrigerator 51 by adjusting the drive output SD. The cold finger 14 is cooled by a cold head 53 that is connected to the refrigerator 51 outside the vacuum vessel 11 and a part of which is disposed in the vacuum vessel 11. The cold finger 14 and the cold head 53 are connected by a heat conducting wire 54. That is, the cooling device 50 cools the preamplifier pre-stage 100 by cooling the cold finger 14.

なお、冷却時に前置増幅部前段100に内部ガスが吸着して生じる特性変動を抑制するために、真空容器11内部には活性炭20が配置されている。活性炭20は、温度が低いほど吸着効率が高く、効果的に働く。このため、図1に示した例ではコールドヘッド53に活性炭20が装着され、冷凍機51によって活性炭20が冷却される。   Note that activated carbon 20 is disposed inside the vacuum vessel 11 in order to suppress characteristic fluctuation caused by the internal gas adsorbed on the pre-amplifier pre-stage 100 during cooling. The activated carbon 20 works more effectively as the temperature is lower. For this reason, in the example shown in FIG. 1, the activated carbon 20 is attached to the cold head 53, and the activated carbon 20 is cooled by the refrigerator 51.

前置増幅部前段100から出力された検出信号STは、信号ケーブル19及び真空端子18を介して、信号分析装置30に伝達される。検出信号STを信号分析装置30によって分析した結果は、制御装置40に伝達される。   The detection signal ST output from the preamplifier pre-stage 100 is transmitted to the signal analyzer 30 via the signal cable 19 and the vacuum terminal 18. The result of analyzing the detection signal ST by the signal analysis device 30 is transmitted to the control device 40.

制御装置40は、信号分析装置30の分析結果を用いて、前置増幅部前段100の性能特性を示す性能値が予め設定された規定値を満足するか否かを判断する。そして、性能値が規定値を満足しない場合には、冷却装置50を制御して前置増幅部前段100の温度を調整させる。具体的には、温度センサ17によってモニタする前置増幅部前段100の温度が前置増幅部前段100の性能値が規定値を満足する温度になるように、制御信号SCによって冷凍機駆動装置52を制御して冷凍機51の冷却能力を調整する。性能値の規定値は、X線分析装置1によって信頼性の高い分析結果が得られる値に設定される。このため、X線分析装置1によれば、安定性が高く、再現性のよい分析結果を得ることができる。   The control device 40 uses the analysis result of the signal analysis device 30 to determine whether or not the performance value indicating the performance characteristic of the preamplifier pre-stage 100 satisfies a preset specified value. When the performance value does not satisfy the specified value, the cooling device 50 is controlled to adjust the temperature of the preamplifier pre-stage 100. Specifically, the refrigerator driving device 52 is controlled by the control signal SC so that the temperature of the preamplifier front stage 100 monitored by the temperature sensor 17 becomes a temperature at which the performance value of the preamplifier front stage 100 satisfies a specified value. Is controlled to adjust the cooling capacity of the refrigerator 51. The specified value of the performance value is set to a value at which a highly reliable analysis result can be obtained by the X-ray analyzer 1. For this reason, according to the X-ray analyzer 1, it is possible to obtain an analysis result with high stability and good reproducibility.

図3に、設定温度と前置増幅部前段100の分解能との関係の例を示す。分解能の定義は、MnのKα線の半減値とした。材料の異なる素子A、Bのいずれの場合においても、設定温度を低くすることによって分解能が向上する。分解能の規定値は、例えば155eVとする。   FIG. 3 shows an example of the relationship between the set temperature and the resolution of the preamplifier pre-stage 100. The definition of the resolution is the half value of the Kα ray of Mn. In either case of the elements A and B made of different materials, the resolution is improved by lowering the set temperature. The specified value of resolution is, for example, 155 eV.

図4に設定温度とバックグランドノイズとの関係の例を示す。図4は、Sb材を試料として用いたX線分析結果であり、横軸がエネルギー、縦軸がカウント数である。図4において、特性T1が設定温度が−90℃でのスペクトル特性であり、特性T2が設定温度が−110℃でのスペクトル特性である。図4に示すように、設定温度を低くすることによってバックグランドノイズは減少する。Sb材を試料としたバックグランドノイズ測定では、例えば測定時間を300秒とし、Sbのピークが存在しない領域(例えば、10KeV〜15Kev)の総和をバックグランドノイズとする。バックグランドノイズの規定値は、例えば250カウント・KeV(50カウント×5KeV)とする。   FIG. 4 shows an example of the relationship between the set temperature and the background noise. FIG. 4 is an X-ray analysis result using an Sb material as a sample, where the horizontal axis represents energy and the vertical axis represents the count number. In FIG. 4, a characteristic T1 is a spectral characteristic when the set temperature is −90 ° C., and a characteristic T2 is a spectral characteristic when the set temperature is −110 ° C. As shown in FIG. 4, the background noise is reduced by lowering the set temperature. In the background noise measurement using the Sb material as a sample, for example, the measurement time is 300 seconds, and the total of the region where the Sb peak does not exist (for example, 10 KeV to 15 Kev) is set as the background noise. The specified value of the background noise is, for example, 250 count · KeV (50 count × 5 KeV).

上記のように、前置増幅部前段100の温度を下げることによって、分解能やバックグランドノイズなどの性能特性は向上する。   As described above, performance characteristics such as resolution and background noise are improved by lowering the temperature of the pre-amplifier pre-stage 100.

また、冷却装置50による冷却能力が増すことにより、活性炭20がより効果的に働き、真空容器11内に発生する内部ガスを吸着する。これにより、前置増幅部前段100への内部ガス吸着量が減少し、前置増幅部前段100の特性変動が抑制される。   Further, since the cooling capacity by the cooling device 50 is increased, the activated carbon 20 works more effectively and adsorbs the internal gas generated in the vacuum vessel 11. Thereby, the internal gas adsorption amount to the pre-amplifier pre-stage 100 is reduced, and the characteristic variation of the pre-amplifier pre-stage 100 is suppressed.

しかし、前置増幅部前段100の温度を低下させることによって、スペクトル特性のエネルギー位置が変動する。図5に、温度とピーク位置変動量との関係の例を示す。図5は、Sn材を試料に用いた場合のKβ線のピーク位置である。図5から、温度によってゲインが変動することが分かる。   However, by reducing the temperature of the preamplifier pre-stage 100, the energy position of the spectral characteristics varies. FIG. 5 shows an example of the relationship between temperature and peak position variation. FIG. 5 shows the peak position of the Kβ line when the Sn material is used for the sample. FIG. 5 shows that the gain varies with temperature.

したがって、前置増幅部前段100の温度を下げた場合には、X線分析装置1においてエネルギー位置の変動を校正し、スペクトル特性のピーク値を適正位置に合わせる必要がある。   Therefore, when the temperature of the preamplifier pre-stage 100 is lowered, it is necessary to calibrate the fluctuation of the energy position in the X-ray analyzer 1 and to adjust the peak value of the spectral characteristics to the appropriate position.

以下に、図6を参照して、X線分析装置1によるX線分析方法を説明する。ここでは、指標として分解能とバックグランドノイズを使用する場合を例示的に説明する。   Below, with reference to FIG. 6, the X-ray-analysis method by the X-ray-analysis apparatus 1 is demonstrated. Here, a case where resolution and background noise are used as indices will be described as an example.

ステップS1において、冷却装置50によってコールドフィンガー14の温度を初期設定温度に設定する。初期設定温度は、冷凍機51の冷却性能に対して余裕のある値である。初期設定温度は、冷凍機51の最大冷却性能の70%〜80%程度に設定することが好ましい。例えば、冷凍機51にスターリング型冷凍機を使用する場合、この冷凍機51の最低到達温度は−130℃程度であるため、初期設定温度は−90℃〜−100℃付近に設定する。制御装置40は、温度センサ17によって測定された温度をモニタしながら、冷却装置50を制御してコールドフィンガー14の温度を初期設定温度に設定する。   In step S1, the temperature of the cold finger 14 is set to an initial set temperature by the cooling device 50. The initial set temperature is a value with a margin for the cooling performance of the refrigerator 51. The initial set temperature is preferably set to about 70% to 80% of the maximum cooling performance of the refrigerator 51. For example, when a Stirling refrigerator is used as the refrigerator 51, the minimum temperature reached by the refrigerator 51 is about −130 ° C., so that the initial set temperature is set in the vicinity of −90 ° C. to −100 ° C. The control device 40 controls the cooling device 50 while monitoring the temperature measured by the temperature sensor 17, and sets the temperature of the cold finger 14 to the initial set temperature.

ステップS2において、X線分析装置1によって標準サンプル500のX線解析が行われ、分解能が測定される。例えば、標準サンプル500にMn材を使用し、前置増幅部前段100から出力される検出信号STを用いて、信号分析装置30がMnのKα線の半減値を算出する。そして、ステップS3において、制御装置40が、測定された分解能が規定値を満足するか否かを判断する。分解能が規定値を満足する場合には、処理はステップS6に進む。分解能が規定値を満足しない場合には、処理はステップS4に進む。   In step S2, the X-ray analyzer 1 performs X-ray analysis of the standard sample 500, and measures the resolution. For example, the Mn material is used for the standard sample 500, and the signal analyzer 30 calculates the half value of the Kα ray of Mn using the detection signal ST output from the preamplifier pre-stage 100. In step S3, the control device 40 determines whether or not the measured resolution satisfies a specified value. If the resolution satisfies the specified value, the process proceeds to step S6. If the resolution does not satisfy the specified value, the process proceeds to step S4.

ステップS4において、制御装置40が冷却装置50を制御して、コールドフィンガー14の温度を下げて、設定温度を再設定する。これにより、前置増幅部前段100の温度が下がるため、ステップS5において、設定温度の変化量に応じて信号分析装置30がエネルギー位置の変動を校正する。その後、ステップS2に戻り、分解能が再度測定される。   In step S4, the control device 40 controls the cooling device 50 to lower the temperature of the cold finger 14 and reset the set temperature. As a result, the temperature of the pre-amplifier pre-stage 100 is lowered, and in step S5, the signal analyzer 30 calibrates the fluctuation of the energy position according to the change amount of the set temperature. Thereafter, the process returns to step S2, and the resolution is measured again.

分解能が規定値を満足する場合には、ステップS6において、X線分析装置1によって標準サンプル500のX線解析が行われ、スペクトル特性を用いてバックグランドノイズが測定される。例えば、標準サンプル500にSb材を使用し、信号分析装置30がSbのピークが存在しない領域のカウント値の総和をバックグランドノイズとして測定する。そして、ステップS7において、制御装置40が、測定されたバックグランドノイズが規定値を満足するか否かを判断する。バックグランドノイズが規定値を満足する場合には、処理はステップS10に進む。バックグランドノイズが規定値を満足しない場合には、処理はステップS8に進む。   If the resolution satisfies the specified value, in step S6, the X-ray analyzer 1 performs X-ray analysis of the standard sample 500, and the background noise is measured using the spectral characteristics. For example, an Sb material is used for the standard sample 500, and the signal analyzer 30 measures the sum of count values in a region where no Sb peak exists as background noise. In step S7, the control device 40 determines whether or not the measured background noise satisfies a specified value. If the background noise satisfies the specified value, the process proceeds to step S10. If the background noise does not satisfy the specified value, the process proceeds to step S8.

ステップS8において、制御装置40が冷却装置50を制御して、コールドフィンガー14の温度を下げて、設定温度を再設定する。これにより、前置増幅部前段100の温度が下がるため、ステップS9において、設定温度の変化量に応じて信号分析装置30がエネルギー位置の変動を校正する。その後、ステップS6に戻り、バックグランドノイズが再度測定される。   In step S8, the control device 40 controls the cooling device 50 to lower the temperature of the cold finger 14 and reset the set temperature. As a result, the temperature of the preamplifier pre-stage 100 is lowered, and in step S9, the signal analyzer 30 calibrates the fluctuation of the energy position according to the change amount of the set temperature. Thereafter, the process returns to step S6, and the background noise is measured again.

バックグランドノイズが規定値を満足する場合には、ステップS10において、励起X線X1を照射する対象を、標準サンプル500から測定対象物600に自動的に交換する。例えば、図2(a)や図2(b)に示したホルダ400が制御装置40によって操作され、ホルダ400の入射窓410を介して励起X線X1が測定対象物600に照射されるようにする。そして、ステップS11において、測定対象物600の分析が実行される。このとき、図7に示すように、励起X線X1が照射された測定対象物600から放出された蛍光X線X2が、半導体X線検出装置10の半導体X線検出素子12に入射する。   When the background noise satisfies the specified value, the target to be irradiated with the excitation X-ray X1 is automatically exchanged from the standard sample 500 to the measurement object 600 in step S10. For example, the holder 400 shown in FIGS. 2A and 2B is operated by the control device 40 so that the measurement target 600 is irradiated with the excitation X-ray X1 through the incident window 410 of the holder 400. To do. In step S11, the measurement object 600 is analyzed. At this time, as shown in FIG. 7, the fluorescent X-ray X2 emitted from the measurement object 600 irradiated with the excitation X-ray X1 enters the semiconductor X-ray detection element 12 of the semiconductor X-ray detection apparatus 10.

以上に説明したように、本発明の実施形態に係るX線分析装置1では、前置増幅部前段100の性能特性を示す性能値を監視し、性能値が規定値を満たすように前置増幅部前段100の温度が調整される。このため、X線分析装置1によれば、信頼性の高い分析結果を得るために必要な性能特性が確保される。その結果、装置内部の素材や内壁からの脱ガス等に起因する前置増幅部前段100の性能特性の変動による影響が抑制され、高安定性、高再現性のある解析を実現できる。   As described above, in the X-ray analyzer 1 according to the embodiment of the present invention, the performance value indicating the performance characteristic of the preamplifier pre-stage 100 is monitored, and the preamplification is performed so that the performance value satisfies the specified value. The temperature of the front stage 100 is adjusted. For this reason, according to the X-ray analyzer 1, the performance characteristics necessary for obtaining a highly reliable analysis result are ensured. As a result, the influence of fluctuations in the performance characteristics of the preamplifier pre-stage 100 due to the material inside the apparatus, degassing from the inner wall, and the like is suppressed, and analysis with high stability and high reproducibility can be realized.

なお、設定温度の変化量は任意に設定することができ、例えば5℃ずつ、或いは10℃ずつ、コールドフィンガー14の設定温度を低下させる。冷却能力に余裕を持たせて冷凍機51を稼動させるためには、設定温度の変化量は小さい方が好ましい。一方、設定温度を早く決定するためには、設定温度の変化量が大きい方がよい。   The amount of change in the set temperature can be arbitrarily set. For example, the set temperature of the cold finger 14 is decreased by 5 ° C. or 10 ° C., for example. In order to operate the refrigerator 51 with a sufficient cooling capacity, it is preferable that the change amount of the set temperature is small. On the other hand, in order to determine the set temperature early, it is better that the change amount of the set temperature is large.

前置増幅部前段100を冷却することによって、分解能やバックグランドノイズなどの性能特性は向上し、活性炭20は働きがよくなる。つまり、真空度の向上や前置増幅部前段100の性能向上のためには、コールドフィンガー14をできるだけ冷却することが好ましい。しかし、冷凍機51をフル稼働させると冷却性能は低下する一方であり、冷凍機51の寿命が短くなる。   By cooling the pre-amplifier pre-stage 100, performance characteristics such as resolution and background noise are improved, and the activated carbon 20 works better. That is, it is preferable to cool the cold finger 14 as much as possible in order to improve the degree of vacuum and the performance of the preamplifier pre-stage 100. However, when the refrigerator 51 is fully operated, the cooling performance is decreasing and the life of the refrigerator 51 is shortened.

これに対し、X線分析装置1では、冷最大冷却性能に対して余裕を持った冷却温度に初期設定温度を設定する。そして、前置増幅部前段100の性能特性を監視して、性能値が規格値を満足するように徐々に設定温度を低下させる。このため、前置増幅部前段100が所望の性能を発揮できる限度の温度になるように、冷凍機51の冷却能力が最適化される。したがって、冷凍機51をフル稼働させる必要はない。   On the other hand, in the X-ray analyzer 1, the initial set temperature is set to a cooling temperature having a margin for the maximum cooling performance. Then, the performance characteristics of the preamplifier pre-stage 100 are monitored, and the set temperature is gradually lowered so that the performance value satisfies the standard value. For this reason, the cooling capacity of the refrigerator 51 is optimized so that the temperature at a limit at which the pre-amplifier pre-stage 100 can exhibit a desired performance. Therefore, it is not necessary to fully operate the refrigerator 51.

上記のように、X線分析装置1では、前置増幅部前段100の性能と冷凍機51の冷却能力とが最適化されるため、冷凍機51の出力に余裕が生じる。最大冷却性能に対して余裕を持って冷凍機51を稼動させることにより、冷却性能の低下を招かず、冷凍機51の寿命を延ばすことができる。   As described above, in the X-ray analyzer 1, the performance of the preamplifier pre-stage 100 and the cooling capacity of the refrigerator 51 are optimized, so that there is a margin in the output of the refrigerator 51. By operating the refrigerator 51 with a margin with respect to the maximum cooling performance, it is possible to extend the life of the refrigerator 51 without causing a decrease in cooling performance.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

既に述べた実施形態の説明においては、前置増幅部前段100の性能特性として分解能とバックグランドノイズを用いる例を示したが、これら以外の性能特性を用いて前置増幅部前段100の温度を調整してもよい。   In the description of the embodiment already described, an example in which resolution and background noise are used as the performance characteristics of the preamplifier front stage 100 has been described. However, the temperature of the preamplifier front stage 100 is set using performance characteristics other than these. You may adjust.

X線管200−測定対象物600−半導体X線検出装置10の経路でX線の光軸が最適化されている。このため、測定対象物600と標準サンプル500の位置の違いに起因して、X線管200−標準サンプル500−半導体X線検出装置10の経路で光軸ずれが生じる場合がある。この光軸ずれを補正するために、図8に示すように標準サンプル500の励起X線X1が入射する面に傾斜を持たせ、これによって光軸補正を行うことも可能である。図8において破線で示したX線X20は測定対象物600からの蛍光X線であり、標準サンプル500からの蛍光X線X2と測定対象物600からの蛍光X線との半導体X線検出装置10への入射位置を一致させることができる。   The optical axis of the X-ray is optimized in the path of the X-ray tube 200 -the measurement object 600 -the semiconductor X-ray detection device 10. For this reason, due to the difference in position between the measurement object 600 and the standard sample 500, an optical axis shift may occur in the path of the X-ray tube 200-standard sample 500-semiconductor X-ray detection apparatus 10. In order to correct this optical axis deviation, as shown in FIG. 8, it is possible to provide an inclination to the surface of the standard sample 500 on which the excitation X-ray X1 is incident, thereby correcting the optical axis. An X-ray X20 indicated by a broken line in FIG. 8 is a fluorescent X-ray from the measurement object 600, and the semiconductor X-ray detection apparatus 10 for the fluorescent X-ray X2 from the standard sample 500 and the fluorescent X-ray from the measurement object 600. It is possible to make the incident position on the same.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…X線分析装置
10…半導体X線検出装置
11…真空容器
12…半導体X線検出素子
13…初段FET回路
14…コールドフィンガー
17…温度センサ
18…真空端子
19…信号ケーブル
20…活性炭
30…信号分析装置
40…制御装置
50…冷却装置
51…冷凍機
52…冷凍機駆動装置
53…コールドヘッド
54…熱伝導線
100…前置増幅部前段
200…X線管
300…測定室
400…ホルダ
410…入射窓
500…標準サンプル
600…測定対象物
X1…励起X線
X2…蛍光X線
DESCRIPTION OF SYMBOLS 1 ... X-ray analyzer 10 ... Semiconductor X-ray detector 11 ... Vacuum container 12 ... Semiconductor X-ray detector 13 ... First stage FET circuit 14 ... Cold finger 17 ... Temperature sensor 18 ... Vacuum terminal 19 ... Signal cable 20 ... Activated carbon 30 ... Signal analysis device 40 ... control device 50 ... cooling device 51 ... refrigerator 52 ... refrigerator drive device 53 ... cold head 54 ... heat conduction wire 100 ... pre-amplifier pre-stage 200 ... X-ray tube 300 ... measurement chamber 400 ... holder 410 ... Incident window 500 ... Standard sample 600 ... Measurement object X1 ... Excitation X-ray X2 ... Fluorescent X-ray

Claims (6)

標準サンプルから放出された蛍光X線を検出する半導体X線検出素子、及び前記半導体X線検出素子の出力信号を受信する初段FET回路を含む前置増幅部前段と、
前記前置増幅部前段を冷却する冷却装置と、
前記前置増幅部前段から出力される検出信号を分析する信号分析装置と、
前記検出信号を分析して得られる前記前置増幅部前段の性能特性を示す性能値、及び前記前置増幅部前段の温度をリアルタイムで監視し、前記冷却装置を制御して前記性能値が規定値を満たすように前記前置増幅部前段の温度を調整させる制御装置と
を備え、前記前置増幅部前段が前記調整された温度において、測定対象物から放出された蛍光X線を分析することを特徴とするX線分析装置。
A pre-amplifier front stage including a semiconductor X-ray detection element for detecting fluorescent X-rays emitted from a standard sample, and a first-stage FET circuit for receiving an output signal of the semiconductor X-ray detection element;
A cooling device for cooling the pre-amplifier front stage;
A signal analyzer for analyzing the detection signal output from the pre-amplifier front stage;
The performance value indicating the performance characteristics of the preamplifier front stage obtained by analyzing the detection signal and the temperature of the preamplifier front stage are monitored in real time, and the performance value is defined by controlling the cooling device. A control device that adjusts the temperature of the front stage of the preamplifier unit so as to satisfy the value, and the front stage of the preamplifier unit analyzes the fluorescent X-rays emitted from the measurement object at the adjusted temperature. X-ray analyzer characterized by the above.
前記性能特性が、分解能及びバックグランドノイズの少なくともいずれかを含むことを特徴とする請求項1に記載のX線分析装置。   The X-ray analysis apparatus according to claim 1, wherein the performance characteristic includes at least one of resolution and background noise. 前記前置増幅部前段を支持及び冷却するコールドフィンガーを更に備え、
前記冷却装置が前記コールドフィンガーを冷却し、
前記制御装置が、前記前置増幅部前段の温度として前記コールドフィンガーの前記前置増幅部前段付近の温度を監視する
ことを特徴とする請求項1又は2に記載のX線分析装置。
A cold finger for supporting and cooling the preamplifier front stage;
The cooling device cools the cold finger;
The X-ray analyzer according to claim 1, wherein the control device monitors a temperature of the cold finger near the front stage of the preamplifier unit as a temperature of the front stage of the preamplifier unit.
前記励起X線を出射するX線管と、
前記標準サンプル及び前記測定対象物を格納する測定室と
を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載のX線分析装置。
An X-ray tube that emits the excitation X-ray;
The X-ray analysis apparatus according to claim 1, further comprising a measurement chamber that stores the standard sample and the measurement object.
前記前置増幅部前段の温度を調整した後、前記測定室において前記励起X線が照射される対象を前記標準サンプルから前記測定対象物に自動的に交換することを特徴とする請求項4に記載のX線分析装置。   5. The method according to claim 4, wherein after adjusting the temperature of the front stage of the preamplifier, the target irradiated with the excitation X-ray is automatically exchanged from the standard sample to the measurement target in the measurement chamber. The X-ray analyzer described. 前記前置増幅部前段を格納した内部を真空断熱する真空容器と、
前記真空容器の内部に配置された活性炭と
を備え、前記活性炭が前記冷却装置によって冷却されることを特徴とする請求項1乃至5のいずれか1項に記載のX線分析装置。
A vacuum container that thermally insulates the inside storing the pre-amplifier front stage, and
An X-ray analyzer according to any one of claims 1 to 5, further comprising activated carbon disposed inside the vacuum vessel, wherein the activated carbon is cooled by the cooling device.
JP2011191376A 2011-09-02 2011-09-02 X-ray analyzer Withdrawn JP2013053893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191376A JP2013053893A (en) 2011-09-02 2011-09-02 X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191376A JP2013053893A (en) 2011-09-02 2011-09-02 X-ray analyzer

Publications (1)

Publication Number Publication Date
JP2013053893A true JP2013053893A (en) 2013-03-21

Family

ID=48131017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191376A Withdrawn JP2013053893A (en) 2011-09-02 2011-09-02 X-ray analyzer

Country Status (1)

Country Link
JP (1) JP2013053893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787906A (en) * 2016-03-25 2016-07-20 北京环境特性研究所 Method and system for rejecting bright noises from infrared image
JP2019032195A (en) * 2017-08-07 2019-02-28 株式会社島津製作所 X-ray detector monitoring device
WO2019064868A1 (en) * 2017-09-27 2019-04-04 株式会社島津製作所 X-ray spectroscopic analysis device and chemical state analysis device using said x-ray spectroscopic analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787906A (en) * 2016-03-25 2016-07-20 北京环境特性研究所 Method and system for rejecting bright noises from infrared image
JP2019032195A (en) * 2017-08-07 2019-02-28 株式会社島津製作所 X-ray detector monitoring device
WO2019064868A1 (en) * 2017-09-27 2019-04-04 株式会社島津製作所 X-ray spectroscopic analysis device and chemical state analysis device using said x-ray spectroscopic analysis device
JPWO2019064868A1 (en) * 2017-09-27 2020-10-01 株式会社島津製作所 An X-ray spectroscopic analyzer and a chemical state analysis method using the X-ray spectroscopic analyzer.
JP7147770B2 (en) 2017-09-27 2022-10-05 株式会社島津製作所 X-ray spectroscopic analyzer and chemical state analysis method using the X-ray spectroscopic analyzer

Similar Documents

Publication Publication Date Title
US7566167B2 (en) System and method for a thermogravimetric analyzer having improved dynamic weight baseline
JP6324060B2 (en) X-ray analyzer
US9229114B2 (en) Radiation analyzer and method for analyzing radiation
US8708556B2 (en) Thermal analyzer
JP2013053893A (en) X-ray analyzer
JP2017044557A (en) X-ray analysis device
US9678218B2 (en) Radiation analyzing apparatus
US9678227B2 (en) Radiation analyzing apparatus
JP2015111166A (en) Fluorescent x-ray analyzer
JP5146746B2 (en) X-ray analyzer
JP2005308632A (en) X-ray detector
Li et al. A 20-liter test stand with gas purification for liquid argon research
JP6866801B2 (en) X-ray detector monitoring device
JP2008039500A (en) Radiation detector and radiation analyzer
JP3158391B2 (en) Total reflection X-ray fluorescence analyzer
Stuckenholz et al. Apparatus for low temperature thermal desorption spectroscopy of portable samples
JP5135601B2 (en) X-ray tube and X-ray analyzer
JP3178371U (en) X-ray fluorescence analyzer
JP5843951B2 (en) Thermal analyzer
JP4069514B2 (en) Analysis equipment
JP2007059384A (en) Sample-cooling device and electron beam irradiation type analysis/observation apparatus having the same
JP7026371B2 (en) Carbon concentration measuring method and carbon concentration measuring device
JP2010245165A (en) Method for manufacturing power semiconductor device and apparatus for manufacturing power semiconductor device
JPS6312533B2 (en)
JP6213986B2 (en) Absolute light intensity measuring device and measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104