JP2008039500A - Radiation detector and radiation analyzer - Google Patents

Radiation detector and radiation analyzer Download PDF

Info

Publication number
JP2008039500A
JP2008039500A JP2006211681A JP2006211681A JP2008039500A JP 2008039500 A JP2008039500 A JP 2008039500A JP 2006211681 A JP2006211681 A JP 2006211681A JP 2006211681 A JP2006211681 A JP 2006211681A JP 2008039500 A JP2008039500 A JP 2008039500A
Authority
JP
Japan
Prior art keywords
radiation
detector
sample
radiation detector
detection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211681A
Other languages
Japanese (ja)
Inventor
Narikazu Odawara
成計 小田原
Keiichi Tanaka
啓一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2006211681A priority Critical patent/JP2008039500A/en
Publication of JP2008039500A publication Critical patent/JP2008039500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a quantity of detected radiation reaching a radiation detector in comparison with a conventional constitution. <P>SOLUTION: A radiation analyzer is provided with: the radiation detector 1 for detecting the radiation; optical members 11, 12 having a transmitting function for transmitting the radiation to a radiation guide system into which the detected radiation enters; and a capillary 7 having a focusing function for focusing the radiation entering from the entrance side on the nearest region relative to the radiation guide system on the entrance side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線を放射線検出器で検出する放射線検出装置、並びにこれを実装した放射線分析装置に関する。   The present invention relates to a radiation detection apparatus that detects radiation with a radiation detector, and a radiation analysis apparatus equipped with the radiation detection apparatus.

高感度な放射線検出として、TES(超伝導遷移端温度検出器、Transition Edge Sensor)やSTJ(超伝導トンネル接合素子:Superconducting Tunnel Junction)などのX線検出器・放射線検出器を用いたX線検出装置・放射線検出装置やそれを用いて、電子線やX線を試料に照射した際に発生する蛍光X線や特性X線などの放射線を検出して分析するX線分析装置・放射線分析装置などが期待されている。TESやSTJなどの検出器はエネルギー分解能が高いために、従来の検出器では不可能であった軽元素のK線と重元素のL線との分離が可能であり、低エネルギー帯域で元素分析することが可能である。   X-ray detection using X-ray detectors / radiation detectors such as TES (Transition Edge Sensor) and STJ (Superconducting Tunnel Junction) as highly sensitive radiation detection X-ray analyzers and radiation analyzers that detect and analyze radiation such as fluorescent X-rays and characteristic X-rays generated when a sample is irradiated with an electron beam or X-ray using an apparatus or radiation detector Is expected. Detectors such as TES and STJ have high energy resolution, so light element K-line and heavy element L-line, which were impossible with conventional detectors, can be separated, and elemental analysis is possible in a low energy band. Is possible.

以上のような放射線検出装置では、放射線検出器の性能を発揮するためにその周囲を所定の環境(温度や圧力など)に保つ必要があったり、測定対象物などの試料を特定の状態(測定のために必要な状態)に保つために放射線検出器の周囲とは異なる環境(温度や圧力など)に設定したりする必要がある。   In the radiation detectors described above, it is necessary to maintain the surroundings in a predetermined environment (temperature, pressure, etc.) in order to demonstrate the performance of the radiation detector, or the sample such as the measurement object is in a specific state (measurement). It is necessary to set the environment (temperature, pressure, etc.) different from the surroundings of the radiation detector.

超伝導トンネル結合を用いた放射線検出装置では、放射線検出器となるSTJ素子の性能を十分に保つために、STJ素子を1K以下の温度に冷却して使用する必要がある。また、放射線検出器となるX線やガンマー線測定用の半導体放射線検出器では、半導体放射線検出器を100K程度にまで冷却して使用していることが知られている。   In the radiation detection apparatus using the superconducting tunnel coupling, it is necessary to use the STJ element after cooling it to a temperature of 1K or lower in order to sufficiently maintain the performance of the STJ element serving as the radiation detector. Further, it is known that a semiconductor radiation detector for measuring X-rays or gamma rays serving as a radiation detector is used after being cooled to about 100K.

STJを用いた放射線検出器が、内側輻射熱遮蔽壁や外側輻射熱遮蔽壁(障壁)に囲まれるようにし、これらの遮蔽壁で形成される内側輻射熱遮蔽壁を液体ヘリウムを用いて冷却されるようにし、外側輻射熱遮蔽壁を液体窒素を用いて冷却されるようにしている。放射線検出器と試料との間における放射線が通過する経路と遮蔽壁との重畳部分は窓部が設けられ、ベリリウムによる窓や輻射熱遮蔽膜が配置されている。(例えば、特許文献1参照)
放射線検出装置として超伝導遷移端温度検出器(TES)を用いたX線分析装置の概略構成図を図2に示す。TESを用いた放射線検出器1は、冷却ヘッド2の先端部に固定され、常温で真空環境に保たれた試料室17へ挿入される。電子線を射出する線源14となる電子鏡筒も同様に試料室17へ挿入される。そして、鏡筒から出射された電子線Aの照射によって試料Sから発生する特性X線Bは、超伝導X線検出器20で検出される。ここで、超伝導X線検出器20は、特性X線の検出効率を向上させるために試料Sへ接近させて設置させる必要がある。
The radiation detector using STJ is surrounded by the inner radiant heat shield wall and the outer radiant heat shield wall (barrier), and the inner radiant heat shield wall formed by these shield walls is cooled using liquid helium. The outer radiant heat shielding wall is cooled with liquid nitrogen. A window portion is provided in an overlapping portion between a path through which radiation passes between the radiation detector and the sample and the shielding wall, and a window made of beryllium and a radiation heat shielding film are arranged. (For example, see Patent Document 1)
FIG. 2 shows a schematic configuration diagram of an X-ray analyzer using a superconducting transition edge temperature detector (TES) as a radiation detector. The radiation detector 1 using TES is fixed to the tip of the cooling head 2 and inserted into a sample chamber 17 that is kept in a vacuum environment at room temperature. Similarly, an electron column that becomes a radiation source 14 for emitting an electron beam is also inserted into the sample chamber 17. Then, the characteristic X-ray B generated from the sample S by the irradiation of the electron beam A emitted from the lens barrel is detected by the superconducting X-ray detector 20. Here, the superconducting X-ray detector 20 needs to be installed close to the sample S in order to improve the detection efficiency of characteristic X-rays.

試料S付近には試料を設置する試料台50、試料Sから発生する二次電子を検出するための二次電子検出器15などが設置される。   In the vicinity of the sample S, a sample stage 50 for installing the sample, a secondary electron detector 15 for detecting secondary electrons generated from the sample S, and the like are installed.

放射線検出装置20は、放射線検出器となるTESでは100mK程度まで冷却するため、真空断熱構造を設けた外層41内に希釈冷凍機などを用いた冷凍機40を備え、冷凍機に接続されて冷却される冷却ヘッド2が、外層41に繋がって真空断熱構造に施工されたスナウト外層3の中へ備え、冷却ヘッド先端へ放射線検出器1を固定する構造である。   The radiation detection apparatus 20 is provided with a refrigerator 40 using a dilution refrigerator in the outer layer 41 provided with a vacuum heat insulating structure in order to cool to about 100 mK in the TES serving as a radiation detector, and is cooled by being connected to the refrigerator. The cooling head 2 is provided in the outer snout layer 3 connected to the outer layer 41 and constructed in a vacuum heat insulating structure, and the radiation detector 1 is fixed to the tip of the cooling head.

スナウト外層3を試料室17のポートから挿入することで、試料Sと超伝導X線検出器を近接して設置する構造とした。そして、冷却ヘッド2の先端部に放射線検出器1となる超伝導X線検出器となるTESからの出力を検出し増幅させるための低温初段増幅器を固定され、その上に超伝導X線検出器を重ねて装着する構成である。   By inserting the snout outer layer 3 from the port of the sample chamber 17, the sample S and the superconducting X-ray detector are installed close to each other. Further, a low-temperature first-stage amplifier for detecting and amplifying the output from the TES serving as the superconducting X-ray detector serving as the radiation detector 1 is fixed to the tip of the cooling head 2, and the superconducting X-ray detector is disposed thereon. It is the structure which mounts | wears.

放射線検出器として超伝導遷移端温度検出器(TES)を用いたX線検出装置の放射線検出器を備えた先端部分の概略構成図を図3に示す。   FIG. 3 shows a schematic configuration diagram of a tip portion including a radiation detector of an X-ray detection apparatus using a superconducting transition edge temperature detector (TES) as a radiation detector.

主に先端部分は、外部からの断熱ために真空に保持するようにしたスナウト外層3、スナウト外層3の内側に、輻射熱を遮断するための2層からなる内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4を備え、冷凍機40で冷却された冷却ヘッド2の先端部分に固定されたセンサホルダ8を介して放射線検出器1を装着する構成である。   The tip portion mainly has a snout outer layer 3 which is kept in vacuum for heat insulation from the outside, an inner radiant heat shield wall 5 and an outer radiant heat shield wall which are composed of two layers for shielding radiant heat inside the snout outer layer 3. 4, and the radiation detector 1 is mounted via a sensor holder 8 fixed to the tip portion of the cooling head 2 cooled by the refrigerator 40.

スナウト外層3や内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4には厚みがあり、適当な間隔が必要であることから、たとえばスナウト外層の直径をφ30mm程度としても、冷却ヘッドの直径はφ10mm程度の小径となる。   The snout outer layer 3, the inner radiant heat shield wall 5, and the outer radiant heat shield wall 4 are thick and need an appropriate interval. For example, even if the diameter of the snout outer layer is about φ30 mm, the diameter of the cooling head is about φ10 mm. Small diameter.

放射線検出器1となるTESを用いた超伝導X線検出器からの出力信号を増幅など処理するために、超伝導量子干渉計(SQUID)を用いた低温初段増幅器6は、冷却ヘッド2の先端付近の側面へネジ止めにて装着されている。   A low-temperature first-stage amplifier 6 using a superconducting quantum interferometer (SQUID) is used to amplify an output signal from a superconducting X-ray detector using a TES serving as a radiation detector 1. It is attached to the nearby side with screws.

また、放射線検出装置の外部からX線などの放射線が放射線検出器に入射させるための経路を備えるために、スナウト外層3や内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4に窓部が設けられ、窓部にX線透過させる光学部材を設ける必要があった。(例えば、特許文献2を参照。)
特開平7−253472号公報 特開平17−214792号公報
Further, in order to provide a path for allowing radiation such as X-rays to enter the radiation detector from the outside of the radiation detection device, a window portion is provided in the snout outer layer 3, the inner radiant heat shield wall 5, and the outer radiant heat shield wall 4, It was necessary to provide an optical member that transmits X-rays in the window. (For example, see Patent Document 2.)
Japanese Patent Laid-Open No. 7-253472 Japanese Patent Laid-Open No. 17-214792

しかしながら、上記従来の放射線検出装置やそれを用いた放射線分析装置には、以下の課題が残されている。   However, the following problems remain in the conventional radiation detection apparatus and the radiation analysis apparatus using the same.

つまり、X線透過させる光学部材を設けるのは、放射線検出器を低温に保持しなければならないために、放射線検出装置の外部からの輻射熱の侵入を抑え、さらに放射線検出装置外部と放射線検出装置内側にあたる放射線検出器側とで圧力が異なる環境では、この圧力差を維持する必要性があるためである。   In other words, the provision of the optical member that transmits X-rays requires that the radiation detector be kept at a low temperature, so that intrusion of radiant heat from the outside of the radiation detection device is suppressed, and further, the radiation detection device outside and the radiation detection device inside This is because it is necessary to maintain this pressure difference in an environment where the pressure is different on the radiation detector side.

しかし、この光学部材を設けたために、光学部材を設けない場合に比べて放射線検出器に入射する放射線の内、特に低エネルギー帯域の強度が小さくなるという問題があった。さらに、放射線検出装置の外側と圧力差を維持するためにスナウト外層の窓部に設ける光学部材の膜厚が厚くなり、放射線を多く吸収し、さらに放射線検出器に入射できる放射線の強度が少なくなってしまう。   However, since this optical member is provided, there is a problem in that the intensity of the radiation entering the radiation detector, particularly in the low energy band, is smaller than when no optical member is provided. Furthermore, the thickness of the optical member provided in the window portion of the outer layer of the snout increases in order to maintain a pressure difference from the outside of the radiation detection device, so that the radiation that absorbs more radiation and can enter the radiation detector is reduced. End up.

本発明は、上記事項に鑑みてなされたものであり、放射線検出装置外部と放射線検出装置内側と圧力差を維持しながら、放射線検出装置外部から放射線検出器に入射する放射線強度を高めることができる放射線検出装置を提供することを課題とする。   The present invention has been made in view of the above matters, and can increase the intensity of radiation incident on the radiation detector from the outside of the radiation detection device while maintaining a pressure difference between the outside of the radiation detection device and the inside of the radiation detection device. It is an object to provide a radiation detection apparatus.

また、このような放射線検出装置が実装された放射線分析装置を提供することを課題とする。   It is another object of the present invention to provide a radiation analyzer on which such a radiation detection apparatus is mounted.

本発明は、前記課題を解決するために以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

本発明にかかる放射線検出装置は、試料に照射された放射線によって試料で生成され射出した放射線を放射線検出器で検出する、試料が配置され放射線が入射してくる系と放射線検出器が配置されている系とが異なる状態に保つための障壁が設けられている。そして、試料から放射線検出器に至る放射線導波系と障壁との重畳部位の内、放射線導波系上、最も試料に近い部位若しくは当該部位近傍に(2−1)乃至(2−3)の機能を具備する部材(集光部材)で構成されている。すなわち、この部位(障壁に設けられた貫通孔(窓部、X線透過窓))が実質的に下記(2−1)乃至(2−3)の機能を具備するように構成されている。
(2−1)透過機能:放射線検出器が検出に用いる放射線を透過する機能。
(2−2)集光機能:試料側から入射されるこの放射線を集光する機能。
(2−3)遮蔽機能:上記部位が存する障壁が有する機能と好ましくは同等若しくはそれ以上、少なくとも同質の機能。
The radiation detection apparatus according to the present invention includes a radiation detector and a system in which a sample is arranged and radiation is detected, and the radiation generated by the sample by the radiation applied to the sample is detected by the radiation detector. A barrier is provided to keep the system different from the existing system. Among the overlapping portions of the radiation waveguide system and the barrier from the sample to the radiation detector, on the radiation waveguide system, the portion closest to the sample or in the vicinity of the portion (2-1) to (2-3) It is comprised with the member (condensing member) which has a function. That is, this part (through hole (window part, X-ray transmission window) provided in the barrier) is configured to substantially have the following functions (2-1) to (2-3).
(2-1) Transmission function: A function of transmitting radiation used for detection by the radiation detector.
(2-2) Condensing function: A function of condensing this radiation incident from the sample side.
(2-3) Shielding function: A function that is preferably equivalent to or higher than the function of the barrier in which the above-described part exists, and at least the same function.

本明細書においては、「放射線」とは、運動エネルギーを持って流れる物質粒子(イオン、電子、中性子、陽子、中間子などの粒子線)や、例えばγ線やX線、可視光線、赤外線等の電磁波などを指す。   In this specification, “radiation” refers to material particles (particle beams such as ions, electrons, neutrons, protons, and mesons) that flow with kinetic energy, such as γ-rays, X-rays, visible light, and infrared rays. It refers to electromagnetic waves.

「試料が配置され放射線が入射してくる系」や「放射線検出器が配置されている系」という文言における「系」とは、試料などが配置されている周囲の状態や環境、雰囲気のことをいう。測定条件として試料が配置される状態を規制しなければならない場合と、放射線検出器が配置される状態を規制しなければならない場合と、両者を規制しなければならない場合とがある。   “System” in the terms “system where sample is placed and radiation is incident” and “system where radiation detector is placed” refers to the surrounding state, environment and atmosphere where the sample is placed. Say. There are a case where the state where the sample is arranged must be regulated as a measurement condition, a case where the state where the radiation detector is arranged must be regulated, and a case where both are restricted.

規制される「状態」とは、例えば、温度や真空度、磁場条件等があり、適宜設定される。上記二つの系は、一又は複数の障壁によって隔たれている。例えば、放射線検出器を一又は複数の障壁によって囲み、障壁によって形成された各系(空間)を、放射線検出器が動作可能にしたり良好に動作できるようにしたりするために、それぞれ最適な状態にすることもある。より具体的に超伝導X線検出装置を例に取ると、放射線検出器である超伝導X線検出器を100mK程度の温度(実質的に動作可能な温度)にするために、最も外界に存する系から内側の系の順に、順次温度を下げて内側の系ほど温度が低くなるように設定することがある。   The “state” to be regulated includes, for example, a temperature, a degree of vacuum, a magnetic field condition, and the like, and is set as appropriate. The two systems are separated by one or more barriers. For example, the radiation detector is surrounded by one or more barriers, and each system (space) formed by the barriers is in an optimal state in order to enable the radiation detector to operate or to operate well. Sometimes. More specifically, taking a superconducting X-ray detector as an example, the superconducting X-ray detector, which is a radiation detector, is the most external in order to bring the superconducting X-ray detector to a temperature of about 100 mK (substantially operable temperature). The temperature may be set so that the temperature decreases in order from the inner system to the inner system in order from the system to the inner system.

なお、本明細書では適宜「系の状態」等の表記をするが、例えば障壁を冷却したり、障壁内に液体窒素や液体ヘリウムなどを循環させたりして、その結果として「系の状態」を制御することも上記概念は当然に含む。つまり、「系」そのものを一次的に制御する概念も、他の部材等を利用して二次的に制御する(規制する)概念もいずれをも含む。   In this specification, “system state” and the like are appropriately described. For example, the barrier is cooled or liquid nitrogen or liquid helium is circulated in the barrier, and as a result, “system state” is obtained. Of course, the above concept also includes control of the above. That is, both the concept of primary control of the “system” itself and the concept of secondary control (regulation) using other members and the like are included.

「放射線導波系」とは、試料から出射された放射線、特に検出用放射線が放射線検出器に至る通路のことであり、検出用放射線として光を採用する場合には一般に光路という。放射線導波系は、試料から放射線検出器を最短距離で結ぶこともあるが、これに限られない。   A “radiation waveguide system” is a path through which radiation emitted from a sample, particularly detection radiation, reaches a radiation detector, and is generally referred to as an optical path when light is used as detection radiation. The radiation waveguide system may connect the radiation detector from the sample at the shortest distance, but is not limited thereto.

放射線導波系における障壁と重なり合う部分では、少なくとも放射線検出器が検出に用いる検出用放射線を、放射線導波系上、試料側から放射線検出器側へ透過するように、障壁に「窓部」が設けられる。「窓部」は、設計によっては何も設けない部位とすることもできるが、一般には、少なくとも検出用放射線を透過する透過機能と、この窓部が存する障壁の試料側の系と放射線検出器側の系とを遮蔽する遮蔽機能とを備えた光学部材が実質的に配置される。また、上記検出装置においては、放射線導波系上、最も試料に近い窓部がさらに集光機能を備えている。なお、前記したように、集光部材や光学部材は、それぞれが配置される窓部において各々の機能が実現されるものであればよく、これらの部材が窓部に勘合等されている必要はない。   In the part that overlaps the barrier in the radiation waveguide system, there is a “window” in the barrier so that at least the detection radiation used by the radiation detector is transmitted from the sample side to the radiation detector side on the radiation waveguide system. Provided. The “window” may be a part where nothing is provided depending on the design, but generally, at least a transmission function that transmits the radiation for detection, a system on the sample side of the barrier in which this window exists, and a radiation detector An optical member having a shielding function for shielding the side system is substantially disposed. In the detection apparatus, the window portion closest to the sample on the radiation waveguide system further has a light collecting function. In addition, as described above, the light collecting member and the optical member may be any one that realizes each function in the window portion in which the light collecting member and the optical member are disposed, and these members need to be fitted to the window portion. Absent.

「集光」機能とは、入射した放射線を出射側で集める(焦点を結ぶ)機能である。上記検出装置においては、集光部材は少なくとも検出用放射線を集光している。なお、本明細書における「集光」とは、光を集めるという意味に限定されないことは当然である。   The “condensing” function is a function of collecting (focusing) incident radiation on the emission side. In the detection apparatus, the light condensing member condenses at least detection radiation. It should be noted that “light collection” in this specification is not limited to the meaning of collecting light.

上記検出装置は、以上のように構成されるため、以下の作用を奏する。
(3−1)上記検出装置と同等の立体角を有する従来の検出装置と比べて、放射線検出器に到達する検出用放射線の量が多い。
Since the detection device is configured as described above, the following effects are exhibited.
(3-1) The amount of detection radiation reaching the radiation detector is larger than that of a conventional detection device having a solid angle equivalent to that of the detection device.

従来の検出装置で上記検出装置と同等の立体角を得るためには、放射線導波系上、最も試料側の窓部のさらに試料側に、集光機能並びに透過機能を有する部材を配置しなければならない。したがって、従来の検出装置では、上記検出装置と比較してこの部材分、放射線が吸収される/減衰される要素が増えてしまう。したがって、上記検出装置は、同等の立体角を有する(集光性能を有する)従来の検出装置に比べて、特に吸収/減衰されやすい低エネルギー領域において放射線検出器に入射させる検出用放射線を強くすることが可能となる。
(3−2)光学部材(本欄では光学部材には集光部材を含む)の数が等しい従来の検出装置と比べて、放射線検出器に到達する放射線の量を多くしやすい。
In order to obtain a solid angle equivalent to that of the above-described detection apparatus with a conventional detection apparatus, a member having a condensing function and a transmission function must be arranged further on the sample side of the window part on the most sample side on the radiation waveguide system. I must. Therefore, in the conventional detection device, the number of elements that absorb / attenuate radiation is increased by the amount of this member as compared with the detection device. Therefore, the detection device intensifies the detection radiation incident on the radiation detector, particularly in a low energy region that is easily absorbed / attenuated, as compared with a conventional detection device having an equivalent solid angle (having a light collecting performance). It becomes possible.
(3-2) It is easy to increase the amount of radiation reaching the radiation detector as compared with a conventional detection device having the same number of optical members (in this section, the optical member includes a condensing member).

この比較における従来の検出装置は、上記検出装置が備える光学部材の数と同じ数の光学部材を備えている。すなわち、上記検出装置は、この従来の検出装置と比較すると、放射線導波系上最も試料側の光学部材が上記集光部材に置換されて構成されている。そのため、放射線導波系上最も試料側の光学部材は、従来の検出装置よりも上記検出装置の方が、入射する検出用放射線の量が多くできる。集光部材が集光機能を備えているためである。したがって、放射線検出器に到達する検出用放射線の内、特に吸収/減衰されやすい低エネルギー領域の放射線の強さを従来のものよりも強くしやすい。   The conventional detection device in this comparison includes the same number of optical members as the number of optical members included in the detection device. That is, the detection device is configured by replacing the optical member closest to the sample on the radiation waveguide system with the light collection member as compared with the conventional detection device. Therefore, the optical member on the most sample side on the radiation waveguide system can increase the amount of incident detection radiation in the detection device than in the conventional detection device. This is because the light collecting member has a light collecting function. Therefore, it is easy to increase the intensity of the detection radiation that reaches the radiation detector, particularly in the low energy region that is easily absorbed / attenuated, compared to the conventional one.

特に、最も試料側の光学部材に、遮蔽する機能(上記(2−3)記載の遮蔽機能の一態様)するために耐圧性・密閉性を持たせた場合、これらの部材の透過機能は、一般に特に低エネルギー領域の放射線に対して極めて悪化する。例えば、試料側が大気圧である時に、最も試料側の光学部材の内側が10-6Pa程度の真空度を維持するための光学部材を用いた場合、この光学部材、ひいては検出装置の特に低エネルギー帯域の検出用放射線に対する透過性能が極めて悪化してしまい、超伝導X線検出器へ検出・分析に十分な量の特性X線(検出用放射線)の量が到達させることが極めて困難になることを本発明者らは見いだした。そのため、検出効率が悪くなったり、元素分析に極めて多くの時間を要してしまったり、統計誤差が大きくきれいなエネルギースペクトルが得られなかったりするという問題を生じる可能性が生じた。これに対して上記検出装置は、真空度の耐圧性を有した遮蔽する機能を備えてはいるが、集光機能も備えた部材が最も試料側に配置されているために、従来の検出装置よりも放射線検出器側へ通過する検出用放射線の量を多くすることが可能となる。そのため、上記したような問題を回避することも可能となる。 In particular, when the optical member on the most sample side is provided with pressure resistance and hermeticity for the function of shielding (one aspect of the shielding function described in (2-3) above), the transmission function of these members is: In general, it becomes extremely worse especially for radiation in the low energy region. For example, when an optical member for maintaining a vacuum degree of about 10 −6 Pa is used on the inner side of the optical member on the most sample side when the sample side is at atmospheric pressure, this optical member, and in particular, the detection device has a particularly low energy. The transmission performance for the detection radiation in the band is extremely deteriorated, and it is extremely difficult to reach the superconducting X-ray detector with a sufficient amount of characteristic X-rays (detection radiation) for detection and analysis. The present inventors have found out. For this reason, there is a possibility that the detection efficiency is deteriorated, the elemental analysis takes an extremely long time, or the statistical error is large and a clean energy spectrum cannot be obtained. On the other hand, the above detection apparatus has a shielding function having a pressure resistance of a degree of vacuum, but since a member having a condensing function is arranged on the most sample side, the conventional detection apparatus As a result, it is possible to increase the amount of detection radiation that passes to the radiation detector side. Therefore, it is possible to avoid the above problems.

このように、上記検出装置は、従来の検出装置と比べて、放射線検出器に入射させる検出用放射線の量を多くすることが可能となる。また、放射線検出装置が配置されている系及び/又は試料が配置されている系に求められる環境によっては従来の検出装置では検出が実質的に困難であったものが、上記検出装置ではその検出を実現できうることを本願発明者らは見いだした。
(3−3)放射線検出器へ入射される検出用放射線が同等の従来の検出装置と比べて、検出対象の自由度が増す。
As described above, the detection device can increase the amount of detection radiation incident on the radiation detector as compared with the conventional detection device. In addition, depending on the environment required for the system in which the radiation detection device is arranged and / or the system in which the sample is arranged, detection by the conventional detection device is substantially difficult. The present inventors have found that the above can be realized.
(3-3) The degree of freedom of the detection target is increased as compared with a conventional detection apparatus in which the detection radiation incident on the radiation detector is equivalent.

放射線検出器へ入射される検出用放射線の量が上記検出装置と同等な従来の検出装置は、上記検出装置と比較して、窓部ひいては障壁に持たせることができる遮蔽機能が限定されたり、窓部の一又は複数に光学部材を配置しない構成とせざるを得ない。上記(3−2)に記載した例のように、光学部材は、遮蔽機能を、放射線検出器が実質的に動作するようにするために、及び/又は試料の雰囲気を所定の測定条件にするための性能を発揮するように設定すると、透過機能の性能を犠牲にせざるを得ない場合がほとんどだからである。   The conventional detection device in which the amount of detection radiation incident on the radiation detector is equivalent to that of the detection device has a limited shielding function that can be provided on the window and thus the barrier, compared to the detection device, A configuration in which the optical member is not disposed in one or more of the window portions is unavoidable. As in the example described in (3-2) above, the optical member has a shielding function, the radiation detector is substantially operated, and / or the atmosphere of the sample is set to a predetermined measurement condition. This is because, in most cases, the performance of the transmission function must be sacrificed if the performance is set so as to exhibit the performance.

例えば、上記検出装置と同等の放射線入射量(放射線検出器に到達する放射線の量)の超伝導X線検出装置を従来の検出装置として構成すると、試料が配置されている系の環境条件は限定されてしまう。この従来の検出装置は、上記検出装置と同等の透過性能を得るために、一又は複数の、現実的には最も試料側の光学部材を廃する必要があるからである。この構成では、試料が配置される系と放射線検出器側の真空度が同様となるため、試料が配置される系の真空度がを大気圧に近くすると、放射線検出器側の真空度も大気圧に近くなり、それにより冷凍機などへの真空断熱層としての効果が低下して放射線検出器が充分冷却されず実質的に動作しなくなってしまう。または、放射線検出器側の真空断熱層の排気により試料が配置される系の圧力が低くなるので、例えば生体試料や絶縁物の分析が実質的に不可能となってしまう。   For example, if a superconducting X-ray detection device having a radiation incident amount equivalent to the above detection device (the amount of radiation reaching the radiation detector) is configured as a conventional detection device, the environmental conditions of the system in which the sample is arranged are limited. Will be. This is because the conventional detection apparatus needs to eliminate one or a plurality of optical members on the most sample side in order to obtain the transmission performance equivalent to that of the detection apparatus. In this configuration, the degree of vacuum on the radiation detector side is the same as the system on which the sample is placed. Therefore, if the degree of vacuum on the system on which the sample is placed is close to atmospheric pressure, the degree of vacuum on the radiation detector side also increases. As a result, the effect as a vacuum heat insulating layer for a refrigerator or the like is reduced, and the radiation detector is not sufficiently cooled and substantially does not operate. Alternatively, since the pressure of the system in which the sample is arranged is lowered by exhausting the vacuum heat insulating layer on the radiation detector side, for example, analysis of a biological sample or an insulator becomes substantially impossible.

上記検出装置は、集光部材を少なくとも一次元方向に相対移動させる機構を備えているとよい。すなわち、この機構は、集光部材を移動させることで、放射線導波系の導波路を調整する機構(調整機構)である。調整機構を設けることで、放射線導波系として最適な経路を選択・作製することが可能となる。相対移動とは、検出装置における集光部材の相対的な位置を変化させることをいい、一般には、試料と放射線検出器とを結ぶ直線における、最も試料側に存する窓部と交差する点を基準としたり、この直線を基準としてこの直線に対して略垂直方向(二次元方向)に移動できるようにしたりする。   The detection device may include a mechanism that relatively moves the light collecting member in at least a one-dimensional direction. That is, this mechanism is a mechanism (adjustment mechanism) that adjusts the waveguide of the radiation waveguide system by moving the condensing member. By providing the adjustment mechanism, it is possible to select and produce an optimum path as the radiation waveguide system. Relative movement refers to changing the relative position of the light condensing member in the detection device. In general, the point that intersects the most existing window on the straight line connecting the sample and the radiation detector is used as a reference. Or to be able to move in a substantially vertical direction (two-dimensional direction) with respect to the straight line.

調整機構を設ける場合には、集光部材への放射線の入射方向を直線で近似した場合に、この直線に対して垂直な平面方向、すなわち二次元方向に集光部材を移動できるようにすると極めてよい。集光部材から出射される検出用放射線の進行方向を制御することが可能となるからである。すなわち、放射線検出器への検出用放射線の入射量を調整することが可能となるからである。ただし、この直線方向にも調整できるようにしたり、さらに、他の方向へ集光部材を回転等させられるようにして調整できるようにしたりすれば、放射線検出器に到達する放射線の量を極めて多くすることが可能となるため望ましい。   When the adjustment mechanism is provided, if the incident direction of radiation to the light collecting member is approximated by a straight line, it is extremely possible to move the light collecting member in a plane direction perpendicular to the straight line, that is, in a two-dimensional direction. Good. This is because the traveling direction of the detection radiation emitted from the light collecting member can be controlled. That is, the amount of detection radiation incident on the radiation detector can be adjusted. However, the amount of radiation reaching the radiation detector can be greatly increased if the linear direction can be adjusted, or if the condensing member can be rotated in another direction. It is desirable because it becomes possible.

検出装置に調整機構を設け、かつ、試料が配置されている系とこの系よりも一つ放射線検出器側に存在されている系とが真空度が異なるように状態を制御する場合には、さらに封止部材を設けることが好ましい。封止部材は、集光部材の移動にあわせて形状を変化させられる部材であって、例えばベローズやゴムなどの形状可変で十分な封止性能を備えたものが採用される。封止部材は、集光部材の、調整機構によって可動される部位を封止するように配置・接続される。   In the case where an adjustment mechanism is provided in the detection apparatus and the state is controlled so that the degree of vacuum is different between the system in which the sample is arranged and the system present on the radiation detector side than this system, Furthermore, it is preferable to provide a sealing member. The sealing member is a member whose shape can be changed in accordance with the movement of the light collecting member. For example, a member having a variable shape such as bellows or rubber and having sufficient sealing performance is employed. The sealing member is disposed and connected so as to seal a portion of the light collecting member that is moved by the adjustment mechanism.

上記したような検出装置は、超伝導X線検出装置などの超伝導放射線検出装置として特に最適である。   The detection apparatus as described above is particularly optimal as a superconducting radiation detection apparatus such as a superconducting X-ray detection apparatus.

超伝導放射線検出装置とは、放射線検出器(特に放射線を実質的に検出する部位)が超伝導素子を用いて構成されている検出装置のことを言う。すなわち、上記検出装置において、放射線検出器が超伝導放射線検出器であり、超伝導放射線検出器が配置された系は、これが作動できる環境(温度)が設定された装置のことを言う。当然、この系の環境を作り出すために、公知の種々の技術を用い、また、他の系の環境も適宜設定される。例えば、一又は複数の障壁に適当な冷媒を循環させる態様も含まれる。   A superconducting radiation detection device refers to a detection device in which a radiation detector (particularly a portion that substantially detects radiation) is configured using a superconducting element. That is, in the above detection apparatus, the radiation detector is a superconducting radiation detector, and the system in which the superconducting radiation detector is arranged refers to an apparatus in which an environment (temperature) in which the radiation detector can operate is set. Of course, in order to create this system environment, various known techniques are used, and other system environments are also set as appropriate. For example, a mode in which an appropriate refrigerant is circulated through one or more barriers is also included.

超伝導放射線検出装置は、放射線検出器を極めて低温の下に配置する必要がある。この温度条件を達成した系を得るために、この検出装置は、複数の障壁が設けられる必要がある。そのため、前記同様の理由により、従来の検出装置の構成を採用すると、放射線検出器へ十分な量の検出用放射線を到達させることが極めて困難であるということを本願発明者らは見いだした。一方、上記検出装置の構成を採用すれば、放射線検出器へ検出に十分な量の検出用放射線を到達させることが容易となることを本願発明者らは見いだした。   Superconducting radiation detection devices require that the radiation detector be placed at a very low temperature. In order to obtain a system that achieves this temperature condition, the detection device needs to be provided with a plurality of barriers. Therefore, for the same reason as described above, the present inventors have found that it is extremely difficult to reach a sufficient amount of detection radiation to the radiation detector when the configuration of the conventional detection apparatus is employed. On the other hand, the present inventors have found that if the configuration of the above-described detection apparatus is adopted, it becomes easy to reach a radiation detector with a sufficient amount of detection radiation for detection.

本発明にかかる分析装置は、試料に照射された放射線に起因して試料で生成された放射線、又は試料で反射した放射線、若しくはこれら双方の放射線(検出用放射線)を放射線検出器で検出して、試料の状態を分析する装置であって、以下の構成を備えている。
・放射線照射部材:試料に放射線を照射する部材。
・試料ホルダ:試料を所定位置に保持する部材。
・上記した検出装置。
The analyzer according to the present invention detects, with a radiation detector, radiation generated in the sample due to radiation irradiated on the sample, radiation reflected on the sample, or both (radiation for detection). An apparatus for analyzing the state of a sample, comprising the following configuration.
-Radiation irradiation member: A member that irradiates a sample with radiation.
Sample holder: A member that holds a sample in a predetermined position.
-The detection device described above.

上記分析装置の作用は次の通りである。
(4−1)放射線照射部材から放射線が出射される。
(4−2)この放射線が試料に入射される。
(4−3)上記放射線が試料で反射する。及び/又は、上記放射線に起因して試料から他の放射線(二次放射線)が出射する。つまり検出用放射線を含む放射線が試料から出射される。
(4−4)少なくとも検出用放射線が上記検出装置に入射する。
(4−5)検出装置が、入射した放射線を検出し、検出結果を出力する。
The operation of the analyzer is as follows.
(4-1) Radiation is emitted from the radiation irradiating member.
(4-2) This radiation is incident on the sample.
(4-3) The radiation is reflected by the sample. And / or other radiation (secondary radiation) is emitted from the sample due to the radiation. That is, radiation including detection radiation is emitted from the sample.
(4-4) At least detection radiation is incident on the detection device.
(4-5) The detection device detects the incident radiation and outputs the detection result.

上記分析装置は、上記検出装置を備えているため、この検出装置について前記した作用が得られる。すなわち、従来の分析装置よりも良好な検出結果(分析結果)や、従来の検出装置では実質的に得ることのできなかった検出結果が得られる。   Since the analysis device includes the detection device, the above-described operation can be obtained for the detection device. That is, it is possible to obtain a detection result (analysis result) better than that of the conventional analyzer, or a detection result that could not be substantially obtained by the conventional detector.

本発明に係る放射線検出装置および放射線分析装置によれば、放射線検出装置外部と放射線検出装置内側と圧力差を維持しながら、放射線検出装置外部から放射線検出器に入射する放射線強度を高めることができる。これにより、微小なX線などの放射線を高精度に測定できるようになり、試料に電子線やX線を照射して、試料から射出される特性X線や蛍光X線などの放射線をこの放射線検出装置を用いることで高精度に試料の分析が可能となる。   According to the radiation detection apparatus and the radiation analysis apparatus according to the present invention, the intensity of radiation incident on the radiation detector from the outside of the radiation detection apparatus can be increased while maintaining a pressure difference between the outside of the radiation detection apparatus and the inside of the radiation detection apparatus. . As a result, radiation such as minute X-rays can be measured with high precision, and radiation such as characteristic X-rays and fluorescent X-rays emitted from the specimen is irradiated with the radiation. By using the detection device, the sample can be analyzed with high accuracy.

以下、本発明の実施の形態に係る放射線検出装置並びに放射線分析装置について、超伝導X線検出装置並びに超伝導X線分析装置に適用した実施例を用いてより詳細に説明する。   Hereinafter, a radiation detection apparatus and a radiation analysis apparatus according to embodiments of the present invention will be described in more detail using examples applied to a superconducting X-ray detection apparatus and a superconducting X-ray analysis apparatus.

図1は、本発明の一実施例に係る放射線検出装置の構成を模式的に示した断面図である。   FIG. 1 is a cross-sectional view schematically showing a configuration of a radiation detection apparatus according to an embodiment of the present invention.

この放射線検出器は、図1に示した放射線分析装置における放射線検出装置の破線で示す領域の構成を模式的に示した断面図である。   This radiation detector is a cross-sectional view schematically showing a configuration of a region indicated by a broken line of the radiation detection apparatus in the radiation analysis apparatus shown in FIG.

本発明にかかるこの実施例での放射線分析装置と従来の放射線分析装置とは基本的構成は同一であり、図1に示す破線で示す領域の構成において異なるものとなっているものであり、図2または3に記載した構成要素と同一部分については同一符号を付し、その説明を省略する。   The basic configuration of the radiation analysis apparatus in this embodiment according to the present invention and the conventional radiation analysis apparatus are the same, and are different in the configuration of the region indicated by the broken line shown in FIG. The same components as those described in 2 or 3 are denoted by the same reference numerals, and the description thereof is omitted.

放射線検出器として超伝導遷移端温度検出器(TES)を用いたX線検出装置の放射線検出器を備えた先端部分の概略構成図を図1に示す。   FIG. 1 shows a schematic configuration diagram of a tip portion including a radiation detector of an X-ray detection apparatus using a superconducting transition edge temperature detector (TES) as a radiation detector.

主に先端部分は、外部からの断熱ために真空に保持するようにしたスナウト外層3、スナウト外層3の内側に、輻射熱を遮断するための2層からなる内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4を備え、冷凍機40で冷却された冷却ヘッド2の先端部分に固定されたセンサホルダ8を介して放射線検出器1を装着する構成である。   The tip portion mainly has a snout outer layer 3 which is kept in a vacuum for heat insulation from the outside, an inner radiant heat shielding wall 5 and an outer radiant heat shielding wall which are composed of two layers for blocking radiant heat inside the snout outer layer 3. 4, and the radiation detector 1 is mounted via a sensor holder 8 fixed to the tip portion of the cooling head 2 cooled by the refrigerator 40.

放射線検出器1となる超伝導遷移端温度検出器(TES)を用いた超伝導X線検出器からの出力信号を増幅など処理するために、超伝導量子干渉計(SQUID)を複数用いたSQUIDアンプとなる低温初段増幅器6は、冷却ヘッド2の先端付近の側面へネジ止めにて装着されている。   A SQUID using a plurality of superconducting quantum interferometers (SQUIDs) to process the output signal from a superconducting X-ray detector using a superconducting transition edge temperature detector (TES) as the radiation detector 1 The low-temperature first-stage amplifier 6 serving as an amplifier is attached to the side surface near the tip of the cooling head 2 by screws.

また、放射線検出装置の外部からX線などの放射線が放射線検出器に入射させるための経路を備えるために、スナウト外層3や内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4に窓部が設けられている。   Further, in order to provide a path for allowing radiation such as X-rays to enter the radiation detector from the outside of the radiation detection apparatus, windows are provided in the outer snout layer 3, the inner radiant heat shield wall 5, and the outer radiant heat shield wall 4. Yes.

本実施例においては、スナウト外層3には、断熱として真空断熱構造を有し、真空ポンプ(図示せず)を用いて真空状態(例えば10−6Pa程度)にすることで、外部からの熱を放射線検出装置内部への断熱をするようにしている。   In the present embodiment, the snout outer layer 3 has a vacuum heat insulating structure as heat insulation, and by using a vacuum pump (not shown) to make a vacuum state (for example, about 10 −6 Pa), heat from the outside can be obtained. The inside of the radiation detector is insulated.

また、外側輻射熱遮蔽壁4や内側輻射熱遮蔽壁5には、液体を注入できる構造を有しており、外側輻射熱遮蔽壁4には液体窒素、内側輻射熱遮蔽壁5には液体ヘリウムを注入することで冷却されるようにした。これによって、放射線検出器1となる超伝導遷移端温度検出器(TES)を用いた超伝導X線検出器は、100mK程度に冷却され、TESを駆動するために超伝導遷移端に保持できるようになる。   The outer radiant heat shield wall 4 and the inner radiant heat shield wall 5 have a structure capable of injecting liquid, and liquid nitrogen is injected into the outer radiant heat shield wall 4 and liquid helium is injected into the inner radiant heat shield wall 5. It was made to cool with. Thereby, the superconducting X-ray detector using the superconducting transition edge temperature detector (TES) as the radiation detector 1 is cooled to about 100 mK and can be held at the superconducting transition edge to drive the TES. become.

センサーホルダ8は、熱伝導特性の良い高純度無酸素銅を用いたが、このような特性を有する他の材料、例えばサファイアなどを用いて製作してもよい。   The sensor holder 8 is made of high-purity oxygen-free copper having good heat conduction characteristics, but may be manufactured using other materials having such characteristics, such as sapphire.

内側輻射熱遮蔽壁5や外側輻射熱遮蔽壁4には、試料から出射されたX線が放射線検出器1へ入射されるように、それぞれ5mm径のX線透過窓(窓部)を設けられている。これらのX線透過窓(窓部)には、それぞれの遮蔽壁の断熱機能と好ましくは同等程度の断熱機能を有し、かつ、試料Sから出射されたX線の内、少なくとも放射線検出器1が検出に用いる成分(X線)を透過させる透過機能を有する光学部材11、12を配置した。本実施形態では、アルミマイラーを用いた。   The inner radiant heat shield wall 5 and the outer radiant heat shield wall 4 are each provided with an X-ray transmission window (window) having a diameter of 5 mm so that X-rays emitted from the sample are incident on the radiation detector 1. . These X-ray transmission windows (window portions) have a heat insulation function preferably equal to that of each shielding wall, and at least the radiation detector 1 among the X-rays emitted from the sample S. Optical members 11 and 12 having a transmission function of transmitting components (X-rays) used for detection. In this embodiment, an aluminum mylar is used.

光学部材11、12は、本実施例のように窓部に位置するように設けてもよいが、少なくとも上記二つの機能を実現できるのであればこの構成・配置に限定されるものではない。言い換えれば、窓部を介してX線が通過し、かつ、窓部を介して高温側の系から低温側の系への輻射熱の侵入が実質的におきないような構成とすればよく、従来の構成を適宜採用することができる。   The optical members 11 and 12 may be provided so as to be positioned in the window as in the present embodiment, but are not limited to this configuration and arrangement as long as at least the above two functions can be realized. In other words, the X-rays pass through the window part, and the structure in which the penetration of radiant heat from the high temperature side system to the low temperature side system does not substantially occur through the window part, The configuration described above can be employed as appropriate.

スナウト外層3に、X線の導波路と重畳する領域に5mm径の貫通孔であるX線透過窓を設けた。X線透過窓の試料S側には、キャピラリ7とキャピラリ保持部21を主たる構成要素とする集光部材を設けた。キャピラリ保持部21は、一端をスナウト外層3と密着し固定されている。キャピラリ保持部21は、キャピラリ7がX線透過窓よりも試料S側であって、キャピラリ7とX線透過窓の軸線が略一致するようにキャピラリ7を保持するように構成した。X線透過窓はキャピラリ7及びキャピラリ保持部21によって試料S側の系と遮蔽された構造となっている。   The snout outer layer 3 is provided with an X-ray transmission window which is a through hole having a diameter of 5 mm in a region overlapping with the X-ray waveguide. On the sample S side of the X-ray transmission window, a light collecting member including the capillary 7 and the capillary holding portion 21 as main components is provided. One end of the capillary holding part 21 is fixed in contact with the outer snout layer 3. The capillary holding unit 21 is configured to hold the capillary 7 so that the capillary 7 is closer to the sample S than the X-ray transmission window and the axes of the capillary 7 and the X-ray transmission window substantially coincide. The X-ray transmission window has a structure shielded from the system on the sample S side by the capillary 7 and the capillary holder 21.

キャピラリ保持部21は、スナウト外層3を構成する材料と同等の材料を用い、真空断熱構造を形成した。これによって、スナウト外層3と同等の断熱機能を備えた。   The capillary holding part 21 formed a vacuum heat insulating structure using a material equivalent to the material constituting the snout outer layer 3. Thus, the heat insulating function equivalent to that of the snout outer layer 3 was provided.

キャピラリ7は、前記したようにX線透過窓とほぼ同軸上に配置される。本実施例では10mm径のフレキシブルチューブを用いた。本実施例では、キャピラリ7は、X線を全反射する構造のガラス管を、放射線検出器1の一点若しくは一部の領域に焦点を結ぶように複数束ねたX線集光レンズを採用した。このような構成・配置を採用しているため、キャピラリは、X線に対する集光機能及び透過機能を備えた。   As described above, the capillary 7 is arranged substantially coaxially with the X-ray transmission window. In this embodiment, a 10 mm diameter flexible tube was used. In this embodiment, the capillary 7 employs an X-ray condenser lens in which a plurality of glass tubes having a structure that totally reflects X-rays are bundled so as to focus on one point or a partial region of the radiation detector 1. Since such a configuration / arrangement is employed, the capillary has a condensing function and a transmission function for X-rays.

キャピラリ7は、以上のように細いガラス管を束ねているため、気体の通過に対するコンダクタンスを非常に小さくできた。本実施例では、放射線検出器1側と試料S側との間に102Pa以上の圧力差を保持することができた。つまり、圧力遮蔽機能も実現した。 Since the capillary 7 bundles the thin glass tubes as described above, the conductance with respect to the passage of the gas can be very small. In this example, a pressure difference of 10 2 Pa or more could be maintained between the radiation detector 1 side and the sample S side. In other words, the pressure shielding function was also realized.

このように、集光部材は、X線透過窓に光学部材を設けることなく熱及び圧力の遮蔽機能と特定X線の透過機能とを実現し、さらに、特定X線の集光機能を実現した。つまり、放射線検出装置の放射線検出器1やその周囲に存在する系の真空度や冷却度を従来とほぼ変わることなく維持する密閉構造を実現し、冷凍装置40による放射線検出器1の真空冷却を可能とした。その結果、放射線検出器1に入射するX線の量を従来よりも極めて多くすることを可能とした。   As described above, the light collecting member realizes a heat and pressure shielding function and a specific X-ray transmission function without providing an optical member in the X-ray transmission window, and further realizes a specific X-ray light collecting function. . That is, a hermetic structure that maintains the degree of vacuum and the degree of cooling of the radiation detector 1 of the radiation detection apparatus and its surroundings without changing from the conventional one is realized, and the cooling of the radiation detector 1 by the refrigeration apparatus 40 is achieved. It was possible. As a result, the amount of X-rays incident on the radiation detector 1 can be made much larger than before.

本実施例においては、集光部材の圧力遮蔽機能をより高めるためにシールを行った。このシールは、ベローズ22及びOリング24、25を主たる構成要素とした。Oリング25はキャピラリ7を覆い、Oリング24はキャピラリ保持部21の内側・内壁(好ましくはキャピラリ保持部とスナウト外層3の接合部近傍)を覆うように設けられている。ベローズ22は、Oリング24、25間のキャピラリ保持部21内壁に這わせてある。   In this example, sealing was performed in order to further enhance the pressure shielding function of the light collecting member. The seal mainly comprises the bellows 22 and the O-rings 24 and 25. The O-ring 25 covers the capillary 7, and the O-ring 24 is provided so as to cover the inner side / inner wall of the capillary holding part 21 (preferably near the junction between the capillary holding part and the snout outer layer 3). The bellows 22 is placed on the inner wall of the capillary holding portion 21 between the O-rings 24 and 25.

本実施例においては、さらに、集光部材(より具体的には、集光部材中、集光機能及び透過機能を担う部材としてのキャピラリ7)の光軸を調整するための調整機構を設けた。調整機構は、キャピラリ保持部21におけるキャピラリ7と接する部分(実際に保持する部分)を担うように構成し、キャピラリ保持部21外部側からキャピラリ7表面に至る、互いの軸線が略一致しない二つの調整ねじからなる光軸調整部材23で構成した。調整ねじで調整することで、キャピラリ7の位置・光軸を、特定X線の導波路を直線に近似した場合における直線の略垂直方向にキャピラリ7を移動させることが可能となり、キャピラリ7に入射されるX線の量を調整できるようにした。   In the present embodiment, an adjusting mechanism for adjusting the optical axis of the condensing member (more specifically, the capillary 7 as a member having a condensing function and a transmission function in the condensing member) is further provided. . The adjusting mechanism is configured to bear a portion (actually holding portion) in contact with the capillary 7 in the capillary holding portion 21, and two axes extending from the outside of the capillary holding portion 21 to the surface of the capillary 7 are not substantially coincident with each other. The optical axis adjusting member 23 is composed of an adjusting screw. By adjusting with the adjusting screw, it becomes possible to move the capillary 7 in a direction substantially perpendicular to the straight line when the position and the optical axis of the capillary 7 are approximated to a straight line of the specific X-ray waveguide. The amount of X-rays to be adjusted can be adjusted.

放射線検出装置の放射線検出器1が配置されたスノウト部分は、図2に示すように試料室17に挿入される構造とした。このように構成することで、放射線検出器1と試料SとのX線の距離を短くした。この構造を採用したために、キャピラリ7の先端と試料Sとの距離がより遠い場合と比べて、放射線検出器1にとっての立体角を大きくすることが可能となった。また、試料Sから放射線検出器1に至るまでのX線の減衰をより小さくすることが可能となった。   The snow part where the radiation detector 1 of the radiation detection apparatus is arranged is configured to be inserted into the sample chamber 17 as shown in FIG. By configuring in this way, the X-ray distance between the radiation detector 1 and the sample S was shortened. Since this structure is adopted, it is possible to increase the solid angle for the radiation detector 1 as compared with the case where the distance between the tip of the capillary 7 and the sample S is longer. Further, the attenuation of X-rays from the sample S to the radiation detector 1 can be further reduced.

放射線検出器1は、超伝導遷移端温度検出器(TES)を用い、センサーホルダ8上にワニスなどの接着剤で装着した。センサーホルダ8は、無酸素銅を材料としたものを用いたが、本実施例のように放射線検出器の温度条件を制御する場合には、この材料の他にもやサファイアなどの熱伝導率の高い材料を用い、公知の手法によって適宜作成することができる。   The radiation detector 1 was mounted on the sensor holder 8 with an adhesive such as varnish using a superconducting transition edge temperature detector (TES). The sensor holder 8 is made of oxygen-free copper, but when controlling the temperature condition of the radiation detector as in this embodiment, in addition to this material, the thermal conductivity of sapphire or the like. It can be appropriately prepared by a known method using a material having a high thickness.

低温初段増幅器6を、冷却ヘッド2に固定した増幅器ホルダ31上に接着剤で装着した。増幅器ホルダ31は、冷却ヘッド2の先端付近の側面へネジ止めにて装着した。低温初段増幅器6は、250個の超伝導量子干渉素子(SQUID)を直列接続させたSQUIDアレーを用いた。   The low-temperature first-stage amplifier 6 was mounted on the amplifier holder 31 fixed to the cooling head 2 with an adhesive. The amplifier holder 31 is attached to the side surface near the tip of the cooling head 2 with screws. The low-temperature first-stage amplifier 6 uses an SQUID array in which 250 superconducting quantum interference devices (SQUIDs) are connected in series.

放射線検出器1と低温初段増幅器6は、アルミニウム(Al)のワイヤーボンディング10で接続した。放射線検出器1の駆動用の配線は、放射線検出装置20の外装41に取り付けた図示しないコネクタに導線を介して電気的に接続した。   The radiation detector 1 and the low-temperature first-stage amplifier 6 were connected by aluminum (Al) wire bonding 10. The wiring for driving the radiation detector 1 was electrically connected to a connector (not shown) attached to the exterior 41 of the radiation detector 20 via a lead wire.

低温初段増幅器6と常温側の制御装置(図示せず)は、配線9によって接続した。低温初段増幅器6を駆動するための電極は、配線9にて放射線検出装置20の外装41に取り付けた図示しないコネクタと電気的に接続した。   The low-temperature first-stage amplifier 6 and a normal temperature side control device (not shown) were connected by wiring 9. The electrode for driving the low-temperature first-stage amplifier 6 was electrically connected to a connector (not shown) attached to the exterior 41 of the radiation detection apparatus 20 by wiring 9.

本実施例においては、配線9は、導電率の高い銅線を用いて行ったが、冷却ヘッドよりも常温部側の少なくとも一部分を超伝導線であるニオブチタン線や、マンガニン線、ステンレス線などを用いると、室温からの熱侵入を防ぐことができて検出性能を高くすることができ好ましい。   In this embodiment, the wiring 9 is made of a copper wire having high conductivity. However, at least a part of the room temperature side of the cooling head is a superconducting niobium titanium wire, manganin wire, stainless steel wire or the like. When used, it is preferable because it can prevent heat penetration from room temperature and improve detection performance.

上記しない配線や回路等については公知の超伝導X線検出装置に採用される構成と同様の構成を適宜採用した。
<作用>
本実施例に係る超伝導X線分析装置及び超伝導X線検出装置は、以下のように作用し、試料の元素分析を実現する。
(5−1)放射線検出装置20について、外層41やスナウト内を真空排気し、外側輻射熱遮蔽壁4には液体窒素、内側輻射熱遮蔽壁5には液体ヘリウムを注入して冷却する。
(5−2)試料室17内と電子線を射出する線源14となる電子鏡筒を真空排気する。
(5−3)電子鏡筒から、試料台16に固定された試料Sに、電子線を捜査しながら照射する。試料Sから射出される二次電子を二次電子検出器によって画像観察し、試料Sの観察すべき領域を特定しる。
(5−4)試料S上の測定領域に電子線を照射しながら、試料Sから射出する特性X線が
放射線検出装置20のキャピラリ7や光学部材11、12を通過して放射線検出器1に入射する。
(5−5)放射線検出器1に入射した特性X線は、放射線検出器1で電気信号に変換された後に、この信号は増幅器(図示せず)で増幅され、波形整形器(図示せず)などを介し、波高分析器でエネルギー分析される。これにより、試料Sの元素分析を行うことができる。
<変形例>
上記実施例に係る超伝導X線検出装置・超伝導X線分析装置は、本発明者らが実施した結果、従来の超伝導X線検出装置・超伝導X線分析装置よりも優れた検出性能を得た装置であるが、本発明に係る検出装置・分析装置は、前記した通り、その趣旨・精神の元に適宜変形して構成することができる。例えば以下のような変形をしてもそれぞれに優れた性能を発揮しうる。また、各変形例を、それらが互いに矛盾しない範囲内で組み合わせて用いれば、極めて良好な性能を発揮しうる。
・光学部材11、12の一つ又は複数に、さらに集光機能を持たせてもよい。このように構成すると、光学部材を透過する検出用放射線の量をより多くすることが可能となり、検出装置・分析装置の検出精度等を高めたり、検出に要する時間を短くしたりすることが可能となる。
・調整機構を、公知の部材移動機構(相対位置微調整機構)を採用して構成し、上記実施例によるものとは異なる方向に移動できるようにしてもよい。このような移動が可能となると、集光部材に入射する検出用放射線の量をより自由度高く調整することが可能となる。その結果、光学部材を透過する検出用放射線の量をより多くするといった調整がより自由度が増し、例えば、検出装置・分析装置の検出精度等を高めたり、検出に要する時間を短くしたりするといったことが可能となる。
・上記実施例に係る超伝導X線分析装置は、線源として走査型電子顕微鏡(SEM)としての電子鏡筒を用いたが、これに限定されるものではない。例えば、線源としてX線源を用いてX線を試料に照射し、試料から射出される蛍光X線を分析することでも良い。すなわち、線源は、測定に必要な放射線を試料へ照射できるものであればよい。
For the wirings and circuits not described above, the same configuration as that employed in a known superconducting X-ray detection apparatus was appropriately adopted.
<Action>
The superconducting X-ray analyzer and superconducting X-ray detector according to the present embodiment operate as follows to realize elemental analysis of a sample.
(5-1) About the radiation detection apparatus 20, the outer layer 41 and the inside of a snout are evacuated and liquid nitrogen is injected into the outer radiant heat shield wall 4 and liquid helium is injected into the inner radiant heat shield wall 5 to be cooled.
(5-2) The inside of the sample chamber 17 and the electron column that becomes the radiation source 14 for emitting the electron beam are evacuated.
(5-3) The sample S fixed to the sample stage 16 is irradiated from the electron column while searching for the electron beam. The secondary electrons emitted from the sample S are image-observed by a secondary electron detector, and the region of the sample S to be observed is specified.
(5-4) While irradiating the measurement region on the sample S with the electron beam, the characteristic X-rays emitted from the sample S pass through the capillary 7 and the optical members 11 and 12 of the radiation detection device 20 and enter the radiation detector 1. Incident.
(5-5) The characteristic X-ray incident on the radiation detector 1 is converted into an electric signal by the radiation detector 1, and then this signal is amplified by an amplifier (not shown) and a waveform shaper (not shown). ) Etc., and energy analysis is performed with a wave height analyzer. Thereby, the elemental analysis of the sample S can be performed.
<Modification>
The superconducting X-ray detection apparatus and superconducting X-ray analysis apparatus according to the above-described embodiment are the detection performance superior to the conventional superconducting X-ray detection apparatus and superconducting X-ray analysis apparatus as a result of the present inventors' implementation. However, as described above, the detection device / analysis device according to the present invention can be appropriately modified based on the spirit and the spirit thereof. For example, even if the following modifications are made, excellent performance can be exhibited. In addition, if the modified examples are used in combination as long as they do not contradict each other, extremely good performance can be exhibited.
One or more of the optical members 11 and 12 may further have a light collecting function. With this configuration, it is possible to increase the amount of radiation for detection that passes through the optical member, and it is possible to increase the detection accuracy of the detection device / analyzer and shorten the time required for detection. It becomes.
The adjusting mechanism may be configured by adopting a known member moving mechanism (relative position fine adjusting mechanism) so that it can be moved in a direction different from that according to the above embodiment. When such movement becomes possible, it becomes possible to adjust the amount of the detection radiation incident on the light collecting member with a higher degree of freedom. As a result, adjustment such as increasing the amount of radiation for detection that passes through the optical member increases the degree of freedom. For example, the detection accuracy of the detection device / analyzer can be increased, or the time required for detection can be shortened. It becomes possible.
-Although the superconducting X-ray analyzer which concerns on the said Example used the electron column as a scanning electron microscope (SEM) as a radiation source, it is not limited to this. For example, an X-ray source may be used as a radiation source to irradiate the sample with X-rays and analyze the fluorescent X-rays emitted from the sample. That is, the radiation source only needs to be capable of irradiating the sample with radiation necessary for measurement.

放射線分析装置の概略構成を説明するための構成図である。It is a block diagram for demonstrating schematic structure of a radiation analyzer. 本実施例における放射線検出装置の放射線検出器並びにキャピラリーなどの構成や配置を説明するための拡大図である。It is an enlarged view for demonstrating a structure and arrangement | positioning, such as a radiation detector and a capillary of the radiation detection apparatus in a present Example. 従来の放射線検出装置の放射線検出器並びに光学部材などの構成や配置を説明するための拡大図である。It is an enlarged view for demonstrating a structure and arrangement | positioning, such as a radiation detector of a conventional radiation detection apparatus, and an optical member.

符号の説明Explanation of symbols

1 放射線検出器
2 冷却ヘッド
3 スナウト外層
4 外側輻射熱遮蔽壁
5 内側輻射熱遮蔽壁
6 低温初段増幅器
7 キャピラリ
8 センサーホルダ
9 配線
10 配線
11、12 光学部材
13、 光学部材
14 線源
15 二次電子検出器
16 試料台
17 試料室

20 放射線検出装置
21 キャピラリ保持部
22 ベローズ
23 光軸調整部材
24、25 Oリング
30 走査型電子顕微鏡
40 冷却器
41 外層
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Cooling head 3 Snout outer layer 4 Outer radiation heat shielding wall 5 Inner radiation heat shielding wall 6 Low temperature first stage amplifier 7 Capillary 8 Sensor holder 9 Wiring 10 Wiring 11 and 12 Optical member 13 Optical member 13 Radiation source 15 Secondary electron detection 16 Sample stage 17 Sample room

20 radiation detector 21 capillary holding part 22 bellows 23 optical axis adjusting member 24, 25 O-ring 30 scanning electron microscope 40 cooler 41 outer layer

Claims (6)

放射線を検出する放射線検出器と、
放射線を前記放射線検出器に導く放射線導波系と、
前記放射線導波系の放射線が入射してくる側の系と、前記放射線検出器が配置されている系とを区切る一又は複数の障壁と、を有し、
前記障壁は、
前記放射線導波系と重畳する部位が、少なくとも前記放射線検出器が検出する放射線を透過する透過機能と、障壁の内外の系を仕切る遮蔽機能とを備えた光学部材が配置され、
前記放射線導波系と重畳する部位の内、放射線が入射してくる側に放射線導波系上最も近接した部位では、光学部材を、さらに、放射線が入射してくる側から入射される放射線を集光する集光機能を備えている集光部材として構成した放射線検出装置。
A radiation detector for detecting radiation;
A radiation waveguide system for directing radiation to the radiation detector;
One or a plurality of barriers separating a system on which radiation of the radiation waveguide system is incident and a system on which the radiation detector is disposed;
The barrier is
An optical member having a portion that overlaps with the radiation waveguide system has at least a transmission function that transmits radiation detected by the radiation detector and a shielding function that partitions the system inside and outside the barrier,
Among the parts that overlap with the radiation waveguide system, in the part that is closest to the radiation incident side on the radiation waveguide system, an optical member is used, and radiation that is incident from the side on which the radiation is incident. A radiation detection apparatus configured as a condensing member having a condensing function for condensing light.
前記集光部材を、少なくとも一次元方向に相対移動して、前記放射線導波系を調整するための調整機構を備えた、請求項1記載の放射線検出装置。   The radiation detection apparatus according to claim 1, further comprising an adjustment mechanism for adjusting the radiation waveguide system by relatively moving the light collecting member in at least a one-dimensional direction. 前記集光部材が、前記放射線を反射させるガラス細管を束ねた構造である請求項1記載の放射線検出装置。   The radiation detecting apparatus according to claim 1, wherein the condensing member has a structure in which glass capillaries that reflect the radiation are bundled. 請求項2に記載の放射線検出装置であって、
放射線が入射してくる側の系と、該系を基準にして前記放射線検出器側に隣接している系とは、少なくとも真空度が異なるように制御されており、
前記集光部材の相対移動に追随して形状を変化させて両系間の封止を行う封止部材がさらに設けられた放射線検出装置。
The radiation detection apparatus according to claim 2,
The system on the radiation incident side and the system adjacent to the radiation detector side with respect to the system are controlled so that at least the degree of vacuum is different,
A radiation detection apparatus further provided with a sealing member that performs sealing between both systems by changing the shape following the relative movement of the light collecting member.
請求項1乃至4のいずれか一項に記載の放射線検出装置であって、
前記放射線検出器は超伝導放射線検出器であり、
前記放射線検出器が配置されている系は、当該放射線検出器が作動できる温度にされた系である放射線検出装置。
The radiation detection apparatus according to any one of claims 1 to 4,
The radiation detector is a superconducting radiation detector;
The system in which the radiation detector is disposed is a radiation detection apparatus that is a system at a temperature at which the radiation detector can operate.
請求項1乃至5のいずれか1項に記載の放射線検出装置を備え、
試料に放射線または荷電粒子を照射する照射部材と、
試料を保持する試料ホルダと、を備えた、試料に照射された放射線または荷電粒子によって試料で生成した放射線及び/又は反射した放射線を放射線検出器で検出する放射線検出装置を用いた放射線分析装置。
Comprising the radiation detection device according to any one of claims 1 to 5,
An irradiation member for irradiating the sample with radiation or charged particles;
A radiation analyzer using a radiation detection apparatus, comprising: a sample holder that holds a sample; and a radiation detector that detects radiation generated on the sample and / or reflected radiation by radiation or charged particles irradiated on the sample.
JP2006211681A 2006-08-03 2006-08-03 Radiation detector and radiation analyzer Pending JP2008039500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211681A JP2008039500A (en) 2006-08-03 2006-08-03 Radiation detector and radiation analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211681A JP2008039500A (en) 2006-08-03 2006-08-03 Radiation detector and radiation analyzer

Publications (1)

Publication Number Publication Date
JP2008039500A true JP2008039500A (en) 2008-02-21

Family

ID=39174693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211681A Pending JP2008039500A (en) 2006-08-03 2006-08-03 Radiation detector and radiation analyzer

Country Status (1)

Country Link
JP (1) JP2008039500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249753A (en) * 2009-04-17 2010-11-04 Japan Atomic Energy Agency Method for analyzing transuranium element contained in substance
DE102014119282A1 (en) 2013-12-24 2015-06-25 Hitachi High-Tech Science Corporation X-ray fluorescence analyzer
WO2016151786A1 (en) * 2015-03-25 2016-09-29 株式会社 日立ハイテクノロジーズ Electron microscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249753A (en) * 2009-04-17 2010-11-04 Japan Atomic Energy Agency Method for analyzing transuranium element contained in substance
DE102014119282A1 (en) 2013-12-24 2015-06-25 Hitachi High-Tech Science Corporation X-ray fluorescence analyzer
JP2015121479A (en) * 2013-12-24 2015-07-02 株式会社日立ハイテクサイエンス X-ray analyzer
US9645100B2 (en) 2013-12-24 2017-05-09 Hitachi High-Tech Science Corporation X-ray fluorescence analysis apparatus
WO2016151786A1 (en) * 2015-03-25 2016-09-29 株式会社 日立ハイテクノロジーズ Electron microscope
US10269536B2 (en) 2015-03-25 2019-04-23 Hitachi High-Technologies Corporation Electron microscope

Similar Documents

Publication Publication Date Title
JP5744394B2 (en) X-ray detector for electron microscope
EP2284524B1 (en) Microcalorimetry for X-ray spectroscopy
US7072439B2 (en) X-ray tube and method and apparatus for analyzing fluid streams using x-rays
US9645100B2 (en) X-ray fluorescence analysis apparatus
EP2237305A2 (en) X-ray source assembly having enhanced output stability, and analysis applications thereof
US7241997B2 (en) Superconducting X-ray detection apparatus and superconducting X-ray analyzer using the apparatus
US7382856B2 (en) X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof
JP5788153B2 (en) X-ray diffraction method and portable X-ray diffractometer using the same
CN104076052B (en) Fluorescent x-ray analyzer
CN111373288A (en) Silicon drift type radiation detection element, silicon drift type radiation detector, and radiation detection device
US6442236B1 (en) X-ray analysis
US10018578B2 (en) X-ray analysis device
JP2582114B2 (en) X-ray analyzer for electron microscope
US20060104419A1 (en) Superconducting X-ray analyzer
JP2008039500A (en) Radiation detector and radiation analyzer
JP2013160614A (en) X-ray detection device
JP2019200990A (en) Cathodoluminescence optical hub
JP2006226800A (en) Superconduction x-ray detection device and superconduction x-ray analysis system using it
US20040065844A1 (en) Electron diffraction system for use in production environment and for high pressure deposition techniques
CN113093264B (en) Ion beam detector
WO2016151786A1 (en) Electron microscope
JP2010048821A (en) Superconducting x-ray detection apparatus and superconducting x-ray analyzer using the same
EP3220135B1 (en) X-ray analyzer
JPH1064695A (en) X-ray generator and x-ray device using the same
JP2015076303A (en) Electron microscope